{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example: Train sizing\n", "-----------------------\n", "\n", "This example shows how to asses a model's performance based on the size of the training set.\n", "\n", "The data used is a variation on the [Australian weather dataset](https://www.kaggle.com/jsphyg/weather-dataset-rattle-package) from Kaggle. You can download it from [here](https://github.com/tvdboom/ATOM/blob/master/examples/datasets/weatherAUS.csv). The goal of this dataset is to predict whether or not it will rain tomorrow training a binary classifier on target `RainTomorrow`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load the data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Import packages\n", "import pandas as pd\n", "from atom import ATOMClassifier" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
LocationMinTempMaxTempRainfallEvaporationSunshineWindGustDirWindGustSpeedWindDir9amWindDir3pm...Humidity9amHumidity3pmPressure9amPressure3pmCloud9amCloud3pmTemp9amTemp3pmRainTodayRainTomorrow
0MelbourneAirport18.026.921.47.08.9SSE41.0WSSE...95.054.01019.51017.08.05.018.526.0Yes0
1Adelaide17.223.40.0NaNNaNS41.0SWSW...59.036.01015.71015.7NaNNaN17.721.9No0
2Cairns18.624.67.43.06.1SSE54.0SSESE...78.057.01018.71016.63.03.020.824.1Yes0
3Portland13.616.84.21.20.0ESE39.0ESEESE...76.074.01021.41020.57.08.015.616.0Yes1
4Walpole16.419.90.0NaNNaNSE44.0SESE...78.070.01019.41018.9NaNNaN17.418.1No0
\n", "

5 rows × 22 columns

\n", "
" ], "text/plain": [ " Location MinTemp MaxTemp Rainfall Evaporation Sunshine \\\n", "0 MelbourneAirport 18.0 26.9 21.4 7.0 8.9 \n", "1 Adelaide 17.2 23.4 0.0 NaN NaN \n", "2 Cairns 18.6 24.6 7.4 3.0 6.1 \n", "3 Portland 13.6 16.8 4.2 1.2 0.0 \n", "4 Walpole 16.4 19.9 0.0 NaN NaN \n", "\n", " WindGustDir WindGustSpeed WindDir9am WindDir3pm ... Humidity9am \\\n", "0 SSE 41.0 W SSE ... 95.0 \n", "1 S 41.0 S WSW ... 59.0 \n", "2 SSE 54.0 SSE SE ... 78.0 \n", "3 ESE 39.0 ESE ESE ... 76.0 \n", "4 SE 44.0 SE SE ... 78.0 \n", "\n", " Humidity3pm Pressure9am Pressure3pm Cloud9am Cloud3pm Temp9am \\\n", "0 54.0 1019.5 1017.0 8.0 5.0 18.5 \n", "1 36.0 1015.7 1015.7 NaN NaN 17.7 \n", "2 57.0 1018.7 1016.6 3.0 3.0 20.8 \n", "3 74.0 1021.4 1020.5 7.0 8.0 15.6 \n", "4 70.0 1019.4 1018.9 NaN NaN 17.4 \n", "\n", " Temp3pm RainToday RainTomorrow \n", "0 26.0 Yes 0 \n", "1 21.9 No 0 \n", "2 24.1 Yes 0 \n", "3 16.0 Yes 1 \n", "4 18.1 No 0 \n", "\n", "[5 rows x 22 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load the data\n", "X = pd.read_csv(\"./datasets/weatherAUS.csv\")\n", "\n", "# Let's have a look\n", "X.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run the pipeline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<< ================== ATOM ================== >>\n", "\n", "Configuration ==================== >>\n", "Algorithm task: Binary classification.\n", "\n", "Dataset stats ==================== >>\n", "Shape: (142193, 22)\n", "Train set size: 113755\n", "Test set size: 28438\n", "-------------------------------------\n", "Memory: 25.03 MB\n", "Scaled: False\n", "Missing values: 316559 (10.1%)\n", "Categorical features: 5 (23.8%)\n", "Duplicates: 45 (0.0%)\n", "\n", "Fitting Cleaner...\n", "Cleaning the data...\n", "Fitting Imputer...\n", "Imputing missing values...\n", " --> Dropping 161 samples for containing more than 16 missing values.\n", " --> Imputing 481 missing values with median (12.0) in column MinTemp.\n", " --> Imputing 265 missing values with median (22.6) in column MaxTemp.\n", " --> Imputing 1354 missing values with median (0.0) in column Rainfall.\n", " --> Imputing 60682 missing values with median (4.8) in column Evaporation.\n", " --> Imputing 67659 missing values with median (8.4) in column Sunshine.\n", " --> Imputing 9187 missing values with most_frequent (W) in column WindGustDir.\n", " --> Imputing 9127 missing values with median (39.0) in column WindGustSpeed.\n", " --> Imputing 9852 missing values with most_frequent (N) in column WindDir9am.\n", " --> Imputing 3617 missing values with most_frequent (SE) in column WindDir3pm.\n", " --> Imputing 1187 missing values with median (13.0) in column WindSpeed9am.\n", " --> Imputing 2469 missing values with median (19.0) in column WindSpeed3pm.\n", " --> Imputing 1613 missing values with median (70.0) in column Humidity9am.\n", " --> Imputing 3449 missing values with median (52.0) in column Humidity3pm.\n", " --> Imputing 13863 missing values with median (1017.6) in column Pressure9am.\n", " --> Imputing 13830 missing values with median (1015.2) in column Pressure3pm.\n", " --> Imputing 53496 missing values with median (5.0) in column Cloud9am.\n", " --> Imputing 56933 missing values with median (5.0) in column Cloud3pm.\n", " --> Imputing 743 missing values with median (16.7) in column Temp9am.\n", " --> Imputing 2565 missing values with median (21.1) in column Temp3pm.\n", " --> Imputing 1354 missing values with most_frequent (No) in column RainToday.\n", "Fitting Encoder...\n", "Encoding categorical columns...\n", " --> Target-encoding feature Location. Contains 49 classes.\n", " --> Target-encoding feature WindGustDir. Contains 16 classes.\n", " --> Target-encoding feature WindDir9am. Contains 16 classes.\n", " --> Target-encoding feature WindDir3pm. Contains 16 classes.\n", " --> Ordinal-encoding feature RainToday. Contains 2 classes.\n" ] } ], "source": [ "# Initialize atom and prepare the data\n", "atom = ATOMClassifier(X, verbose=2, random_state=1)\n", "atom.clean()\n", "atom.impute(strat_num=\"median\", strat_cat=\"most_frequent\", max_nan_rows=0.8)\n", "atom.encode()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Training ========================= >>\n", "Metric: f1\n", "\n", "\n", "Run: 0 =========================== >>\n", "Models: LR01\n", "Size of training set: 11362 (10%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LogisticRegression:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.563\n", "Test evaluation --> f1: 0.5854\n", "Time elapsed: 1.181s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.5849 ± 0.002\n", "Time elapsed: 0.910s\n", "-------------------------------------------------\n", "Time: 2.091s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 2.109s\n", "-------------------------------------\n", "LogisticRegression --> f1: 0.5849 ± 0.002\n", "\n", "\n", "Run: 1 =========================== >>\n", "Models: LR02\n", "Size of training set: 22724 (20%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LogisticRegression:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.582\n", "Test evaluation --> f1: 0.5873\n", "Time elapsed: 1.455s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.5852 ± 0.0021\n", "Time elapsed: 1.120s\n", "-------------------------------------------------\n", "Time: 2.575s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 2.598s\n", "-------------------------------------\n", "LogisticRegression --> f1: 0.5852 ± 0.0021\n", "\n", "\n", "Run: 2 =========================== >>\n", "Models: LR03\n", "Size of training set: 34087 (30%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LogisticRegression:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.581\n", "Test evaluation --> f1: 0.5851\n", "Time elapsed: 1.702s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.5861 ± 0.0009\n", "Time elapsed: 1.355s\n", "-------------------------------------------------\n", "Time: 3.057s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 3.082s\n", "-------------------------------------\n", "LogisticRegression --> f1: 0.5861 ± 0.0009\n", "\n", "\n", "Run: 3 =========================== >>\n", "Models: LR04\n", "Size of training set: 45449 (40%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LogisticRegression:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.5827\n", "Test evaluation --> f1: 0.5869\n", "Time elapsed: 2.250s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.5863 ± 0.0017\n", "Time elapsed: 1.599s\n", "-------------------------------------------------\n", "Time: 3.850s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 3.881s\n", "-------------------------------------\n", "LogisticRegression --> f1: 0.5863 ± 0.0017\n", "\n", "\n", "Run: 4 =========================== >>\n", "Models: LR05\n", "Size of training set: 56812 (50%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LogisticRegression:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.5819\n", "Test evaluation --> f1: 0.585\n", "Time elapsed: 2.163s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.5854 ± 0.0017\n", "Time elapsed: 1.878s\n", "-------------------------------------------------\n", "Time: 4.041s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 4.077s\n", "-------------------------------------\n", "LogisticRegression --> f1: 0.5854 ± 0.0017\n", "\n", "\n", "Run: 5 =========================== >>\n", "Models: LR06\n", "Size of training set: 68174 (60%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LogisticRegression:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.5832\n", "Test evaluation --> f1: 0.5848\n", "Time elapsed: 2.338s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.5849 ± 0.0018\n", "Time elapsed: 1.899s\n", "-------------------------------------------------\n", "Time: 4.237s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 4.279s\n", "-------------------------------------\n", "LogisticRegression --> f1: 0.5849 ± 0.0018\n", "\n", "\n", "Run: 6 =========================== >>\n", "Models: LR07\n", "Size of training set: 79536 (70%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LogisticRegression:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.5873\n", "Test evaluation --> f1: 0.5849\n", "Time elapsed: 2.427s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.5852 ± 0.0012\n", "Time elapsed: 2.060s\n", "-------------------------------------------------\n", "Time: 4.486s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 4.531s\n", "-------------------------------------\n", "LogisticRegression --> f1: 0.5852 ± 0.0012\n", "\n", "\n", "Run: 7 =========================== >>\n", "Models: LR08\n", "Size of training set: 90899 (80%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LogisticRegression:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.589\n", "Test evaluation --> f1: 0.5837\n", "Time elapsed: 2.631s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.5853 ± 0.0026\n", "Time elapsed: 2.173s\n", "-------------------------------------------------\n", "Time: 4.804s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 4.853s\n", "-------------------------------------\n", "LogisticRegression --> f1: 0.5853 ± 0.0026\n", "\n", "\n", "Run: 8 =========================== >>\n", "Models: LR09\n", "Size of training set: 102261 (90%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LogisticRegression:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.5871\n", "Test evaluation --> f1: 0.5845\n", "Time elapsed: 2.837s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.5846 ± 0.002\n", "Time elapsed: 2.550s\n", "-------------------------------------------------\n", "Time: 5.387s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 5.443s\n", "-------------------------------------\n", "LogisticRegression --> f1: 0.5846 ± 0.002\n", "\n", "\n", "Run: 9 =========================== >>\n", "Models: LR10\n", "Size of training set: 113624 (100%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LogisticRegression:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.5858\n", "Test evaluation --> f1: 0.5848\n", "Time elapsed: 4.211s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.5848 ± 0.0007\n", "Time elapsed: 2.967s\n", "-------------------------------------------------\n", "Time: 7.178s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 7.243s\n", "-------------------------------------\n", "LogisticRegression --> f1: 0.5848 ± 0.0007\n" ] } ], "source": [ "# Analyze the impact of the training set's size on a LR model\n", "atom.train_sizing(\"LR\", train_sizes=10, n_bootstrap=5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Analyze the results" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
  f1_trainf1_testtime_fitf1_bootstraptime_bootstraptime
fracmodel      
0.100000LR010.5621000.5848001.1810760.5849220.9098302.090906
0.200000LR020.5832000.5846001.4553240.5852341.1200212.575345
0.300000LR030.5800000.5852001.7020200.5861181.3545173.056537
0.400000LR040.5845000.5857002.2500480.5863481.5994573.849505
0.500000LR050.5833000.5865002.1632140.5853841.8779474.041161
0.600000LR060.5831000.5832002.3380790.5848911.8987314.236810
0.700000LR070.5878000.5858002.4267790.5852352.0595904.486369
0.800000LR080.5916000.5886002.6306080.5852692.1729814.803589
0.900000LR090.5856000.5833002.8369930.5846332.5501475.387140
1.000000LR100.5858000.5848004.2110310.5848362.9666127.177643
\n" ], "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# The results are now multi-index, where frac is the fraction\n", "# of the training set used to fit the model. The model names\n", "# end with the fraction as well (without the dot)\n", "atom.results" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAKyCAYAAACNGhA/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGcUlEQVR4nOzdd3hT9f4H8PdJmnQPuhfdQKGFVnbZIIgsWYpbARUXDtTrVvSKW3/qdVyvoiioiAgigoKDKaVsKC2lg7ZA994zyfn9ERsIJ13Q9iTt+/U8fWy+OTnnnYAhn3yXIIqiCCIiIiIiIupxFHIHICIiIiIiInmwICQiIiIiIuqhWBASERERERH1UCwIiYiIiIiIeigWhERERERERD0UC0IiIiIiIqIeigUhERERERFRD8WCkIiIiIiIqIdiQUhERERERNRDsSAkIiIiIiLqoVgQEhERERER9VAsCIl6EJ1OhxUrViA0NBQqlQqhoaF46623EB4eDp1O1+7zffrppwgICEB9fX0npCUiIiKiziaIoijKHYKIusZHH32Ehx9+GI8//jgGDRoEZ2dnLFq0CO+88w4WLVrU7vPV1dUhKCgIzz77LB5++OFOSNz5SkpKcOTIERQVFaGmpgZWVlbo1asXoqKiEBgY2OJjjx49isOHD6NXr1644YYbjO7TarU4fPgwUlNTUV9fD1dXVwwbNgz+/v5tytWex7fl2F27diElJaXZ6916662wt7dvUzYiIiLqPlgQEvUgQ4YMgbu7O7Zv3w4AeP/997F8+XLk5+fDxsbmss751FNPYd26dcjIyIAgCB0Zt0ucO3cOCQkJ8PLygp2dHTQaDTIyMpCXl4exY8eif//+Jh9XVVWFH374AQDg6OgoKQj/+usvpKenY+DAgXB2dkZKSgoKCgowa9YseHt7t5qrPY9vy7H5+fmoqKgwepwoivj7779N5iciIqKegUNGiXqIuro6nDhxAuPGjTO0rVq1Ctddd91lF4MAsGDBApw9exY7d+7siJhdLiAgANOnT8eQIUPQv39/DBw4EDNnzoSbmxvi4+ObfVxcXBw8PT3h4eEhua+goABnzpzB8OHDMXLkSPTv3x8zZsyAo6MjDhw40Gqm9jy+rcd6eXmhT58+Rj9OTk7QaDQICwtrxytGRERE3QkLQqIe4K677oKtrS20Wi2ef/55CIIAHx8fxMfHY/LkyZLjs7OzYWNjg8WLFxu1//nnn1CpVFi2bJmhbciQIXB1dcXPP//c6c+jqygUCtjb26OhocHk/bm5ucjIyMCoUaNM3p+eng5BEIx6F62srNCvXz/k5+ejqqqqxeu35/FXcq20tDQAYEFIRETUg7EgJOoBbr31Vtx7770AgA8++ABr1qzBfffdBwAYPHiw5Hg/Pz/cfffd+Oabb3D27FkAwOnTp3HDDTdg2rRpePfdd42OHzx4MPbt29dqDp1Oh7q6ujb9dPVo9sbGRtTV1aGiogLx8fE4f/48/Pz8TD6Hffv2ITw8HK6uribPVVxcDGdnZ6jVaqN2T09Pw/0tac/jL/daOp0OZ86cgZeXFxwdHVvMQ0RERN2XldwBiKjzTZo0CX/99Rfs7e2xdOlSKBQKvPDCCwCA4OBgk4955plnsHLlSrz55pt45ZVXMHPmTAQFBWHt2rVQKIy/SwoJCcGaNWtazZGXl4ctW7a0KfPNN9/cpYVKXFwckpKSAACCICAoKAijR4+WHJeUlISqqirMmDGj2XPV1NTAzs5O0t7UVl1d3WKW9jz+cq91/vx51NfXo0+fPi1mISIiou6NBSFRDxEfH4+IiAhDMVdcXAwrKys4ODiYPN7Pzw/33HMPPv/8cxw9ehS1tbXYvXu3yZUoe/Xqhdra2maLkyZubm6YPn16m/La2tq2eowoitBqtW06n1KpbHHRm4EDByI4OBg1NTVIT083ee66ujocPnwYgwcPbjGfRqOBUqk0mQFAq5nb8/jLvVZaWhoUCgVCQkJazEJERETdGwtCoh7ixIkTmDp1arse88QTT+Cjjz5CfHw89u7da3IIJQDD8M7WVhm1trZu87YLbZGbm9vmHscFCxbAxcWl2ftdXFwM9/ft2xdbt27F9u3bMWfOHMPzOnToEKytrREREdHitaysrEwWYk1tpgq4y3385VyrsbERZ8+ehb+//xUtKERERESWjwUhUQ9QVlaG8+fPY+DAgYY2Nzc3aDQaVFZWNjs089VXXwWg74Vqbr4cAJSWlsLOzq7VXj2tVtvmTextbGwkQ1Mv5eLigvHjx7fpfC31XJoSEhKCvXv3ory8HC4uLigvL8fp06cRExODmpoaw3FarRY6nQ6VlZVQqVSwsbGBnZ2dyaGaTY9rbb+/9jz+cq6VmZnJ1UWJiIgIAAtCoh6hafuEQYMGGdrCw8MBABkZGUbtTd5++22sXLkSH330Ef71r3/h1VdfxcqVK02ePyMjo9n9+i6Wn5/foXMI7ezs0K9fvzadr700Gg0AGFYara6uhiiKiI2NRWxsrOT4tWvXIjIyEqNGjYKbmxtycnLQ0NBgtNhLQUEBAH0x3pL2PP5yrpWWlgaVSoWgoKAWcxAREVH3x4KQqAc4ceIEAOOCMCYmBgBw+PBhSUG4adMmPP3003jllVfw4IMPIjU1FZ988gmee+45k4vQHD16FLfeemurOTp6DmFHqK2tlVxLp9MhNTUVSqUSvXr1AgC4urrimmuukTz+0KFDaGxsxKhRo+Dk5ARA37sYHx+PpKQkREVFAdD3JCYnJ8PT09No3qZGo0FVVRVsbGwMwzfb8/j2HNv0fLOyshAWFgYrK/4TQERE1NPx0wBRDxAfHw8/Pz+jYZ8hISGIjIzEn3/+abTf4JEjR3Drrbfi1ltvxXPPPQcAePLJJ/Hpp5+a7CU8cuQISkpKMHv27FZzdPQcwo6wd+9eNDQ0wMfHB/b29qipqUFaWhrKysowcuRIqFQqAPohrKZ61E6ePAkARvd5enoiJCQEBw8eRG1tLZydnZGSkoLKykrJENeCggJs2bIFgwcPxtChQ9v9+PYcCwBnzpyBKIocLkpEREQAWBAS9Qjx8fEmh4UuXrwYL774oqGXLCsrC7NmzcJVV12Fzz//3HCcr68vFi9ejJUrV0p6CdevX4+AgABMmjSpS55LRwsJCUFycjJOnTqFuro6qNVquLu7Y/jw4Vc0pHLChAlwcHBAamoqGhoa4OrqimuvvRY+Pj4d/vj2HJuWlgZbW9tmFwgiIiKinkUQu3r3ZyIyG+Xl5QgJCcFbb72Fu+66q92Pr6+vR1BQEJ5++mk88sgjnZCQiIiIiDpTy0v4EVG35uzsjCeffBJvv/02dDpdux+/atUqqFQq3HfffZ2QjoiIiIg6G3sIiYiIiIiIeij2EBIREREREfVQLAiJiIiIiIh6KBaEREREREREPRQLQiIiIiIioh6KBSEREREREVEPxYKQiIiIiIioh2JBSERGKioqMGHCBFRUVMgdhYiIiIg6GQtCIjJSUVGB3bt3syAkIiIi6gFYEBIREREREfVQLAiJiIiIiIh6KBaEREREREREPRQLQiIy4uTkhJiYGDg5OckdhYiIiIg6mSCKoih3CCIyL+fOnUNAQIDcMYiIiIiok7GHkIgkXFxc5I5ARERERF2ABSERSaSnp8sdgYiIiIi6AAtCIiIiIiKiHopzCIlIory8HM7OznLHICIiIqJOxh5CIpKoqKiQOwIRERERdQEWhEQkUVxcLHcEIiIiIuoCLAiJSEIQBLkjEBEREVEX4BxCIiIiIiKiHoo9hEQkkZCQIHcEIiIiIuoCLAiJSEKj0cgdgYiIiIi6AAtCIpJwcXGROwIRERERdQEWhEQk4e7uLncEIiIiIuoCLAiJSCItLU3uCERERETUBVgQEhERERER9VAsCIlIIigoSO4IRERERNQFWBASkUR1dbXcEYiIiIioC7AgJCKJwsJCuSMQERERURdgQUhERERERNRDCaIoinKHICLzIooiBEGQOwYRERERdTL2EBKRRFJSktwRiIiIiKgLsCAkIomGhga5IxARERFRF2BBSEQSTk5OckcgIiIioi7AOYREJFFTUwM7Ozu5YxARERFRJ7OSOwARmZ+UlBRER0ebvK9eIyKjvGvzEBEREZk7TzvA1dbyFuVjQUhE7bI9U8TsTTq5YxARERGZFW97IPMeJaytLKso5BxCIpIICAho9r79OSKs+M5BREREZCSvGmiwwO/M+bGOiCTq6+ubvW9ftgiNBb7ZEREREZEUC0IiksjPzzfZrtGJOJTXxWGIiIiIqNOwICSiNksoAuq0cqcgIiIioo7CgpCIJAYOHGiyfX+OCMuaJk1ERERELWFBSEQSqampJtv354hQsiIkIiIi6jZYEBKRRF1dncn2vVkiNGIXhyEiIiKiTsOCkIgkHB0dJW1FNSIyK2QIQ0RERESdhgUhEUn4+flJ2uJy2TVIRERE1N2wICQiidOnT0va4nK5IT0RERFRd8OPd0TUJn9ncUN6IiIiou6GBSERSfj7+xvd1upEHOSG9ERERETdDgtCIpLQao13n08sBmo1MoUhIiIiok7DgpCIJHJzc41uc0N6IiIiou6JBSERtSqOG9ITERERdUssCIlIIiIiwuj2Hm5IT0RERNQtsSAkIomMjAzD7yW1ItLLZQxDRERERJ2GBSERSdTU1Bh+P8AN6YmIiIi6LRaERCRhb29v+H1/jggrzh8kIiIi6pZYEBKRRGBgoOH3v7NFaNlJSERERNQtsSAkIolTp04B0G9IfyAXYD1IRERE1D2xICSiZiUVAzXckJ6IiIio22JBSEQSvr6+AIA4LihDRERE1K2xICQiCUHQryITmyPCiu8SRERERN0WP+oRkUR2djYAYG+WCI1O5jBERERE1GlYEBKRSWV1ItLK5E5BRERERJ2JBSERSfTv358b0hMRERH1ACwIiUji/Pnz3JCeiIiIqAdgQUhEElVVVdiXww3piYiIiLo7K7kDEJH5UVvbIC6HG9ITUce7M0LAV9OUJu/z/kSD/JoLtxf0EzArVMAIHwF9egnYdV7ExHXaNl/rvigBkwL0jw9wEvBVgg6LtrW+UtZn1yhwzyAFtpzRYdZPXFmLiLo39hBSqzIzMyEIAhYuXNim42fOnAlBEFBZWdliG5kvrVsYqhrlTkFE3dkLf2tx21bjn7J642Puj1ZgdpiA85UiSmrb/xXVU8MVmBQgILFYRGMbhzwM8QIWRgiobeRXYkTUM/SYgrCxsRHHjh3D+vXrsWrVKnz99df4+eefkZycDFGU501/6dKlEAQBmzZtMnn/r7/+CkEQ8OCDD3ZtsC7y5ZdfYsmSJaivr2/94BYsXrwY/fv3h5OTE1QqFdzc3DBs2DCsXbu2g5L2PBsOZckdgYi6ud8yRHybZPxTf0nn3+2/auH8Hy2u/kGHnOr2X2P8Oi3cP9Zi+gad5NzN+c8kJVafEo16KomIurMeMWRUFEX89ttvyM/PR58+fRAZGQmNRoO0tDTs3r0bZWVlGDFihNwxzVZgYCAqKyuhVqsv+xwbNmxAY2Mj7O3tDW0bN27E1q1b8e6778La2vqyz33kyBH06dMH06ZNg5ubG/Ly8rBp0ybccsstSEtLwwsvvHDZ5+6p4svtYKUA9yAkok7loAJqNICume9ls65wUMm5ivYdf/sAAZHuwLyfdbj6VtPDWomIupseURAWFBQgLy8PkZGRGDVqlKF9wIAB+OGHH5CUlMSCsAWCIMDBweGKzmFtbX1FRV9LTpw4IWl79dVXERAQgP/+97947rnnoFD0mM7wDhFf5cRikIg61c4blXBUC6jXiNieKeLxXTpZ9z51UAFvjlPgtQM69g4SUY/SIz4lNzQ0AIBR7xQAKJVK2NjYwMrKcuripmGky5cvl9xnap5edHQ03N3dkZycjLFjx8LOzg729vaYMmUKCgoKoNPp8Oijj8LT0xMqlQrBwcH48ccfjc7b3BzC2tpa3HHHHejVqxfUajXCwsKwatUqk7kvzRYdHY2tW7cCAJycnCAIguF53XrrrRAEAXv37pWcJysrC0qlElOmTGnxdXJycoKTkxOqq6uh012obJqG6f7111+46aab4OLiArVajT59+mD16tWS8wiCgKuvvho//fQTwsPDYW1tDVdXVzzwwAPQ6XQoLCzErFmz4OTkBGtrawwbNgynTp1qMZu5K68XkV7Bb8aJqHPUaIBVCTo8+KcOczZp8dYhEVcHCoi9RQl/R/lyvThKgVoN8N4Rzh0kop7FciqhK+Dp6Qm1Wo0TJ07A0dERnp6e0Gg0SElJQVFREcaMGdOm89TV1bX5mmq1us29UmVlZcjKks7ZKi4ubvP1WlJfX4/x48dj0KBBeOKJJ3Ds2DFs2bIF8+fPh6+vLw4dOoTbb78dOp0OX3zxBe68807ExMTAz8+vxfNee+212LNnD4YPH47JkycjIyMD999/P7y8vFrN9Oyzz+KVV15BQkICXnvtNahUKgDAxIkTAQDfffcdPvnkE4wdO9bocR988AF0Oh3uueceyTmzsrKg1Wpx7tw5fPjhhzh//jymTJlisuBfsmQJBEHA3Xffjerqaqxbtw6LFi2CVqvFokWLjI5NS0vD7bffjrlz52LBggX4+eef8d///hc2NjbYvHkzPD098fDDDyMjIwPff/89brzxRsTHx0MQLHMTv4O5IkRYZnYi6loCAHUbvz9qmsO3PlnE+uQLRdfPaSK2ZwJ7blLiuREK3P9n1w9P6NMLeGSwgJu36NDQ9kVMiYi6hR5REFpbW2Pq1KnYs2cP/vzzT0O7SqXClClTEBQU1KbzmOpBas7MmTPh6+vbpmMvLUA6WlVVFW6//XZ88sknhrYJEyZgz549CAoKwsmTJw29p0OGDMHtt9+ODz/8EG+88Uaz59y4cSP27NmDSZMm4Y8//jAUv6tXr8add97ZaqYFCxZg9erVSEhIwNKlS+HoaPy18IABA/Dbb7+hurraqGf3u+++g6+vL+bNmyd5jr179zbcVqlUmD59Or7++muT1xcEAcePHzcMhf3Xv/6FAQMG4LnnnsPtt99uVESeP38eP/74o+Gazz//PLy8vPD+++9j1qxZ2LRpk6H4UyqVWLNmDXbv3o0JEya0+jqYo4QiQACLQiJq3bjeAnbd2LaKMPxLDZJLTN+3Lxs4kAtMDpTnfeeDSQrE5gAbU9k7SEQ9T48oCAF9gdCrVy8EBgbCy8sL9fX1SExMxF9//YWpU6fC39+/1XNMnz69zddzc3Nr87FPPvkkoqOjJe0nTpzAm2++2ebzNEehUEiGmI4ZMwa7d+/GzTffbFRwzZgxAwBw5syZFs/5/fffAwCeeeYZo57QO+64A88995zJHs/2uPvuu/HYY49h1apVWLp0KQBg27ZtyMnJwYMPPijp9bO1tcX333+PhoYGpKenY/369aipqUFFRQXc3d1Nnv/ieZEhISGYMWMGNm7ciN27d+Pqq6823BcWFmZUgKrVakRGRuLvv//GE088YdQTePXVV2PNmjVITExsV0FYUlICe3t7wzzLqqoqiKJoKJQbGhpQWVlp9PcqNzcXPj4+zd7Oy8uDl5eXIV9br9HfrReLQSJqk9PFIhb+1rYutdyqlu8/XymiX6+uf++Z2FvAtGAF5m7SItDpQruVArC1AgKdgJI6oLKhy6MRkQWqqqoGVMafr65kYcau0CMKwpKSEvz888+IiYnBgAEDDO1hYWFYv3499uzZg5tuuqnVIZ5tKRovR0xMDObMmSNpd3Z27pCC0NnZGR4eHkZtTYVFWFiYUXuvXr0AAKWlpS2e8+zZsxAEAVdddZXkvpCQkCsuCO+77z48//zzWL16taEg/Oijj2BlZYWHHnpIcrxSqcSNN95ouP38888jOjoa48ePR1JSkmRRnEGDBknOERkZiY0bNyI5OdmoIDQ1dNbZ2dnwmIs1vc5FRUVtfaoAAFdXV6Pbl+ZVq9WSLxkuLv5M3fb29r6sa4yw5zfkRNQ2+TXA14kd854R4iygsLZDTtUuAf8UgT/NkfZ0+jsKyFyiwKM7tPjgKN8biah1Dg72cFRf+HLL3ItBoIcsKhMfHw+tVouQkBCjdisrKwQEBKCqqgpVVa18dQmgpqamzT9abedMQmhpXlpz11QoFM0Wu0ql6aE+cu3N2MTW1hazZs3CkSNHkJiYiPLycvz5558YNmwY+vXr1+rjlUolbr75ZmRlZWH9+vVXlKWlLwqaW5Do4oVsLE0vGwG9ba9sb0gioua420rbpgULGOotYFvG5f3bY2sF9HMF3EycuzU7zomYs0kr+SmoEXEoT3/fL2dYDBJR99UjeghravTrR5sqcpo+uLflA/w333zT5mu2Zw5hezQt2FJSIp2Ice7cuQ6/XnMCAwNx8OBBHDt2DJMnTza6Lz09vU3naK1H9vHHH8e6devw0UcfISAgAPX19W2an9ik6c/dVG9dfHy8ZAhwQkICALSp4OzuhrrVITfbGhp+BiKiDhZ7ixLHCkQczhNRXg8M9hKwOFLAuQoRrx0w/rd4rD8wzl//RaiHLWCvAp4bqb+9J0vE3n8Gowz30c9lfClWh5djL5xjZoiAKE/97yoFMMhDMDx+c5qIk0XA+Ur9cNVLvT8RyK8W8XMa3wiJqHvrEQWhi4sLsrKykJycbDRXr76+HmfPnoW1tTWcnJyaP8E/OmsOYXv07dsXSqUS+/btgyiKhh7DP/74A0lJSZ1yTVNuvPFGrF+/Hq+//jomTZpktKhMW4eLNs1dzMvLkywqAwDDhg1DeHg4Nm3aBCcnJ7i6ukoKwoKCAtjb20u2FKmsrMSaNWsgCILJuXwrV67E0qVLDcMm09PT8euvv8Lb2xvjx49vU/7ubGq4C37K4ocgIup4606LmBEi4JpAAXYqILca+PykiJdjdSi4ZP+/SQEKvDTK+MvDFWP0I1teitVhb1bLX+bO7ytgYeSFxw/2AgZ76R+fVanFySK+zxER9YiCcODAgUhNTcXBgwdRUlICb29v1NfX4/Tp06ipqcHo0aPbtEVEZ80hbA8HBwfDypYTJkzAxIkTkZaWhk2bNiEwMBCZmZldkmP+/PkYPXo0duzYgZiYGEyZMgUZGRnYsGEDAgIC2tRbOWbMGHz//fe46667MHPmTKjVaowfP95oXuJdd92Ff/3rX8jLy8Odd94JGxsbo3Ns27YNDz30ECZOnIjQ0FA4OzsjMzMTP//8M0pKSnDnnXdi2LBhkmuLoojo6GjMnTsX1dXVhgVpVqxYYVH7UnYW16oUAH3kjkFE3dAL+3R4YV/bjn35kh6/5uw+L0J4RyNpX7RNh0XbLm8If/Dn3H+CiHqGHvHJ19HREXPnzsWRI0eQk5ODM2fOwMrKCm5ubhg5ciSCg4PljtguX3/9NW677Tbs2LEDcXFxCAkJwerVq/Hll192WUEIAL///juWLFmCLVu24NixYwgICMB///tfbNiwoU0F4f33348DBw5g69at+PvvvyGKIl588UWjgvC+++7Diy++iLq6Ojz44IOScwwdOhRjx47F4cOH8fvvv6O+vh4ODg7o168fXn/9dZP7FQLAZ599hs8++wyff/45qqurERgYiP/7v//DwoULL/v16E5C7OthZ6XfQJqIiIiIui9BlHv1EKIW1NfXw83NDaGhoThx4sQVn2/p0qX4+OOPERcXhxEjRnRAwu4pJycHt+31xM7zcichIiIishwVDyuNVhm1BD1ilVGyXB999BGqq6vbtZgMXTlbW1uM9hNgZVnvZ0RERETUTj1iyChZnq+++gppaWn44IMP4Ovri/vvv1/uSD3K2bNnEeM7CBoOICAiIiLq1lgQkll66qmnUFxcjJCQEHz22Wewtb2MzaXoiozwYfcgERERUXfHOYREJFFdXQ17e3uEfK5BRrncaYiIiIgsA+cQElG3UFhYCEC/ITTnERIRERF1XywIiUiirKwMADDSR4CWYwiIiIiIui0WhEQkoVKpAAAxvgJYDxIRERF1XywIiUgiIiICABDpDthw6SkiIiKibosFIRFJnDhxAgCgVAgY7i1zGCIiIiLqNCwIiUji4sWHx/gJsOI7BREREVG3xI95RCTh7u5u+D3GV4BGJ2MYIiIiIuo0LAiJSMLR0dHwOzeoJyIiIuq+WBASkURGRobhdw87AYFOMoYhIiIiok7DgpCIWjXWT4CSHYVERERE3Q4LQiKSCA0NNbod4ytAxw0JiYiIiLodFoREJFFaWmp0mxvUExEREXVPLAiJSKKkpMTo9kAPwEYpUxgiIiIi6jQsCIlIQqk0rv6sFAKGcoN6IiIiom6HBSERSQwcOFDSxg3qiYiIiLoffrwjIomTJ09K2kZyg3oiIiKibocFIRFJaLVaSVsMN6gnIiIi6nZYEBKRhKurq6TN015Ab0cZwhARERFRp2FBSEQSvXr1Mtk+hhvUExEREXUrLAiJSOLMmTMm20dxg3oiIiKiboUFIRG12UhuUE9ERETUrbAgJCKJ4OBgk+1RHoA1N6gnIiIi6jZYEBKRRGVlpcl2lVLAEK8uDkNEREREnYYFIRFJFBUVNXvfaG5QT0RERNRt8GMdEUkIQvNLicZwg3oiIiIiCWeVBioLrK4EURS5RgQRtVlNo4iE5jsQiYiIiHok69oCRIVY3twaFoREJJGYmIiIiAi5YxARERFZjKKiIri7u8sdo90ssFOTiDpbY2Oj3BGIiIiILEpWVpbcES4LC0IiknBxcZE7AhERERF1AQ4ZJSKJ6upq2Nvbyx2DiIiIyGLU1dXBxsZG7hjtxh5CIpJITU2VOwIRERGRRcnOzpY7wmVhQUhERERERHSFKisr5Y5wWVgQEpFEYGCg3BGIiIiILIq1tbXcES4LC0IikqitrZU7AhEREZFF6du3r9wRLgsLQiKSKCgokDsCERERkUU5efKk3BEuCwtCIiIiIiKiHorbThCRhE6ng0LB74uIiIiI2ionJwe+vr5yx2g3fuIjIonk5GS5IxARERFZFEvcgxBgQUhEJtTX18sdgYiIiMiinDt3Tu4Il4UFIRFJODk5yR2BiIiIiLoA5xASkURtbS1sbW3ljkFERERkMWpqamBnZyd3jHZjDyERSXAOIREREVH75Ofnyx3hsljJHYCIiIiIqNNV1QKPfAmUVMqdhCxViBfw7qJm7y4vL+/CMB2HBSERSfTu3VvuCERERB3rz3jgy7/kTkGWTKUEXr8NUKtM360y3W7uOGSUiCQaGxvljkBERERkXhq1wPHMZu+OiIjouiwdiAUhEUnk5eXJHYGIiIjIvCgEYH/z6ywcP36867J0IBaERERERERErREEIPa03Ck6HAtCIpKIjIyUOwIRERGRedHqgL+bLwjd3d27MEzHYUFIRBJpaWlyRyAiIiIyPzklQG6JybscHBy6OEzHYEFIRBJ1dXVyRyAiIiIyT/tTTDZnZmZ2bY4OwoKQiCQs9RsuIiIiok6lUgJxpgtCS8WCkIgkuA8hERERkQmNWuDvUybvCgsL6+IwHYMFIRFJJCUlyR2BiIiIyDwdSQcapHs2FxcXyxDmyrEgJCIiIiIiaqsGDRB/VtJcWloqQ5grx4KQiCT8/PzkjkBERERkngTTG9QrlUoZwlw5FoREJCGKotwRiIiIiMyTwnRBOHDgQBnCXDkWhEQkkZOTI3cEIiIiIvOk1QF7pestxMfHyxDmyrEgJCIiIiIiao+sYiC/zKhJp9PJk+UKsSAkIokBAwbIHYGIiIjIvF2yH6Grq6tMQa4MC0Iikjh7VrpyFhERERH9w0opmUfo4uIiT5YrxIKQiCSqq6vljkBERERkvjRa4G/jeYTp6ekyhbkyLAiJSMLOzk7uCERERETm7XCavjC0cCwIiUgiODhY7ghERERE5q1eA8RnGm5a6ucnFoREJJGYmCh3BCIiIiLzJghGC8tUVFTIGObysSAkIiIiIiJqL6XxBvXFxcUyhrl8LAiJSMLHx0fuCERERETmTaMD9pwy3BQEQcYwl48FIRFJKJVKuSMQERERmb9zRUBhOQAgKipK5jCXhwUhEUlkZWXJHYGIiIjIMvwzjzAhIUHmIJeHBSEREREREdHluGiDeo1GI3OYy8OCkIgkwsPD5Y5AREREZP40WmDfaQCAi4uLvFkuEwtCIpLIzs6WOwIRERGRZTio36De3d1d7iSXhQUhEUlUVlbKHYGIiIjIMtQ1AInnkJaWJneSy2IldwAiMj82NjZyRyAiIqIr5d0LeGQGMKIPMDQMcLQFJrwA7E6UHvvMfOC6YUCol/6480XA1qPAqz8CRW3YcH3BaGDWUP21+vgCuxKAiS9KjxvQG3jpRmBIiD5fTT1w6jzw9s/AlsNX/pzlIAjA/hRgpJfcSS4Lewi7UGZmJgRBwKxZs5CTk9Oh5961axcEQcDChQvZuyOjzvwz7kp9+vSROwIRERFdqX6+wNPzAD834OTZlo8dEgIczwBe3QA8+Dnw8yFg0UQg9jXAzrr1a90/FZg9HDhfDJS08Fk00ENfcH69C3jkC+CV9fr2X54F7pnS5qdmVv7ZoD4oKEjuJJely3oIP/vsM9MBrKywePFiSXt6ejpOnjyJ4uJiCIIANzc3REdHIyAgoLOjSjz99NN48803sWzZMrz11luwsrrwsr3xxht45plnEBoairVr12LYsGGG+zQaDVxcXODs7IwffvgBfn5+XZ4dAOrq6vDpp5/im2++QWpqKqqrq6FWq+Ht7Y3Bgwfjtttuw7XXXtupvUJfffUV4uPj8fDDD5v8n2XTpk148803kZKSgoqKCtjb28PT0xODBg3Cgw8+iIkTJ3ZaNpI6efIkoqOj5Y5BRERELdn5byCzAFj0ken7j5wBXO8ASquA+THAqBYWjbv+bWnb/mRgw5P6nr91+1rOcvsHQHYJIIrAyfebP+63o/qfi330G3DkbeCxWcDnf7R8HXOk0QF7T6G6utoiF5bp0iGj3t7e6N+/v1GbQiHtpDx+/DgOHjwINzc3DB06FACQmpqKbdu2YeLEiV3eezFx4kS8+eabOH36NPLy8uDv72+4b8eOHVAqlTh79iwyMjKMCsJDhw6huroaw4cPh6+vLwIDA1FdXQ2FQgFr6zZ809IB0tPTMXXqVKSlpaFv376YP38+goODUV9fj8TERPz555/YuHEjPv74Y9x///2dluOrr75CQkICrrvuOklB+OSTT+Ltt9+Gv78/Zs2ahaCgIJSUlODUqVP49ddfERERwYKQiIiIqL2q6q7s8ZkF+v+62Ld+bFbx5V9Hp9MPUR0WdvnnkFtGAUpSz8rWAXQlurQgdHJyarWYq6mpweHDh9GrVy/MnTvXUDBGRkZiw4YNiI2NRWBgINRqdVdEBgCMGTMGKpUKKSkpyM3NNRSEGo0G+/btw4gRIxAbG4u4uDjMmzfP0IO4a9cuAEDfvn3h4+MDQRBgZ2fXZblra2tx7bXXIiMjA4888giWL1+OXr16GR1TV1eHN998U5aeVwAoKCjAu+++i6CgIHz99dcYN26c0f1VVVWoqamRJVtP5uVlmWPgiYiI6Aq5Oer31uvjA7xxu35bhV0m5hxeKTtrwFYNONvp5y5OG9x6L6SZsz+ZBUyQO0X7dfkcQq1Wi8bGxmbvz8/Ph06nQ58+fYx6DxUKBcLCwlBfX4/MzMwuSHqBvb09hg4diszMTGRkZBjaDx06hJqaGkycOBGenp6GHsQmO3fuhCAIGDFiBGxsbEzOL7u47euvv0ZERATUajVcXFwwa9YsnDp1SpJn06ZNCA8Ph1qthqurK+bPn2/yNVm5ciVSU1NxzTXX4IknnpAUg4B+8ZDly5djxowZhraFCxdCEAT88ssvkuMFQcCoUaOQnJxsaFu1ahUiIiJgb28Pa2treHp6YuzYsfjtt98AAIGBgdi9ezeKi4sxceJECIIAQRDw+OOPIz093fDnHRgYKLmeg4MDPD09Dbe/+uorCIKAZcuW4bnnnoOXlxdUKhV69+6NJ598EkVFRZJzHD58GNdccw2cnJygUqng7e2NW2+9FSkpKZJjU1NTMX/+fLi6usLKygru7u647rrrcPiwdJLz33//jcGDB0OtVsPJyQlTp07F0aNHJcdZoq7qwSYiIiIz4uUCFH0N5H0J7H0VCHAHbnkPSO6E7ajeXai/1pn/Au/cCfx0AFj6ecdfp6tYKRGcb5kb03dpD2F6ejpSU1MhiiJsbGwQGhqKYcOGGfX2abVafTArabSmtoKCAvTt27fFa7VWeF5MEIRWPwBPmjQJ+/fvR1xcHObOnQuVSoVdu3bB1tYWI0aMQGpqKo4dO4acnBz4+/sbeg/9/PzQr1+/VjMkJCRgz549mDJlCmbPno3du3djy5YtUCqV+PTTT+Ht7Q0A+OmnnzB//ny4ubnhxhtvhIeHB3766SeTBcv69fpJutdcc43RMNeOtGbNGixevBhhYWFYvHgx3N3dkZeXh507dyI5ORnTpk3Du+++i6eeegoFBQW455574OvrCwAYPXo0QkJCAADx8fHYv38//Pz8TP7ZX2rjxo3QaDSYPn06XFxc8NNPP+Htt99GcXEx3n77bbi6ugIAtm7dirlz58Ld3R3z5s1DQEAATpw4ge+//x6nT5/G6tWrERERAQA4cuQIJkyYALVajWuuuQZ9+/ZFWloafvzxRyQmJuLrr7/GmDFjAAAHDhzA1VdfDbVajTlz5iAoKAi//fYbHnvssc54mbvcuXPnDK8hERERmQErpb437WIqK8Bape/Vu1hJlX4uX3uVVAGTXwJsVMBVIcC8EYBDJ60x8f4W4Mf9gK8rsGAUoFQAagveAEGjRc3vR2C/4ha5k7Rbl73qHh4eCAkJgbOzMxoaGnDu3DkkJiYiNzcXs2fPhkqlAgDDh9Ds7GxERkYanaOpV62qqqrV66WlpWH37t1tyubg4IBbbmn5D2/ixIl49dVXkZSUhPz8fPj7+2Pnzp0IDQ1F7969MWHCBGzcuBEZGRkYPny4ofdw5MiRhgKoJTk5OXj//fexZMkSKJVKiKKIiIgI7Nq1C4mJifD29oZWq8VDDz0EOzs7vP/++7j55puhUCiwfPlyyWsF6ItMGxsbybxNrVaLwsJCaDQXvsWwt7eHs7OzyTmdLfnpp59gY2OD9957DzNnzjR5zPXXX4+PPvoI5eXluO666zBhwgSj+x988EF8/PHHuP3227F8+XIMGjQIQ4cOxYwZMzBgwACTmaqqqrBy5UrMmTMHgiDgpZdeQmRkJL7//nvMnDkTc+fORV1dHRYtWoTAwEB8/fXXGDVqlOHx7733Hh577DGsXr0ar7zyCtRqNRYuXAgHBwd89tlnmDVrluHYG264AfPmzcMXX3yBQYMGwcnJCY8++ii0Wi1eeeUVLF26FFZWVlixYgVGjRqFs2dbWcWLiIiIqL1GhwO7XjHdfvNY47age4Gzhe2/RqMG+Cte//vWI/rfY18HCsr1tztScvaFnsc1u4DtL+pXGh3xVMdepwvZxp8HtFpAqZQ7Srt02ZDRuXPnIioqCkFBQejbty8mT56MYcOGoaSkBCdPnjQc5+rqCj8/P5w9exZxcXEoLS1FaWkpDhw4gPPnzwO40IvYkt69e2P69Olt+pk0aVKr5xs1ahTUajVSUlKQk5Nj6AEMCwuDj48Pxo8fD41Gg7i4ODQ2NhrmD4aHh8PHx6fV80dHR2PChAlQ/vMXSBAEXH311SgvLzcMQz1y5Aiys7MxatQojB071lAoOTs744EHHpCcs7KyEra2toZiu0lSUhJ8fHzQu3dvw88999yD4uL2TwZuKvB37NhxWY8HgA8//BBffvkloqKikJGRgR9//BFPP/00rrrqKlx33XU4ffq05DHjx4/HqFGjIAiCIccDDzyAmpoa7Ny5E42Njfjjjz9QWFiIUaNGwcvLC1lZWYafq6++GoC+Z7KgoAAnT55EQkIChg0bhqCgIKNjhw4dCjs7OyQmJiI7OxsFBQWIi4tDVFQUpkyZYujRVKvVePzxxy/rNSgpKUF9fb3hdlVVldH2IQ0NDZLXNzc3t8XbeXl5EC/6drA912jqge/Ma3TF8+A1eA1eg9fgNXiNJpWVrXcomLUTmfreu4t/TmQC249J2/PKOuaa+5OBnBLg1nGtH3ulftwPDO8D9G29I8VsKQRUVVVL/u6aO1n7ZaOionDkyBGcP38egwcPNrRPnjwZu3fvRnx8POLj9d9SODo6YsyYMdizZ4+kwDHFzs6uQxdwaRoaGhsbi/T0dGi1WtTU1KB///7w8PCAl5cX3N3dDfMIm+YPDh8+vE3zsdzd3eHk5GTU5ubmBgCGN8D09HQA+tVaL13SdsCAAZJzOjo6ora2VjJ0Njg4GJs3b0ZVVRVOnTqFFStWtPl1uNSzzz6LHTt24L333sNnn32GAQMGYPz48bjzzjsRERFhKNhaIggCFi1ahEWLFqGhoQFHjhzBpk2b8Nlnn2Hr1q1Qq9X45JNPDMNmAf1rcOmcyKbXoLCwEJWVlUhKSgIArF69GqtXrzZ57crKStTU1BiO/eWXX0zOnQSAiooK1NbWtvvPoS0uHZ7p4OBgdFutVhv+PjS59IuGS29f/Hq19xp5eXkICQnp1Gt0xfPgNXgNXoPX4DV4jSaOjsbntDhl1Rd675qUVgG5pdL2jmSjkg5V7Qy2/0wh64prdRJxaBgcnI0/z3flQpiXS9aCUKFQwN7eHnV1xkviWltb45prrkFNTQ3Ky8uhUqng5uZm6CFsy/4eGo2mzRW5IAiwtbVt9bhJkyZh7969iIuLQ1paGqytrTFixAhDT9348eNx/PhxnD9/Hvv27YO/v3+rcx2bKBSKZosn8XLGgEO/MuvevXuRlJSEqVOnGtrt7e0NQyJ37dolKQiby3HxENMmffr0QUpKCn777Tds3rwZsbGxeOedd7By5Uq88cYbuPvuuw29nm2hVqsRExODmJgYLF68GP3798fff/+N5ORkyRt7a5pet/nz52PevHkmn5eXlxf8/f1x7NgxAMCUKVNwyy23mCzinZ2dERYWZnKhn+6moqJC7ghERETUVeys9XMOay/57DxvJODqCBw+c6HNSgmEegPlNUBeafuv5eEMFJYbt1kpgTsmADX1wKms9p/THFgpUdjPHe37tGoeZC0INRoNqqqqml3i/tJevnPnzgFAm7ZIOHPmTIfOIQT08whffvllnD59GjU1NQgJCUHv3r0N948fPx6bNm3C77//jpqaGowaNapN8wfbqmkBlry8PJSVlRn1KJoqUm644Qbs3bsXv//+O66//vo2LyzT9C3dpSt2NvWMXcra2hpz5szBnDlzAOgXcpk5cybWrl2LKVOmICQkpE09hZfq168fXFxcUFZWJtl6Ii8vD6WlpUZ/d5peAw8PDzg6Ohq2OLG2tsa0adNMrrLapOlYQRAwadKkFv+OBQcHGzKUlZUZ7TfTXYpFS/g2i4iIiNrguev1/4345zPr7eOBMf+sL/Hqj/r/9vEB/nxJv+3D6Wz9voBDw4DbxgEZ+cAHWy6cz88VOP0h8NUOYNFHF9rHDgDG/TNSysMJsLe+cO09p4C9/3xG+t99gJOtvi27BPB20Q9J7e8PPLYKqL7CvRPlotGiZpDl7UEIdFFBWFdXBxsb6QpFhw8fhiiKbSrwCgsLkZycDB8fnzb1FDXNIWyLtqxqCQAjR46EjY0NkpKSUFBQgGuuucZoeML48eOh1Wrx3XffAdAXNG2ZP9hWQ4YMga+vL2JjY7F3717DojIVFRX45JNPJMfffffd+PDDD/H777/jnXfeMbkPoanex6Zezbi4OCxYsAD29vrNSN955x3JsQUFBXB2djbqURsyZAgA/Z6STb2/Dg4OqKmpQW1trdHj8/LykJSUhBEjRkiG+O7duxelpaUICAiQ9Arv3r0bsbGxhkVlysvL8cknn8DOzg4TJkyASqXC1KlT4e7ujm3btuGvv/7CvHnzjBaoqa2tRUVFBby8vHDVVVdhwIAB2Lt3L7Zu3Yp77rnH6O+FRqNBUVGRYXjwiBEjcPjwYfzxxx/o168frKys0NDQgHfffVfyGlmiSxciIiIiIgt16aqXd02+8HtTQZhVDGyIAyYNBO6coF+99Gwh8NFv+mNK2jD/ctJA4KUbTV/7pXUXCsJ1f+sz3D9VvzpqZS1wJB14ag3wy6HLeormote0kXJHuCxdUhAePXoUBQUF8PX1hYODAxobG3H+/Hnk5OTA09NTskLmoUOHUF5eDk9PT6jVahQVFSE5ORl2dnaYOHFim67Z0XMIAX1PU0xMDHbu3AlAv2DMxXvkDRw4EL169UJqaioUCgVGjBjRoT0tSqUSH3zwARYsWIBHH30U27dvh4eHBzZu3GhyJU5bW1ts27YNU6dOxQcffIBt27Zh9OjRCAoKQl1dHVJSUrB9+3YoFAp4eHgYirqbb74ZzzzzDNasWYPS0lKEhYXh77//NtpjscnUqVNRV1eHoUOHIjg4GHV1ddiwYQMEQcCYMWMMewuOHDkSW7Zswdtvv41jx47Bzs4OMTExUCqVmDRpEoKDgzF8+HDDFh2nTp0ybLtx4403YtCgQUbXdXBwwNKlS7F582bDthNZWVlYuHAhxo8fD0A/NPabb77B7NmzsWjRIqxZswYDBw5EfX09UlNT8ddff+G+++7D22+/DUEQ8O2332LChAlYtmwZNm3ahMGDB0MURaSnp+Ovv/7C7Nmz8cEHH8DR0RHvvfcexo8fjxdeeAGxsbGGbScunkRsyU6cOIHo6Gi5YxAREVFLJr7Y+jHCvNaPKa4E7vu0bdc8W2j6nC+v0/+0Zt0+i9+A3qRgT9TZt77OiTnqkoLQ19cXZWVlSElJQX19PQRBgLOzM4YNG4aBAwdKeujc3d2Rk5ODY8eOQaPRwMHBAZGRkYiOjpZ9w+xJkyZh586dUKlUGDFihNH8OEEQMG7cOPz888/w9/c3DEPsSNdffz3Wr1+PZ599FmvXroWjoyMmTpyIWbNmYdGiRZLjQ0JCEB8fj08//RTffPMN1q9fj5qaGqjVanh5eWHKlCm44447MHXqVEMvrpOTE3777Tfcf//92LRpE6ytrTFs2DB88cUXGDfOeJWp++67D19++SW2bNmCyspKODg4ICgoCO+++y4WL15s6F1ctmwZTp8+jS1btmDXrl0QRRGPPfYYXn75Zbz77rv45ZdfsHv3bmzatAlarRbOzs4YOnQo7rrrLixYsEBS3M+bNw+2trb44osvUFJSAi8vLzz++ON46qmnjCadT506FYcPH8YLL7xg6P2zs7ODt7c35syZg7lz5xqOjY6OxokTJ/DCCy/g999/x19//QUbGxt4eHhg4sSJuOmmmwxzTWNiYvDnn3/ikUcewaZNm2BjY4ORI0fi5Zdfxvz58zvmD5uIiIiIzJ+VAhg7APn5+R06OrCrCOLlrlhCJIOvvvoKixYtwmOPPdZthmeao+zsbKO5kURERBZv0wFg7ptyp6DuSBCAT5bg+EgvixxhJeuiMkRknpp6domIiIioFaIIxPTFwMjW10UxR122MT0RWY7MzEy5IxARERFZBhs1EBGA1NRUuZNcFhaEREREREREl2t4GGCllOytbik4ZJQsysKFC7Fw4UK5Y3R7YWFhckcgIiIiMn9WSmB0OADA0dFR5jCXhz2ERCRRVFQkdwQiIiIi86fRAjH6bdMsdUE+FoREJFFWViZ3BCIiIiLLMLIvAOD06dMyB7k8LAiJSOLSvUGJiIiIyIQAd8DDWe4UV4QFIRFJREZGyh2BiIiIyLxZKYBxAww3/f39ZQxz+VgQEpHEiRMn5I5AREREZN60omH+IABotVoZw1w+FoREJCGKotwRiIiIiMybKBrmDwJAbm6ujGEuHwtCIpJwc3OTOwIRERGRebO2AgYFyZ3iirEgJCIJJycnuSMQERERmbeh+g3pm0RERMgY5vKxICQiiYyMDLkjEBEREZkvKyUwpr9Rk6V+fmJBSERERERE1B4XbUjfpKamRqYwV4YFIRFJhISEyB2BiIiIyLxdtKAMANjb28sU5MqwICQiibKyMrkjEBEREZkvfzfAy8WoKTAwUJ4sV4gFIRFJlJSUyB2BiIiIyDwpFcDY/pLmU6dOyRDmyrEgJCIJhYJvDUREREQm6UTJ/EFLxk99RCQxaNAguSMQERERmSfRdEHo6+srQ5grx4KQiCROnjwpdwQiIiIi86S2AgZJ5wsKgiBDmCvHgpCIJLRardwRiIiIiMzTkBBArZI0Z2dnyxDmyrEgJCKJXr16yR2BiIiIyPyolMCYAXKn6FAsCIlIws3NTe4IREREROanUSvZf7BJ//7SlUctAQtCIpJIS0uTOwIRERGReYoxXRCeP3++i4N0DBaEREREREREbeHrCvi4mryrqqqqi8N0DBaERCQRFBQkdwQiIiIi86JUAGPCm73bxsamC8N0HBaERCRhqd9wEREREXUaUQRGNV8QhoWFdWGYjsOCkIgkioqK5I5AREREZF50pjekb5KQkNCFYToOC0IiIiIiIqLWqJRAdJDcKTqcldwBiMj8REdHyx2BiIioY00ehJqbY2BXq5U7CVmqEC+TG9I38fb27sIwHUcQRVGUOwQRmZfExERERETIHYOIiKhDFRUVwd3dXe4YRGaFQ0aJSKKxsVHuCERERB0uKytL7ghEZocFIRFJODs7yx2BiIiIiLoAh4wSkURNTQ3s7OzkjkFERNSh6urqLHavOKLOwh5CIpJISUmROwIREVGHy87OljsCkdlhQUhEREREPUJlZaXcEYjMDgtCIpIICAiQOwIREVGHs7a2ljsCkdlhQUhEEnV1dXJHICIi6nB9+/aVOwKR2WFBSEQSBQUFckcgIiLqcCdPnpQ7ApHZYUFIRERERETUQ3HbCSKS0Gq1UCqVcscgIiLqUDk5OfD19ZU7BpFZYQ8hEUlw2wkiIuqOuAchkRQLQiKSqK+vlzsCERFRhzt37pzcEYjMDgtCIpJwdHSUOwIRERERdQHOISQiibq6Og6rISKibqempgZ2dnZyxyAyK+whJCKJ06dPyx2BiIiow+Xn58sdgcjsWMkdgIiIiKhbqKkHEjhHTVYONsCA3s3eXV5e3oVhiCwDC0IikvD395c7AhGR5bnjA2BDnNwpejY3R6DwK0AQTN6tUqm6Ng+RBeCQUSKS0Gg0ckcgIrI854rkTkDFlUBG88NCIyIiujAMkWVgQUhEEnl5eXJHICIiujxxze+le/z48a7LQWQhWBASERERUfegUgL7k+VOQWRRWBASkURkZKTcEYiIiNqvUQvsOdXs3e7u7l0YhsgysCAkIokzZ87IHYGIiOjyJJ7Xr/hqgoODQxeHITJ/LAiJSKK2tlbuCERERJdHqwOOmP5iMzMzs2uzEFkAFoREJGFvby93BCIiosujUHAeIVE7sCAkIomAgAC5IxAREV0msdmCMCwsrIuzEJk/FoREJJGUlCR3BCIiosujE4G/kwBRlNxVXFwsQyAi88aCkIiIiIi6l6JK4GyhpLm0tFSGMETmjQUhEUn4+vrKHYGIiOjKmNigXqlUyhCEyLyxICQiIiKi7qWZDeoHDhwoQxgi88aCkIgkcnJy5I5ARER0+Rq1wF7pBvXx8fEyhCEybywIiYiIiKj7iT8L1BpvUK/T6WQKQ2S+WBASkUT//v3ljkBERHRltDrgaLpRk6urq0xhiMwXC0Iikjh37pzcEYiIiK6MQpDMI3RxcZEnC5EZY0FIRBLV1dVyRyAiIrpylxSE6enpzRxI1HOxICQiCVtbW7kjEBERXRmdCOw1vUE9EV3AgpCIJEJDQ+WOQEREdOUKK4DzRYabwcHBMoYhMk8sCIlIIiEhQe4IREREHeOiDeorKipkDEJknlgQEhEREVH3dMkG9cXFxTKGITJPLAiJSMLb21vuCERERFeuUaufR/gPQRBkDENknlgQEpGElZWV3BGIiIg6xolMoL4RABAVFSVvFiIzxIKQiCSysrLkjkBERNQxNFrDBvWcI08kxYKQiIiIiLqvizao12g0MochMj8sCIlIIjw8XO4IREREHUO4UBC6uLjIm4XIDLEgJCKJ7OxsuSMQERF1DK3OsLCMu7u7zGGIzA8LQiKSqKyslDsCERFRx8kvA7KKkJaWJncSIrPDpQSJSMLa2lruCERE1NkmRwHLFwCDQ/SrcP51EnjiK+BsYdseH+4HvLcYGBMONGiArUeAx74Cii7a/L2fH7B4EnBNNBDqDVTV6Rd4Wf49cORMJzypFsSlAGF2XXtNIgvAHkIikujbt6/cEYiIqDPNGAJsex6wVgFPrwHe3QyMHwD8/Rrg7tT64/3cgD0rgDBv4NlvgXc268/5x3JAdVF/w92TgXumAIfPAI9/BfzfZqCfLxD3BnD1oE57ehJW+g3qg4KCuu6aRBZCEEVR7OqLHjt2DEVFRSgqKkJlZSUcHBxwyy23NHt8QUEBDh06hIKCAgCAl5cXhg8fbnIceHV1NQ4ePIjz58+jsbERvXr1QnR0NEJCQiTH1tXV4fjx4zh79iyqqqqgVqvRq1cvREZGyvaGsWTJEnz++eeG24IgwM7ODn369MFDDz2ExYsXy5LLnP366694/fXXkZqairKyMgCAp6cnpk2bhhUrVsDDw0PegBbo+PHjiI6OljsGEZFlGf4kcMhMhiTu/DeQWQAs+sj0/QnvA2orIOJRoPGflTcHBQFH3wbe36rvKWzJx0uAhROB8IeA80X6tqsHAX++BCz5L/D5H/q2wSFAcg5QXXfhsa4OQNKHQEoOMPa5y36K7TY8DNkbH4Gfn1/XXZPIAsgyZPTQoUOwtraGu7s7GhoaWjw2Pz8fW7ZsgZ2dHYYMGQIASExMxC+//ILZs2fD1dXVcGxdXR02b96M2tpaDBo0CPb29khLS8Off/6J8ePHo1+/foZjNRoNfv75Z1RVVSE8PBxubm6oq6tDSkoKfv/9d4wZMwYDBgzonBegDe677z6EhoaisbERycnJ+PHHH3HXXXehrKwMjz32mGy5zFFCQgLq6uowa9Ys+Pn5QafT4dChQ/jiiy/w22+/ITExEY6OjnLHJCIiMg+9HICIAOCtny4UgwAQnwkkZQM3jW69IJw/Ethy+EIxCAB/xQPJ2cCCURcKwn/2/zNSUgXsPQVMiLzSZ9I+xzJQlJPHgpDoErIUhDfddBOcnPTDEdavX4/GxsZmj42NjYVCocB1110He3t7AEBoaCh++OEH7N+/HzNmzDAce/z4cVRWVmLq1KkIDAwEAPTr1w8///wz4uLiEBISApVKBQDIzMxEeXk5YmJiMHDgQMM5+vfvj2+//RZJSUmyFoTz5s3DlClTDLdvu+02TJkyBe+9916LBWFxcTHc3Ny6ImKnuJz8Tz75JJ588klJ+7Jly/D+++9j1apVePjhhzsqYo/g6ekpdwQiIuos1vrPQqg18aV8TT0QGQB4uegXYjHF11V//2ETcwAPpgLTh7SewbuX8VzDrtCohe3pXGBY116WyNzJMoewqRhsTXl5OQoLCxESEmIoBgHA3t4eISEhyM7ORk1NjaH9zJkzcHJyMhSDAKBQKBAREYH6+nqcO3fO0N7UM3nxeQFArVZDpVLBysq81tuZPHkyHBwckJeXB0DfKyYIApYsWYL//Oc/CA0NhVqtxq233mp4zNq1azF48GDY2dlBpVIhMDAQy5cvl5z7l19+wdChQ+Hi4gKVSgVXV1cMGzYMv/76q+GYnJwc3HjjjfDy8oJKpYKDgwNCQ0OxbNkywzE//vgjBEHA66+/LrnGtddeC0EQjNoGDhwIDw8PnDhxAmPHjoWDg4PRMOAzZ85gzpw5cHd3h5WVFXr16oVZs2bh7NmzbXrNgoODAQAlJSVG7YIg4Nprr8XatWvRr18/WFtbw8XFBQsWLEBpaanRsUuWLIEgCNi/fz8WLFgAFxcXWFtbIyoqCocOHQIA/Pe//0VISAjUajU8PDzw8ssvtymfObOxsZE7AhERdZb8MqC0Chh9yZ6zrg7AAH/9736ukocZ+PTS/ze3VHpfbing5qgfjtqcMf2BmL7Aun3tin3FFAL6FHf5TCkis2deVc8lCgv1q1x5eXlJ7vP09ERycjKKiooQEBCAmpoaVFdXIywsTHJs0+MLCwsRGhoKAPDz84MgCDh48CCsrKzg6uqKhoYGxMfHo76+HldddVWr+URRRH19fZufj7W1taQoaqusrCxUV1dLNlT9448/8N133+GGG25AcHCw4f6XX34ZL7/8Mvr27Yt7770XDg4O2LFjB/79738jLS0N3377LQD98N3rr78eLi4uuP322+Ht7Y28vDwcOHAABw8exPTp0wEA06ZNQ0JCAubOnYtBgwahtrYWSUlJ2Lfvyt7M6+rqMGnSJAwaNAiPPfYY8vPzAQBJSUkYPXo0NBoN5syZg7CwMKSmpuLHH3/EyJEjER8fL5kbWFFRgYqKClRWVmL37t1YsWIFrKysMGfOHMl1k5KSsGjRIsyePRsLFizA7t27sX79eiQnJ+Po0aNQKpVGx99+++2ws7PD/fffj8LCQqxZswbTp0/Hv/71L7z22mu46aab4OrqirVr1+Kll15CdHQ0Zs+efUWvjZzOnTtnNBybiIjMmJUScL5k9UyVlb4n0O2SKRMlVYAoAv/7HXh6HvDarcCXOwAnW+CtOy4Ucrbq5q/XdF+9iRFedY0XjmnQSO/3cAa+WwZkFABvbWrT0+swgoCK7Yfg/Oisrr0ukZkz64KwqffPzk66RHBTz151dbXRfy/t8TN1LAA4Oztj8uTJiI2NxbZt2wzttra2mDlzJry9vVvNV1VVhbVr17b16eDmm29u81y2kpISZGVloaGhASdOnMBzzz0HURQxa5bxm9i5c+ewb98+jBw50tB25swZrFixAhMmTMCOHTsM7a+88goWLFiAtWvX4sknn0RUVBQ2btyIhoYGfP3117j22mtNZiksLER8fDzmzJmDH3/8sc3Pty2qqqqwaNEifPnll0btixcvhkajwaFDh4zmft5xxx249tpr8dxzz+Gzzz4zesx9991n9OfRu3dvfPXVVyYXRzl37hz+97//YcmSJYa2BQsWYP369fjwww/x6KOPGh3v5uaG/fv3Q6HQd6p7eHjgjTfewPLly3Hs2DGEh4cbMoSGhuKDDz6w6IKQiIgsyOhwYNcrpttvHmvcFnSvfluJF7/Xryb65Bzgmfn6+7YfA774C7j/Wv32EM1pGmraNPT0YjYtDEe1swa2PAs42gJjnjNeaKYraHWwO5zZtdcksgBmve2ERqP/ZunS3pqL25qOac+xTdRqNVxdXTFkyBBcc801GD16NKysrLB9+3YUFxe3ms/W1hbTp09v84+trW2bn/tNN92E3r17IzQ0FPPmzcOZM2dw0003Ga1ACgAjRowwKgYBYOXKldBoNLj33nuRlZVl9DN37lyIoohNmzYBgKFHcd26daiqqjKZxcHBAVZWVoiPj0dCQkKbn0NbXTrEtLCwEAcOHMDYsWNhb29vlL9///7w9vbGnj17JOd54okn8N133+Gjjz7CTTfdBJVKZehxvJSvr69RMXhxjqbX5mKPPPKIoRgEYJjfOXr0aEMxCAABAQHw8/MzGp7cFiUlJUa9zVVVVUabwzc0NEj+Tubm5rZ4Oy8vDxcvItyeazRtO9GZ1+iK58Fr8Bq8Bq/RlddoaGh+TYROdSITmPyS8c+JTH2Bd2l7Xpn+MY0a4J5PAN+79St99n0QuPYVfU+jVguk5TV/vaahok1DRy/m0wsorpT2DqqsgI1PAoMCgdmvA4nt+3eyo6iKqgyFqKX8veI1LP8a5s6sewib5vFptVrJfU1tTce051gAOH/+PLZt24Zrr70WvXv3NrQHBwfjhx9+wN9//91qD4+VlRX8/f3b85Ta7Pnnn8eAAQOgVCrh5uaG4cOHm+xdNLWdxunTpwHoi8rmNM1FfOihh/D999/jq6++wnfffYfw8HBMmDABS5YsQUREBAB94fvss8/itddew8CBA+Hv748RI0bghhtuwI033nhFz9PR0VEyJPjIkSMQRRG//vqr0Z/NxUwtejJ48GAMHjwYAPDggw/im2++we233w5BEIzmOgIwua1IaGgo7OzskJWVJbnv0gWGmq5/8XzVi59Tc4Vocy4dnung4GB0W61WSxbb8fHxafH2pb3c7blGfn4+goODO/UaXfE8eA1eg9fgNbryGmq1iR6zrlBWrV/h82KlVfrC7dL2SxWU638AQKHQr/x5ILXl3rucEv1jhoZK7xveBzieYdwmCMDqh/XbUix4B9hzqvXn1El0fq5Q2OvnyVvK3ytew/KvYe7MuiBsGip68cIxTS4dImpqWGhzxwLAiRMnYGVlJSk47Ozs4O3tjfPnz0Or1ZrscWyi0+lQV9f24Q42NjZGvUwtGTdunNEqo80xNZy26VuLN998s9mCqqnAsbOzw7Fjx7Bt2zbDaqyffPIJ/vvf/+I///kP7rvvPgD6OYl33HEHvvvuO+zZswd//vknNmzYgE8//RQ7d+4EgBbnR17aO9vE2tq62fyTJ09udt9FU0ODL3Xbbbdh6dKlWLlypaQgbK/mFhlq7u+HDNt7dqjy8nK5IxARUVd7YrZ+BdGHVhq3h/zzxW36RV92btgP3DkR8HcDsv7pYZk0EOjnB7z3i/HjP7wbuGmMfn/Cnw50Xv7WKBUoG+gLzpAnMmbWBWHToiH5+flGw/IAGDapb1qV0s7ODvb29ob2izX11ly8CEl1dTVEUYQoipJCpqm9tQ/11dXVnTaH8Eo0Lazj5eWFm2++uU2Pufbaaw1zCE+fPo1hw4bh1VdfNRSEgL4H7YUXXgAANDY2YurUqdi5cye2b9+OqVOnGnr6TA23NdXr1pxBgwZBEAQ0Nja2OX9zGhoaUFEhXdY6MzNT0nbmzBnU1NR0Wq+vJWnanoWIiLqpW8cB82OAPYn6+YKTo4AbR+v3D9wYZ3zsX/+snh184TMBXtsA3DAK2Plv4IOtgIMN8K/Z+r0MV11YvwCPzAQenAbEntZvaXHrOONz/3RA394VdCJqovxZEBJdwqwLQmdnZ3h4eCA9PR1Dhw416gVMT0+Hn5+fUQ9ZaGgo4uPjcfbsWcNQPp1Oh8TERKjVaqPesl69eqG8vBzp6emGlUcB/UqVubm5cHV1bXXriaY5hG3VnjmEV+Kee+7BBx98gBUrVmDevHmSIrSwsBD29vaG4ZGXFkB9+/aFk5OTYfxzU0F18XYhKpUKkZGR2Llzp2E12IiICCgUCuzevdvofL/88gtSUlLanN/Pzw/Dhg3D3r178euvv0peY51Oh6ysLAQEBAAA0tPTTQ6dffPNN1FbW4tBgwZJ7svJycFnn31mNI/wmWeeAQAuBgMYhgsTEVE3lZKj32bihRv0K4Im5wD3fgp89nvbHp9VDIx/Afi/hcAbt+nnDG49Ajz+lfH8wegg/X9Hhet/LtW0yE1XEEU4ThnaNdcisiCyFIQpKSmGBUzq6uqg1Wpx9OhRAPpxt00LWgBATEwMtmzZgs2bNyMyMhKAfg8+URQli6lER0cjPT0dO3bswMCBA2Fvb4+0tDQUFhZi3LhxRmN4o6Ojcf78eezcuRO5ublwc3NDdXU1Tp06Ba1Wi2HDWt+1tDPnEF6Jfv364eWXX8bzzz+PkJAQXHfddQgKCkJBQQESExOxb98+HDlyBJGRkXjssccQGxuLCRMmICQkBKIo4rfffkNOTg5uu+02APo5fTNmzMC4ceMwYMAAuLq64tSpU9iwYQM8PDxw3XXXAdAX2dOmTcPWrVsxadIkjBs3DikpKdi8eTMCAwNN9so15+uvv8aYMWNw3XXXYerUqbjqqqug1WqRnp6OnTt3Ys6cOYZVRidPngxnZ2cMGTIEgYGBKCsrQ1xcHPbv3w9XV1e8++67kvMHBATg4Ycfxl9//YW+ffti9+7d2Lt3LyIjI7mJPYDjx4+bXJ2ViIgsxMQXW77/UBow4YW2nevinsGLnTqvX4imJYs+0v+YA2sr1PTxhLPcOYjMjCwFYXJysmTFnsOHDwPQT9y8uCD09vbGrFmzcOjQIRw6dAiCIMDLywtTpkyRTAK1sbHB7NmzceDAASQmJkKj0cDFxQVXX321US8goF8UZPbs2Th27BgyMjKQlJQElUoFT09PREdHw9fXt5Oefdd49tlnERkZiTfffBPr169HTU0NHB0d0bt3byxdutSwqMqCBQtQUFCA7du3o7y8HGq1Gr6+vvj3v/+N5557DoC+x3DWrFk4ePAg9uzZA41GA1dXV8yePRuvv/66Uc/hmjVrcNttt2H37t3Yt28fwsLCsHbtWnz88cftKgjDw8Nx/PhxPPXUU9ixYwd+//13qFQquLu7Y8KECVi0aJHh2Ntuuw2bN2/Ghg0bUFlZCaVSCW9vb9x+++147bXX4OfnJzl///79DdtG/PTTT7C1tcX8+fPxv//9r8V5o0RERGShBociv6QIPgHm92U+kZwE0dJXvyBqJ0EQMHXqVKP9J8mYqaHERETUiuFP6nveyPxYKYFls3D8lkEcAUN0CbPeh5CI5HHpkslEREQWTaMFYvpi4MCBcichMjssCIlIoj3De4mIiCzCyL5ITU2VOwWR2WFBSERERETdm68r4OParv2jiXoKs952gqgzcNps65r2siQiIrJ4SgUwtj8AdMl+0ESWhj2ERCRRXFwsdwQiIqKOoRMNeyCaWnmcqKdjQUhEEqWlpXJHICIi6hiiCIzUb2l2+vRpmcMQmR8WhEQkwb0YiYio21BbAdFBcqcgMlssCIlIgstyExFRt3FVMKBWAQD32CUygQUhEUnEx8fLHYGIiOjKWSmBMf0NN7VarYxhiMwTC0IiktDpdHJHICIiunIaLRDTz3AzNzdXxjBE5okFIRFJuLq6yh2BiIioY1xUEBKRFAtCIpJwcXGROwIREdGV83bRb0r/j4iICPmyEJkpFoREJJGeni53BCIioiujVABjBxg1ZWRkyBSGyHyxICQiIiKi7kcUJcNFa2pqZApDZL5YEBKRRHBwsNwRiIiIroxOBGL6GjXZ29vLFIbIfLEgJCKJiooKuSMQERFdGSslcFWIUVNgYKBMYYjMFwtCIpIoLi6WOwIREdGViQ4CrFVGTadOnZInC5EZY0FIRBKCIMgdgYiI6PKplJIFZYjINBaERCQRFRUldwQiIqLL16g1uf+gr6+vDGGIzBsLQiKSSEhIkDsCERHRlRnZV9LEETBEUiwIiUhCo9HIHYGIiOjyeToDvd0lzdnZ2TKEITJvLAiJSMLFxUXuCERERJdHIQBj+8udgshisCAkIgl3d+m3qkRERBbDxPxBAOjfn4Ui0aVYEBKRRFpamtwRiIiILo9ObLYgPH/+fBeHITJ/LAiJiIiIqPuwUgCDQ0zeVVVV1cVhiMwfC0IikggKCpI7AhER0eUZFATYqE3eZWNj07VZiCwAC0IikqiurpY7AhERUftZKVtcUCYsLKwLwxBZBhaERCRRWFgodwQiIqL205jekL4J99klkmJBSERERETdh4kN6YmoeSwIiUgiKipK7ghERJanj4/cCcjTGQjwaPZub2/vLgxDZBkEURRFuUMQkXk5deoUBgwYIHcMIiLLUt+IwoOJ8PDgXq6ysVUDgZ5ypyCyKFZyByAi89PQ0CB3BCIiy2OtgtDfH3BnQUhEloNDRolIwsnJSe4IREQWKSsrS+4IRETtwoKQiCQ4x4KIiIioZ2BBSEQSKSkpckcgIrJI4eHhckcgImoXFoREREREHSQ7O1vuCERE7cKCkIgkAgIC5I5ARGSRKisr5Y5ARNQuLAiJSKK+vl7uCEREFsna2lruCERE7cKCkIgk8vPz5Y5ARGSR+vbtK3cEIqJ2YUFIRERE1EFOnjwpdwQionZhQUhEEgMHDpQ7AhERERF1ARaERCSRmpoqdwQiIovk6ekpdwQionZhQUhEEnV1dXJHICKySDY2NnJHICJqFxaERCTh6OgodwQiIot07tw5uSMQEbULC0IikvDz85M7AhERERF1ARaERCRx+vRpuSMQEVkkbjtBRJaGBSERERFRB+E+rkRkaazkDkBE5sff31/uCEREFqm8vLzZ+z47ocN3SbouTGOaIABvjVNimI8gdxQiMgMsCIlIQqvVyh2BiMgiqVSqZu/7/rQOu7O6MEwzBAAfH67FV7Ps5I5CRGaAQ0aJSCI3N1fuCEREFikiIsJku1Yn4oCZvLUqFYDa2lruGERkJlgQEhEREXWQ48ePm2xPKgZqNF2bpSUlxcVyRyAiM8GCkIgkmvuGm4iILs/+XFHuCEREJrEgJCKJjIwMuSMQEVkkd3d3k+37c0RYmdGnLhsbG7kjEJGZMKO3JiIyFzU1NXJHICKySA4ODibb92aJ0Mi/wKiBVQuL3xBRz8KCkIgk7O3t5Y5ARGSRMjMzJW2ldSLSyro8SouqKivljkBEZoIFIRFJBAYGyh2BiKjbOMj5g0RkxlgQEpHEqVOn5I5ARGSRwsLCJG37c0RYmdke8E5OTnJHICIzwYKQiIiIqIMUm9jOYV+2CK2ZdRLW1dXJHYGIzAQLQiKS8PX1lTsCEZFFKi0tNbqtE0XE5QJmVg+ioaFB7ghEZCZYEBKRhCCY2dgmIiILoVQqjW6fLgaqGmUK0wK+zxNRExaERCSRnZ0tdwQiIos0cOBAo9txZrqgjKurq9wRiMhMsCAkIiIi6iDx8fFGt2PNbEP6JqbmOhJRz2SGb1FEJLf+/fvLHYGIyCLpdMa7z5vbhvRERJdiQUhEEufPn5c7AhGRRbp4KGZ5vYjU0hYOlpG1tbXcEYjITLAgJCKJqqoquSMQEVkkFxcXw+8Hc0WzW120iVqtljsCEZkJFoREJGFjYyN3BCIii5Senm74fX8OoDTTxTwrKyvljkBEZoIFIRFJhIWFyR2BiMjixebooDPXLkIion+wICQiiYSEBLkjEBFZpODgYAD6Deljc8xvQ/omjo6OckcgIjPBgpCIiIiog1RUVAAAUkqAygaZw7SgocGMwxFRl2JBSEQS3t7eckcgIrJITfv7meuG9E3q6+vljkBEZoIFIRFJqFQquSMQEVkkQdCvIrPfTDekNxDMdLUbIupy5vxWRUQy4T6ERESXJyoqCoD5b0jvdtF+iUTUs7EgJCIiIuogCQkJqGwQcbpE7iQtKykx84BE1GVYEBKRRL9+/eSOQERkkTQajVlvSN9EFM09IRF1FRaERCSRm5srdwQiIovk4uKCuFzz3ZC+idraWu4IRGQmWBASkUTTsulERNQ+7u7u2Jdt/hvS27AgJKJ/sCAkIglrflAgIrosqalpZr0hfRN+8UdETazkDkBE5odzCInInOw5L+KdwzocKxBRWAO4WAPRngJeiFFgtF/bx2auO63D+0d0iC8EVEpggBuwYowCkwL034/XNopY+pcOB3JFnK8EtCIQ6gIsjlTggWgBqjaMAz1Xq0Y5t/gjIgvCgpCIJOLj4xEdHS13DCIiAEBKqQiFANwXpYC3PVBaB3xzSodx32uxdZ4C1wa3PuDppX1a/Hu/iOv7ClgYKaBRCyQUi8iuvHBMrQZILBYxPURAkJMAhQDE5ohYtlOHA7kCvpupbPU6uaqAK3mqXcbB0VHuCERkJtpdEB47dgxFRUUoKipCZWUlHBwccMsttzR7fEFBAQ4dOoSCggIAgJeXF4YPHw53d3ej48rKynD69GnDuRsaGjB48GAMHTpUcs6ysjIcPXoURUVFqK6uhk6ng4ODAwICAhAVFQU7O7s2Px+dTodTp04hOTkZ5eXlEAQBTk5O6N+/PwYMGNDm83SUZ555Bm+88YbhtiAIsLW1RWhoKBYvXoylS5fCyop1/KVSU1PxyCOPIDY2FtXV1XB1dcWUKVPwzjvvwNvbW+54RER0Be4epMDdg4zbHogWEPK5Fu8fEXFtcMuPj8sR8e/9It6doMCyoc0Xj662AuJuNf439r5owNlai4+Oifi/iSK87VvuJdyfrYNKATSa8R6EAKBpbARgK3cMIjID7a4sDh06BGtra7i7u6OhoaHFY/Pz87FlyxbY2dlhyJAhAIDExET88ssvmD17Nlwv2hQ1Pz8f8fHxcHJygru7O3Jycpo9b3V1NWpqahAUFAR7e3soFAqUlJQgKSkJZ86cwfz582Fr2/qbnFarxfbt25GTk4OwsDAMGDAAOp0O5eXlqKqqauMr0jluvfVWREdHQ6vVIjU1FevWrcOyZcuQk5ODt956S9Zs5iYpKQnDhw9HY2MjZs+ejfDwcBw9ehTfffcdTpw4gd27dxv9XaPWeXp6yh2BiKhFdioBHnZAWX3rs/XeP6KDtz3wyBABoiiiuhFwULd9qGmQkwBARFkd4G3f8rH7chVmXwwCQF1dHQAnuWMQkRlod0F40003wclJ/wayfv16NDY2NntsbGwsFAoFrrvuOtjb699BQ0ND8cMPP2D//v2YMWOG4djAwEDceeedsLa2RmFhIX766admz+vn5wc/Pz9Ju4+PD/78808kJye3abjb0aNHkZ2djRkzZsDX17fV47vShAkTcPfddxtu33vvvRg+fDi++eYbPPHEE81+YC8uLoabm1tXxexw5eXlsLe3b1cv6COPPILq6mp89NFHeOCBBwzty5cvx7///W+89tpreOeddzojbrfVli9UiIi6WkW9iAYtUFQLrD6lQ0IR8OyI1gu7v86JGOUr4D9HRayI06G4Vl/YPTdCgaWDpT2GDVoRFfX6IaSH8/XzFwOdgLBeLV+nqkFEejUX5SIiy9LuVUabisHWlJeXo7CwECEhIYZiEADs7e0REhKC7Oxs1NTUGNptbGyueGVDBwcHAGi15xIAGhsbkZCQgMDAQPj6+kIUxTY9Ti7Dhg2Ds7MzCgsLUVFRgczMTAiCgPnz52PVqlXo06cP1Go1Zs2aZXjMli1bMGzYMNjb20OlUiEgIACPP/44amtrjc69c+dOxMTEwMXFBSqVCr169cLgwYOxZs0awzElJSVYuHAhvL29oVKp4ODggODgYNx7772G8+3atQuCIODRRx+V5F+wYAEEQUBycrKhrWno8L59+zB58mQ4ODjAxcUFZ86cAQDk5OTgpptugoeHB6ysrODi4oKpU6ciPj7e6NyxsbHw9PTE/Pnzjdrvu+8+w+twcY/vl19+iTFjxsDd3R0qlQqOjo4YPnw4fv75Z0luX19f9OvXD3v37sWwYcNgY2MDJycnzJ07F0VFRairq8M999wDNzc3qFQqhIeHY8uWLS3+WVqCs2fPyh2BiEhiwS86eHyiRf9VWrx7WMS9UfqFZVpSWieiqBbYlyPihb91eHq4AutmKhDtIeChHTr874S0O29jqgiPT7QI+EyLeT/r4O8A/DJXCStFy8Xn4TwRIsx8A8J/WPKXx0TUsTptMlphYSEA/ZzBS3l6eiI5ORlFRUUICLj8ydcajcbwU1ZWhgMHDgAAevfu3epj8/Ly0NjYCA8PD8TGxiI5ORmNjY2wsbFBeHg4hg4dCoWi9Xq5oaEBOl3bxoZYWVld9vy/pjmbTk5OsLGxgUajAaAfwrt9+3Zcd911uO2226BWqwEA//nPf/Doo48a5h726tULe/bswf/93/8hJSUFGzZsgFqtRnJyMqZNmwZHR0fcdNNN8Pf3R1FREQ4cOICDBw/i9ttvBwDMmDEDBw8exLRp0zB06FA0NDQgJSUFhw8fRm1t7WX3KNXV1WH27Nno168fHn74YZSXl8PFxQXnzp3D4MGDUV9fjxkzZiA8PBxnz57FunXrMGXKFPzxxx8YNEg/oaSxsRFqtVry2jbNJc3MzER+fr7hC4OPP/4YCoUC8+fPh5+fH86ePYsffvgBN954I9atW4fZs2cbnae0tBQzZ87E2LFjMW3aNOzduxebNm2CRqNBVVUVCgoKsHjxYlRVVWHVqlW4++67cfToUbPrdSYiMgc6Ud/L1xbWSv1c+iZvjFPg8aH6FUC/TtShQQtoWvknuOqf73qLa4HvZypwY7j+3/br+4kY+JUWK+J0uDfK+N/7ib0F/HGDAmV1+t7FE4X6Yaat2Z8LKCBCZwFFYWlpKQD3Vo8jou6v0wrCpt4/Uwu8NPUYVldXX9E1Tp8+jdjYWMNtR0dHTJw4ET4+Pq0+tqysDABw8uRJKJVKjBgxAtbW1khLS8Px48dRXV2NiRMntnqe7du3Izc3t015m1skx5SKigpkZWVBo9EgMTERzz33HHQ6HcaNGwcfHx+cP38eAJCdnY21a9diwYIFhsfm5ubiiSeewIgRI/DHH38YCiEAWLJkCVauXIlff/0Vc+bMwdatW1FfX4///Oc/WLJkicks5eXliIuLw8SJE7F58+Y2FcptVV1djWuuuQY//PCDUUE3ZcoUNDQ0YPPmzUZ/Dvfffz9iYmLw8ssv48cff4QgCAgNDUVaWhri4+ONjv3zzz8BAPX19cjJyUFoaCgA4K+//oKLi4tRjscffxxRUVH44IMPMGvWLKPnWFhYiGeffRYrVqwwfDAZMGAAtm7diqioKMTFxcHxn9XawsLC8MQTT2D16tV4+umnO+x16mp9+vSROwIRdVN7zouY+EPbvkhNWqRE+EUdWdGeAvBPsXXbAAGDV2ux8Dcdfpzd/Oqftv/806JSANf3vVCoKQQBN/ZTYHmsDucqRAQ4XbjPy16A1z+Lx1zfD3gtTocp67VIvVvZ4qIysdk6s99/sElbv8wmou6v0zamb+rBUiqlb9JNbU3HXK6goCBMnz4d11xzDQYPHgy1Wv3PJOnWNc19bOqBGjBgAEJDQzF16lT4+PggNTX1n2/PWjZy5EhMnz69TT99+/Zt83N7/PHH0bt3bwQHB2PmzJlISkrC7Nmz8eWXXxq9pgMHDpT0aH3//fdobGzEDTfcgLKyMmRlZRl+5syZA1EU8fvvvwMAevXST4jYvn27oVf3Ura2tlCpVDhz5gxiY2Mhih37z93jjz9uVAyWl5djx44diI6ORlhYmFF+X19f9O7dG8ePH0d5eTkA4KmnnkJjYyPuuusurF69GgkJCfj8889xzz33GF6ri4eMNhWDoiiipKQEWVlZcHJyQlBQEM6cOWP4suDi4++//36jb6nHjBkDURRxyy23GIpBAJg0aRIAIC0trV2vQUlJCerrL2xcVVVVhcrKC2uhNzQ0oLi42Ogxl34RcentvLw8oz+r9lyj6e9CZ16jK54Hr8Fr8Brmd41wNwHvjazAqmsVhp/3Yyrx5VTBcPvDsbX4bLIOPg7NX6OyrATXhQnYmCqitlFs9nm42gI2VkAvtQ4Xj/gsKSmBq1r/OaS0ruXncX1fAVWNwOojZS2+VmJjvQX0DQIQRcOIIqB7/L3iNXgNc76Gueu0HsKmD/harXRcSFPblW6f4ODgYOj9CgoKQnBwMH766SdoNBpcddVVbcrn6ekp6S3q27cvcnNzkZubayiYmuPh4XH5T6AFDz74IEaPHg2lUgkXFxcMGTLE5Hh/Pz8/ydzLpjl2jz/+OB5//HGT52/6wH/LLbfg888/x8aNG/HLL7+gb9++GDt2LBYuXIgRI0YAANRqNd588008+eSTGDt2LHx9fTF06FDMmTMHt956q9E/Ku3l6OgoGeKbnJwMnU6HvXv3Njuk2N3dHbW1tXBxccGdd96J3NxcvPLKK7jzzjsB6P98b7jhBpw4cQKnTp0y+nM8ePAgli1bhiNHjhj9D9x0XlNtl86dbfqzCAsLM2pvus6lRWVrLl0F9eJeXUD/Z3Dpn/+lPeGX3r50u432XKMpf2deoyueB6/Ba/Aa5ncNb3sBj465dOXnS/+tNd4jr7lr1Gq0EAFUNjT/PBSCgGgP4FCefvVPtfLC8yg4pQUgwsOu5edR2/T9tY1zs88LACaG2OK3LC3Mvpvwny2tmnSHv1e8Bq9hztcwd51WEDYNFb144ZgmTUNFL15spiO4ubnB3d0dp06darUgbLq2qSGtTW2XFgam1NXVtXnYhUqlgkqlatOx0dHRuPnmm1s9zsbGRtLW9K3F008/bZhnd6mQkBAAgLW1NWJjY7Fnzx78+OOP2LdvH1auXIkvvvgCzz77LF566SUAwLJly3DDDTfg22+/xc6dO7Fnzx5s3rwZ//vf//D777/DycnJqAftUs31Bpua+9eUf9SoUVi6dGmzz/vi/wGffvppLFu2DPv370d5eTmio6MRGBgIV1dXODs7w9/fHwBw7tw5TJgwAdbW1li4cCGioqLg5OQEhUKB5557DhUVFZIeUIVC0exzM9UDfvFzsFRt/XtKRNQVCqpFeF4yVLOsTsSGFBG9HWF037kKETWN+p7IJjeGKxCXq8PXiSLuGaRvr9OI+DZJxAA3wNdB31ZUI8LNFpL3/JUn9f/OD21lW9sYXwE60SL6CP8ZZcMthoioEwvCpp6z/Px8hIeHG93XtEn9pZvTdwSNRtOmQq4pn6l5jE1tbVko5Y8//uiUOYRXon///gD0vW9tKSoBYNy4cRg3bhwA/QqTgwYNwmeffYYHHnjAsMWFv78/nnrqKTz11FPQarWYN28eNm/ejHXr1uGee+4xFGimhtpmZGS0OX9YWBgEQUBDQwOuv/76Nhcn1tbWmDBhguH24cOHUVpairFjxxoWN1q/fj1qa2uxYsUKPPbYY0aPf+ihh9qcsbuLiIiQOwIRkcG0jVr4OwgY4SPA005f9K1KFJFTBaybaTz75Y5ftdidBYhPXPiIc+8gASvjgQf/1CGlRD9fcM0pHc5WAL/MvfD4b5JEfHpChzlhAkKcBVQ2ANszRfxxVsSsUAGTAlqeaTPYC1AKIrQWUhQSEQGdWBA6OzvDw8MD6enpGDp0qNFCMunp6fDz8zPZO9cWNTU1Jh+bk5OD0tJSSdduTU0NGhoa4ODgYOiNcnJygpeXF/Lz81FUVGQoTnU6HZKSkiAIgqFXqSUjR45sUwHadM2ucOutt+KFF17A559/jltuuQVBQUFG9zcNB3RxcUFeXh7c3d2NeukCAgLg5uaG4uJi1NfXo6amBnV1dUY9ckqlEkOGDMHmzZsNY6+Dg4OhVCpx9OhRVFdXG/7M9+7dixMnTrQ5v5ubGyZMmIDdu3fjyy+/xL333mt0vyiKOHfuHAIDA5s9R11dHZYsWQIrKys8/PDDhqKyqUfv0h68jz/+2OL3cOxIJ06cQFRUlNwxiIgAAIsjFfj+tA7vHRFRVg/0sgZG+gr4boYCY/1bL75sVQJ2LFDiyT06fJkgorpRRLQnsHWeAlODLxR5Y/wExGYLWJskIr9GhJUC6OcK/N8EBR4a3Pp1bKwERLjqEF/c/CI35uLSYW1E1HO1uyBMSUkxLNBRV1cHrVaLo0ePAtC/uVy8cEpMTAy2bNmCzZs3IzIyEgCQkJAAURQxcuRIo/M2NDQgISEBwIVhpnl5eYZzBwYGGj6s//3336ipqYGvry8cHByg1WpRVFSEM2fOQKVSSc598OBBpKSkYObMmUZbAYwePRqbN2/G1q1bERERARsbG5w5cwaFhYUYPHhwm94sO2sO4ZXw9/fHBx98gAcffBBDhw7F9OnTERoaitLSUpw6dQq7d+/G+vXrcd1112H58uX45ZdfMG7cOISGhkKpVOKPP/5ARkYGZs2aBR8fHyQkJGD06NEYOXIkIiMj4eHhgdTUVKxbtw7u7u6YO3cuAP2f/4033ojvvvsO11xzDa6++mqcPXsWGzduRGBgIDIzM9v8HL7++msMGzYMDz74IH788UcMGTIESqUSGRkZ2LFjB0aPHo0NGzYAABITEzF37lyMHTsWgYGBKCkpwYYNG5CTk4PHHnsM8+bNM5x31qxZePrpp7FixQokJyfD19cXBw8exJ49e+Dt7W1YbKins/Qhr0TUvTx4lQIPXtW2dfB23WT6o42nvYCvprVcqA31FvDDdVdWzA13r0dSqR0azXwRT42JNR6IqGdqd0GYnJwsGSJ5+PBhAPpJlxcXhN7e3pg1axYOHTqEQ4cOQRAEeHl5YcqUKZKemPr6esN5muTk5CAnJweAfs5f02NCQ0ORmpqK1NRUw6qiDg4O6N+/P6Kiotr8rZe7uztmz56NQ4cOISEhAVqtFi4uLhg/fjz69evXjlfF/Nx///3o168fXn75Zfz888+orq6Go6Mj/Pz8sGTJEgwbNgwAMH/+fKSlpWHHjh3YuHEjVCoVfHx88NRTT+GFF16AlZUVevfujeuvvx579+5FXFwcGhsb0atXL1x77bVYvny50Wv1v//9Dw0NDdi2bRsOHz6M4OBgfPjhh/j111/bVRD27t0bCQkJeOqpp7Bt2zbs2rULKpUKbm5uiImJwT333GM41t3dHX5+fti0aRPKy8tha2uLiIgIvP3221iwYIHRFhKhoaHYsmULli1bhjVr1kAQBISHh+O7777DihUrkJ6efuUvfjfQGcO5iYh6glBVMRp1lzcCqivV1dbi0sV7iKhnEkR2BRDRJcrLy+Hs7Nz6gUREZOTX/YmYsc+8v1S2UgCzfUrw481cVIaIOnEfQiKyXO1ZBIiIiC64Zlg/uLe+Jp3sLl0qn4h6LhaERERERB0kLS0NY/wAhZkvNFpWXi53BCIyEywIiUgiNDRU7ghERBaprq4Oo3zN/+OVjovKENE/zP8di4i6nKm9JImIqHWOjo7/bFAvd5KWtXWPXyLq/lgQEpFESUmJ3BGIiCySn58fhngBSjMfMtq0VzAREQtCIpJQKs1/U2UiInN0+vRp2KoEDDTz3XvKysrkjkBEZoIFIRFJDBw4UO4IREQWbYy/ABU/ZRGRBeBbFRFJnDx5Uu4IREQWyd/fHwAQ4yugUSdzmBZwyCgRNWFBSEQSWq4+R0R0WZreP2N8zHsSoU5nxtUqEXUpFoREJMENi4mILk9ubi4AIMgZcLWROUwLamtr5Y5ARGaCBSERSfTq1UvuCEREFk0QBIy2gA3qiYhYEBKRxJkzZ+SOQERkkSIiIgy/j/ZVwFzrwV69OBKEiPRYEBIRERF1kIyMDMPvI30FaM10g/qKinK5IxCRmWBBSEQSwcHBckcgIrJINTU1ht+HepnvkFEuHkZETVgQEpFEZWWl3BGIiCzSxds52KsFDHCTMUwLrKys5I5ARGaCBSERSRQVFckdgYjIIgUGBhrdHucvwMoMP205ODjIHYGIzIQZvkURkdwEwUzHOBERmblTp04Z3Y7xFaAxwy3/ysrK5I5ARGaCBSERSURFRckdgYioWxhp5hvUExGxICQiicTERLkjEBFZJF9fX6PboS6Ai7U8WVpiZ2cndwQiMhMsCIlIorGxUe4IREQW6dIh99ygnojMHQtCIpJwcXGROwIRkUXKzs6WtI0yww3qL94eg4h6NhaERCTh4eEhdwQiom4jxhdmu0E9ERELQiKSSE1NlTsCEZFF6t+/v6RtmLdgdh+4OBKEiJqY2/sTERERkcU6f/68pM1BLSDczDaor6qqkjsCEZkJFoREJHHpxspERNQ2zRVa5rZBvUajkTsCEZkJM3prIiJzUVtbK3cEIiKLZGNjY7J9pI95bVCvVCrljkBEZoIFIRFJFBQUyB2BiMgihYWFmWyP8TWvdUadnJzljkBEZoIFIREREVEHSUhIMNnepxfgpO7iMC0oLS2ROwIRmQkruQMQkfkZNGiQ3BGIiLoVQRAwyg/YniH/JvVaMxq6SkTyY0FIRBLJyckml04nIqKWeXt7N3vf4kgFPG3l35BQEIAloXKnICJzwYKQiCTq6+vljkBEZJFaKghv6KfADf26MEwLioo4a4iI9PhuQEQSTk5OckcgIqJOlJWVJXcEIjITLAiJSMLHx0fuCERERETUBVgQEpFEcnKy3BGIiKgThYeHyx2BiMwEC0IiIiKiHiY7O1vuCERkJlgQEpFE79695Y5ARESdqLKyUu4IRGQmWBASkURjY6PcEYiIqBNZW1vLHYGIzAQLQiKSyMvLkzsCERF1or59+8odgYjMBAtCIiIioh7m5MmTckcgIjPBgpCIJCIjI+WOQERERERdgAUhEUmkpaXJHYGIiDqRp6en3BGIyEywICQiibq6OrkjEBFRJ7KxsZE7AhGZCRaERCTh4OAgdwQiIupE586dkzsCEZkJFoREJMF9CImIiIh6BhaERCSRlJQkdwQiIupE3HaCiJqwICQiIiLqYfLz8+WOQERmwkruAERkfvz8/OSOQEREnai8vLzZ+86UicgoF7swjWnDvAU4WwtyxyDq9lgQEpGEKMr/QYCIiDqPSqVq9r4X/tZh7Wn5/x2Y6l+PbTfZyx2DqNvjkFEiksjJyZE7AhERdaKIiIhm79ubJX8xCAC5lTq5IxD1CCwIiYiIiHqY48ePm2zPrxaRVdW1WZpjY2srdwSiHoEFIRFJDBgwQO4IREQkg7hc8+gdBICamhq5IxD1CCwIiUji7NmzckcgIqJO5O7ubrJ9f44IK346JOpR+L88EUlUV1fLHYGIiDqRg4ODyfZ92SI0ZjJ1T6Xi2odEXYEFIRFJ2NnZyR2BiIg6UWZmpqRNoxNxOK/rszRHoVDKHYGoR2BBSEQSwcHBckcgIqIuFl8I1GnlTnFBfX293BGIegQWhEQkkZiYKHcEIiLqRGFhYZK2uBwR3AaeqOdhQUhERETUwxQXF0va9ueIUJhRRWhjYyN3BKIegQUhEUn4+PjIHYGIiDpRaWmppG1Plgit+ew6AU1jo9wRiHoEFoREJKFUciI/EVF3dun7fGGNiHOVMoVphkZrRhMaiboxFoREJJGVlSV3BCIi6kQDBw40um1OG9I3EQQzGr9K1I2xICQiIiLqYeLj441ux5nhhvR2drZyRyDqEczsf30iMgfh4eFyRyAiok6k0xnvPv+3GW1I36S6ukbuCEQ9AgtCIpLIzs6WOwIREXUiV1dXw+8anYiDZrQhPRF1LRaERCRRWWlmKwsQEVGHcnFxMfyeWATUaeTL0hwrKyu5IxD1CCwIiUiCez8REXVv6enpht/3m+mG9FzxmqhrsCAkIok+ffrIHYGIiLrI/hwRSjOsCOvr6+WOQNQjsCAkIomTJ0/KHYGIiDpRcHCw4fe92SI05rfrBBF1ERaERERERD1MRUUFAKC4VkRGucxhmmFjbS13BKIegQUhEUl4eXnJHYGIiDpRcXExAP3+g+ZKo9XKHYGoR2BBSEQS1vxWloioWxME/aTBuFwRVmY4fxAANBozXPqUqBtiQUhEEufOnZM7AhERdaKoqCgA/2xIb6adhGZapxJ1OywIiYiIiHqYhIQEaHUiDubKnaR5dvZ2ckcg6hFYEBKRRN++feWOQEREnUij0eBUMVBjxqMya2pq5Y5A1COwICQiiby8PLkjEBFRJ3JxcTHbDembiKKZjmUl6mZYEBKRRNNy5ERE1D25u7ub7Yb0TaysrOSOQNQjsCAkIgm1Wi13BCIi6kRpaWnYm2W+C8oALAiJugr/TyMiif79+8sdgYjI4uw5L+KdwzocKxBRWAO4WAPRngJeiFFgtF/rXXEv7dPi5f3SCs1aCdQtk35ky68W8eI+HbakiyiuBbztgasDBHxxrbLVa5U3KnHGTDekb1JXVweAX1ASdTb2EHaxzMxMCIKAWbNmIScnp0PPvWvXLgiCgIULF6KysrJDz20uJkyYAHd3d+zatUvuKN3aiRMn5I5ARGRxUkpFKATgvigFPp6swBPDFMirFjHuey22ZejafJ7/TlZgzfQLP6uulX5cO18hYtg3WvyWIeK+KAU+mazA3QMVKGzjOiyFNkFtzkNE3VuX9RCWlZXh6NGjKCoqQnV1NXQ6HRwcHBAQEICoqCjY2UmXFk5PT8fJkydRXFwMQRDg5uaG6OhoBAQEdFVsg6effhpvvvkmli1bhrfeestoGMMbb7yBZ555BqGhoVi7di2GDRtmuE+j0cDFxQXOzs744Ycf4Ofn1+XZ09PT8eKLL2L37t0oKCiAlZUVnJ2d0a9fP8ybNw933nknnJycujxXR3nnnXfw7bffIjMzE1VVVbC3t4efnx9uuOEGLF26FO7u7nJHJCKiHuDuQQrcPci47YFoASGfa/H+ERHXBrftPNf3FeBu13KP4r1/6GClAA7dpoSbbfsnAu7L1sJKgFkPGbW2tpY7AlGP0GUFYXV1NWpqahAUFAR7e3soFAqUlJQgKSkJZ86cwfz582Fra2s4/vjx4zh48CDc3NwwdOhQAEBqaiq2bduGiRMnok+fPl0VHQAwceJEvPnmmzh9+jTy8vLg7+9vuG/Hjh1QKpU4e/YsMjIyjArCQ4cOobq6GsOHD4evry8CAwNRXV0NhULRJW90hw8fxrhx4wAA48aNw+233w5RFHHmzBnExsbi559/xowZMyy6IDxw4ABcXFxw8803w9vbG1VVVfj111/x8ssv4/jx4/j4449lKcQtmYeHh9wRiIi6BTuVAA87oKy+7ZWXCKCiXoSjGhAEabF3uljEbxkiPpmsgJutgDqNfnEYVTtWiInNBrRmXAwCgE6rlTsCUY/QZQWhn5+fyQ/lPj4++PPPP5GcnIzo6GgAQE1NDQ4fPoxevXph7ty5UCj0QyUiIyOxYcMGxMbGIjAwsEsXvhgzZgxUKhVSUlKQm5trKAg1Gg327duHESNGIDY2FnFxcZg3b56hB7FpaGPfvn3h4+MDQRBM9oZ2lpdeegm1tbV47bXX8Pjjj0tes+zsbLi5uXVZns6wfv16Sdtrr72Gq666Ctu2bcOxY8dYELaTvb293BGIiCxWRb2IBi1QVAusPqVDQhHw7Ii2F2shn2tR1QjYq4A5YQLenaCAl/2Fx/95Vl/JedkBV/+gxY5z+oJwSqCA/05RIMi55WvpRBEnK+xg5vUgGjVmvEkiUTci+xxCBwcHAEBDQ4OhLT8/HzqdDn369DEUgwCgUCgQFhaG+vp6ZGZmdmlOe3t7DB06FJmZmcjIyDC0Hzp0CDU1NZg4cSI8PT0NPYhNdu7cCUEQMGLECNjY2JicQ3hx29dff42IiAio1Wq4uLhg1qxZOHXqlCTPpk2bEB4eDrVaDVdXV8yfP9/ka5KammrIbqqA9vPzg42NjeG2IAgYNWoUVq1ahaioKFhbW8PZ2RnTpk3DwYMHJY8vLy/Ho48+Cj8/P6hUKjg6OmLUqFHYsGEDGhsbjY6tr6/Hyy+/jODgYKjVatjZ2eGqq67CypUrUVtrPOmhtLQUd9xxB5ydnWFtbY3w8HB8+umn0OnaNgfDysoK/v7+aGhoQE1NjaH9q6++giAIWLZsGZ577jl4eXlBpVKhd+/eePLJJ1FUVGR0nsDAQPTr1w/fffcdRo8eDVtbWzg5OWHGjBlITExEXV0dHn74Ybi7u0OlUqFfv35YtWqV0d9nS9TV/38REXUnC37RweMTLfqv0uLdwyLujdIvLNOaXjYCll4l4H/XKPDjdQrcPVDAumQRY7/XouKiHsbUMv3vS/7QQa0A1s1U4I1xCvydLWLyei1qGlsu9ZKKgVqt7B8BichMdPkqoxqNxvBTVlaGAwcOAAB69+5tOEb7zxABU8sNN7UVFBSgb9++LV5Lq9VKipLmCILQ6hDOSZMmYf/+/YiLi8PcuXOhUqmwa9cu2NraYsSIEUhNTcWxY8eQk5MDf39/Q++hn58f+vXr12qGhIQE7NmzB1OmTMHs2bOxe/dubNmyBUqlEp9++im8vb0BAD/99BPmz58PNzc33HjjjfDw8MBPP/2Ew4cPS84ZFhaGlJQU/PLLLxg2bBhcXFxazXHu3Dk88MADGD9+PKZNm4ajR49i27ZtyMjIwJo1awxDYsvLyzFixAhkZmZiwoQJGDx4MCoqKvDdd99h4cKF+L//+z/cddddUCgUaGxsxJQpU7B//36MGjUKN9xwAzQaDX744Qc8+OCDyM/Px7/+9S+o1Wo0NjZi8uTJOHr0KGJiYjB69GhkZGTgiSeegKOjY7O5i4qKUFtbi8LCQqxbtw7bt29H3759ERYWJjl248aN0Gg0mD59OlxcXPDTTz/h7bffRnFxMd5++224uroaji0tLcX999+P4cOH49FHH8WhQ4fw66+/QqPRoKGhAYWFhbjlllug0WiwatUqPPPMMwgKCsLEiRNbfa2JiMg86UR9L19bWCuNh3a+MU6Bx4eKOF8JfJ2oQ4MW0LTh+8xHhhgXafP7AsN9dLh1qw6fHBfx9D+9jFX/fOfobQdsna+A4p9r+zsCN2/R4bskEXcPar6XMC5XhH5gqhlvQgjA3r7rRlQR9WRdXhCePn0asbGxhtuOjo6YOHEifHx8DG1NH8azs7MRGRlp9PimXrWqqqpWr5WWlobdu3e3KZeDgwNuueWWFo+ZOHEiXn31VSQlJSE/Px/+/v7YuXMnQkND0bt3b0yYMAEbN25ERkYGhg8fbug9HDlyJHx9fVvNkJOTg/fffx9LliyBUqmEKIqIiIjArl27kJiYCG9vb2i1Wjz00EOws7PD+++/j5tvvhkKhQLLly+XvFYA8Pzzz+P333/Hhx9+iHXr1iEyMhKDBw/GpEmTMH78eJPDV7Ozs7F06VK8/vrrhh7chx9+GB9++CE+++wz9O/fHw4ODnjxxReRnp6OFStW4NFHHzX0QP7rX/9CZGQkVq1ahXHjxqFfv3746KOPsHfvXjzxxBNYvny54bwvvfQSBgwYgNWrV2Pq1KkYOnQoVq1ahaNHj2LGjBn47LPPDK/de++9h8cee6zZIa79+vVDSUkJAH1v8pAhQ7BixQrDUOSLVVVVYeXKlZgzZw4EQcBLL72EyMhIfP/995g5cybmzp1rOLawsBD33Xcf3nrrLUNBetVVV+GPP/7AoEGD8O233yIqKgoAEB4ejkceeQQ///yzYZixJTJVRBMR9SR7zouY+EPbRqUkLVIi/KJ/mqI9BTQVW7cNEDB4tRYLf9Phx9mtbwdxqVv6K/D4Lh3+PCvi6RH6Ntt/Pr0t6HehGASAG/oKuF0BxOaIksVtLhabrR9iau5zCGtqagE0/0UwEXWMLh8vEBQUhOnTp+Oaa67B4MGDoVar/9ln5gJXV1f4+fnh7NmziIuLQ2lpKUpLS3HgwAGcP38ewIVexJb07t0b06dPb9PPpEmTWj3fqFGjoFarkZKSgpycHEMPYFhYGHx8fDB+/HhoNBrExcWhsbHRMH8wPDzcqOBtTnR0NCZMmAClUv8PhiAIuPrqq1FeXm4YhnrkyBFkZ2dj1KhRGDt2rGFIrbOzMx544AHJOWNiYnD06FHMnz8fDQ0N2LFjB9555x1Mnz4d0dHRWLt2LTSXjNH38vLCggULDEUbADzzzDMAgGPHjuHcuXMQRRHffPMN+vTpgyFDhqCgoABZWVnIysqCUqnEiBEjcOrUKWRlZQEA1qxZA29vb4wZMwZlZWWGYysqKjB58mSkpaUhPT0dgH44rEKhwM0332xUSD/wwAMt9hCuX78e33zzDd5++22MGjUKoiiivLzc5N+V8ePHY9T/t3ff4VFV6R/Av3fSe5uQSiABQkJIAgIhERDFLNWGUpZFpSkrFlRA3dVdkRXdFWRRVIqIAVlFBWkLEkTpAhuKEAIkJNT0CgnJpM/9/ZFfrhnuTBqT3CHz/TxPHjL3nnvPe3OY8s6555x775W+0a3/+2k0Guzbt0+nZ9nV1RXjx4/Xqfu+++6DKIp44IEHdBLxIUOGAKi77bklS38UFRWhsrJSelxaWqpzfFVVFQoLC3WOyc7ObvRxTk4ORPH3d/uW1FF/62xb1tEe18E6WAfrYB2trSPIqQafDNYgbqRK+lkaXaL3sY+j4TrEmio80l3A5lQR+Tdbdx2dnYCiClGqo74+Lwfd67BQCXC3EZFf+vv7ur46zuZWolY07d5BADp/y47y/4p1mGcdpq7dewgdHR2lRKNr164IDAzEli1bUFNTg759+0rlYmNjceDAASQmJiIxMRFAXW/i4MGDcfDgwWb1vNjb2xt1Apf6W0OPHDmCy5cvo7a2FhqNBqGhofD09ISXlxfUarU0jrB+/GBUVFSzZhRVq9Wy2T7re8Pq/7PWJ03e3t6y2z979eql97zh4eHYtGkTAODKlSvYtWsX1qxZg1OnTmHevHno1KkTHnzwQam8j4+P7Nw+Pj5wcXFBQUEBSkpKkJ+fj6KiIhQVFSE2NlZvvYIgSGMDk5OTUV5ejscee8zg9efl5QEALl26BBcXF1kSbWNjg6CgICnJvF3DpH7evHmYOHEi/vznP0MURUycOFGnrLe3N9zc3HS21f/98vPzcevWLamnWq1WyxLR+mM7d+4sJfANt5eWlsq+6GhMw1tUAegk4wBgbW0t6xm9/e9z++P6W4xbU8fNmzfbvI72uA7WwTpYB+tobR0BbtZ4Mfr2sffujT42VEd5TS1EAKKVA5waTA7TnOvw9vbG1eJa9PUSpMf9y7UARGTeEnWuo6pWRGGFAB/n3z/e6asj2t8Gpwu1qNaadlLY8P21o/y/Yh3mWYepa/eE8HYeHh5Qq9U4f/68TkJoY2OD4cOHQ6PRoLi4GFZWVvDw8JB6CJszFq5+jFdzCIKgs+yFIcOGDcOhQ4dw7NgxpKWlwcbGBgMHDpR66oYOHYrTp08jPT0dv/76K/z9/Zsc61hPpVLpnV4a0P2W7E4EBgbi+eefx6xZszBo0CAcPXoUe/bswQMPPKAzgU9T6uMJDQ3Fc889Z3CZgoEDB0rl/fz88PLLL+ss2dFQTExMC6+mcdOmTcP333+PnTt3YtSoUa1eWqOxdmn4ZtWR6Bu/S0REjcsrE9HJQff94maFiB8uiujsBJ1910tEaKqBEI/ft+VrRHjetv7gitMi8suBkV1/335/ZwGd7IGvL4h4M1qErWXdvrVJImrFutlGGxPtK+CT30w7GQRw1w67ILrbmMSnvpqaGp2u1oZu7+W7fv06ADRrcfpLly4ZdQwhUDeOcMGCBUhOToZGo0FQUJDOhDhDhw7F1q1b8dNPP0Gj0eDee+9t1vjB5goKCgJQ11198+ZNnSRH32ykhgiCgJiYGBw9ehSFhYWoqKiQ/s7Z2dlSD1G97OxsFBcXo3v37nB2doanpydcXFxQXl6OgQMHSomfId27d8f169cRGRmJ4cOHN3mNaWlpsi76yspKXL58udnftNT3TpaVlaGiokLnb5WTk4MbN27Ay8tL2lb/9/P09Gz01lRzoG88KhERNW7U5lr4OwoY6FOXsF0vERF3TkRWad1MoA09/WMtDmQA4rzfP4p1+bwWE3sKCPcUYGsBHM4U8W2yiD6dgD9H/p7A2VgKWDxUhSm7tLjv21o81UuF6yUiPj4lYog/8HiPxpO9GB/TTwYB/P+dNqbfu0J0t2u3hFCj0ei9fTMrKws3btxo1hi7/Px8pKSkwMfHR9Zdq0/9GMLmaG6PSHR0NGxtbXHhwgXk5eVh+PDhOrEPHToUtbW1+OabbwDUTXTSnGtrrn79+sHX1xdHjhzBoUOHpEllSkpKsHz5cln5+Ph49OrVS5ZAl5eXIz4+HkDdrbsNe0dzc3Px/fffo2/fvlK397/+9S8AdZOpBAQEQKVSYfLkyVi+fDm++uorhIaGynrgcnJy4OrqCltbW0yZMgWvvfYaVq9ejcjISJ1ErL6si4sL7Ozs8NhjjyE+Ph4bNmzAAw88ICXUy5cvx61bt3S69svKyqDRaKBWq3V68Wpra7Fs2TIAdWtA3t6df+DAARw5ckSaVKa4uBjLly+Hvb097r//frP/VvLMmTPSRDlERNQ803ur8G2yFktPirhZCbjZ1PXGfTNGhSH+TSdhk0MFHMkS8UOqiIoaoIsz8HqUgLeiVbC30j3+6TAVrC2Af/1Pi9cOaOFqU5c0vj9EBQtV43V1dQHcbLS4UcmlJ4ioHRPCw4cPQ6PRwNfXF46OjqitrUVBQQEuXboEKysrREdH65Q/fvw4iouL0alTJ1hbW6OgoAApKSmwt7dv9nT+xh5DCNTdyhoTE4N9+/YBqJswplOnTtL+8PBwuLm5ITU1FSqVCgMHDjTqvcMWFhb4+OOPMWHCBLzyyivYvXs3PD09sXnzZr23fM6dOxcZGRmIiopCREQE3NzckJOTg+3btyM9PR3R0dF44okndJIpPz8/fPHFF0hNTUWfPn1w6tQp7NmzB8HBwXj22WelJPH999/HwYMHsWLFChw/fhwxMTFwdnZGRkYGDh48CF9fX3zxxRfo2bMnXn75ZcTHx2PTpk1ITk7G4MGD4eXlhaysLBw5cgSiKGLdunXo378/pk2bhhUrVmDnzp0YN24cBg8ejMuXLyM+Ph7e3t46E76kpqZiyJAh6NevH8LCwtCpUyfk5+fjv//9L65fv46YmBhMmTJFlvA7OjrixRdfxPbt26VlJzIyMjB16lQMHTrUaO11tzLWLcpERObkhb4qvNC3eUnW/j/KP4KtHtGyYQh/DFHhjyEtT+oEQcAAdTV+zrKB1oRf7m1s2DtI1B7aLSHs1q0bUlNTkZqaKk224ejoiNDQUERGRsoGYKrVamRlZeG3335DTU0NHB0d0bt3b/Tp06dZE7S0pWHDhmHfvn2wsrLCwIEDdcaRCYKA++67D9u2bYO/vz969Ohh9PrHjRuHjRs34s0338SGDRukpTsefvhhTJs2TafskiVLsH79ehw7dgz/+9//UFZWBjs7OwQEBGDOnDl49dVXZWP6AgIC8O6772Lp0qXYu3cvbG1tMXz4cCxYsABRUVFSORcXF/zvf//D+++/j2+++QYrVqyASqWCu7s7wsLCMGnSJPj5+QGoGwcQHx+Pjz/+GGvWrEFcXBxEUYSrqyuCg4Px+OOPo1u3bgDqBt/u3bsXs2fPxvbt23Hy5EkEBgZi8eLF2LBhg86tsf7+/pgwYQL279+PEydOoKKiAnZ2dujatSv+8pe/YPbs2Xp7aB9//HHY2dlhzZo1KCoqgpeXF+bOnYs33njD4LIW5oR/AyKiji3E7gZ+QdN3WylJa8rZKlEHIojsCqAG6scWxsXFoWfPnkqHY3Rr167FtGnTMGfOHCxZskTpcExWcXExXFxclA6DiIjayBf7LuLZk0FKh9Go3s4anJ3ZugnhiKj5ePM4EclcuXJF6RCIiKgNTYgJQhNDDYnITDAhJCIiIjIzWVfTEGbiowOMPQ8EEenHhJCIZOqXNyEioo6poqICQ/wFWJrwJ8GKinKlQyAyCxxDSEQy169fb9Zan0REdHe6dOkSjlYG4qkftUqHYhDHEBK1DxP+XoiIlFJUVKR0CERE1Ib8/PwQ42vagwgbzuJORG2HCSERyehb05KIiDqO5ORkBLkArsqu5NUoY67jTESG8VMfEclEREQoHQIREbUxQRAwyA8mO9toeTnHEBK1ByaERCRz9uxZpUMgIqI25O/vDwC411cFE80HiaidMCEkIpna2lqlQyAiojZU/zof4wvUmuj0grxllKh9MCEkIhk3NzelQyAiojaUnZ0NABjgLZjsh0FOhE/UPkz1NYCIFOThYeKrFRMRkVE4WgsIMdGX/OrqaqVDIDILTAiJSCYtLU3pEIiIqA2FhYVJv99n4gvUE1Hb4tOfiIiIyMxcuXJF+j3GV0CNCa5Pb29vr3QIRGaBCSERyXTt2lXpEIiIqA1pNBrp92gf05xntKKiQukQiMwCE0IikiktLVU6BCIiakMODg7S7z3cABcTXKBeqzXBbkuiDogJIRHJFBQUKB0CERG1oS5duki/C4KAe31hcusRqiz4MZWoPfCZRkRERGRmzp8/r/P4Xl8VVCaWEdpYm2C3JVEHxISQiGT69OmjdAhERNSOTHGB+vLycqVDIDILTAiJSObcuXNKh0BERG3I19dX5/EAb8HkbhklovbBhJCIZLgYMBFRxyYIuumfs42Anu4KBWOAtbW10iEQmQUmhEQk4+LionQIRETUhjIzM2XbuEA9kXni056IZLy8vJQOgYiI2lm0j2ktUF9VVaV0CERmgQkhEclcvHhR6RCIiKgNhYaGyrbF+HIUIZE5YkJIREREZGbS09Nl24LdAScTGrZnZ2endAhEZoEJIRHJBAQEKB0CERG1odLSUtk2lSAgxsd0FqivrKpUOgQis8CEkIhkKioqlA6BiIjakK2trd7tg/xMZ4F6ba0JDWgk6sCYEBKRTF5entIhEBFRG+revbve7dEmtEC9SsWPqUTtgc80IiIiIjOTlJSkd/tAH9NZoN5QLyYRGRcTQiKSCQ8PVzoEIiJSgIuNgB5uSkdRR6PRKB0CkVlgQkhEMlx2goioY/P29ja4b7CfafQR9nDkeHai9iCIomgid4oTkak4ffo0+vTpo3QYRESkgFtVIkpNYE342pJc+PsaTlyJyDgslQ6AiEyPk5OT0iEQEZFCnKwFk1iPsKCCH1OJ2gNvGSUiGT8/P6VDICIiM5eRkaF0CERmgQkhEckkJycrHQIRERERtQMmhERERERkckJCQpQOgcgsMCEkIhl/f3+lQyAiIjOXmZmpdAhEZoEJIRHJ1NTUKB0CERGZuVu3bikdApFZYEJIRDI5OTlKh0BERGbOxsZG6RCIzAITQiIiIiIyOcHBwUqHQGQWmBASkUzv3r2VDoGIiMzc2bNnlQ6ByCwwISQimUuXLikdAhERERG1AyaERCRTXl6udAhERGTmOnXqpHQIRGaBCSERyTg4OCgdAhERmTlbW1ulQyAyC0wIiUgmICBA6RCIiMjMXb9+XekQiMwCE0Iikrlw4YLSIRARERFRO2BCSEREREQmh8tOELUPJoREJOPr66t0CEREZOZyc3OVDoHILFgqHQARERER0e2Ki4sN7tuaqsU7R7QQ2zEeU2GlAtaNskCYWlA6FOogmBASkUxWVhan+yYiIkVZWVkZ3Lf7qoizBYDWDDNCAcCWVJEJIRkNbxklIiIiIpMTFhZmcN/BDNEsk0EAsOCndzIy/pciIpnQ0FClQyAiIjN3+vRpvdtvVYlILmzfWIg6MiaERCTDtZ+IiMhUncgRoVU6CIUVFjIjJuNhQkhEMmVlZUqHQEREZk6tVuvdfjQLsDDz4XNVVVVKh0AdCBNCIpKxs7NTOgQiIjJzjo6OercfydKa7fjBelZWnBeSjIcJIRHJdOvWTekQiIjIzF29elW2TRRF/JoJs1xuoiF3dw+lQ6AOhAkhEckkJSUpHQIREZHMpZvAzUqlo1Bebm6u0iFQB8KEkIiIiIhMTvfu3WXbjmWbe98gkfExISQiGW9vb6VDICIiM6dvJs2jWSIs+ekVjk76x1cStQafUkQkY2nJwepERKSsGzduyLYdzBBRY+5rTgBQqfgRnoyH/5uISCYjI0PpEIiIyMxZWFjoPC6rEnGey+8BAEqKS5QOgToQJoREREREZHLCw8N1Hp/IhdkvN0HUFpgQEpFMSEiI0iEQEZGZS0xM1Hl8LEs0+wXp63l6qpUOgToQJoREJJOZmal0CEREZOa0Wt3Bgr9mac1+/cF6JSW3lA6BOhAmhEQkc+sW32iIiEhZ7u7u0u/1C9LzltE6lZVcjJGMhwkhEcnY2NgoHQIREZk5V1dX6ferxUBRhXKxmBpLS4umCxE1ExNCIpIJDg5WOgQiIjJzly9fln4/ygXpdXioOYaQjIcJIRHJnD17VukQiIiIJEezRFjxU6skNydX6RCoA+FTi4iIiIhMTmBgoPT74QwR1VyQnqhNMCEkIplOnTopHQIREZm5kpK6xdfLq0WcLVA4GBPj4OigdAjUgTAhJCIZW1tbpUMgIiIzV1hYCAA4mQvUcgihDktLS6VDoA6ECSERyVy/fl3pEIiIyMwJQt0q9EezRKi4IL2O4pvFSodAHQgTQiIiIiIyOZGRkQCAI1kcPEjUlpgQEpEMl50gIiKlJSUlQRRFHOaC9DJqtYfSIVAHwoSQiGRyczmdNRERKaumpgbXS4CCcqUjMT2lpWVKh0AdCBNCIpIpLubYBCIiUparqysXpDegoqJC6RCoA2FCSEQyVlZWSodARERmTq1W4xgXpNfLwoJ/FDIe/m8iIpmwsDClQyAiIjOXlpaGQ1yQXq9OnbyUDoE6EC5iQkQyp0+fRp8+fZQOg4iIzFhlrYDE/Pap68EAAW9GC+jnJUAlABeLgEXHtfg+pfFbVgd4A1N7qzDQW0CEJ2BlIUD4sEZv2eciBQwLEDDQR0CAs4C1SVpMi29dtpudnQ3Ar1XHEt2OPYR3GU9PT4SHhysdhqSkpATjx4+HWq2GSqWCp6en0iERERFRB3DTMRA17TCEcGpvAT+NV6G6FnjzkBavHdDiYIaIzk5NHzs6SIVnwgWIAC43Mfz+jSgVhgUIOFcoorqWYyPJdJhtD+FLL72EM2fOIDk5Gfn5+VCr1cjPb/xrqEWLFiEuLg5Xr16FKIro1KkTxowZgxUrVhg1ttdffx1ubm7461//atTztoW5c+di06ZN+NOf/oTIyEi4urq2aX2ff/45Tpw4gc8//7xN6zF3arVa6RCIiMjM/ZpeC5XQtktOdHEGPntQhU9OiXhlX8PeuuZVuuK0Fh8kABU1wCcPqtDTXTBYduh3tbheUvf7rdkWdxA1YO9gf0fHEzVktgnhp59+CgcHB/To0QMajabJ8qNGjcLu3bsxZMgQjB8/HiqVCpcvX8b169eNHltcXBy8vb3vioTw0KFDCAgIwNdff90u9W3evBm7d+9mQtjGHB0dlQ6BiIjMXHssSP9cpAoWAvD2r3V1OVgBZdXNPz6v6Y+Qkvpk0BhsrK2NdzIye2abEJ4+fRqRkZEAgICAAJSXG17kZuHChYiPj8cHH3yA119/vb1CVFx1dTXKy8vh7OxssExRURG8vDrGwGatVovi4mK4ubkpHYrirl69yjGERESkqN9u2Lf5gvSxXQQkFwGjgwQsHqqCv5OAonIRn50WMf9XbTP7CdvfjRs3ATgoHQZ1EGY7hrA+GWyKVqvFp59+iqCgICkZLCwshFbb8m+tPv/8c4SGhsLGxga2trYIDQ2V9XQJgoCCggIkJSVBEATpJykpSadcQkICoqKiYGtrC3t7ewwZMgSXL1+W1Zmfn4+nnnoK3t7esLKygrOzM4YNG4YzZ87olPvnP/8JQRCwYcMGzJo1C15eXrC1tcVnn32m91rqy+fn5+vEOnPmTKnMnj17MGjQIDg5OcHKygq+vr544YUXUFVVpXOu+Ph4jBw5Ej4+Pjp/m5UrV+qUCw8Px+7du6W/U/3PP//5T2m/vjGM9fE1jG3Tpk3SsX/729/g7+8PGxsbvPHGG1KZZcuWoVevXrC1tYWNjQ2Cg4P1/j3i4uLQu3dvODk5wdraGmq1GoMHD8aJEyf0/u2IiIioceklIoqq234JpB5uQGcnIG6kCl8miXhiWy12XRHx9xgV3htith+TycyYbQ9hc504cQK5ubl44oknMGvWLKxfvx5lZWWws7PDH/7wB6xdu7ZZPUp///vfsXDhQvj6+uK5554DUJeU/PnPf0Z2djbmz58PAFi8eDH+8Y9/wMnJCa+++qp0vL+/v/R7QUEBhg8fjvvvvx+jRo3CmTNnsH37dowbNw6nTp2SyuXn5+Oee+5Bfn4+HnnkEYSFhSErKwvffvsthgwZgqNHj8qWF3jzzTdRU1ODiRMnwsXFBREREXqvZ/To0bCyspLFGhUVBaAuSZo5cya8vb0xdepUeHh44NixY1ixYgXOnj2LgwcPSufasGEDrly5glGjRqFr164oKCjADz/8gFmzZkGj0WDOnDkAgL/+9a947733cP78eSxevFg6/g9/+EOTf39DPv/8c2liHB8fH3Tt2hUAMH36dMTFxaFfv36YPXs2LCwssHPnTrz44ovIzs7GwoULAQA//PADZsyYgYCAAMycORNubm7IzMzEoUOHkJSUhP79+7c6NiV1795d6RCIiMiMHWvFgvQCAOtmDs2rrK3719EKsFAJeONgLRYl1NW5OVWEux3w8j0C3j8GlLbgFtL24uHhrnQI1IEIoiiaam94u6m/ZVTfpDKff/45/vznP8PJyQk1NTV47rnn0L17d/z3v/9FfHw8wsPDcfr0aahUhr9FysnJQdeuXeHq6oqkpCRpwo6CggKEhYWhuLgY165dk2699PT0hLe3N86ePSs7l6enJwoKCvDxxx9j9uzZ0vbHH38cW7ZsQUJCAgYMGAAAmDBhArZu3Yo9e/Zg6NChUtlz586hf//+GDp0KOLj4wHU9fi9+eab8PHxQXJycqO3id4ez+2xlpaWwt/fH35+fvjtt99g3eA+99deew0ffvghNm7ciHHjxgEAbt68KZuMpqSkBCEhIVCpVMjIyJC2jxw5Ert374a+/7bh4eHIycmRtWNSUhLCw8Px7LPPSj2ymzZtwvjx4+Hg4IBz586hS5cuUvlffvkFsbGxmDJlCtauXatzrnvvvRe//fYbMjIy4OHhgT/+8Y/47rvvcPXqVZ1z3O2uXbvWoa6HiIjuLnP31WLZKS1qRMOTtNxuaGcB+yc2LyMM+bIGKUV1k7s4WgsIWFWD9Fu/73+ql4CvRlvgvm9rcCjD8Hka+uRBFV7sqzK47ERDt2ZbYNNFsVXLTliqgJdDS/DhKCaFZBzsC29CSUndCOBbt25hzZo1+Pe//43nn38eu3btwogRI3D27FmsX7++0XN8//33qKysxLRp03Rmb1Sr1Zg6dSoqKyuxadOmZsfk5uamkwwCQGxsLABIiZlWq8WuXbsQHh6Obt26ISMjQ/pxcXFBaGgo/ve//8nO/eSTTzY7GTTku+++Q3FxMSZPnoy8vDyduidMmAAA2LFjh1S+YTJYUlKCzMxMlJSUICoqCpmZmSgoKLijeBozevRoWeLzxRdfQBAEvPDCCzqxZ2RkYMyYMaioqJASaRcXFwDAmjVrZLfCtkRRUREqKyulx6Wlpbh16/d3pqqqKhQWFuocU7cGkeHHOTk5OolzS+q4ceNGm9fRHtfBOlgH62AdrOPurMMa1S0ev5dcKGLqrtpm/WSX1h2T9f//5t42OUz9ZDFuNs1PSNuNKOpMiNhR2rwj12HqeMtoE+zt66b1dXNzw6RJk3T2zZgxA7t378bPP/+MKVOmGDzHpUuXAEDvJB3121JTU5sdk4+Pj2xbp06dAEDqHUtPT0dpaSlOnTqFzp076z2PIMhf5Hr16tXsOAypT0rfeustvPXWW3rLNOzFu3btGl588UUcPHhQSsBvL9tWyyD07NlTti0tLQ2iKEq3v+qTmZkJAHj77bexZ88evPvuu1i8eDF69+6N2NhYzJo1CwEBAc2Ow91d91u+22f5tLa2hoeHh8622/8f3P7Y29u71XVYWFi0eR3tcR2sg3WwDtbBOu7OOoZ2tca/Tras9yxXA6w717I08mSuiGB3AX6OwJUG6wj6/v8l5peb4I10ggALi9/7dDpKm3fkOkwdE8ImBAYGApA3NgCpZ+nmzZvtGVKjt6fWT3ZT/2+fPn1aNDOqMZYbqP/W5NVXX5VuX71d/Vg9rVaL+++/HxkZGZg4cSKioqLg7u4OCwsLrFmzBr/88gtqa2ubVa++BBeomy3VkPqE//b4BUHAV199JSVGt6tPFv38/JCSkoJt27Zh586dSEhIwAcffIBly5bh+++/x5gxY5oVu6kJDw9XOgQiIjJjA33ap2fuuxQRk0KBGeEq/O1w3WcnAcC03ioUlos4mft72aC6m4KaXIC+PXh5eTddiKiZmBA2YdCgQbCystJ722J9z5++mS0b6tGjB4C6pS4mTpyosy8xMVGnDGA4sWmJgIAA2Nvbo6ysTNaz2dZCQkIA1CWXTdV96NAhXL16Fc888wxWr16ts0/fWoON/W2cnZ319rSeP3++OWFLAgMDcfLkSXTv3h3R0dFNlreyssK4ceOkMZEHDx7EAw88gAULFty1CWFiYqLBCYWIiIjamputAH+7SmSU27RpPdvSRPx8TYu/DhSgtlPhTL6Ix7oLGOIvYOZPtahq8J30LxPqviQOXP37xgDnuvGGANDfq+7ft6Lr/r1WAvzn/O89jA8FCYisu6ELViogwlOQym5PE3G2BSNkcnJzAPi29HKJ9OIYwiY4OzvjvvvuQ3FxsWwZhPolCMaOHdvoOcaPHw8bGxusXbtW5z7lwsJCrF27FjY2NtLYOgCwtbXVe+tkS1hYWGDkyJFITU01uHTEtWvX7qgOQyZNmgRnZ2csX74cWVlZsv23bt2S/g6WlnXfSdw+Scyvv/6Kw4cPy451cKhbc0ffebt166Yzvg8AamtrsXTp0hbF/8wzzwAA5s6dq7d38cqVK9LvDSe8qTdgwABYW1ujuNgEvkJspdYsq0JERGRMQ/wEWLZDR+FjW7VYdkrEI90ELL1fBW8HAZN31mJ1YtO3iwa6CFg42AILB1sg2rcu2PrHM8J1P2Y/Efx7WRtLAfd4/f74Hq+WXajY1gs0klkx2x7CRYsW4erVqwCA4uJi1NTU4PnnnwdQdztjw9ssP/nkE8TExGD27Nk4fPgwAgMD8dNPPyEhIQHDhw/Hww8/3GhdXl5eeO2117Bw4UJERkZKPUmbNm1CTk4O3nnnHZ1exoiICPz444+YMWMGwsLCoFKpMHXqVNlMnE1ZuXIlTp06hZdeegmbNm3CgAEDYGNjg6tXr+LAgQPo1auXTvJkLK6urvjss88wffp0hISE4NFHH0WPHj1w48YNXLx4Efv378e6deswbtw4REVFoXPnzli3bh00Gg1CQkKQkpKCzZs3o0uXLlIvbL2YmBj88MMPmDx5MkaNGgVra2sMGzYMERERmDt3Lr7++mv86U9/wtNPPw1ra2vs2LGj2bec1hsxYgRmzpyJzz//HN26dcPo0aPh5+eHrKwsnDlzBgkJCaipqZtBbOLEicjNzcWQIUPQtWtXaDQabNu2DRUVFbLe4LuJvlukiYiI2lNf90p8m9b246/KqoFX92nx6r7GyzXsGax3IF1s1qyiADAtXtuqWUX1sbO3M8p5iAAzTgjXr18vW+x9xYoVAIDevXvrJIShoaE4fPgwXnnlFWzfvh0ajQZeXl6YM2cOFi1a1Kz63n33Xfj5+eGjjz6S6gkMDMSqVat0FkwH6noeJ0+ejO+++w4ajQaiKCI2NrbFCaGnpyfOnDmDN954Azt37sSvv/4KlUoFDw8P9O3bFy+88EKLztcSTz75JAIDAzF//nzs3LkTJSUlcHBwgI+PD55++mnce++9AOput9y1axdmzZqFHTt24IcffkBAQACWLl2KU6dOyRLCV155BSdPnkR8fDwOHDgAURTx/vvvIyIiAhEREfjiiy+wYMECfPbZZ3B0dMRDDz2E2bNnNzpBjD6rVq1CdHQ0Pv30U/znP/9BZWUlnJ2dERgYqDNRzpNPPol169Zh27ZtuHXrFuzs7BAQEIDPPvtM+oLhbtTS/2tERETG1lWVAxFOSodhkuxsbZUOgToQrkNIRDKnT5/WOysuERFRezn522ncd6A3NM3rgDMblipgZtdcfPa4n9KhUAfBMYREREREZHL6RIQjSr7SFhEZGRNCIpKpX26FiIhIKampqRjcThPL3G3c3NyUDoE6ECaERCRzp7PcEhER3amKigpE+wio4eAmmcrKSqVDoA6ECSERyTRcHoWIiEgJTk5O0lIOpEuj0SgdAnUgTAiJSEYQ+AZMRETK8vPzg4edgK7OSkdievg2TcbEhJCIZCIjI5UOgYiIzFxycjIA4D5/jiO8nbc3Z9sh42FCSEQyt6/RSUREpJQYXwG1HEeoIzcvV+kQqANhQkhEMjU1XPSJiIiU5e/vDwCI9hXAfFCXtlardAjUgTAhJCIZV1dXpUMgIiIzV1tbCwDorQZsLRUOxsTY2tkqHQJ1IEwIiUhGrVYrHQIREZm57OxsAIClSkCUt8LBmBgHe3ulQ6AOhAkhEcmkpaUpHQIREZFkkJ8AS35qlRQWFikdAnUgfGoRERERkckJCwuTfo/xFVDDYXNEbYIJIRHJdO3aVekQiIjIzF25ckX6PdqH60405ObmqnQI1IEwISQimbKyMqVDICIiM6fRaKTfPe0FBDgpGIyJqaqqVjoE6kCYEBKRTH5+vtIhEBGRmXNwcNB5fJ+/AAt2FALgF7dkXEwIiYiIiMjkdOnSRedxtK8ALRckJDI6JoREJBMZGal0CEREZObOnz+v8ziGC9RLvH24DgcZDxNCIpK5cOGC0iEQERHpiPAEbCyUjsI0cGgHGRMTQiKSqaqqUjoEIiIyc76+vjqPLVUC+nspFIyJqa2pVToE6kCYEBKRjLOzs9IhEBGRmRME+Qwyg/25QD0A2NjaKB0CdSB8ShGRjLc3xyYQEZGyMjMzZdu4QH0dJ0dHpUOgDoQJIRHJXLx4UekQiIiIZLhAfZ2CgkKlQ6AOhAkhEREREZmc0NBQ2TYvBwH+7BwjMiomhEQkExAQoHQIRERk5tLT0/VuH8wF6uHi6qJ0CNSBMCEkIpnKykqlQyAiIjNXWlqqd/u9XKCes4ySUTEhJCKZ3NxcpUMgIiIzZ2trq3c7F6g3nCwTtQYTQiIiIiIyOd27d9e7PcITsOYnWCKj4dOJiGTCw8OVDoGIiMxcUlKS3u3WFgLuMfMF6r28zfwPQEZlqXQARGR6UlNTERISonQYREREeg3xF5CQI5rl5DI1WuBGYSEAJoVkHEwIiUimoqJC6RCIiMjMeXt7G9w3LliFCjNdod5KBTzqmAsmhGQsTAiJSMbJyUnpEIiIyMw1lhBG+QiI8rFox2hMy6VLDkqHQB2IIIqiuU/URES3qaioMDi7GxERESmL79NkTJxUhohkkpOTlQ6BiIiIDOD7NBkTE0IiIiIiIiIzxYSQiGT8/f2VDoGIiIgM4Ps0GRMTQiKSqa2tVToEIiIiMoDv02RMTAiJSCY7O1vpEIiIiMgAvk+TMTEhJCIiIiIiMlNcdoKIZKqrq2FlZaV0GERERKQH36fJmNhDSEQyV65cUToEIiIiMoDv02RMTAiJSEaj0SgdAhERERnA92kyJiaERCTj4OCgdAhERERkAN+nyZg4hpCIZKqqqmBtba10GERERKQH36fJmNhDSEQy58+fVzoEIiIiMoDv02RMTAiJiIiIiIjMFBNCIpLx9fVVOgQiIiIygO/TZExMCIlIRhAEpUMgIiIiA/g+TcbEhJCIZDIzM5UOgYiIiAzg+zQZExNCIiIiIiIiM8VlJ4hIprKyEjY2NkqHQURERHrwfZqMiT2ERCSTnp6udAhERERkAN+nyZiYEBKRTGlpqdIhEBERkQF8nyZjYkJIRDK2trZKh0BEREQG8H2ajIljCIlIpqamBpaWlkqHQURERHrwfZqMiT2ERCSTlJSkdAhERERkAN+nyZj41QKRwmpra3Hx4kWlw9Bx+fJlzl5GRERkovg+ffcJDg6GhYWF0mHoxYSQSGEXL15Er169lA6DiIiIiNrI+fPnERoaqnQYenEMIZHCTK2HsLS0FFFRUUhISICjo6PS4dAdYnt2LGzPjoXt2XG0Z1vm5ORg2LBh2Lt3L7y9vdu0LnPVFu1pyj2ETAiJSEdJSQlcXFxQXFwMZ2dnpcOhO8T27FjYnh0L27PjaM+2zMjIQOfOnZGeng5/f/82rctcmdtzk5PKEBERERERmSkmhERERERERGaKCSER6bCxscH8+fM5e1kHwfbsWNieHQvbs+Noz7Z0dnbG0KFDzeJWRqWY23OTYwiJiIiIiIjMFHsIiYiIiIiIzBQTQiIiIiIiIjPFhJCIiIiIiMhMMSEkMjN5eXmYNm0aIiIi4O7uDltbW3Tv3h0zZsxAWlpak8fv2rULgiBAEAScOHFCb5mvvvoKffv2hZ2dHby8vPDMM88gPz/f2JdCaHl7rlu3DiNGjIC/vz9sbW3h6emJmJgYrF27FrW1tXrrYHu2n5a25/bt2zFt2jSEhITAwcEBvr6+iI2NRXx8vME62J7tp6XtmZKSgnnz5mHYsGFwdXWFIAh45513DJ5fq9Vi6dKlCAkJga2tLTp37oy5c+eirKysDa/KfLXm/TMrKwtPP/00PD09YWdnh/79+2Pjxo16y1ZWVuLtt99GYGAgbGxs0K1bNyxcuBDV1dVteVlmKTMzE//85z8xdOhQ+Pj4wMHBAWFhYXjttddQWFio95i9e/ciNjYWLi4usLe3R//+/fHVV18ZrONueq3lpDJEZiYlJQXTp09HTEwMunTpAjs7O6SmpuLLL79EZWUljh07hl69euk9tqysDGFhYSgsLERpaSmOHz+O/v3765RZunQp5syZg6FDh+JPf/oTMjIy8O9//xtdunRBQkICHBwc2uMyzUZL2/Pll19Gbm4uIiMj0alTJ5SWlmLnzp3Ys2cPpk+fjjVr1uicn+3Zvlrant7e3nB2dsajjz6Knj17oqioCHFxcUhOTsbChQvx1ltv6Zyf7dm+Wtqea9euxfTp09GtWzcEBARg7969mD9/vsGk8OWXX8ayZcswduxYjBo1ChcuXMAnn3yCIUOG4Oeff4ZKxe/9jaml7VlUVIT+/fsjLy8Pc+bMgb+/P7755hscOHAAX375JaZNm6Zz/sceewzbtm2T6jh69Ci+/PJLTJkyBWvXrm3nq+3YVq5ciZdffhljxozB4MGD4eTkhISEBKxduxbe3t44fvw4vL29pfIbNmzA5MmTERgYiGeffRYODg7YvHkz9u/fj/feew9vvvmmzvnvutdakYhIFMWEhAQRgDhr1iyDZV555RXRz89PnDNnjghAPH78uM7+/Px80d7eXhwwYIBYU1Mjbd++fbsIQHzvvffaLH7S1Zz2bGj06NGiIAhidna2tI3taToMtecvv/wiK1tWViYGBweLVlZWYlFRkbSd7Wk6DLVnYWGheOPGDVEURfH48eMiAHH+/Pl6z5GUlCQKgiA+/vjjOtuXLVsmAhC//vrrtgid9DDUnq+99poIQNy+fbu0raamRhwwYIDo7u4u3rp1S9q+c+dOEYA4Z84cnXPUv9/++uuvbXsRZiYpKUnn/a7e6tWrRQDi3LlzpW1VVVWiWq0Wvby8pOenKIqiVqsVR44cKVpZWYmXLl2Stt+Nr7X86oiIAABdunQBANy4cUPv/hMnTuCTTz7BRx99BCcnJ71ltm7dCo1Gg5deegkWFhbS9ocffhhBQUH4z3/+Y/zASa+m2lNfeVEUUVxcLG1je5oOQ+05bNgwWVl7e3s89NBDqK6uRkpKirSd7Wk6DLWnu7s7XF1dm3WODRs2QBRFvPLKKzrbn332Wdjb27M925Gh9vzmm2/QrVs3PPzww9I2CwsLvPTSSygqKsKPP/6oUxaArD3rH7M9jSssLEynB7DexIkTAQBJSUnStqSkJBQUFOCxxx7TeX4KgoCnn34a1dXV+Prrr6Xtd+NrLRNCIjNVXV2NgoICZGdn49ChQ5g0aRIAYPTo0bKyNTU1ePbZZzF8+HCMGzfO4DmPHz8OAIiJiZHti46ORnJyMkpLS410BdRQS9oTAIqLi1FQUIDU1FR8+umn+PLLLxEcHIzu3btLZdieymlpe94uIyMDAODl5SVtY3sq507bU5/jx49DpVIhKipKZ7utrS369OkjtTcZX3PaMzs7G5mZmYiOjpYdX7+tYRsdP34cfn5+6Ny5s07Zzp07w9fXl+3ZTvS9dlZWVgKo+7LtdvXbjh07Jm27G19rLZUOgIiUsXv3bp1vLb28vLBkyRI89dRTsrJLlixBSkoKNm/e3Og5s7KyAAB+fn6yfX5+fhBFEVlZWQgODr7D6Ol2LWlPAHjwwQdx8uRJAHXfcsbGxmLlypU632ayPZXT0vZs6MyZM9i8eTOGDBmCwMBAaTvbUzl30p6GZGVlQa1Ww8bGRrbPz88PR44cQVVVFaytrVtdB+nXnPZs6vkG1E1s0rC8ofH7fn5+UqJCbWv+/PkAgClTpkjbevbsCQsLC+zfvx+iKEIQBGnfvn37AADp6enStrvxtZYJIdFd6ubNm/joo4+aXX727Nlwd3eXHkdHR2PPnj0oLy/H+fPn8e233+LGjRuoqamBpeXvLw2XLl3CggUL8Pe//13nw6U+Go0GAPR+QLG1tdUpQ7raqz3rLV++HCUlJcjOzsbOnTuRm5sru92J7dl67d2e9fLz8/H444/Dzs4OX3zxhc4+tmfrKdWejdFoNHrbEtBtTyaEcu3Rni19vjXVnnxu6nenbdnQkiVLsHHjRsycOVPndnw3NzdMnz4dq1evxtSpUzFnzhxpUpnVq1cDkLclcJe91io4fpGI7sCVK1dEAM3+SU1NbfR8mZmZooeHhzhz5kyd7bGxsWKvXr3Eqqoqadv8+fP1Tirz0EMPiQBEjUYjO3/94PqUlJQ7uOqOq73a05C//OUvor29vZiWliZtY3u2nhLtWVhYKEZGRoq2trZ6J5the7aeEu3Z1KQyvXv3Fjt16qR33/jx40UAYmVlZbOv0Zy0R3ueOHFCBCC+/vrrsvJlZWUiAHHSpEnSNkdHRzEqKkrv+QcMGCD6+Pi08mo7NmO15erVq0VBEMQxY8bofN6pV15eLs6cOVO0tLSUzuXp6Sl+8803IgCxb9++Utm78bWWYwiJ7lJdu3aFKIrN/mk4Nkyf+vXL1qxZI90vv2XLFvz888+YN28erl27hrS0NKSlpaGoqAhA3b32aWlp0Gq10jkA3dtg6mVmZkIQBKkM6WqP9mzMlClToNFodKY2Z3u2Xnu3Z1FREWJjY5GcnIytW7fqnWyG7dl6Sj8/DZ2joKBA7/GZmZlQq9XsHTSgPdqzqecboHtLoa+vr96y9eX13X5IxmnLL7/8EjNnzsTw4cPxww8/wMrKSlbG1tYWq1atQl5eHg4fPoyEhARkZGQgMjISABASEiKVvRtfa5kQEpGkvLwctbW1KCkpAQBcu3YNADB9+nT06NFD+vnkk08AAGPHjkWPHj2kBHHAgAEAgKNHj8rOfezYMfTs2ROOjo7tcSkEeXs2VRaA1JYA29PUGGrP+mTw/Pnz2LJlC0aMGKH3eLanaWnJ81OfAQMGQKvVIiEhQWd7RUUFTp8+LVsjltrW7e3p4+MDPz8/nclG6tVva9hGAwYMQGZmps5YNKBubFpWVhbbs418+eWXeOaZZxAbG4utW7cavG23npubGwYNGoQBAwbA2tpamim24YRCd+Vr7Z12MRLR3SUnJ0fv9nPnzokODg5it27dpG2pqanixo0bZT/1tyN98MEH4saNG6XbkvLy8kQ7OzsxKipK79o77777bttenBlqSXtWV1eLBQUFestPmzZNBCB+9dVX0ja2Z/trSXuKoigWFRWJ99xzj2htbS3u2LGj0XOzPdtfS9uzoaZuGU1MTGx0HcL169e3Om7Sr6XtOW/ePIPrELq6uoolJSXS9h07djS6DuGhQ4eMeCUkiqIYFxcnqlQq8cEHH9R7e2dTLl++LKrVajE4OFisqKiQtt+Nr7WCKIqiQrkoESnglVdewZ49ezBmzBjpVoukpCSsX78e1dXV2L59u8EehnrvvPMOFixYgOPHj8u+tVyyZAnmzZuH+++/H5MmTUJmZiaWLFmCzp074/jx46b3rdhdriXtefPmTfj4+GDs2LHo3bs3vLy8kJOTg61bt+LEiRN48MEHsXv3bp2ZRtme7aulz8/+/fvj5MmTmDRpkt4lDO69914EBQVJj9me7aul7VlcXCzdgZGVlYUVK1bggQcekG4BfuSRRxARESGVf+mll/Dpp59i7NixGD16NC5cuIBly5Zh0KBB2Lt3L1Qq3ghmTC1tz8LCQvTr1w+FhYWYM2cO/Pz8sGHDBuzfvx9ffPEFZsyYoXP+hx9+GDt27MCMGTMQExODo0ePYs2aNXjyySexfv369r7cDm379u0YO3YsnJ2dsWjRItjZ2ensd3R0xGOPPSY9XrVqFXbs2IEhQ4ZArVYjOTkZq1evhqWlJX755Red5yVwF77WKpiMEpEC9uzZIz7xxBNily5dRDs7O9Ha2loMDAwUp06dKiYlJTXrHIYmlakXFxcnRkREiDY2NqKnp6c4bdo0MTc315iXQf+vJe1ZWVkpzp07VxwwYIDo4eEhWlhYiK6uruKgQYPETz/9VO9AelFke7anlj4/0cQECnFxcbJj2J7tp6Xt2dQEGbe3Z01Njfjhhx+KwcHBorW1tejr6yu++uqr4q1bt9rpCs1La94/MzIyxCeffFL08PAQbWxsxL59+4rffvut3rLl5eXiW2+9JXbp0kU69z/+8Q+Dr83UevWfYwz9dOnSRaf8wYMHxfvvv19Uq9WitbW1GBAQIM6aNUvMzMw0WMfd9FrLHkIiIiIiIiIzxXsJiIiIiIiIzBQTQiIiIiIiIjPFhJCIiIiIiMhMMSEkIiIiIiIyU0wIiYiIiIiIzBQTQiIiIiIiIjPFhJCIiIiIiMhMMSEkIiIiIiIyU0wIiYiIiIja0dSpUyEIAgRBQO/evWX7tVotFi5ciG7dusHKygrdunUDACxatAghISHQarWtqnflypUICAhAZWWlbN9HH30kxSQIAgoKClpVB919LJUOgIiIiIioo9i9ezdGjhxpcP+6desAAGq1GkuXLoWrq6uszPLly/H2229j7ty5iIiIgI+PD0pKSvDBBx/gww8/hEql26ezYMECLFiwAOfOnUNoaKjOvunTp2PdunXYvn07pk6dinfeeQerVq3C7NmzdcqNHDkSarUamzdvxpYtW1p59aYhLy8PFy9eRHZ2Nm7dugUbGxt4eXmhf//+ev/e+fn5OH78OHJzcwEAnTp1wsCBA6FWq6Uy+/fvx8WLFw3WOXnyZDg4OOjd19xjWxJ3S6+xMYIoimKLjiAiIiIiIr0WLVqEN954A8uWLYObm5ts/4gRI/Daa69h//79uHr1qt5z9OvXD2q1Grt375a2ffTRR5g/fz5yc3Nha2urUz4vLw9dunTB008/jVWrVknbP/nkE8yePRsLFy7EW2+9BQB444038N133+HKlSsQBEFW9zvvvIMFCxYgPz9fJyG6m+zZswc5OTkICgqCh4cHNBoNzp07h+rqajz22GNwd3eXyhYUFGDbtm1wdHREaGgoRFHE+fPnUVFRgbFjx0rJVW5uLkpKSnTqEUURhw8fhpOTE8aPH28wnuYe25K4W1K2KewhJCIiIiIyksTERLi4uODFF1/Um3A1paKiAmfOnMGCBQt0tsfFxeGRRx6RJYNAXY/W5MmTsX79erz33ntQq9U4cOAA5syZgyeeeEJKBgFgwoQJWLRoEfbt24dhw4a1/ALvAuHh4Rg2bBgsLCykbd26dcOmTZtw+vRpnes+fvw4LC0t8eijj0p/2x49euC7775DQkIChg8fDgDw8vKCl5eXTj05OTmoqalB9+7dG42nuce2JO6WlG0KxxASERERERnJmTNn0Ldv31YlgzNmzICdnR1qa2vxt7/9DYIgICYmBleuXEFiYiJiY2MNHvvqq6+ivLwcK1euRHp6OiZMmICQkBCsXbtWp1y/fv3g7u6Obdu2tTi+u4W3t7dOogQALi4ucHNzw82bN3W25+TkwM/PTyfRtre3h4+PD65fv47q6mqD9aSlpQFAkwlhc49tSdwtKdsU9hASERERERlBVVUVUlJSMHjwYL2Tsri4uMDKysrg8ZMnT4aVlRVWrVqFjz/+GO7u7ujSpQuOHDkCALjnnnsMHhsWFobhw4fjs88+w9atW1FdXY2tW7fC0dFRVvaee+7Br7/+2oorlNNqtaiqqmpWWRsbm1YlysYgiiLKy8tlt/HW1tbKEisAsLS0hFarRVFRkax3D6i77kuXLsHLywtOTk4tiqUlxxqK+07LNsSEkIiIiIjICM6fP4/q6mqsXLkSK1eulO1PSUlBcHCwweOHDRuGX375BQ4ODnjxxRelyWP+/ve/AwACAwMbrX/OnDkYOXIk8vLy8OOPP0qzk94uKCgI69evb+5lNSonJwc7duxoVtlJkya1OHkylrS0NJSVlaFfv346211dXZGXlwetViv9vWtra5GXlwcAKCsr03u+9PR0VFZWokePHi2OpSXHGor7Tss2xISQiIiIiMgIEhMTAQBr166Fn5+fbH9zEoDExESEhYXpzCRaWFgIS0tLvb19DV24cAFAXcI3YsQIg+Xc3NxQXl4OjUYDe3v7JmNqjIeHB0aPHt2ssnZ2dk2WEUURtbW1zTqfhYVFs3ocb968icOHD8PLy0uWkPfq1QuHDx/GwYMHERkZCVEUcerUKWg0GgAwGEtaWhpUKhWCgoKaFWtrjm0s7jspezsmhERERERERnDmzBlYWlpi0qRJsLa2bvU5GkvmDPn5558xb9489OjRA6mpqfjpp5+kCVFuV7/IgDFu37SxsYG/v/8dn6dednZ2s3scJ0yY0OQSCxqNBrt27YK1tTViY2NlS3b06tULpaWlSExMlJaG8PT0RGRkJH777Te9t/hWV1fj2rVr8Pf31zvJT2Oae2xTcbe2rD5MCImIiIiIjCAxMRGBgYGtTgZv3ryJ9PR0hIeH62z38PBATU0Nbt26pfeWy8uXL2PixIno27cvfv75ZwQHB2Pp0qUGE8IbN27A3t6+WT12TamtrdW70L0+tra2TSYrrq6uGDp0aLPO11TvZlVVFXbt2oWqqio88sgjBtcJjIqKQmRkJG7cuAFra2u4u7sjISEBQN24z9tdvXq1WbOL6tOcY5sbd0vLGsKEkIiIiIjICBITExEdHX1HxwNARESEzvaQkBAAwJUrV2T7SktL8eijj8LKygpbtmyBi4sLnn/+eSxYsAAXLlyQLVRffx5921sjNzfXqGMI7e3t0bNnzzuOq6amBvHx8SguLsaYMWOanGjFxsYG3t7e0uPMzEw4ODjo7YFMS0uDlZUVunbt2uK4mjq2JXG39BoNYUJIRERERHSHcnJykJeXJyVvrXHmzBkA8oQwJiYGAHDixAmdfaIo4qmnnkJKSgr27dsn3br5/PPP41//+hc++ugjnYXq6506dQqTJ09udZwNGXsMoTFotVr88ssvyM3NxYgRI/TOEtqYS5cuIT8/H9HR0bLbasvLy5GRkYHu3bvD0lJ/KlVTU4PS0lLY2trq3Bba1LEtiftOr7EhJoRERERERHeoPpnLz8/Hf/7zH9n+yMhI2a2gt0tMTISfnx/c3d11tgcFBaF37974+eefMX36dGn7O++8g61bt2LVqlUYNGiQtN3T0xNPPvkk1q9fj/fffx8eHh7SvpMnT6KoqAiPPvpoq67zdsYeQ2gMx44dw7Vr1xAQEIDKykqkpqbq7G84uU92djZOnTolrUWYl5eHlJQUdO7cGb1795ad+9KlSxBFsdFbPvPy8rBjxw7cc8896N+/f7OPbUncLSnbFCaERERERER3qP52z7i4OMTFxcn2f/XVV81KCG/vHaw3ffp0vP322ygvL4ednR22bNmCd999F8899xxmzpwpK//qq69izZo1WLlyJd566y1p+8aNGxEQEIBhw4a15PLuKoWFhQCA69ev4/r167L9DZMlBwcHCIKAxMREVFdXw8nJCQMGDEB4eLje8Y5paWmws7PTO4tsU5o6tiVxt6RsUwSxfpohIiIiIiJqc1OnTsXevXtx6tQpWFpaNjlTJgAUFxcjKCgIixYtwowZM1pVb2VlJbp27Yq//OUvePnll3X2VVRUoLS0FIsWLcLixYuRn58PtVrdqnro7tKyOUmJiIiIiOiOpaenw9PTE4MHD25WeRcXF7z++utYvHgxtFptq+qMi4uDlZUVnnvuOdm+lStXwtPTE4sXL27VuenuxR5CIiIiIqJ2dP78eWRlZQEAHB0d72hmUmNJT09HSkqK9Hjo0KF61+CjjocJIRERERERkZniLaNERERERERmigkhERERERGRmWJCSEREREREZKaYEBIREREREZkpJoRERERERERmigkhERERERGRmWJCSEREREREZKaYEBIREREREZkpJoRERERERERmigkhERERERGRmfo/TOvbudhKhNIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Every model can be accessed through its name\n", "atom.lr05.plot_shap_waterfall(show=6)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plotly.com" }, "data": [ { "hovertemplate": "(%{x}, %{y})LR - f1", "legendgroup": "LR", "legendgrouptitle": { "font": { "size": 16 }, "text": "LR" }, "line": { "color": "rgb(0, 98, 98)", "dash": "solid", "width": 2 }, "marker": { "color": "rgb(0, 98, 98)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines+markers", "name": "f1", "showlegend": true, "type": "scatter", "x": [ 11362, 22724, 34087, 45449, 56812, 68174, 79536, 90899, 102261, 113624 ], "xaxis": "x", "y": [ 0.5849220783199258, 0.5852342766121251, 0.5861182027816085, 0.5863483860822786, 0.5853840269709295, 0.584890667748423, 0.5852348941929831, 0.5852687608534067, 0.5846326367397978, 0.5848364543114041 ], "yaxis": "y" }, { "hovertemplate": "%{y}upper bound", "legendgroup": "LR", "line": { "color": "rgb(0, 98, 98)", "width": 1 }, "mode": "lines", "showlegend": false, "type": "scatter", "x": [ 11362, 22724, 34087, 45449, 56812, 68174, 79536, 90899, 102261, 113624 ], "xaxis": "x", "y": [ 0.5869626425831023, 0.5872851002744349, 0.5870626749173704, 0.5880778682170071, 0.5870687319548265, 0.5867252238766567, 0.586423886248997, 0.5879142165289584, 0.5865909066787999, 0.5855150005202696 ], "yaxis": "y" }, { "fill": "tonexty", "fillcolor": "rgba(0, 98, 98, 0.2)", "hovertemplate": "%{y}lower bound", "legendgroup": "LR", "line": { "color": "rgb(0, 98, 98)", "width": 1 }, "mode": "lines", "showlegend": false, "type": "scatter", "x": [ 11362, 22724, 34087, 45449, 56812, 68174, 79536, 90899, 102261, 113624 ], "xaxis": "x", "y": [ 0.5828815140567494, 0.5831834529498153, 0.5851737306458467, 0.58461890394755, 0.5836993219870326, 0.5830561116201893, 0.5840459021369693, 0.5826233051778551, 0.5826743668007958, 0.5841579081025385 ], "yaxis": "y" } ], "layout": { "font": { "size": 12 }, "height": 600, "hoverlabel": { "font": { "size": 16 } }, "legend": { "bgcolor": "rgba(255, 255, 255, 0.5)", "font": { "size": 16 }, "groupclick": "togglegroup", "traceorder": "grouped", "x": 0.99, "xanchor": "right", "y": 0.01, "yanchor": "bottom" }, "margin": { "b": 50, "l": 50, "pad": 0, "r": 0, "t": 35 }, "showlegend": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "font": { "size": 24 }, "pad": { "b": 15, "t": 15 }, "x": 0.5, "xanchor": "center", "xref": "paper", "y": 1, "yanchor": "top" }, "width": 900, "xaxis": { "anchor": "y", "automargin": true, "autorange": true, "domain": [ 0, 1 ], "range": [ 4903.27371014096, 120082.72628985904 ], "title": { "font": { "size": 16 }, "text": "Number of training samples" }, "type": "linear" }, "yaxis": { "anchor": "x", "automargin": true, "autorange": true, "domain": [ 0, 1 ], "range": [ 0.5823202738979022, 0.58838089949696 ], "title": { "font": { "size": 16 }, "text": "Score" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAB0QAAAJYCAYAAADyo1X4AAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Ql4VuWZ//GbJCwJELIv7PuuogRZ3FkUEERB2VygdqxtZzqi/euM7bRqnU57tQouQOsIdh0XrHaxJGiCK8gSEBSRfYcA2UMSQkIS/tfzhDcGBPKu5z3POd/3urgAOct9f+6jAr88z2lx5syZM8IHAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcKBACwJRB06VlhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAQAsQiPIgIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAYwUIRB07WhpDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAECUZ4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBwrACBqGNHS2MIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIEAgyjOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKOFSAQdexoaQwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAhEeQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCxAgSijh0tjSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAIEozwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDhWgEDUsaOlMQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIBDlGUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAccKEIg6drQ0hgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBKI8AwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4FgBAlHHjpbGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAQJRnAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEHCtAIOrY0dIYAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQiPIMIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAYwUIRB07WhpDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAECUZ4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBwrACBqGNHS2MIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIEAgyjOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKOFSAQdexoaQwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAhEeQYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCxAgSijh0tjSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAIEozwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDhWgEDUsaOlMQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIBDlGUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAccKEIg6drQ0hgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBKI8AwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4FgBAlHHjpbGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAQJRnAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEHCtAIOrY0dIYAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQiPIMIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAYwVcG4jmFVU5dqg0hoCpAkmxraTsZK2crq03tQXqRgABBC4p0CoqQtrHREnRiRqkEEAAAccKJMa2loqq01J9mt/TOXbINIaAywWiIltIfPvWUlB6yuUStI8AAk4WiG/fSk5V10lVTZ2T26Q3BBBwkQCBqIuGTasI2F2AQNTuE6I+BBAIVIBANFBBzkcAARMECERNmBI1IoBAIAIEooHocS4CCJgiQCBqyqSoEwEEvBUgEPVWiuMQQCDkAgSiISfmBgggEGYBAtEwD4DbI4CAJQIEopYwcxMEEAijAIFoGPG5NQIIWCZAIGoZNTdCAAGLBAhELYLmNggg0LwAgWjzRhyBAAJmCxCImj0/qkcAAe8ECES9c+IoBBAwV4BA1NzZUTkCCHgvQCDqvRVHIoCAGQIEombMiSoRcIUAgagrxkyTCLhagEDU1eOneQRcI0Ag6ppR0ygCrhUgEHXt6GkcAVcJEIi6atw0i4ArBAhEXTFmmkTADAECUTPmRJUIIOC/AIGo/3aciQAC5ggQiJozKypFAAH/BAhE/XPjLAQQMEuAQNSseVEtAgg0L0Ag2rwRRyCAgEUCBKIWQXMbBBAImwCBaNjouTECCFgoQCBqITa3QgCBsAgQiIaFnZsigIDFAgSiFoNzOwQQCLkAgWjIibkBAgh4K0Ag6q0UxyGAgKkCBKKmTo66EUDAFwECUV+0OBYBBEwUIBA1cWrUjAACvgoQiPoqxvEIIGB3AQJRu0+I+hBwkQCBqIuGTasIuFSAQNSlg6dtBFwmQCDqsoHTLgIuFCAQdeHQaRkBFwoQiLpw6LSMgMMFCEQdPmDaQ8AkAQJRk6ZFrQgg4I8Agag/apyDAAKmCRCImjYx6kUAAV8FCER9FeN4BBAwUYBA1MSpUTMCCFxKgECU5wMBBGwjQCBqm1FQCAIIhEiAQDREsFwWAQRsJUAgaqtxUAwCCIRAgEA0BKhcEgEEbCdAIGq7kVAQAggEKEAgGiAgpyOAQPAECESDZ8mVEEDAngIEovacC1UhgEBwBQhEg+vJ1RBAwH4CBKL2mwkVIYBA8AUIRINvyhURQCC8AgSi4fXn7ggg0ESAQJTHAQEEnC5AIOr0CdMfAggoAQJRngMEEHC6AIGo0ydMfwggoAQIRHkOEEDAaQIEok6bKP0gYLAAgajBw6N0BBDwSoBA1CsmDkIAAcMFCEQNHyDlI4BAswIEos0ScQACCDhAgEDUAUOkBQQQOEeAQJQHAgEEbCNAIGqbUVAIAgiESIBANESwXBYBBGwlQCBqq3FQDAIIhECAQDQEqFwSAQRsJ0AgaruRUBACCAQoQCAaICCnI4BA8AQIRINnyZUQQMCeAgSi9pwLVSGAQHAFCESD68nVEEDAfgIEovabCRUhgEDwBQhEg2/KFRFAILwCBKLh9efuCCDQRIBAlMcBAQScLkAg6vQJ0x8CCCgBAlGeAwQQcLoAgajTJ0x/CCCgBAhEeQ4QQMBpAgSiTpso/SBgsACBqMHDo3QEEPBKgEDUKyYOQgABwwUIRA0fIOUjgECzAgSizRJxAAIIOECAQNQBQ6QFBBA4R4BAlAcCAQRsI0AgaptRUAgCCIRIgEA0RLBcFgEEbCVAIGqrcVAMAgiEQIBANASoXBIBBGwnQCBqu5FQEAIIBChAIBogIKcjgEDwBAhEg2fJlRBAwJ4CBKL2nAtVIYBAcAUIRIPrydUQQMB+AgSi9psJFSGAQPAFCESDb8oVEUAgvAIEouH15+4IINBEgECUxwEBBJwuQCDq9AnTHwIIKAECUZ4DBBBwugCBqNMnTH8IIKAECER5DhBAwGkCBKJOmyj9IGCwAIGowcOjdAQQ8EqAQNQrJg5CAAHDBQhEDR8g5SOAQLMCBKLNEnEAAgg4QIBA1AFDpAUEEDhHgECUBwIBBGwjQCBqm1FQCAIIhEiAQDREsFwWAQRsJUAgaqtxUAwCCIRAgEA0BKhcEgEEbCdAIGq7kVAQAggEKEAgGiAgpyOAQPAECESDZ8mVEEDAngIEovacC1UhgEBwBQhEg+vJ1RBAwH4CBKL2mwkVIYBA8AUIRINvyhURQCC8AgSi4fXn7ggg0ESAQJTHAQEEnC5AIOr0CdMfAggoAQJRngMEEHC6AIGo0ydMfwggoAQIRHkOEEDAaQIEok6bKP0gYLAAgajBw6N0BBDwSoBA1Csmnw6qrK6W53IypW3rNvLQmPHSokULn87nYAQQCL4AgWjwTbkiAgjYS4BA1F7zoBoEEAiNAIFoaFy5KgIIhE+AQDR89twZAQTOEyAQ5ZFAAAGnCxCIBm/CRRXlsiAnS17PXSv3jbxWyk+dklfXfyrfu2GsPDx2grRt3Tp4N+NKCCDgkwCBqE9cHIwAAgYKEIgaODRKRgABnwUIRH0m4wQEELC5AIGozQdEeQi4SYBA1E3TplcE3ClAIBr43I+UFOsgNGvr5zIzY6RMGTL0nIu+uXGdvLZ+jcwYNkIHo0nt2gd+U66AAAI+CRCI+sTFwQggYKAAgaiBQ6NkBBDwWYBA1GcyTkAAAZsLWBqIVp2qkSd+/YosX7lWszz92P0ydeL1FyV6O/Nj+cmvXjnn1789a6I88uB0/c/2HMiTBx97Vo4eL7rg9ea/tEyWvpapf+2yAT3lN798WOI7NPylWF5Rlc1HQ3kIuE+AQNR9M6djBNwmQCDq/8T3FuTL/OxM+XTvLpmRMVwmDB5yyYv94/ONevXozQMv08Fol4RE/2/OmQgg4JMAgahPXByMAAIGChCIGjg0SkYAAZ8FCER9JuMEBBCwuYClgagKKNVHBZolZeXyvf9cID98cLoMG9L/gkwqEF278St56tH7JbpNq3OOOf/8839+/rnn/5xA1OZPJuW5UoBA1JVjp2kEXCVAIOr7uLfmHdZB6Na8IzJz2AgZ3X+QTxd5d+vn8saGdZLRrYc8PHai9EtL9+l8DkYAAd8FCER9N+MMBBAwS4BA1Kx5US0CCPgnQCDqnxtnIYCAfQUsC0RVYPn4/7wsj35/pvTq1lGLNA1IL0R0qUBUrQ798S9elp8//oC+nmf16YihA/Wq0/Ovnbt5uzz70rLGVaIEovZ9KKnMvQIEou6dPZ0j4BYBAlHvJ73xwD4dhB4uKZYZGSPk2j79vD/5Akd+tOMrHYz2SknRweiQLt0Cuh4nI4DAxQUIRHk6EEDA6QIEok6fMP0hgIASIBDlOUAAAacJWBaInh9gKshLBZ6eX2+6ZW7T7XI9gWrm++vkpV/9UM/l14tfl1/86AG9La5nO92Jo4frFakqIO3eJa1xi9780lNOmyX9IGC8QHy7VlJeVSu1dfXG90IDdhZoYefirKntjIjAYI31eXdpGdlC2kZHSWnF6bDc34Sbrtq9Q559L1PKqqpk1rARMrxH76CW/emenXor3cR27eSHN98qo3r1Cer1uRgCCIjEtWspJ0/VSk2t+h8OHwQQQMB5AlGRIrFtW0nxiRrnNUdHzhbgz4LOnm+z3fn2ezP137mamjo5dbqu2StzAAIIIGCCgKWBaNPAUuE0F4g2BfRsiTt98o2NoaZe9fnbN6Sw5IR+j2jTd5J6VoyWlVfKqvVbvvEO0do63/4HYMIwqREB0wUiI0Tqz4ic4V9P00dp8/p5wGrrRNRf4vCxXqBFixYS0UKkTv3Hjs85AllbtsjT/3xHZ/X3jRwlw3r0CKnQur175Y9rPhU1k59MmiwTLrsspPfj4gi4SSAyIkLqz5yRM/ymzk1jp1cEXCbQQiIjWkhdPV/M67LBG98ufxY0foQBNuDbV0bz93QBcnM6AgjYTsDSQLTpFrdKwpdA1HP8/kPH9IpPtQK0acB6fmB6/opQda9l73zIlrm2ewQpCIGvBdgyl6cBAQScLsCWud+ccOaWzXpr3NjoaJmeMUIGpney9DH46ugRWbZhnZRVnZSHx06QSZdfaen9uRkCThRgy1wnTpWeEECgqQBb5vI8IICAGwTYMtcNU6ZHBNwlYFkg6s87RM8fhQo1PYGoWh365jsfylOP3i/RbVrpQz3vDf3enNvliV+/IndNvlGGDemvf+38LXt5h6i7HnS6NUOAQNSMOVElAgj4L0Ag+rXd25/lyvycTOkcl6CD0N4pqf7DBuHMPQXHdTB6oLhQB6N3DR0ehKtyCQTcKUAg6s650zUCbhIgEHXTtOkVAfcKEIi6d/Z0joBTBSwLRJsGlmqFp2dF5w8fnN4YWqpA81h+sQ451eet5R/JtFtv0IHn+cd73hH6i8cf0OdfaIWo51rqfFaIOvURpi8nCRCIOmma9IIAAhcSIBAVeXX9p3pFqFoJOiNjhHRJSLTVw3K4pFje3LBONh8+IPPGjJc5o663VX0Ug4AJAgSiJkyJGhFAIBABAtFA9DgXAQRMESAQNWVS1IkAAt4KWBqIet7ruXzlWl1f03d+qp83DURViKl+vvS1zMZezj9erRKdO++XF/z18+912YCejdvlqhNYIertI8JxCFgnQCBqnTV3QgCB8Ai4ORBduupDeW7lChnRo5deEZoa2yE8Q/DyroUV5bJsw1r5cOc2HYx+94axXp7JYQggQCDKM4AAAk4XIBB1+oTpDwEElACBKM8BAgg4TcDSQNROeASidpoGtSDQIEAgypOAAAJOF3BjILrog2x5fuUKGTdwsA5C42PaGjXm8lOndDD69883ykNjxstDo2+RiIgIo3qgWASsFiAQtVqc+yGAgNUCBKJWi3M/BBAIhwCBaDjUuScCCIRSgEA0lLpcGwEEfBIgEPWJi4MRQMBAAbcEonX19Xo16AsrV8jUK4fpILRt69YGTuzrkmtqa3Uw+ur6NfLdG0bLvDETpF2bNkb3RPEIhEqAQDRUslwXAQTsIkAgapdJUAcCCIRSgEA0lLpcGwEEwiFAIBoOde6JAAIXFCAQ5cFAAAGnCzg9EK2srpYFOVny0scrZfbVo/Q7QqMiIx031r9sXCev5a6Ru4YOl4fHTpDk9rGO65GGEAhEgEA0ED3ORQABEwQIRE2YEjV6BH7w2h9kdP+BcseVw0BBwCcBAlGfuDgYAQQMECAQNWBIlIiAWwQIRN0yafpEwL0CTg1EiyrKdRD6eu5amXX1SB0UuuHzzuefyeu5a2TsgMHy8LgJ0jUhyQ1t0yMCzQoQiDZLxAEIIGC4AIGo4QN0Sfkf79wu976yWJ65c7b884tNcqq2VhbOmsMX87lk/sFok0A0GIpcAwEE7CRAIGqnaVALAi4XIBB1+QNA+wi4QMBpgWheaYnMz86UrK2fy8yMkTJlyFAXTPGbLb679Qt5Y8NaGdqth14x2j+toysdaBoBjwCBKM8CAgg4XYBA1OkTNr+///rbm/Jl3iH56a13NO7Ysungfnkme7l89/qx8q83jTO/SToIuQCBaMiJuQECCFgsQCBqMTi3QwCBiwsQiPJ0IICA0wWcEojuLcjXQejqPTtl5rARMmHwEKePzqv+Ptq5Tb9ntEdSig5Gr+za3avzOAgBpwkQiDptovSDAALnCxCI8kzYVWBvYb7cs2SxTLxsiNx2xVUXLPP3n34sGw7skxdn3idXdOlm11aoywYCBKI2GAIlIIBAUAUIRIPKycUQQCAQAQLRQPQ4FwEETBAwPRDdmndYB6Fb847oIHR0/0EmsFte49q9u3UwGt+2rTw8dqKM6tXH8hq4IQLhFCAQDac+90YAASsECEStUOYevgos+eQDWbLqA3ly8lTpGJdwydMPFBXKcytXyPAeveR/7pjh66043iUCBKIuGTRtIuAiAQJRFw2bVhGwuwCBqN0nRH0IIBCogKmB6MYD+/Q7Qg8VF8mMjBFybZ9+gVK44ny1LdmyjetEzoh+x6h61ygfBNwgQCDqhinTIwLuFiAQdff87dZ9bV2dzF6ySFJjY+WB60b7VN7yLZvkldUfyQsz58iEwVf4dC4HO1+AQNT5M6ZDBNwmQCDqtonTLwI2FiAQtfFwKA0BBIIiYFogunr3TlmQkyknqqrkrozhMrxH76A4uO0i244ekWUb1knJyUodjE6+/MLbl7nNhX6dK0Ag6tzZ0hkCCDQIEIjyJNhFQL3L/oE/LpH/vv1OGdLFv9c1nKypkedWZknrqJby4sw5EhsdbZf2qCPMAgSiYR4At0cAgaALEIgGnZQLIoCAvwIEov7KcR4CCJgiYEogunL7Vr01bgsRmZ4xQobwbqGgPGLq3atqK919RQXyyNiJOmTmg4ATBQhEnThVekIAgaYCBKI8D3YQ+OGb/yeHS4rkxxNvD0o56rUPz2Yvl8dumSTfvvamoFyTi5gtQCBq9vyoHgEEvilAIMpTgQACthEgELXNKCgEAQRCJGD3QDRzy2YdhMZGx8j0jOEyML1TiCTcfdkjpcWyLHedbDq0X+aNnSBzR13vbhC6d5wAgajjRkpDCCBwngCBKI9EOAW25h2We5YultlXj5JbBl0e9FL+9+P3ZWf+Mb1atF9aetCvzwXNESAQNWdWVIoAAt4JEIh658RRCCBggQCBqAXI3AIBBMIqYNdA9O3PcmV+TqZ0jkvQK0J7p6SG1cktNy+qqNArRj/Y8ZU8NGa8fO/GsW5pnT4dLkAg6vAB0x4CCLBlLs9A2AReWLlC3t6UKz+dNFWS2rUPWR2784/J/JwsuXngZfpefNwpQCDqzrnTNQJOFiAQdfJ06Q0BwwQIRA0bGOUigIDPAnYLRF9d/6leEapWgs7IGCFdEhJ97okTAheoqD6lg9G/btooD425RYejkRERgV+YKyAQJgEC0TDBc1sEELBMgBWillFzo7MCJ6qq5O6li6RfarrcN/I6y1z+uilX/vLZenlh5hy5qd9Ay+7LjewhQCBqjzlQBQIIBE+AQDR4llwJAQQCFCAQDRCQ0xFAwPYCdglEl676UJ5buUJG9OilV4SmxnawvZ0bCjxdV6eDURVUf+e60TJv7Hhp3ybaDa3To8MECEQdNlDaQQCBbwgQiPJQWCnwt80b5D/eek2emjxNBnbsbOWt9b1KT1bKgpwVkhIbq7fRbRUVZXkN3DA8AgSi4XHnrgggEDoBAtHQ2XJlBBDwUYBA1EcwDkcAAeMEwh2ILvogW55fuULGDRysg9D4mLbGGbql4Lc+Wy+vrV8j064aJg+Pmygp7WPd0jp9OkCAQNQBQ6QFBBC4pACBKA+IVQLf/7/fidpN5P/dfKtVt7zofT7ZtV1+9e5y+Z87psvdw68Jez0UEHoBAtHQG3MHBBCwVoBA1Fpv7oYAApcQIBDl8UAAAacLhCMQrauv1yGo+jb1ymE6CG3burXTqR3T3ztffCav566VMf0HycNjJ0i3xCTH9EYjzhUgEHXubOkMAQQaBAhEeRJCLbDxwD65Z+li+d4NY+RGm21Vu/CD9+RoWam8OGuOdE9MDjUF1w+jAIFoGPG5NQIIhESAQDQkrFwUAQT8ESAQ9UeNcxBAwCQBKwPRyupqWZCTJS99vFJmDRspM4eNlKjISJO4qLWJwHtbv5A3Nq6TK7t008HogPRO+CBgWwECUduOhsIQQCBIAgSiQYLkMhcU+OWKd+SD7Vvlp5OmSvs2bWyp9FXeYZmfkyV3XnW1PDZ+si1rpKjABQhEAzfkCgggYC8BAlF7zYNqEHC1AIGoq8dP8wi4QsCKQLS4skLmZ2fqVYWzrh4pdw0d7gpbtzT58c5t8saGddI9KUkeHjtRrura3S2t06dBAgSiBg2LUhFAwC8BAlG/2DipGYHjJ8rk7qWLZHiP3jIjY4QRXq/nrpHsr7bIC7PmyMiefYyomSK9FyAQ9d6KIxFAwAwBAlEz5kSVCLhCgEDUFWOmSQRcLRDKQDSvtEQHoZlffq5XhE4ZMtTV1k5vfu3e3fLmxnXSITpaB6PX9O7r9JbpzyABAlGDhkWpCCDglwCBqF9snHQJgdfWfyq/XPEPeXLSNOmVkmqUlQpyn1u5Qvokp8pzM+8zqnaKvbQAgShPCAIIOE2AQNRpE6UfBAwWIBA1eHiUjgACXgmEIhDdW5Av87OXy+o9u2TmsBEyYfAQr2rhIGcIbD50QJZtWCv1Z87II+MmytgBg53RGF0YLUAgavT4KB4BBLwQIBD1AolDvBb41u9fkqiICPnB6Fu8PseOB+Zs+1LmZ2fJ8zPvlWlXXW3HEqnJRwECUR/BOBwBBGwvQCBq+xFRIALuESAQdc+s6RQBtwoEMxDdqt7bk50pW/OO6CB0dP9BbmWlbxHZdjRPrxgtqiyXR8ZOlMlXXIULAmETIBANGz03RgABiwQIRC2CdvhtVu3aIfe8slh+NGGKjOjZ2xHdqi/Sey4nSyprquXFmXMkrUOcI/pyaxMEom6dPH0j4FwBAlHnzpbOEDBOgEDUuJFRMAII+CgQjEB044F9siAnSw4VF+l3C13bp5+PVXC4kwX2FebLsg3rZE9BvjwyboJMN+T9U06eiRt7IxB149TpGQF3CRCIumveoej2iX/8RTYdOiA/vfUOaRUVFYpbhPWamw/ul2dzsuRfrr3R+JWvYYUM880JRMM8AG6PAAJBFyAQDTopF0QAAX8FCET9leM8BBAwRSCQQHT17p2yICdTyqqqZHrGcBnewxlfRW7K7EyrU71TVm2lu/Hgfpk3Zrx865obTGuBeg0WIBA1eHiUjgACXgkQiHrFxEEXENhfVCD3LFksNw+6XG4fMtTxRn9Y84ms3btbXpw1R67q2t3x/TqtQQJRp02UfhBAgECUZwABBGwjQCBqm1FQCAIIhEjAn0D0/e1b5dnsTGkholf7DenSLUTVcVknChRXVsgbG9aKeo4eGjNevn/jOCe2SU82EyAQtdlAKAcBBIIuQCAadFJXXHDpqg/lpY9XypOTp0nn+ARX9KyaPFxSrHe4Gdq1h/xy2kzX9O2ERglEnTBFekAAgaYCBKI8DwggYBsBAlHbjIJCEEAgRAK+BKKZWzbrd4TGRkfrIHRgeqcQVcVl3SBQWV2tg9FCKe11AAAgAElEQVS/bsqVfx8zXh4afYtERUa6oXV6DIMAgWgY0LklAghYKkAgaim38Terr6+X2UsWSWK7dvLg9WOM78ffBtSfb5as+kCenzlHbr1siL+X4TwLBQhELcTmVgggYIkAgaglzNwEAQS8ESAQ9UaJYxBAwGQBbwLRtz/Llfk5mdI5LkEHob1TUk1umdptJlBbV6eD0dfWr5F/ue5GmTdmgg7d+SAQTAEC0WBqci0EELCjAIGoHadiz5qyv9oi3/r9/8p/336nXNW1hz2LtLCqU6drZEHOCv2FeS/OnCNxMTEW3p1b+SpAIOqrGMcjgIDdBQhE7T4h6kPARQIEoi4aNq0i4FKBSwWir67/VBZkZ8mA9I4yI2OEdElIdKkSbVsl8NZn6+W13DUy7cphMm/sBEmN7WDVrbmPwwUIRB0+YNpDAAEhEOUh8Ebg0b+8KuqdoT+59Q5vDnfVMev37ZFnspfLD8dNlAeuG+2q3k1qlkDUpGlRKwIIeCNAIOqNEscggIAlAgSiljBzEwQQCKPAhQJR9S6h51aukBE9eukVoYRSYRyQS2/9zy82yeu5a+SmfgPl4XETpHtiskslaDtYAgSiwZLkOgggYFcBAlG7TsYedW07ekTuWbpYf5Hj+MFX2KMom1bx8icfyFdHj8iLs+bwihAbzohA1IZDoSQEEAhIgEA0ID5ORgCBYAoQiAZTk2shgIAdBZoGoos/zJbnclbIuIGDdRAaH9PWjiVTk4sE1JZuajvdK7p0k4fHTuAvpVw0+2C3SiAabFGuhwACdhMgELXbROxTz8L335NlG9fKE5OmSnL7WPsUZuNK9hQc19vo3tRvgDx12502rtR9pRGIum/mdIyA0wUIRJ0+YfpDwCABAlGDhkWpCCDgl0BkhMjCD9+VX2YulzuuzJAZGSOlbevWfl2LkxAIlcAnu7brYLRrQpIORod2431XobJ26nUJRJ06WfpCAAGPAIEoz8L5ApXV1TJ7yULplZwqc0ddD5AfAn/bvEFez12rV4uO6T/IjytwSrAFCESDLcr1EEAg3AIEouGeAPdHAIFGAQJRHgYEEHCqgPoLkgU5WfLSxyvlW9dcK7dfcbVERUY6tV36cojAun275c0N66R9dLQORq/t3c8hndFGqAUIREMtzPURQCDcAgSi4Z6Ave7/j883yiPL/k+evm2aDOrUxV7FGVbNiaoq/eemhHbt5MWZc6RNy5aGdeCscglEnTVPukEAARECUZ4CBBCwjQCBqG1GQSEIIBAkgeLKCpmfnam/0nnW1SNl9tUjpW2bSCmtPB2kO3AZBEIvsPnQAXlz4zqprauXR8ZNkHEDLwv9TbmD0QIEokaPj+IRQMALAQJRL5Bccsi/vfp7Ka06KY/dMsklHVvT5ie7dsgz7y2Xn902Te4deZ01N+Uu3xAgEOWhQAABpwkQiDptovSDgMECBKIGD4/SEUDgHIG80hIdhGZ++bnMGjZSpgwZqn+9ZWQEgSjPirEC24/l6RWjBRXlOhi97YqG55oPAucLEIjyTCCAgNMFCESdPuHm+/vs4H65Z+liefC6m+QmtndtHszPIxZ9kC2HS4v1Nro9k1L8vAqn+StAIOqvHOchgIBdBQhE7ToZ6kLAhQIEoi4cOi0j4DCBvQX5Mj97uazes0tmDhshEwYPOadDAlGHDdyl7ewrLJBlG9bKnoLjeivdGcNGulSCti8mQCDKs4EAAk4XIBB1+oQv3d+vVrwj2du+lCcmTZXY6Gh3Y1jQ/fajR2R+TpZMGZIhj0+4zYI7cguPAIEozwICCDhNgEDUaROlHwQMFiAQNXh4lI6AywW25h3W77r58shhHYSOvshXiROIuvxBcVj7aiX0sg3rZMOBvTJv7Hi5/5obHdYh7fgrQCDqrxznIYCAKQIEoqZMKrh1FpSfkLuXLpaMbj1kJl8QFlxcL66mviBP7cDzwsz7eLe9F17BOIRANBiKXAMBBOwkQCBqp2lQCwIuFyAQdfkDQPsIGCiw8cA+HYQeKi6S6RnD5bo+/S/ZBYGogUOm5GYF1LtyVTCas+1LeWjMePnXm8Y1ew4HOFuAQNTZ86U7BBAQIRB131Pweu4a+Xnm3+SpydOkd0qa+wBs0nFBebk8tzJLuiUmycJZc21SlXPLIBB17mzpDAG3ChCIunXy9I2ADQUIRG04FEpCAIELCny6Z5feGresqkoHocN79PZKikDUKyYOMlSgsrpab6X71me58oPRN8u8sROkZWSkod1QdiACBKKB6HEuAgiYIEAgasKUglfj/X/4X2khor/wi489BN7fvlV+/d5yeW7GvXLX0OH2KMqBVRCIOnCotISAywUIRF3+ANA+AnYSIBC10zSoBQEELiSg/uD9bHam/qUZGSNkSJduPkERiPrExcGGCtTV18sbuWvktdw1ehtdtZ1uh+gYQ7uhbH8ECET9UeMcBBAwSYBA1KRp+V/r6t075d5XFstjt0ySUb36+n8hzgyZwILsLDlRXSUvzpwjHePiQ3Yft16YQNStk6dvBJwrQCDq3NnSGQLGCRCIGjcyCkbANQKZWzbL/OxMiY2OlukZI2Rgeie/eicQ9YuNkwwWePuzXB2M3jFkqF4xmtYhzuBuKN1bAQJRb6U4DgEETBUgEDV1ct7X/eQ7b8mG/fvkicl3SOuolt6fyJGWC3x+6IDMz8mSOaOul3ms4g2qP4FoUDm5GAII2ECAQNQGQ6AEBBBoECAQ5UlAAAG7CagwZ35OpnSOS9BBaO+U1IBKJBANiI+TDRZYvmWTvJ67Vm7sO0AHoz2Skg3uhtKbEyAQbU6IX0cAAdMFCERNn+DF6z9YXCh3L1ksYwcMljuuzHBuow7s7E9rV4la1fvirDkytFsPB3ZofUsEotabc0cEEAitAIFoaH25OgII+CBAIOoDFocigEBIBV5d/6mo7ZcGpHfUW+N2SUgMyv0IRIPCyEUMFsj5aou8sXGdXN6piw5GB3XsbHA3lH4xAQJRng0EEHC6AIGoMyf8u9UfyeIPs+WJydOka5B+/+9MKft2daS0WBbkrJArOneVX985276FGlIZgaghg6JMBBDwWoBA1GsqDkQAgVALEIiGWpjrI4BAcwJLV30oz61cISN69NIrQlNjOzR3ik+/TiDqExcHO1jgk13bZdmGddI5PkEeGTeRr+J32KwJRB02UNpBAIFvCBCIOu+hmPXyQomPiZHv3jDWec25sKMVX34uv/lopbww8z6ZfMVVLhQITssEosFx5CoIIGAfAQJR+8yCShBwvQCBqOsfAQAQCJuA+krw53JWyLiBg3UQGh/TNiS1EIiGhJWLGiywft8eWbZxnbRr3VoeGTtRru3Tz+BuKN0jQCDKs4AAAk4XIBB1zoRztn0pc373W/nvKXfxBVrOGavupKa2VhbkZOkfL5w1V+LbhubPeA5jO6cdAlEnT5feEHCnAIGoO+dO1wjYUoBA1JZjoSgEHCtQV1+vV4O+sHKFfj/QjIyR0rZ165D2SyAaUl4ubrDA54cPyrINa+V0XZ08MnaC3DzocoO7oXQCUZ4BBBBwugCBqDMm/Nhbr8neguPy00lTndEQXVxQIHffHnk2J1P+ffQtrAD28RkhEPURjMMRQMD2AgSith8RBSLgHgECUffMmk4RCKfAyZpqmZ+dJS99vFJmDRspM4eNlKjISEtKIhC1hJmbGCyw49hRvWI0v7xMrxidMmSowd24t3QCUffOns4RcIsAgajZk1a/37hn6SKZdtXVMvGyIWY3Q/VeCyxZ9YFsOXJIrxblPfbesRGIeufEUQggYI4Agag5s6JSBBwvQCDq+BHTIAJhFSiurJD52ZnyWu4amX31KLlr6HDL6yEQtZycGxoqsL+oQL9jdNfxY/LwuAn6Cxf4mCNAIGrOrKgUAQT8EyAQ9c/NDmct/iBbXs39VJ6YNFVSYzvYoSRqsFBgX2G+3kb3uj795ekpd1l4ZzNvRSBq5tyoGgEELi5AIMrTgQACthEgELXNKCgEAUcJ5JWW6CA088vP9YrQcK44IxB11KNFMxYIHC0r1Vvprt+/V+aNGS/fvvZGC+7KLQIVIBANVJDzEUDA7gIEonaf0Dfrq6qpkdlLFkq3xGS5/5obzGuAioMq8PfNG+TV9WvkhZn3ybiBlwX12k66GIGok6ZJLwggoAQIRHkOEEDANgIEorYZBYUg4AiBvQX5Mj8nU1bv3ikzh42QCYPDvx0WgagjHi2aCINAyclKHYy+99UWHYz+6003h6EKbumtAIGot1IchwACpgoQiJo1uXe++Ezmvf4n+dlt0+Syzl3NKp5qQyZQfuqUPJeTJe2jo2XhrDkS06p1yO5l6oUJRE2dHHUjgMDFBAhEeTYQQMA2AgSithkFhSBgtMDWvMN6G6QvjxyWGRnDZcyAwbbph0DUNqOgEEMFTtbUyBsb1shfNq6XH9x0s8wbO0FaRUUZ2o1zyyYQde5s6QwBBBoECETNeRJ+8NofRL064z/GTzanaCq1VGD17h3yTHam/OTWO2TuqOstvbfdb0YgavcJUR8CCPgqQCDqqxjHI4BAyAQIRENGy4URcIXAxgP7dBB6qLhIpmcM1++FsduHQNRuE6EeUwXq6uv1ilG11dm3rrle5o2ZIHExMaa247i6CUQdN1IaQgCB8wQIRO3/SGw+dEDuWbpYb7c/pv8g+xdMhWEX+M2HObK/qFCvFu2Vkhr2euxQAIGoHaZADQggEEwBAtFganItBBAISIBANCA+TkbAtQKf7tkl87OXS1lVlQ5Ch/fobVsLAlHbjobCDBZ4e1OuvJ67RqZcPlTmjZsg6R3iDO7GGaUTiDpjjnSBAAIXFyAQtffT8cx7yyXry8/liUlT+YIpe4/KdtVtP5anv8h20mVXyo9vvd129VldEIGo1eLcDwEEQi1AIBpqYa6PAAJeCxCIek3FgQggICLvb98qz2ZnaosZGSNkSJdutnchELX9iCjQYIHMLZt1MHp9n/46GO2ZlGJwN2aXTiBq9vyoHgEEmhcgEG3eKBxHFFWUy91LF8sVnbvJ3cNHhaME7ukQgTc3rpN3Pv9MXpw1x5Y7D1nFTCBqlTT3QQABqwQIRK2S5j4IINCsAIFos0QcgAACIqJCj/nZmRIbHS3TM0bIwPROxrgQiBozKgo1WCBn25fyxoa1clnHzvLwuIkyqGNng7sxs3QCUTPnRtUIIOC9AIGo91ZWHam20n/qn2/LU5OnSd/UdKtuy30cLFBUUSELcjKlc0KiLJw5RyIiIhzc7YVbIxB13chpGAHHCxCIOn7ENIiAOQIEoubMikoRCIfA25/l6u2LOsXF6yC0t4HvdSEQDceTwz3dKrBq1w5ZtnGtdIxLkEfGTpCM7j3dSmF53wSilpNzQwQQsFiAQNRi8GZu9y9/fFnU+8UfHjvBXoVRjSMEPtjxlfz63eXyzF2zZeawkY7oydsmCES9leI4BBAwRYBA1JRJUScCLhAgEHXBkGkRAT8EXl3/qSzIzpIB6R11ENo1IdGPq9jjFAJRe8yBKtwlkLt/jyzbsE5iWrWWR8ZNcPW2Z1ZNnkDUKmnugwAC4RIgEA2X/Ln3XbN3l9y7dLE8Mm6iXNu7nz2KogrHCjy3coUUV1bIwllzpXN8gmP7bNoYgagrxkyTCLhKgEDUVeOmWQTsLWBCIFp68qTsKTguB4uLpH2bNpLeIU5/S2jbzt64VIeAgQKvrP5QFuSskOE9eul3hKbGdjCwi3NLJhA1foQ0YLDAF4cP6mC0uva0/ovTWwZdbnA39i6dQNTe86E6BBAIXIBANHDDQK/ws3++Lev27ZEnJt0hbVq2CvRynI+AVwJbDh+U+TlZcvfwa/TvJ53+IRB1+oTpDwH3CRCIum/mdIyAbQXsFIjuLcjXwefu/OOy/Xie7MnPl31F+VJXVy9dEhLlis5dZW9hvhRWlOtvldU1khIbqwObtNgOOiRV23p2jIuXtNg4Seug/lm8tIyMtK0/hSFgF4HFH2SL+urbsQMGy4xhIyQ+pq1dSgu4DgLRgAm5AAIBC+w8flQHo8dPlMnD4ybI7UMyAr4mFzhXgECUJwIBBJwuQCAavgkfLimWu5cskhv7DZBpV10dvkK4s6sF/rxutXy8c5u8OGuODOvey7EWBKKOHS2NIeBaAQJR146exhGwn4DVgWhJZWVD6FlwXHYcy9Ph597CAtlfVKC3P+kcl6ADTbU9p/p5p7gEiYuJuSDc6bo6Kaool6LKCh2Q6u/Ly/V2KurH6lt++Qm9qjS1fUNomtY0NO0Q1/jPnBT+2O8poyK7Cqh3/qgQ9IWVK+SOKzNkRsZIadu6tV3L9bsuAlG/6TgRgaALHCgqlGUb1sqO40f1O8dmXT0q6Pdw6wUJRN06efpGwD0CBKLhmfUfPv1YXnj/XXly8jTplpgUniK4KwJnBfJKS2RBTpYM6thZ5k+/x5EuBKKOHCtNIeBqAQJRV4+f5hGwl0CoAtHd+cdkT0G+Djx3NFnteeaMSBcVdKrw0/MtLkGvAA3VR225W1RZLkUVKiRVq0srdJBaXFmpf15QUS7Vp2v1alNPaKpWm6pwVgWo6seefx4ZERGqMrkuApYJnKyplvnZWfLSxytl1rCRMnPYSIly8EpqAlHLHi1uhIDXAsfKSvWK0XX7dsu8sePl29fe5PW5HHhhAQJRngwEEHC6AIGo9RNWq0Lbt4mW79841vqbc0cELiHw7tYvZOEH2fL8jHvl9iudtfMIgSiPPgIIOE2AQNRpE6UfBAwWCCQQVaGiCj3Vik+10mPX8WOyr7BADhQXNqzwPLvaUwWfKvBUP4+NjralVk1tbeNWvHp1aUXDqtPG1aYVDcGpWq2qVpum6qC0Q2OPni161fd27dGW8BRlqYB6nudnZ8pruWtk9rBRclfGcEvvH66bEYiGS577ItC8QOnJSh2Mrtj6hcwbM17+bfTNzZ/EERcUIBDlwUAAAacLEIhaN+H3t2+Ve1/5jfxs8jQZ1sO5W5NaJ8qdQiGgdg1bkJMptfX1snDWXElq1z4Ut7H8mgSilpNzQwQQCLEAgWiIgbk8Agh4L9BcIFpfX98Yeu7KPy471WrPgnwdfEa0aNG4rW3jas+zqz69r8CsI0tOVurVpXqVaWWFFJSf0KGp+lZ4dutetQ2pDk31Fr0dpGOHeOkUH6/fZ9p0BapZnVOtyQJqWyEVhGZ++bleETplyFCT2/G5dgJRn8k4AQHLBapqauSNDWt1OPqD0TfLQ2PGS5uWLS2vw+QbEoiaPD1qRwABbwQIRL1RCvyYx99+Q+/y9MSkqdKiRYvAL8gVEAixwMYDe+XZ7Cy9kvn7N44L8d1Cf3kC0dAbcwcEELBWgEDUWm/uhgAClxDwBKJHS8v09rZqtefO40cbf3y4pESv9lSBnnqfp9ru1hN+qq1z+HxT4NTpmsbAtDE8PfuOU8/7TtXq0+R27SVFhaaxcZIe10H7qu1502PjdJCqAlQnvs+RZ8Y6gb0F+TI/J1NW794pM4eNkAmDh1h3cxvdiUDURsOgFASaEag/c0aW5a6R13LXyn0jr5V5YycI7/n27rEhEPXOiaMQQMBcAQLR0M5O7fh099JFcvuQoTLp8qtCezOujkAIBF5Z/ZFsOrhfFs6eK5d16hKCO1hzSQJRa5y5CwIIWCdAIGqdNXdCAIEmAmrloif0VO/43Hn8mOwvVu/5zJeoiAjpEp8oHePiGwNPz89BDI3AOe80Ve82LS+XYr0CteFdpwXl5XoVbuO7TWPj9Hw6xcXrd5t6Vpuqlah8EGgqsDXvsCzIyZIvjxyWGRnDZcyAwa4GIhB19fhp3mCBv27aIK/nrpHJl1+pg1H1/0A+FxcgEOXpQAABpwsQiIZuwr/9MEf+tG6VXhWq/qzJBwFTBQ4UFeovCh7Vq6/8/PbpRrZBIGrk2CgaAQQuIUAgyuOBAAIhFcgvP6FXeqqtbXccy9Mh6N7CfFHbZup3e8Yn6G1c1Xs9B3RMkcSYOGnTslVIa+Li/glUVlfrrXnVSlPP6lL14+LKyq9/XlkhKe1jz9mO17PaVAenarVpbJxEt2LG/k3BnLM+O7hf5mcvl0PFxTI9Y7hc16e/OcWHsFIC0RDicmkELBDI3LJZXt+wVq7r3VceHjtReianWHBX825BIGrezKgYAQR8EyAQ9c3Lm6NPnT4ts5cs0jtBffvaG705hWMQMELgnc8/kz+u/URemDlHbhl0uRE1e4okEDVqXBSLAAJeCBCIeoHEIQggcGkB9fJ4FXqqsNOz2nNPYb7sK8iX1i2jGld7era4VQHZhVZWxLVtKRWn6qS2rh5yQwXOnDmjt+hV2/CqlaVqhan6sXqvqQ5T9btOy6VlZKSkxqrgNE5vzaueB/VN/diz2jSpXXtDFdxd9qd7dukgtKzqpEzPGCHDe/R2N8h53ROI8jgg4AyBldu+lDc2rJOBHTvJI2MnyGCDt0ILxUQIREOhyjURQMBOAgSiwZ3G8i2b5d9e/b08PeVOubxz1+BenKshYAMB9QXmauekmNatZOHMudKuTRsbVNV8CQSizRtxBAIImCVAIGrWvKgWgbAKHD9x7rs9d51d7an++fmrPTvHNbzf05f3ThKIhnW8lt68ovpUY1jaEJ42rDxtWG1arkPVE1VVeotetQ2vCknVSmL1/lj1PlO10lSFqer71lEtLa2dm11Y4P3tW+XZ7Ez9izMyRsiQLt2guoAAgSiPBQLOEli9e4cORjt2iJOHx02QYd17OatBP7shEPUTjtMQQMAYAQLR4I3qodf/KPnlZfL4hCnBuyhXQsCmAp/u2an/3Pz4+NvkfgNWQhOI2vRBoiwEEPBbgEDUbzpORMCZAtW1p/X2tnqb2/zjsv3YUb3F7b7CfIlu2Uqv9lShlFrl2SUhQVTwGaz3ehCIOvOZ8rcr9Z7ZpmGpCkk92/V6AtSCinKJadVKUtt3kNQOarVpQ3CqVpt63m2qfh7ftq2/ZXBeMwJq+8j5OVkS26aNXhE6ML0TZpcQIBDl8UDAmQK5+/fKmxvWSptWreSRsRPl+r7u3iacQNSZzzldIYDA1wIEooE/DV8cPij3LF0sc0ddL2MHDA78glwBAYMEfvvRStldcFwWzpojfVPTbVs5gahtR0NhCCDgpwCBqJ9wnIaA6QJHy0obQ88dx4/q34ipLW5VwKRWe3q2tVUBqFrpqb6p4CmUHwLRUOo699pqJalnValnm14VmBar7Xr1Fr0npOp0jaS0b1hpqlaVqpU8HeMT9PtMv15tGqe38uXjncDbn+XqLX86xcXrd4T2Tknz7kSXH0Ug6vIHgPYdL6D+cvfNjeuk6vRpvZXu+MFXOL7nCzVIIOrKsdM0Aq4SIBANbNzzszPln19skicmT5X4GL54NTBNzjZVYOfxY7IgJ1NuGXi5/HTyVFu2QSBqy7FQFAIIBCBAIBoAHqciYHeBU6fVas/jje/33OkJPgsLpF3rNqLe6amCT0/gqb5X25OG60MgGi5559+3pra2cVteFZbqlacVFY3vNlU/V18MENsmunGLXvU+004qNG3yXlO1TW9cTIzzwS7R4avrP5UF2VkyIL2jXhGqvoCCj/cCBKLeW3EkAiYLqL/gUitGj54olYfHTpA7rhxmcjs+104g6jMZJyCAgGECBKL+DazkZKXMXrJILuvYRe4ZcY1/F+EsBBwm8NbG9fLXzRvkxVlz5Ia+A2zVHYGorcZBMQggEAQBAtEgIHIJBMItkFdacjb4zJcdx/Nkt3q3Z0G+fh+jXu2pg894HXyqEFR936ZlaFd7+mNCIOqPGucEU6D0ZKV+f6lnpakKSovV+0097zYtL5eautrG1abpcWqb3jj9hQWeLXo9AWpEREQwSwv7tV5Z/aEsyFkhw3v00u8IDecXT4QdI4ACCEQDwONUBAwUOFBUqFeMbjuWp4PR2VePMrAL30smEPXdjDMQQMAsAQJR3+f1l43r5Cd//4v87LZp0i+to+8X4AwEHCyg/t5B7cCk/j5h4ay5EmWT3asIRB380NEaAi4VIBB16eBp2zyBqpqaxtBTrfTclX9Mv+tzf2GBxEZH65DTE3p2PrvNbUr7WKMaJRA1alyuLVa9Z1etLlVhadPwtCE4bfjnBeXlktC2bcNq0w4dJD02XjonnL9Fbwdp3yba9o6LP8iW51au0O/1mTFsBFtaBTgxAtEAATkdAUMFjp8ok2Ub1sqavbtl3pjx8i/X3WRoJ96VTSDqnRNHIYCAuQIEor7N7jt/WiJq155Hxk307USORsBlAh/u+EqeeS9Tfjltpi2+kI5A1GUPIO0i4AIBAlEXDJkWzRI4UlKs3+eptrpV262p1Z7qx2VVVdI14dwtbj3b3bZp2dKsJi9SLYGoI8ZIE2cFPAHp1+Fpw2pT9U2927SwvFzqz5yR1NhYSY1VK007SHqHeP2FDWq1adOteq1Gra+vlwUrV8gLK1fIHVdmyIyMkdK2dWury3Dk/QhEHTlWmkLAa4HSkyd1MJq19XMdjP5g9C1en2vSgQSiJk2LWhFAwB8BAlHv1Nbt2y33LF2s/593XZ/+3p3EUQggIM+vXKG/0Hrh7DnSNSEpbCIEomGj58YIIBAiAQLREMFyWQQuJXCyprox6Nx1/JjsUgFo/nHZV1gg8TEx0iUhUTqe3eK2s37HZ6Ikt2/veFQCUcePmAbPE1ArvxvfaapWmKp3m3pC08ZVqOWiVns3XW3aKT5e1PtMG1afqu/jghJYqv82zc/Okt9+tFJmXz1SZg4baZutepzy8BCIOmWS9IFAYAKnTtfIG7lr5fUNa+UHN90sD40dL9E2fJ2Bv10SiPorx3kIIGCKAIFo85P67+V/ldW7d8kTk6dKTCv7vbKn+Q44AoHwCnx55JDMz8mS6UOHy2PjJ4elGALRsLBzUwQQCKEAgWgIcbk0AoeKi75+t9fnFzUAACAASURBVOexo3rl577CfDlxSq32TBQVdnqCzy5nt7ltFRXlWjgCUdeOnsabEVDb8KqVpurdpnqbXvVu05Pq+4ZtetVXjkZGtGh4t6leaRonHTvE6/++pOltextC04tto61Wrc7PzpTXctfI7GGj5K6M4cwkRAIEoiGC5bIIGCpw5swZeWPDWnk9d43cM/xaefTmW6V9tP23U2+Om0C0OSF+HQEETBcgEL34BPNKS2T2kkVyXZ9+ctdQ/lxh+rNO/eEXeG39p5Kzbau8OGuOjOjZ29KCCEQt5eZmCCBggQCBqAXI3MLZAhWnTunQU4WderVn/jHZW5gvewsKJKldO726s2NcnHgCT/Wuz6R2zl/t6c/UCUT9UeMcBBoEKqur9ftLVUDqWWmqAtOGrXvLpaCiQkoqKyUlNvbsqtKG4DS2TbT8fs0nMnPYCLl9SAacIRYgEA0xMJdHwGCBv27KlU2HDsixslLpk5Im/dLSpV9qR+mTmiZ9U9MkppU5W5cTiBr8IFI6Agh4JUAgemGmP675RBbkZMmTk6dJj6Rkryw5CAEEmhdQ76NXq0XV7wmfn3Ff8ycE6QgC0SBBchkEELCNAIGobUZBIXYXOFhceHab23zZdfyo7Mo/roNPtcWkJ+xU7/5TgWfDt0RpGRlp97ZsVR+BqK3GQTEOFFDvLFVhqQpO9UrTynJpE9VSxg++woHd2rMlAlF7zoWqELCTgFpZc7C4SA6XFMmh4mI5WFIk+4sKJC66rfROSZX+KihN6yh9U9J0WNohOsZO5etaCERtNxIKQgCBIAsQiH4T9N6li/UX7/zrTeOCrM3lEEDAI5D91RZ5fuW78tyMe2XqVcNCDkMgGnJiboAAAhYLWBqIVp2qkSd+/YosX7lWt/n0Y/fL1InXX7TltzM/lp/86pVzfv3bsybKIw9O1/9sz4E8efCxZ+Xo8aJvXG/+S8tk6WuZ37j275/7Txk2pL/kFVVZTM3tTBA4UVXVuMXt7vxjsjP/mH63p/pLqOT2sTr4/HqL24bgM6FtOxNaM6JGAlEjxkSRCCAQgACBaAB4nIqAywXyy0+Ieh2D+iK9QyXF+sf7iwqlTcuWOijtl5ou/dPOrihNSZPEMO5IQiDq8oeV9hFwgQCB6NdD/nDHV3LvK7+Rn956hwy3eDtPFzxqtIjANwTq6utlfk6mVJ+ulYWz51701TjBoCMQDYYi10AAATsJWBqIqpBSfVSgWVJWLt/7zwXywwen64DyQh8ViK7d+JU89ej9Et3m3Bewn39+c9dT4emvF78uv/jRAxLfoT2BqJ2ewjDUogLOPQX5OuzcefyoXvmpVnueqj0tXeMTpVN8vHSK86z0TNDv+oxitWfIJ0UgGnJiboAAAmEWIBAN8wC4PQIOFFBbo6sVpZ5Vper7A8WFcuaMnBOUqi3W1Fa86p3Sof4QiIZamOsjgEC4BQhEGybw478tk615h+WJSVMlMiIi3GPh/gi4SmDjgX16G93vXDdafjD65pD0TiAaElYuigACYRSwLBBVgeXj//OyPPr9mdKrW0fdctOA9EIGlwpEVcD541+8LD9//AF9Pc/q0xFDB15w1am6V/cuaY2/xgrRMD51Ft26rOpkY+ip3uupvqngU4Wh6r15KuRUwada5ekJP1ntadFwLnIbAtHw+nN3BBAIvQCBaOiNuQMCCDQIqJ1P1GpSFZAeUtvvlhTLgaJCqaqp+TooTe+oQ1L1rUtCYtDoCESDRsmFEEDApgJuD0TVF5ffvXSRTL78Spl8xVCbTomyEHCHwO8+/Ug27N8nL86aI0O6dAtq0wSiQeXkYgggYAMBywLR8wNM1fulAk/PrzfdMrfpdrnq11XImfn+OnnpVz/UlE1XgDa1PX91qPq1gtJqG/BTQjAE9hbky+6C4zrsVKs9dx4/pld71tTWSdeEROmiAs/4BP29512fkZF85WIw7IN9jfbRUVJVUyu1dcG+MtdDAAEE7CEQFSnSplWUVFTV2qMgqkAAAdcJVFZX66D0QNHZ7Xf1itIiUStNVTDaLy1dBqR3lL6p6aJWlfZMTvHZqEPbVlJVfVpqas/4fC4nIIAAAiYIREa0kNi2LaWkvMaEcoNa428+XCmvrPpQfjblTv1KIT4IIBB+gYNFhfLMe5kyrEdPeeau2UErKDampVSfrpPq0/VBuyYXQgCBMAnwRzMNb2kgen5g2Vwg2vTR8GyJO33yjY2rPHM3b5dnf/uGFJac0O8Rvdg7Sc9fHaque7qO/5CH6V89v25bXFkpO48d02Hntryjsv3YUf3z3QUF0jUhQbolJuqVnup79a1rYqIktG178XvxHwC/5hDqk1ROXX9G9BZvfBBAIHQC9fVnJCKiRehuwJUvKtCihYii57chPCQIIGA3gVOnT8v+wkLZV1gg+4uK9GrSfYWFcrikRPqlpsmA9HQZ3Lmz9NeBaboM7Niw68+FPmrllPrv3Bl+U2e3MVMPAggESUD9nk5tEVvrot/U1dTWysTnF+i/e/n3MWODJMllrBbgz4JWi1t7v7c2bpBFH7wvv/vW/XLHVYGv3o6MbCFn6tXf1fEXddZOkrshEAIB/hpQo1oaiDbd4lbd3JdA1HP8/kPH9DtIz1/1eaHAVJ2jQ9OXlslvfvmwfneo58OWuSH4lyoIl9SrPfOP6a1u9bs9C46L+mfqf7xdEhq2tj3n3Z7xCRKh/iTCxxECbJnriDHSBAIIXEKALXN5PBBAwDSBuvr6xq131fa7R9TWu8VF+jUUPZNSpE9qmvRPUytKG7beVStL0+JjpKLqNKsJTBs29SKAgNcCbtsyN+vLz+W7f35Fnp5yZ9C35PQanQMRQMArAfV6BPVu0dZRUbJw1lyJjY726rwLHcSWuX7TcSICCNhUwLJA1J93iJ5vpgJUTyCqgs433/lQnnr0folu00ofev47SS/1XlEC0fA9kSWVlbK7oCH03HX8mOxSP9bv9ixs3NZWbbuivurQ861DdEz4CubOlgkQiFpGzY0QQCBMAgSiYYLntgggEBIBFZCq7XcPFRfJ4ZJi/b5SFZSq38P3SU2V3snpegvevmeD0uhWDX9u44MAAgiYLuCmQHTeG3+So2Ul8uOJt5s+NupHwFUCa/fukmeyM+XRmyfJA9fd5FfvBKJ+sXESAgjYWMCyQFQZNA0sPSs6f/jgdBk2pL8mUr9+LL9Yh5zq89byj2TarTfowPP849UK0Qcfe1Z+8fgD+vyLbql7gdWh6toEouF5Ko+WlcroZ3+u3+2p3uvZ6Wzw6Xm3Z3iq4q52ESAQtcskqAMBBEIlQCAaKlmuiwACdhKoqK6Q7cfUTi+FekXpwZJCvR1vfNu2je8p7affUZqufx7IygU79U0tCCDgHgE3BKJfHjkkdy9dLPeOuEZuHni5e4ZLpwg4TOClj1fKjmNHZeHsuXpXD18+BKK+aHEsAgiYIGBpIOpZsbl85Vptc/47P5sGoioEVT9f+lpmo+P5x6tVonPn/fKCv36hwLXpQAhEw/N4Vp8+LTuOHw3Pzbmr7QUIRG0/IgpEAIEABQhEAwTkdAQQMEIgrm0rOVldKzW19efUe/xEmV5FerikSA4VF8uhkoYVpdEtW0nvlDRRIaleUarD0jRJaNvOiH4pEgEE3Cfg9EB0QU6W/H3zRnly8lT+W+y+x5uOHSigXk+mttEd23+wPHnbNK87JBD1mooDEUDAEAFLA1E7mRCIhmcap+vqZNvRI+G5OXe1vQCBqO1HRIEIIBCgAIFogICcjgACRghcLBC9WPFFFRU6HG3YftcTlBZKC5GG95KmpUt/vfVuun5naWpsByMcKBIBBJwr4NRAtKzqpMxeskgGpHWS+0Ze69wB0hkCLhV4+7Nc+ctn6+SFmXNkdP9BzSoQiDZLxAEIIGCYAIGoYQMzvVwCUdMnGNr6CURD68vVEUAg/AIEouGfARUggEDoBXwNRC9WkfqL+Yb3lHpWlaoVpYVSXXu6cUWp2vpNhaQqOFXvLuWDAAIIWCHgxED0rc/Wy4/+ukyevm2a9E/vZAUj90AAgTAIlJ48KWoVeFK79rJw9hxpHdXyolUQiIZhQNwSAQRCKkAgGlJeLn6+AIEoz8SlBAhEeT4QQMDpAgSiTp8w/SGAgBIIViB6Mc3K6mq9mlQFpYfUN/We0uJCUX/B1zslVW+5q4JSte2u2oq3R1Iyg0EAAQSCKuC0QPTBPy+Vqpoa+X833xpUJy6GAAL2Ffh45zZ5JjtT/nvKdLlnxDUXLJRA1L7zozIEEPBPgEDUPzfO8lOAQNRPOJecRiDqkkHTJgIuFiAQdfHwaR0BFwmEOhC9GOWp06fPrigt1FvwHi5WQWmRHDtRKr2SG4LSAekddUjaNyVNryzlgwACCPgj4JRANHf/Hrln6WL5t5tulhv6DvCHgnMQQMBwgRfff1eOlpXp1aLdE8/9IjICUcOHS/kIIPANAQJRHgpLBQhELeU27mYEosaNjIIRQMBHAQJRH8E4HAEEjBQIVyB6MazauromQWmxHD67olRtv9srOUWHo/30itKGd5Sqn0dFRhppT9EIIGCNgBMC0Z9n/l0+3rldnpw8Vdq2bm0NHHdBAAFbCmzNOyzzc7Jk2pXD5D8n3NZYI4GoLcdFUQggEIAAgWgAeJzquwCBqO9mbjqDQNRN06ZXBNwpQCDqzrnTNQJuE7BbIHop/wNFZ7feLSmSIyXFcqC4SPYXFuj3kapwtF9qug5K1fa76ufRLVu5bZz0iwACFxAwORA9WlYqdy9ZJKN69ZHpGSOYLwIIINAo8HruGnl36xfy4qy5+r8RBKI8HAgg4DQBAlGnTdTm/RCI2nxAYS6PQDTMA+D2CCAQcgEC0ZATcwMEELCBgEmB6MW4jpQ2bLertt1V2++qH+8vKpDEdu31ClIVkvZLS5c++sdp0r5NtA3kKQEBBKwSMDUQ/fPaVfLMe8vlycnTpGdyilVc3AcBBAwSyC8/IQuys/R/I/78nQfkVHWdVNXUGdQBpSKAAAIXFyAQ5emwVIBA1FJu425GIGrcyCgYAQR8FCAQ9RGMwxFAwEgBJwSiF4M/fqJMDhYXyiEVlpaUyMGSQtlfWKi3m+ydkir9UjvqoFSFpH1T0iW+bVsjZ0jRCCBwaQETA9H7XvmNtI5qKT8YfTPjRQABBJoVyPlqizybkyWL754jU64Y1uzxHIAAAgiYIEAgasKUHFQjgaiDhhmCVghEQ4DKJRFAwFYCBKK2GgfFIIBAiAScHIhejKywolyHpHpVaUnDqlK1ojSiRYT00UGpWlHaseEdpanpktI+NkT6XBYBBKwQMCkQVe8JvfeVxfLjiVNkRM8+VvBwDwQQcIhA++goefqdf0jZqVOyaNZcSesQ55DOaAMBBNwqQCDq1smHqW8C0TDBG3JbAlFDBkWZCCDgtwCBqN90nIgAAgYJuDEQvdh4Sk+ebFxReuhsUKreW1pTW9uwojTt7IrSlDS9/W6n+ASDJk2pCLhXwJRA9L/+9qZsOXJQnpg0VaIiI907MDpHAAG/BGJjWkrN6TpZu3efPJudKfdfc4M8NGa8X9fiJAQQQMAOAgSidpiCi2ogEHXRsP1olUDUDzROQQABowQIRI0aF8UigICfAgSizcNVVJ/Sq0nV9rt6RWlxkRwoLpITVSd1UNo3taP011vvpuufd09Mbv6iHIEAApYJ2D0Q3VuYL3cvWSQTB18hU4ZkWObCjRBAwFkCnkD01Ol63djvP/1Y1u3bLS/OmitXde3urGbpBgEEXCFAIOqKMdunSQJR+8zCjpUQiNpxKtSEAALBFCAQDaYm10IAAbsKEIj6P5lTp2vOBqVFetvdQ8XFOjQ9fuLE2XeUpjVsvZuitt5Nk94paf7fjDMRQMBvATsHoi9/8r4sWfWhPDl5qnSKY9W530PmRAQQkPMDUUWivpBrfnamXNm1u/z6ztkoIYAAAkYJEIgaNS7ziyUQNX+GoeyAQDSUulwbAQTsIEAgaocpUAMCCIRagEA0+MLqz1EqGFWrStVq0iOlJaK23j1QXCi9k9WKUvWOUrWitGHrXfXzyIiI4BfCFRFAQAvYMRCtrauT2UsW6XcUf+f60UwKAQQQCFjgQoGo56LLv9ikv/ji+Zn3yqTLrwr4XlwAAQQQsEKAQNQKZe7RKEAgysNwKQECUZ4PBBBwugCBqNMnTH8IIKAECEStew7OnDnTuPWuekepWrWhgtN9hQXSNSFR+qakS9+0hoBUfVNhaZuWLa0rkDsh4FABuwWi7279Qh744xJ5esqdetUWHwQQQCAYApcKRNX1T50+LQtysiSiRQtZOHuuxMe0DcZtuQYCCCAQMgEC0ZDRcuELCRCI8lwQiPIMIICAmwUIRN08fXpHwD0CBKL2mHVDOFokh0vUt4Yfq6A0uX17vZJUvae0n1pRqsLSlDRp16aNPQqnCgQMELBTIPrIsj/rf8//69Y7DJCjRAQQMEmguUDU04t6r+j87Cx5aMwt8t0bxprUIrUigIDLBAhEXTbwcLdLIBruCdj7/qwQtfd8qA4BBAIXIBAN3JArIICA/QUIRO09o2NlpWeD0mL9nlIVlO4vKpD2baLPvqdUbb/bUYekfVLTWO1h73FSXZgE7BCIbs07LPcsXSyzrx4ltwy6PEwS3BYBBJws4G0g6jFQ7zD+Mu+ILJo9Vwamd3IyDb0hgIChAgSihg7O1LIJRE2dnDV1E4ha48xdEEAgfAIEouGz584IIGCdAIGoddbBvFNBebkOSA8VF8rhkhK99e7+okKJiozQW+320+8p7Xj2HaVpktw+Npi351oIGCUQ7kD0+ZUr5K3PcuXJyVMlqV17o+woFgEEzBHwNRBVne0tyJdnszPlxn4D9TbefBBAAAE7CRCI2mkaLqiFQNQFQw6gRQLRAPA4FQEEjBAgEDViTBSJAAIBChCIBghos9NLT1aefU9pw9a7KjRVK0pr6+rPXVGqtt9NSZOOcfE264ByEAi+QLgC0fJTVTJ7ySL9fuA5o64LfmNcEQEEEGgi4E8g6jn9r5s2yBsb1sgLM+6TsQMvwxUBBBCwhQCBqC3G4J4iamtr5atjee5pmE59EiAQ9YmLgxFAwEABAlEDh0bJCCDgswCBqM9kRp5QfuqUXkXqeU/pIfWe0qJCOXHqlIzpP0giI1pIz+RU6ZmUIj2SkqV7UjLb7xo5aYq+kEA4AtG/bsqV/3jrdXnqtmkyqGNnBoMAAgiEXCCQQFQVd6KqSubnZEl8TIwsnD1Xolu2CnnN3AABBBC4lACBKM+HpQKsELWU27ibEYgaNzIKRgABHwUIRH0E43AEEDBSgEDUyLEFreiqmhq9kvRwabEcLS2RoyfK5EhpiRwpKRZpIdIjMVm6Jybr1aU6KE1Mlh5JKRIXExO0GrgQAqEWsDoQ/d7/vSIVp07Jo7dMCnVrXB8BBBBoFAg0EPVc6JNd2/U2uk9MmipzRl2PMAIIIBA2AQLRsNG788YEou6cu7ddE4h6K8VxCCBgqgCBqKmTo24EEPBFgEDUFy13Hau2+1ThaF5pqRwtK5GjZaWSV1Yqh0uKJKJFhHRPTNLhqApLPT9WoWmHaMJSdz0p9u/WqkB044F9cvfSRfL9G8bq9/HxQQABBKwUCFYg6ql50QfZeneJRbO/JT2TU6xshXshgAACWoBAlAfBUgECUUu5jbsZgahxI6NgBBDwUYBA1EcwDkcAASMFCESNHFvYi1bb6uWVqbC04duxE2X6e7UVb1REhHRLTNJ/edo7OVVvv6tWmqrwNDY6Ouy1U4D7BKwIRH+R9Q/5YMdWeWLSNGnfpo37kOkYAQTCLhDsQFQ1tO1onszPyZTbLr9Kfnzr7WHvkQIQQMBdAgSi7pp32LslEA37CGxdAIGorcdDcQggEAQBAtEgIHIJBBCwvQCBqO1HZFyBZVUn9apST2B6rKxM/1itLI2KiNQBqXpXaa9k9b7Ss+8sTUwmLDVu0uYUHMpANL/8hMx+eaFc3aOXzBw20hwUKkUAAccJhCIQ9SC9sWGtZG7ZLC/OmiPX9u7nODsaQgABewoQiNpzLo6tikDUsaMNSmMEokFh5CIIIGBjAQJRGw+H0hBAIGgCBKJBo+RCXgg0hKUleitetQXvsbLShneWlhZLy8govfWuWlnaK7nhnaUqMFX/rH0bVpZ6wcshFxEIVSD66rrV8osV78hTk6fpraP5IIAAAuEUCGUgqvoqKC+XBTmZ0i0xWRbNnhvOVrk3Agi4RIBA1CWDtkubBKJ2mYQ96yAQtedcqAoBBIInQCAaPEuuhAAC9hUgELXvbNxWWenJk42rSlVYqr7psLSkWFpHRTVsvZuUrMNStcLUsxVvO7Yndduj4nO/oQhE5/7utxIZESEPjRnvcz2cgAACCIRCINSBqKfmldu+lGeyM2X+9HtkRsaIULTCNRFAAAEtQCDKg2CpAIGopdzG3YxA1LiRUTACCPgoQCDqIxiHI4CAkQIEokaOzXVFl56sbFxVqlaYqrA0r6xUb8Mb3bJVwztL1Ta8KWdXlp59Z2nb1q1dZ0XD3xQIZiC6atcOueeVxfKf4yfLqF594UYAAQRsI2BVIOppeEFOlqgvZlKrRTvGxdvGgUIQQMA5AgSizpmlEZ0QiBoxprAVSSAaNnpujAACFgkQiFoEzW0QQCCsAgSiYeXn5kEQKDlZqbfh1d/Oriw9Wloih0qKJaZVqybb8KZJ96SG4FStNI1pRVgaBH4jLhGsQPSnf/+LbDq0X56YNFVaRUUZ0TtFIoCAewSsDkSV7OeHD8r87Ey5d8S18si4ie7BplMEELBEgEDUEmZu4hEgEOVZuJQAgSjPBwIIOF2AQNTpE6Y/BBBQAgSiPAdOFiiurGjcelcFpsdOlOng9FBJkbRt1Vpvu9srKUV6Nr6zNFkHptGtWjmZxXW9BRqI7i8qkLuXLJJbBl0utw/JcJ0fDSOAgBkC4QhEPTJ/WrtKPtm1XRbOmisZ3XuaAUaVCCBgewECUduPyFkFEog6a57B7oZANNiiXA8BBOwmQCBqt4lQDwIIhEKAQDQUqlzTBAEVlqpwVL2nVG3Be+zsO0sPlxSLei9p98SkhveVJqsVpQ2rSnskJhOWmjDc82oMJBBdsuoD+d+P35cnJ0+TzvEJBnZPyQgg4BaBcAaiylj9P3V+TpZc1qmLPHvX3W5hp08EEAihAIFoCHG59DcFCER5Ki4lQCDK84EAAk4XIBB1+oTpDwEElACBKM8BAt8UUGGpCko97ytVgemR0mI5UlIi7VVYmtSwklQFpiooVT9X36v3mfKxn4A/gWh9fb3MWrJIEtu2k+/eMMZ+TVERAgggcJ5AuANRTzmZWzbLSx+/r98tOvGyIcwJAQQQ8FuAQNRvOk70R4BA1B8195xDIOqeWdMpAm4VIBB16+TpGwF3CRCIumvedBu4QFGFCkuL9arSvLISOVra8L1aWdohOka6JzaEo71TVFiaoleaqu/btGwZ+M25gl8Cvgai7239Qu7/w8vy9JQ7ZWi3Hn7dk5MQQAABqwXsEoiqvmtqa+VPaz+RjQf3y+Pjb5NbL7/Sag7uhwACDhAgEHXAEE1qgUDUpGlZXyuBqPXm3BEBBKwVIBC11pu7IYBAeAQIRMPjzl2dKVBYUa5XlaqANK+0tCE0LW0IS+NjYqRbYrLegrd3cmrjqlIVnraOIiwN5RPhSyD66F9elX2F+fLTSVNDWRLXRgABBIIuYKdA1NPcweIi+fPaVXK8vEwHozcPujzofXNBBBBwrgCBqHNna8vOCERtORbbFEUgaptRUAgCCIRIgEA0RLBcFgEEbCVAIGqrcVCMgwUKysvlaJnnnaXqvaVlkldaLIdKiiUhpm3jNrxqZWnDKtOG95a2iopysIo1rXkTiG47ekTuXrpYpg8dzhaP1oyFuyCAQJAF7BiIelrcW5Cvg9ET1afkRxNukxv7DQxy91wOAQScKEAg6sSp2rgnAlEbD8cGpRGI2mAIlIAAAiEVIBANKS8XRwABmwgQiNpkEJThagEVljasKi3WK0uP6XeWluiwNKldOx2Q9kxKll5nt+HV7y1NJCz19qFpLhB98f13ZdmGdfLk5KmS3D7W28tyHAIIIGArATsHoh6oncePyp/Wrpa6+jp5fMIUuaZ3X1sZUgwCCNhLgEDUXvNwfDUEoo4fcUANEogGxMfJCCBggACBqAFDokQEEAhYgEA0YEIugEBIBQrKT+hwVG29q7bgVd/UO0wPl5RIUrv20iMpSXokJkvv1DT9vX5vaVKytIyMDGldJl38YoFoZXW1zHp5ofRKSZFvjbrBpJaoFQEEEPiGgAmBqKforXmH5c9rV+tdEB6fcJtc3aMXE0UAAQS+IUAgykNhqQCBqKXcxt2MQNS4kVEwAgj4KEAg6iMYhyOAgJECBKJGjo2iEdAC+eUnGt5Zeva9pQ1haYkcKSnWKx09K0t7p6Tp7XcbtuJNliiXhaUXCkT/vnmj/PDN/5Of3TZNBnfqwhOFAAIIGC9gUiDqwf788EG9lW5sdIzeSvfKrt2NnwMNIIBA8AQIRINnyZW8ECAQ9QLJxYcQiLp4+LSOgEsECERdMmjaRMDlAgSiLn8AaN+xAsdPqHeUlkheWWnj6lK1Le/h4mJJje0g3RKTpFdySsM2vGeDUrW6NDIiwnEm5wei33/1d1J28qT8x/jJjuuVhhBAwL0CJgainmltPLBP/rxutaTFdpAfTZwigzp2du8g6RwBBBoFCER5GCwVIBC1lNu4mxGIGjcyCkYAAR8FCER9BONwBBAwUoBA1MixUTQCAQl4wlK1mvRomfqmwtNi/c7S9A5xDWFpUurZd5YmNwamEYaGpZ5A9N0vtss9SxfJd64bLaP7DwrIkJMRQAABuwmYHIh6LNft26230lVfoPOjibdJ39R0uzFTDwIIWChAIGohNrcSIRDluBnL6AAAIABJREFUKbiUAIEozwcCCDhdgEDU6ROmPwQQUAIEojwHCCDQVOCYWlF6dlWpWlGqfq6C00PFxdIxLk5vu6tWlvZMTtXb7/ZU7yxNTBI7h6UqEF2wMlP+vmmTPDlpmsRGRzN0BBBAwHECTghEPUNZvXun/GndKr1S9EcTpuj/3/BBAAH3CRCIum/mYe2YQDSs/La/OYGo7UdEgQggEKAAgWiAgJyOAAJGCBCIGjEmikTAFgKecFQFpXmlpWfD0mI5XFIineLipXtSkvTUK0tT9Ooe9RfYajveFi1ahK3+wopymb1koVzbu7fcPmR42OrgxggggECoBZwUiHqsPtq5Tf60dpUM695TB6Od4hNCzcj1EUDARgIEojYahhtKIRB1w5T975FA1H+7/8/em0BHdZ35vn+pSkLzLIFmkBiFkIQGBsd2bMcxBjM42GB3bqfT7XSaTt7q14nddkzyeuXm9cvwkuvkrrfWTdrtG3dik45jHMd4iu14ZDASSGhAAwjEoBk0z1Kphrf2LkmWhIYq1XDOqfM/a7EE6Jy9v+/3bYaqX31780kSIAFtEKAQ1UadGCUJkIBrBChEXePHp0mABOwE2ia6Sj/bhtfeWdrc042U6JiJbXcTsFqcWRoXj5UT3aWe5Pf7M5/ih28fw/+z72EUZKSiZ8Dkyek4NgmQAAkoSsAXhegk0PfrqnGk+CQ+v3YDDu/ah4TwCEVZc3ISIAHvEKAQ9Q5nzjJBgEKUS2EhAhSiXB8kQAK+ToBC1NcrzPxIgAQEAQpRrgMSIAFPE2jt7cFkV6n4uZSnfXZZmhodK7fczYiflKViC954l7dHfOw3/wHAhm/duxNGfz+EhwZQiHq60ByfBEhAUQK+LEQnwb5TUyk7Rndm5+Hwzr2IDglVlDknJwES8CwBClHP8uXoswhQiHJJUIhyDZAACeiZAIWonqvP3ElAPwQoRPVTa2ZKAmok8Jks7ZEdpdM7TdNiJmXpcqyOXy67SmV3aez8Z8mJc+e+8vwv8eR9D+Bzq9fJlClE1Vh5xkQCJOBuAnoQopPM3qwqxwvFJ/FwfhEO79yH0GXL3I2T45EACaiAAIWoCoqgpxAoRPVUbedzZYeo88z4BAmQgLYIUIhqq16MlgRIYGkEKESXxo1PkQAJeJ5AS2+3PKtUSlMhS/vtPxfiVMhScT6p6CzNjLdvw3v80gWcudqA7+/Zj2XGgKkAKUQ9XyvOQAIkoDwBPQnRSdqvlZdKMfo3227H0zv3ItBoVL4QjIAESMBtBChE3YaSAzlCwGw2o7a91ZFbeY8OCVCI6rDoTJkEdEaAQlRnBWe6JKBTAhSiOi080yYBDROw2WwTW/BOdJUKadrXi81p6di/ueiWzChENVxshk4CJOAwAT0K0Uk4R8tK8MLpk/jHO++RZ4zyIgES8A0CFKK+UUfNZMEOUc2USpFAKUQVwc5JSYAEvEiAQtSLsDkVCZCAYgQoRBVDz4lJgAS8RIBC1EugOQ0JkICiBPQsRCfBv3T2NH57+gSeuHcnHr/vAUXrwclJgARcJ0Ah6jpDjuAEAQpRJ2Dp8FYKUR0WnSmTgM4IUIi6v+B+flaYrWb4+YnzvAJhtbp/Do5IAiTgHAEKUed48W4SIAHtEaAQ1V7NGDEJkIDzBChEP2P2YvFJ/KG0WJ4n/U/37HAeJp8gARJQBQEKUVWUQT9BUIjqp9ZLyZRCdCnU+AwJkICWCFCIuq9aVqsVIcF++PjiRXxUV4egwEDctW4dCleugsXsD8DPfZNxJBIgAacIUIg6hYs3kwAJaJAAhagGi8aQSYAEnCZAIToTmdlikeeLvlF1Dk/dtxuHPv8Fp5nyARIgAWUJUIgqy193s1OI6q7kTiVMIeoULt5MAiSgQQIUou4r2qh5GN/541HUt7fPGPS2NWvw7XvvQ1hgmPsm40gkQAJOEaAQdQoXbyYBEtAgAQpRDRaNIZMACThNgEJ0bmSj4yaIjtG/1FXjqR278djn7nKaLR8gARJQhgCFqDLcdTsrhahuS+9Q4hSiDmHiTSRAAhomQCHqnuIZ/P1wY7ALX3nuuTkHfPOf/xlGv2DYbDb3TMhRSIAEnCJAIeoULt5MAiSgQQIUohosGkMmARJwmgCF6MLIBkZHcaT4JE5cvojv7NiNr2y/w2nGfIAESMC7BChEvctb97NRiOp+CSwIgEKU64MESMDXCVCIOlfh3uEhdAwOoFP8GBhAx2C//HlOSjIau7vwp3Pn5hzwH+78PB7dchvGxnmgqHPEeTcJuIcAhah7OHIUEiAB9RKgEFVvbRgZCZCA+whQiDrGUrxuFR2jpdev4jv378GjRdsde5B3kQAJeJ0AhajXket7QgpRfdd/sewpRBcjxO+TAAlonQCF6GcV7OjvR9fQIDonJKf4+c1+IT/t0vPmQP+85S5YtQr7N2/G9159dc57fvWVvwFs/lgZu1zrS4bxk4AmCVCIarJsDJoESMAJAhSiTsDirSRAApolQCHqXOk6BgZwpOQkalqb8fT9e7E/v8i5AXg3CZCAxwlQiHocMSeYToBClOthIQIUolwfJEACvk5AD0LUbLGgc2iiq1N2dw5CyM/pv9c7NATrItvZ+vv5ITI4BPHhEYgLC0NcWDjiwiIQHy6+hmFDcgIO/upXGDaZZiyb5Oho/N8PPoiv/ed/Yu2KRBwo2IrbM9cCfn6+vryYHwmohgCFqGpKwUBIgAQ8RIBC1ENgOSwJkICqCFCILq0cbX29Uoxe6ejA4Z17sDsnf2kD8SkSIAG3E6AQdTtSDrgQAQpRrg8KUa4BEiABPRPQuhA1mcdxc8AuOTsH+tE1PCE7p7a17Uf/6AgWO7nT4O+PmJBQxEnZKQRn+IToDEdsqJCfEYgNC4O4b76rf2wQ17pu4mhpKUqvXpW3bV+9Go8UFWHcDDx/8jjq2lrk7ydGRuGh/C3YkZ0Do79Bz0uQuZOAVwhQiHoFMychARJQkACFqILwOTUJkIDXCFCIuoa6qbtLitG2vj58d+de3Lcxx7UB+TQJkIDLBChEXUbIAZwhQCHqDC393csOUf3VnBmTgN4IqFmIDo2N2c/qlFvWDqJjwL51rfwhOj4HBiDuWewKMBgnpKa9kzMuXMjOCMSFhsufC/kZHRIKPzd0bJosJvSPDiIiOAghy5ahrbcPUUFhCDAEyjBrW5vxStkZFF+5JCVtZFAw9m4uxN6cfIQFBS2WCr9PAiSwRAIUoksEx8dIgAQ0Q4BCVDOlYqAkQAIuEKAQdQHetEevdt7Ei8Wn5IeHD+/ci7vXZblnYI5CAiTgNAEKUaeR8QFXCFCIukLP95+lEPX9GjNDEtA7AaWEaN/I8FRXpxCcHZOic7AfXbLbcwCj5vFFy7PMGGDv6Ay3d3HKzs6JDk97t2eY3ObW25eQq7YFtuBt6+vBH84W48MLtRi3mCHyuG/jJjycvxUJERHeDpfzkYDPE6AQ9fkSM0ES0D0BClHdLwECIAFdEKAQdW+Z62+0y45R8f64EKO3r17n3gk4GgmQwKIEKEQXRcQb3EmAQtSdNH1vLApR36spMyIBEphJwN1CVEjAnuEhexen2Mp2aMDe2Tm5re3gALqGBqUEXOwSHZaT29fGyW1rwxEfEfnZ+Z2h4ZrvqhRi+NXys3irqlx2u4pzSm9fvR4Hi7YhMz5hMUT8PgmQgIMEKEQdBMXbSIAENEuAQlSzpWPgJEACThCgEHUClhO31ra14EjxSRgNBnx35z5sWZXpxNO8lQRIwBUCFKKu0OOzThOgEHUama4eoBDVVbmZLAnokoAzQtRitUrR2TXVzSk6O+1nd05uYds9NAjrAp2Rk5AjgoLsHZ0TW9baz+yc2MZWis9w2TWpl2vMPI4/n6/Aq+fOym5ZceWkpuFAwVYUpmfoBQPzJAGPEaAQ9RhaDkwCJKASAhSiKikEwyABEvAoAQpRj+JFVXMjjhSfQkRwsOwY3Zy20rMTcnQSIAFQiHIReJUAhahXcWtuMgpRzZWMAZMACThJYFKIdg6M4mZ/38Q2tvYuzg5xdqfs7LT/6B0ekudeLnT5AYgKCbXLTXFep9y+1r6V7fTzO43+Bicj1cftQjofr7+AV8pKcKXzpkw6PS4OD2/eirvXZ8Hg768PEMySBNxMgELUzUA5HAmQgOoIUIiqriQMiARIwAMEKEQ9AHWOIcuuX8WRklNYERGJ7+7ah41JKd6ZmLOQgA4JUIjqsOhKpkwhqiR99c9NIar+GjFCEiCBxQkMm0xTUrNTSM7Jrk7Z7Tkouzv7R0YWHUhs5xojtq4VXZ2h4tzOCMRPSU+7+IwNC6O0W5SkYzeUNV7FK6UlqGi6Lh8QbL+0uQgPZOchKDDQsUF4FwmQgCRAIcqFQAIk4OsEKER9vcLMjwRIQBCgEPXuOii5ell2jK6Ki5didO3yRO8GwNlIQAcEKER1UGQ1pUghqqZqqC8WClH11YQRkQAJzCQwMDJi3652QnLK8zqHBmdsayuE6GKXOCtESs5ZnZzi94SIE78vZKifn+gB5eVNAte6OvDSmdM4cemC3I5YnK36QHYu9udvkd24vEiABBYnQCG6OCPeQQIkoG0CFKLarh+jJwEScIwAhahjnNx916nL9ThSclJ2ih7euU8KUl4kQALuIUAh6h6OHMVBAhSiDoLS6W0UojotPNMmATUQsNnQOzIsz5OUW9YOiPM6RXen/ediS1vx1WQxLxqtOItTSs3p53VObGW7IjIC6XFR8LOx43BRkArfIGp/tLQE79VUYdQ8DiGx716XhYOF25ASHaNwdJyeBNRNgEJU3fVhdCRAAq4ToBB1nSFHIAESUD8BClFla/RJfR1eLD6JLSsz5RmjyXwdqmxBOLtPEKAQ9YkyaicJClHt1EqJSClElaDOOUnA9wlYrVa5Va2UmhOSs0Oe1fnZr7uGh2CxWBaFERIYaO/qFGd2iu1sw8IRHxH52fmdoeEICwqad5zJM0R7h8YXnYs3qIPA4Ogo3qg6h9cryqQ0Fz27RasycaBgC7KT09QRJKMgAZURoBBVWUEYDgmQgNsJUIi6HSkHJAESUCEBClF1FOX9umocKT6Jz6/bIDtGE8Ij1BEYoyABDRKgENVg0bQcMoWolqvn+dgpRD3PmDOQgK8RMFssU5JTCM6OqfM6J87uHBxA7/CQ3Pp0sSsiKEieyyk6O2NDwxAvpKfs7LSf1xkfHoagANc6OylEF6uCer9vtlrwl5rzeOXcGbT29shA165IxIGCrfhc5lpub6ze0jEyBQhQiCoAnVOSAAl4lQCFqFdxczISIAGFCFCIKgR+nmnfranEC8WnsCs7F0/fvxfRoTzSRV0VYjRaIEAhqoUq+VCMFKI+VEwPpEIh6gGoHJIENExgzDyOjv6JLWzluZ0DsHd29svta8Wv+0dHFs1QdPSJsx+n5GZ4OOKF+Jx1fqfR37DoWK7eQCHqKkEVPG+z4dOGS3i5rBgX29tkQImRUXgofwt2ZOfAG+tIBRQYAgksSIBClAuEBEjA1wlQiPp6hZkfCZCAIEAhqs518GZVudxK96H8IilGF9qlSp0ZMCoSUI4Ahahy7HU5M4WoLsvucNIUog6j4o0k4DYC4s0cs3Xx7km3TTgxkNiGtHNCcsrOzv6+qXM6OyZ+f3hsbNFp/f38ECO2rhXndYbat7KNDwtD7FRnp73D0+Dvv+hY3riBQtQblL03R3VrE14pPYMzVy9D/CmKCArG3s2F2JeTzxel3isDZ1IhAQpRFRaFIZEACbiVAIWoW3FyMBIgAZUSoBBVaWEmwjpWUYoXik/ir7d+Dk/v3ItlxgB1B8zoSEAFBChEVVAEPYVAIaqnajufK4Wo88z4BAksjYAVHYO9SIqOwoX2dqyIiIDV6oeIoDDYHNhadsE5bTb0jozI7k37j350TP18AF0D4tzOAYjuz8Uuo8Egt66V29iGia+T29hO/jpcylA/P9EDqo2LQlQbdXI2yra+Hrx05jQ+vFgLsY2zeCF638ZNeDh/KxIieL6Lszx5v/YJUIhqv4bMgARIYGECFKJcISRAAnogQCGqjSq/UnYGLxSfwKE77pFiVEvvkWiDMKP0JQIUor5UTQ3kQiGqgSIpGCKFqILwObWOCFjR2HMTL509gxP19VLerIqLw85Nm3D3+iyEBYbNy8JqtaJneGhCdAqx2Y+OgcmzOu2/7hoalGMudgUajfYta0Vn50Q3Z/zEWZ2Tv44KDgY0JDsXy1l8n0LUEUravUecV/tq+Vm8db4CosNZdDB/bvU6PFK0HZnxCdpNjJGTgJMEKESdBMbbSYAENEeAQlRzJWPAJEACSyBAIboEaAo+8oezp/Gb0yfw+L078cR9DygYCacmAfUSoBBVb218MjIKUZ8sq9uSohB1G0oORALzEugY6sZ/njqJj+rqbrnnP776VYyZbGjp7f3svE6xfa2UngPoGRqC1YEO0pDAwM/O65Tb2IYjPnzamZ1hEbrdTpRCVB9/OEdNJrxdXYE/lZfKPzviyklJw4GCrShcmaEPCMxS1wQoRHVdfiZPArogQCGqizIzSRLQPQEKUW0ugSPFJ/HS2WI8ueMB/NM9O7SZBKMmAQ8RoBD1EFgOOzcBClGujIUIUIhyfZCA5wkEBFhx/y9+PmcX55e3bYPRzw8vnD49byBhQUGIk2d22gVnQngEYsPCkBAWiRjxNTwcQQGBnk9EozNQiGq0cC6E/UFdDV4uPY3G7i45SlpsHPbnF2FHVo4Lo/JRElA3AQpRddeH0ZEACbhOgELUdYYcgQRIQP0EKETVX6P5IrRYrXix+CSOVZRJMfqPn79Xu8kwchJwIwEKUTfC5FCLE6AQXZyRnu+gENVz9Zm7NwgYDf6obLmCf/nDH+acbnNaGvbmbca71bXy7E677BTdneHy18nRMd4I06fnoBD16fIumFzptSs4eq4EVU2N8j7xAYKH87dg58ZcBAXyQwT6XRm+mTmFqG/WlVmRAAl8RoBClKuBBEhADwQoRLVf5dHxcbxYfALv1VbjOzt247Hb79J+UsyABFwgQCHqAjw+6jwBClHnmenpCQpRPVWbuXqTwIjJhPdqq/BmVTm+t/sB/PTPf8bVzs5bQvjOrl34XMY6BBgoZzxVHwpRT5HVzrgNHTdxtLQYn9Tbt60WW0zvzM7FwwVbERUSqp1EGCkJLECAQpTLgwRIwNcJUIj6eoWZHwmQgCBAIeo762BwbFR2jJ64dFGK0a9sv8N3kmMmJOAEAQpRJ2DxVtcJUIi6ztCXR6AQ9eXqMjclCDT3dONYRSnElp0j4yYZwt/cdhtCly3Drz766JaQ3v+Xf8H4uEGJUHUzJ4Wobkq9aKI3+/vxyrkSvFdzHmPmcRgNBty9LgsHC7chhd3Yi/LjDeomQCGq7vowOhIgAdcJUIi6zpAjkAAJqJ8Ahaj6a+RshL3DQ3ix5BTEDkZP378HjxRtd3YI3k8CmiZAIarp8mkveApR7dXMmxFTiHqTNufyVQJWqxXFVy7jWFXZ1NacIte0mFjsyc3HfVmbYLaNo3t4AB9duIC61lbcl52NL2ZlYXDEgmVGdod6cm1QiHqSrjbHHhwdxbGqc3ijvBR9oyPwA1C0KhMHCrYgOzlNm0kxat0ToBDV/RIgABLweQIUoj5fYiZIAiTADlGfXgMdAwM4UnISNa0tUozuzy/y6XyZHAlMEqAQ5VrwKgEKUa/i1txkFKKaKxkDVhGB/tERvH2+Am9XlaNjcEBGZvD3x7bMNdibk4+clJlixc/PBpNlHIANRn8j/MDOUG+Uk0LUG5S1OYfZasG71VX447kzaOvrlUmsXZ6IA4Vb8bnMtfDzE6qUFwlogwCFqDbqxChJgASWToBCdOns+CQJkIB2CLBDVDu1Wmqk4rXnkeKTuNLZgcM792J3zualDsXnSEATBChENVEm3wmSQtR3aumJTChEPUGVY/o6gYvtrXi9sgzHL12E2WKR6UaHhOL+jTnYnZuPmNAwX0egqfwoRDVVLkWCtdlsONVQj6NlJahvb5MxJEZGyU/sig7vQGOAInFxUhJwhgCFqDO0eC8JkIAWCVCIarFqjJkESMBZAhSizhLT7v1N3V04UnIK7X29UozetzFHu8kwchJYgIBXhejIqAnf/9nzeOuDYhnSvz31GPbvunPe8F59+zj+9afPz/j+1/5qFx4/dFD+XsP1Vhx66hm03eiac7yF5mvtGuHCUIAAhagC0DU0JYWohorFUBUlIDrJPr5Yh9crynDpZvtULFmJyXJb3DvWrJfdobzUR4BCVH01UXNE1S2NOFp2BmevNsAmtqwKCsbezYXYl5OPsKAgNYfO2HROgEJU5wuA6ZOADghQiOqgyEyRBEgAFKL6WwRXO2/iSPEpeZyLEKN3r8vSHwRm7NMEvCpEf/7syxKmEJo9fQP4xtO/wBOHDqIob/2ckIUQLS6rxQ+efAzBQTPPNJv9/OxfT8rQbQVZc0pXClFl1jWFqDLctTIrhahWKsU4lSLQOdAvu0HfralC/+ioDCPQaJT/QX1wcyFWxsYrFRrndZAAhaiDoHjbDALNPd14ubQYH16shcVikX/uRbfogYJtSIiIIC0SUB0BClHVlYQBkQAJuJkAhaibgXI4EiABVRKgEFVlWbwSVP2NdnnGqHgvX4jR21ev88q8nIQEPE3Aa0JUCMvDP3oOT37zUWSmJ8m8pgvSuRJdSIiK7tDv/fg5/PDw1+V4swWoePZaU/tUN+ns8SlEPb205h6fQlQZ7lqZlUJUK5VinN4mUN54Da9XnsOZq5dhtYk+MfsWmqIb9L6sHIQuW+btkDjfEglQiC4RHB+TBHqHh+QZo+K84GGTCf5+fvjc6nV4pGg7MuMTSIkEVEOAQlQ1pWAgJEACHiJAIeohsByWBEhAVQQoRFVVDkWCqW1rkWeMGv0NOLxrL7auWq1IHJyUBNxFwGtCdLbAFAksJDwnvz99y9zp2+WK7wuh+vaHJXj2p09IHj/75Uv48Xe/jujIcPm9X//+7SlOictj5X2TMrajb8xdDDmOEwSEEK1tbXHiCd6qJwLhwUaMmMww249B5EUCuiYwMj6Gd6vPSxEqznIQl5AfRSszsW9zPorSMwA/P10z0mLyRgMQFGjE4IhZi+EzZpUQGDaN4q2qSrx67gw6BwdlVLmpaThYuBVb+AJVJVXSdxhhwUaMmcwY5//p9L0QmD0J+DABgz8QGmxE/xD/T+fDZWZqJKB7AmFBRpjMFpjM9g9m89IvgcrmRrxw+gTCg4Lxfz2wDwXpq/QLg5lrmoBXheh0YSmoLSZEp5Od3BL34J67prbAPVtxAc/8+x/Q2dMvzxGdPJN0slv0wJ67prbjFXO9/MbH+NVPvi2F6bjZqunCaTV4IUTPNzdrNXzG7WEC4kWl1QZMNMB5eDYOTwLqJNDY3YmXSs7gnerzsgNMXBHBwdidm4eDRYVYERHlcuBWqw3+/pSpLoNcwgDCYQv0Fv43ZAn0+MhsAuI84Xerq/G705/iSmen/HZGXBz+evttuC87W36KlxcJKEGA/6dTgjrnJAES8CYB+//p/GARL2B5kYCGCPC1oIaKpYJQxf/pxHt0/KtOBcVQSQhnrl7Bc8c/wYrIKPzwS/uRl5amksgYBgk4RsCrQnT6FrciPGeE6OT9k9vgio7T6YJ1ujDdec82fP9nz2O6EJ19xii3zHVsgbj7Lm6Z626ivjUet8z1rXoyG8cJWK1WnL5yWZ4PWtXcOPXg6vjl2JOXL88IDTAYHR+Qd6qWALfMVW1pNB/Y2WtXcLS0GOdbmmQusWFheHBzEXZn5yEoMFDz+TEBbRHglrnaqhejJQEScJ4At8x1nhmfIAES0B4BbpmrvZp5K+IzVxtwpOQUVsbG4fDOfVi3ItFbU3MeEnCJgNeE6FLOEJ2d2fRzQUV36NE3PsYPnnwMwUH2N3mmn0kqfr4ydcVUN+ns+SlEXVo3S36YQnTJ6HTxIIWoLsrMJKcR6B8dwVtV5fI8wM7BAfkdo8GAO9asw96cAqxPtJ+5zct3CFCI+k4t1ZpJQ8dNvHTmU3zaUC/PHA4JDMSuTXl4KH8LokJC1Ro24/IxAhSiPlZQpkMCJHALAQpRLgoSIAE9EKAQ1UOVXctRvO48UnwKWUnJeHrnXmTEJbg2IJ8mAQ8T8JoQFXlMF5azOzYnv99+s1tKTnH98a1P8NADn5fCc/b9okP00FPP4MeHvy63xZ29pa4Qpod//NzUuaGzu1EpRD28suYZnkJUGe5amZVCVCuVYpyuErjQ1orXK0tx4nI9zBb7AWvxYeHYlbNZiouIoGBXp+DzKiVAIarSwvhgWDf7+/FyaTH+UnceJrMZBoMBd6/dgEeKtiMlOsYHM2ZKaiJAIaqmajAWEiABTxCgEPUEVY5JAiSgNgIUomqriHrj+aS+TnaMFqavkh2jfM2p3lrpPTKvCtHJsz3f+qBYcp8883OyCEKYTgpRIUHFr3/9+7enajT7fiE9//ZbP5n3+0KC/utPn5ff37QhY+r8UPFrClFllj6FqDLctTIrhahWKsU4l0Jg3GLGxxfr8HpFGS533JgaIjc1DftyC7B11Wr4+/svZWg+oyECFKIaKpaPhDowMoLXKkrxZtU59I+OQpweXLgyAwcKtmJTCs978ZEyqy4NClHVlYQBkQAJuJkAhaibgXI4EiABVRKgEFVlWVQd1IcXavBi8UncuWa97BhdHhGp6ngZnP4IeFWIqgkvhagy1aAQVYa7VmalENVKpRinMwREl9YbVWV4t6YKA6Oj8lGxheUXNmRjb24BPzXnDEwfuJdC1AeKqNEUTOZxvFd7Hn8sO4v2/l6ZxdrliThQsAWfW70Ofn5ClfIiAfcQoBB1D0eOQgIkoF4CFKLqrQ0jIwEScB8BClH3sdTbSOI9MCFG79+YIztGo0N5fIve1oBa86UQVWvMzdGzAAAgAElEQVRlfDQuClEfLayb0qIQdRNIDqM8AZsNZU3XZDdo6bUr8hw/caXFxGJPbj7u3ZCNoAD7+de89EWAQlRf9VZjtjabDScvX8QrZWdQf6NNhrgiIgoPFRThvqxNCDQGqDFsxqQxAhSiGisYwyUBEnCaAIWo08j4AAmQgAYJUIhqsGgqC/mtqnK8UHwSD+UX4en79yIsKEhlETIcvRGgENVbxRXOl0JU4QKofHoKUZUXiOEtSmDYZMJfaqvweuU5tPb2yPsN/v7YlrkGe3PykcPtKRdl6Os3UIj6eoW1lV9VcyOOlpXID26IS5xfLD608WBeIV+oaquUqouWQlR1JWFAJEACbiZAIepmoByOBEhAlQQoRFVZFk0GdayiVIrRv956O57euQfL+EFcTdbRF4KmEPWFKmooBwpRDRVLgVApRBWAzindQqCxuwviP3cf1tVg1Dwux4wOCZVbg+zOzUdMaJhb5uEg2idAIar9GvpiBuLvsJdLi/FxfR0sFgsCjUbZLXqgYBsSIiJ8MWXm5GECFKIeBszhSYAEFCdAIap4CRgACZCAFwhQiHoBss6m+OO5M/jt6RM4dMc98oxRHt2iswWggnQpRFVQBD2FQCGqp2o7nyuFqPPM+IRyBCxWK0431ONY5TlUtzRNBZKVmCw7rO5Ys152h/IigekEKES5HtRMoHtoEH8sO4N3aiohOt79/fzk+aKPFG1HZnyCmkNnbCojQCGqsoIwHBIgAbcToBB1O1IOSAIkoEICFKIqLIqPhPSHs6fxm9Mn8Pi9O/HEfQ/4SFZMQwsEKES1UCUfipFC1IeK6YFUKEQ9AJVDup1A7/Aw/lxdgTfPl6N7cFCOL7qp7l6XhQc3F2JlbLzb5+SAvkOAQtR3aunLmQgZKs56ea2iFEKSimtTcioOFm5D4coMX06dubmJAIWom0ByGBIgAdUSoBBVbWkYGAmQgBsJUIi6ESaHmpPAkZJTeOnMaTy54wH80z07SIkEPE6AQtTjiDnBdAIUolwPCxGgEOX6UDOBurYWvF5RhhMN9XJLSXElRkZhd85m7NiYi9Bly9QcPmNTCQEKUZUUgmE4REB0wn9woVp2jYptdcWVFhuHAwVb5YdA2AXvEEZd3kQhqsuyM2kS0BUBClFdlZvJkoBuCVCI6rb0Xk1cvO58sfgEjlWcw5M7duMfP/8Fr87PyfRFgEJUX/VWPFsKUcVLoOoAKERVXR5dBjduMePDi7V4o+IcGjpuSAZiC8mC9FXYm1eAwrRVgJ+fLtkw6aURoBBdGjc+pTABmw0lVxvwStkZVLfatwiPDQvDg5uLsCs7DyGBgQoHyOnVRoBCVG0VYTwkQALuJkAh6m6iHI8ESECNBChE1VgV341pdHwcR4pP4r3a83hqx248dvtdvpssM1OMAIWoYuj1OTGFqD7r7mjWFKKOkuJ9niZws78fr1eW4t3a8xgcHZXThQcF4YsbNmFfXiESIiI8HQLH91ECFKI+WlgdpXXpZjteOnsaxQ2XYLXZpAzdmZ2Lhwu2IiokVEckmOpCBChEuT5IgAR8nQCFqK9XmPmRAAkIAhSiXAdKEBgcG8WR4lM4fqkO39mxB1/ZfocSYXBOHyVAIeqjhVVrWhSiaq2MOuKiEFVHHXQbhc2GssareL3yHEqvXZFv9IsrM3459ubly+0hAwxG3eJh4u4hQCHqHo4cRXkC7f29OFpagvdrq2GymGEwGHD32g14pGg7UqJjlA+QEShKgEJUUfycnARIwAsEKES9AJlTkAAJKE6AQlTxEug6gN7hYRwpOYmz167gO/fvwaNF23XNg8m7hwCFqHs4chQHCVCIOghKp7dRiOq08AqnPWwy4b2aSrxRVY7W3h4ZjdFgwB1r1mFvTgHWJyYpHCGn9yUCFKK+VE3mIggMjIzgT+Vn8eb5cgyMjkJsIl64MkOeM7opJY2QdEqAQlSnhWfaJKAjAhSiOio2UyUBHROgENVx8VWUeufggNxKt7q1WYrRh/K3qCg6hqI1AhSiWquYxuOlENV4AT0cPoWohwFz+BkEGru78Fr5WXx4oRZj5nH5vbiwcDyQsxm7NuUhIiiYxEjA7QQoRN2OlAOqhIDJPI53as/j1bIzuNHfJ6NauzwRBwq24HOr18GP5y2rpFLeCYNC1DucOQsJkIByBChElWPPmUmABLxHgELUe6w50+IE2vt6caTkFBo6buDpnXuxJyd/8Yd4BwnMIkAhyiXhVQIUol7FrbnJKEQ1VzLNBWyxWvFpQz1erziH6tamqfhzU9NkN+i2jNXw9/fXXF4MWDsEKES1UytGujQCVqsVJy5fxCulJbjccUMOsiIiCg8VFOG+rE0INAYsbWA+pSkCFKKaKheDJQESWAIBCtElQOMjJEACmiNAIaq5kuki4Oaebtkx2trXi8M792LHxhxd5M0k3UOAQtQ9HDmKgwQoRB0EpdPbKER1WngvpC3OHXirugJvV5Wje2hQzhgSGIgvbMjG3twCnnfnhRpwCjsBClGuBD0RqGhqxCulxfJ8ZnGJzvs9ufnYl1uA8GB24fvyWqAQ9eXqMjcSIAFBgEKU64AESEAPBChE9VBl7eZ4tbNDnjEq3vMTYvSe9Ru1mwwj9xoBClGvoeZEggCFKNfBQgQoRLk+3E2gprUZb1Sew8mGelgsFjl8WkysfEP+3g3ZCAoIdPeUHI8EFiRAIcoFokcCYovyP5z9FJ/UX4Do1A80GmW36IGCbUiIiNAjEp/PmULU50vMBElA9wQoRHW/BAiABHRBgEJUF2XWfJKXbrbjSPEpiGNcDu/ch9vXrNN8TkzAcwQoRD3HliPPQYBClMuCQpRrwNMExi1meS7o6xVluNJ5U07n7+eHbZlrZFdSTkqap0Pg+CQwLwEKUS4OPRMQHfqvlJ3BO9WVGBk3yb+bb8tci0e33IbM+AQ9o/G53ClEfa6kTIgESGAWAQpRLgkSIAE9EKAQ1UOVfSfHurYWecaowc8fh3ftxdZVq30nOWbiNgIUom5DyYEcIUAh6ggl/d7DDlH91t4dmd/s78exilK8V3ceg6OjcsjokFDcvzEHu3PzERMa5o5pOAYJuESAQtQlfHzYRwgMm0x4s/IcXqsoRc/wkMxqU3IqDhRuQ9HKDB/JUt9pUIjqu/7MngT0QIBCVA9VZo4kQAIUolwDWiRQ1dyI35WcQlhQkOwYzU9bqcU0GLOHCFCIeggsh52bAIUoV8ZCBChEuT6cJmCzofT6VbxeWYbSa1dgmxhgQ2Iy9ubm4/bV62A0GJwelg+QgKcIUIh6iizH1SIBs8WCDy7U4I9lJWjq6ZYppMXG4UDBVty9LgsGf38tpsWYAVCIchmQAAn4OgEKUV+vMPMjARIQBChEuQ60TOBc4zUcKT6J5RGR8ozR7ORULafD2N1EgELUTSA5jGMEKEQd46TXuyhE9Vp55/MeGhvDe7VV8nzQtr5eOYA4k068gf7g5kKsjI13flA+QQJeIEAh6gXInEJ7BGw2FF+9jKOlZ1Db1izjjwkLw4N5RXhgUx5CAnnes9aKSiGqtYoxXhIgAWcJUIg6S4z3kwAJaJEAhagWq8aYZxM4c7VBbqW7MjZOdoyuW5FISDomQCGq4+IrkTqFqBLUtTMnhah2aqVUpNe6OvBaeSk+vliHMfO4DCMxMgq7czZjx8ZchC5bplRonJcEHCJAIeoQJt6kYwKXbrbjpTOfovjKZVhtNilDd2bnYn/+Fm59rqF1QSGqoWIxVBIggSURoBBdEjY+RAIkoDECFKIaKxjDXZDApw31OFJ8CllJyXh6515kxCWQmA4JUIjqsOhKpkwhqiR99c9NIar+GikRocVqxcnLF/FGZTlqWptkCH4ACldmYG9uAQrTVwF+4nd4kYD6CVCIqr9GjFAdBNr6evByaQk+qKvBuMUMg8GAu9duwCNF25ESHaOOIBnFvAQoRLk4SIAEfJ0AhaivV5j5kQAJCAIUolwHvkjgeH0dXiw5Jd9PFB2jfH3pi1WePycKUX3VW/FsKUQVL4GqA6AQVXV5vB5c7/AQ3qwqx5+rK9E9NCjnFwei37dhE/blFSIhIsLrMXFCEnCVAIWoqwT5vN4I9I0M40/lpXjrfDkGR0dl+uIDMQcLtmJTSprecGgmXwpRzZSKgZIACSyRAIXoEsHxMRIgAU0RoBDVVLkYrJMEPrxQgxeLT+LONetlx6g4a5SX7xOgEPX9GqsqQwpRVZVDdcFQiKquJIoEVN3ahDcqynHqSj0sFouMITN+Ofbk5eOedVkIMBgViYuTkoA7CFCIuoMix9AjAbFN+jvVlXi1vBQ3+/skgrXLE/FwwRbcvnod/LhTgKqWBYWoqsrBYEiABDxAgELUA1A5JAmQgOoIUIiqriQMyAME3q2pkmL0/o05UozGhIZ5YBYOqRYCFKJqqYRO4qAQ1Umhl5gmhegSwfnAYybzOD68UIvXK8twtbNDZmQ0GHDH6rXYm1uI9YlJPpAlUyABgEKUq4AEXCNgtVpx/NIFHC0twZXOm3KwFRFReKigCPdlbUKgMcC1Cfi0WwhQiLoFIwchARJQMQEKURUXh6GRAAm4jQCFqNtQciANEHj7fAVeKD6JL20uxNP370F4ULAGomaIzhKgEHWWGO93iQCFqEv4fP5hClGfL/EtCbb39+L1inN4r7YKQ2Nj8vtxYeF4IGczdm3KQwT/86G/ReHjGVOI+niBmZ5XCZQ3XsPR0mKUN12X80YEBWF3Tj4ezCtEeDBfvHq1GLMmoxBVkj7nJgES8AYBClFvUOYcJEACShOgEFW6ApxfCQKiWeOF0yfx5S23yY7RoAB+6FaJOnhqTgpRT5HluHMSoBDlwliIAIWoTtaHzYaz16/iWEUpzl2/CttE2jmpadiXU4BtGavh7++vExhMU28EKET1VnHm6w0C17o68PLZ0zh+6SIsVisCjUZ8ccMmPFy4RXaP8vI+AQpR7zPnjCRAAt4lQCHqXd6cjQRIQBkCFKLKcOes6iDw6rmz+O3pE/j6HXfLjlG+V6mOurgaBYWoqwT5vFMEKESdwqW7mylEfbvkogP0nZpKvFlZDtEZKq6QwEB8YUM29uYWICU6xrcBMDsSALfM5SIgAU8S6BwcwCtlZ/BudSVGzePw9/PDbZlr8eiW25AZn+DJqTn2LAIUolwSJEACvk6AQtTXK8z8SIAEBAEKUa4DEgBeLi3Gbz49gW/dez/+5b4HiETjBChENV5ArYVPIaq1ink3XgpR7/L21myic+e18lJ8dLEWJrNZTpsWE4s9ufn4wvpsBAcGeisUzkMCihNgh6jiJWAAOiAwbDLJM6lfryhDz/CQzDg7ORUHC7ehaGWGDggonyKFqPI1YAQkQAKeJUAh6lm+HJ0ESEAdBChE1VEHRqEOAr8rOYX/OvMpntyxG//nPTvUERSjcJrAokL0bMUF/O23fiIH/tpf7cLjhw6i4XorDj31DL751X3Yv+tOpydVwwOtXSNqCEN3MVCI6q7kTiVMIeoULlXfLLYsPHH5At6oOIfathYZq+jU2Za5BntzCpCbmqbq+BkcCXiKAIWop8hyXBK4lYDZYsH7ddWya7Slt1veID6Q83DBVtyzfiMM3J7dY8uGQtRjaDkwCZCASghQiKqkEAyDBEjAowQoRD2Kl4NrkIB4v/NI8Un8qaIUT923G/94170azELfIS8oRF99+zhefuNj/Oon38ZHp8pxraldClFx/fzZl9F+sxs/ePIxBAdpr7uHQlSZhU8hqgx3rcxKIaqVSs0fZ+/wEN6oPIc/V1dOdeVEBYfg/uxc2REaExqm/SSZAQm4QIBC1AV4fJQElkrAZsPpK5dwtOwM6iY+pBMTFoYH84rwwKY8uX07L/cSoBB1L0+ORgIkoD4CFKLqqwkjIgEScD8BClH3M+WIvkFgzDwuxeg7NVV4ascefO32u3wjMR1kMa8QHRk14fs/ex4H9tyForz1EHJ0uhCdLkujI8M1h4pCVJmSUYgqw10rs1KIaqVSt8ZZ3dKI1yvL8WlDPcSnpcS1ITEZe3PzcfvqdTAaDNpNjpGTgBsJUIi6ESaHIoElEKhpbZYdoyVXLsE2cZb1zuxc7M/fwg/tLIHnfI9QiLoRJociARJQJQEKUVWWhUGRAAm4mQCFqJuBcjifIzA0NoYjJSfxSf0FfGfHbnxl+x0+l6OvJTSvEO3pG8DhHz2HJ7/5KDLTk24RomIr3WeefVl2j1KI+tqy8Fw+FKKeY+sLI1OIaquKJvM4Pqirkee0XevqlMEHGo24a+0GfCm/CCtj47WVEKMlAS8QoBD1AmROQQIOEGjr68Efzhbjwwu1GLeYYTAY5L9f4pxRsa0uL9cIUIi6xo9PkwAJqJ8Ahaj6a8QISYAEXCdAIeo6Q46gDwK9w8P4XclJnLl2Bd+5fw8eLdquj8Q1mOWShajoEC0uq+WWuRosupIhU4gqSV/9c1OIqr9GIsL2/l68Vl6Gv9Sdx/DYmAx6RUQU9uRuxo6NuQhdtkwbiTBKElCAAIWoAtA5JQksQKBvZBivlp/FW1XlEJ/uFVfhygwcKNiKnBSed73UxUMhulRyfI4ESEArBChEtVIpxkkCJOAKAQpRV+jxWT0S6BwcwJHiU6hubcLT9+/F/vwiPWJQdc4LniEqzgldmboC+3fdOaNDdHI73RUJMVNniqo6yzmC45a5ylSMQlQZ7lqZlUJUxZWy2VBytUGeD3qu8arcZtBv4k3jvbkFKExfBfiJ3+FFAiSwEAEKUa4PElAngVGTCe/UVOLVc2fRMTggg1y7PBEPF2yRW7/78d84pwpHIeoULt5MAiSgQQIUohosGkMmARJwmgCFqNPI+AAJSALtfb04UnIKDR038PTOvdiTk08yKiGwoBAV2+Z+4+lf4IlDB9HUenPqDFEhSs9UXNDsdrmCPYWoMiuQQlQZ7lqZlUJUfZUS3TJ/rqnEW5XlsjNUXGFBQbhvwybsyytEQkSE+oJmRCSgYgIUoiouDkMjAUCeg328/gKOlhXjameHZCJ2QRCf7N2xcRMCjQHk5AABClEHIPEWEiABTROgENV0+Rg8CZCAgwQoRB0ExdtIYB4CzT3dOFJ8Eq19vTi8cy92bMwhK4UJLChERWyT3aBvfVA8FeoDX9im2a1yJ5OgEFVm5VGIKsNdK7NSiKqnUte6OvCnsrP4uL4OJotZBpYZvxx78vJxz7osBBiM6gmWkZCAhghQiGqoWAxV9wTKGq/iaGkxKpsaJYuIoCDszsnHg3mFCA8O1j2fhQBQiHJ5kAAJ+DoBClFfrzDzIwESkP//DQmAadyC0XErgZAACbhAQHzY9nclp9A7PCQ7Ru9Zv9GF0fioKwQWFaKuDK7mZylElamO2WJBbVuLMpNzVtUToBBVtkTiz+fJyxfxeuU51E38OTUaDLhj9VrsyS3AhsRkZQPk7CTgAwQoRH2giExBdwTEh4ReOnMaJy5dgNVmQ6DRiC9u2ISHC7fI7lFetxKgEOWqIAES8HUCFKK+XmHmRwIkIAhQiHIdkIB7CVy62S7PGP313/w9YsLC3Ts4R3OIwLxCdHK73IN77pJniPraRSGqTEXZIaoMd63MSiGqTKW6hwbxZuU5vFNThZ7hIRlEXFg4dm3Kw87sPESFhCgTGGclAR8kQCHqg0VlSroh0Dk4gKOlJXi3pgpj5nH4+/lh++q1+Kui25AZn6AbDo4kSiHqCCXeQwIkoGUCFKJarh5jJwEScJQAhaijpHgfCThHYHX8coQsW+bcQ7zbLQQWFaLi/NCivPVumUxNg1CIKlMNClFluGtlVgpR71bqfHMjjlWdQ3HDJXlmmrhyUtOwL6cA2zJWw9/f37sBcTYS0AEBClEdFJkp+jyBwdFRvFF1DsfKS9E3OiLzzU5OxYGCrdiyKtPn83ckQQpRRyjxHhIgAS0ToBDVcvUYOwmQgKMEKEQdJcX7SMA5AhtWJCHAyOPInKPmnrvnFaKTZ4duK8hih6h7WHMUABSiXAYLEaAQ9fz6GB034cMLtThWWYbGrk45YUhgoNy7fl9eIVKiYzwfBGcgAR0ToBDVcfGZus8RMFsteK/mPP547gxae3tkfmkxsXi4YKv8d9Wg4w8WUYj63HJnQiRAArMIUIhySZAACeiBAIWoHqrMHJUgQCGqBHX7nAueIfrq28dxrakdjx86qFyEHpqZHaIeArvIsBSiynDXyqwUop6rVGtvN45VnMP7decxbDJNvWm7JzcfX1ifjeDAQM9NzpFJgASmCFCIcjGQgA8SsNlwquESjpYV42J7m0wwJiwMD+YW4oGczfKDR3q7KET1VnHmSwL6I0Ahqr+aM2MS0CMBClE9Vp05e4MAhag3KM89x4JCVJwjevhHz+HJbz6KzPQk5aL0wMwUoh6A6sCQFKIOQNLxLRSi7i2+zWZDydUGvFFZhvLGa7AB8ryzbZlrsDenALmpae6dkKORAAksSoBCdFFEvIEENE2gurVJnjN69mqD/HdXyND7N+bioYItiAkN03RuzgRPIeoMLd5LAiSgRQIUolqsGmMmARJwlgCFqLPEeD8JOEaAQtQxTp64a9EzRM/XXZl33k0bMvCrn3wb0ZHhnojNo2NSiHoU77yDU4gqw10rs1KIuqdS4myzP9dU4a2qc7jR3ycHjQoOwf3ZuRAdoXp6Q9Y9RDkKCbiPAIWo+1hyJBJQM4Hmnm4cPVuMD+trYbZYYDAYcNfaDThYuE1uq+vrF4Wor1eY+ZEACVCIcg2QAAnogQCFqB6qzByVIEAhqgR1+5wLdogqF5bnZ6YQ9TzjuWagEFWGu1ZmpRB1rVJXOm7itYpSfHKxDiaLWQ62ITEZe3PzcfvqdTAaDK5NwKdJgARcJkAh6jJCDkACmiLQOzyEV8+dwVvVlRgeG5OxF6SvkmI0J+WznRoM/n6w2Myw2qzwA2D0D4DFqqlUZwRLIard2jFyEiABxwhQiDrGiXeRAAlomwCFqLbrx+jVS4BCVLnaUIgqx16XM1OI6rLsDidNIeowqqkbRdfJiUsXcayydOrcskCjUXahfCm/CCtj450flE+QAAl4jACFqMfQcmASUDWBUZMJb1dX4E/lpegcHJCxrklYgYcLtmBrRgasMOOt81X4S00NCtLTcc+GLKTHxCLAP0jVec0XHIWoJsvGoEmABJwgQCHqBCzeSgIkoFkCFKKaLR0DVzkBClHlCrSoEBXniH7j6V9g+ta5Wt4qdxI1O0SVWXQUospw18qsFKKOV6p7aBBvVJ7DO9WV6B0Zlg+uiIjC7tzN8qyy0GXLHB+Md5IACXiNAIWo11BzIhJQJQGL1YqPL9bh6LliXO/sREJkJH7xyCP4b//xH7fE+60vfhFfWL9Jdotq7aIQ1VrFGC8JkICzBChEnSXG+0mABLRIgEJUi1VjzFogQCGqXJUWFKIN11tx6Kln8M2v7sP+XXdORfnq28fxy98ew7M/fQKZ6UnKRe/CzBSiLsBz4VEKURfg6eBRCtHFi1zZ1IjXK0vxacOlqZsL0lZh3+ZCFK3MWHwA3kECJKAoAQpRRfFzchJQFYGy61fQ1t+NUfM4fn38+C2xZSUl4b/vexDhgeGqituRYChEHaHEe0iABLRMgEJUy9Vj7CRAAo4SoBB1lBTvIwHnCFCIOsfLnXfPK0RHRk34/s+ex4qEGDx+6OAtc/782ZfRfrMbP3jyMQQHBbozJq+MRSHqFcy3TEIhqgx3rcxKITp3pUbHTXi/rlp2hDZ2d8mbQpYtw/1ZOdiTV4AVEZFaKTHjJAHdE6AQ1f0SIAASmEFgxDyMb730X2jssv/7Pvv6//7qywgNDEVSVIymyFGIaqpcDJYESGAJBChElwCNj5AACWiOAIWo5krGgDVCgEJUuULNK0Qnt8p94tBBFOWtvyXCsxUX8MyzL+NXP/k2oiO196llClFlFh2FqDLctTIrhejMSrX2duNYxTn8pfY8RsZN8pvpcXF4MK8IX1ifhQCDUSulZZwkQAITBChEuRRIgASmExg0DeG/Sj7Fn86duwWM2E73fxw4gL/53/9bboWflZiMTclp2JCUhOykVFWDpBBVdXkYHAmQgBsIUIi6ASKHIAESUD0BClHVl4gBapQAhahyhaMQVY69LmemENVl2R1OWrx5Njg6DrPF5vAzvnajzWZDydXLeL2iDOVN12V6RoMBd6xeiz25BdiQmOxrKTMfEtAVAQpRXZWbyZLAogTGzCZc7W7Ht3//+1vuPVBUhJyUVBwrr0BtWwuGx8am7hEfilqTsBwbk5KxMSkVG5NSEBYUtOh83rqBQtRbpDkPCZCAUgQoRJUiz3lJgAS8SYBC1Ju0OZeeCFCIKldtbpmrHHtdzkwhqsuyO5x0eLARI2NmmK0OP+IzNw6OjuLP1ZV483w5bvb3ybziwsKxa1MedmbnISokxGdyZSIkoGcCRoMfggINGBwx6xkDcycBEphGoHe0H6cbLuH92lrUtrZCdIZ+fu1a7MzehKTIONhsfoDNhmtdHahubUZNSzNqWpvRMTgwNYofgNSYWGQlpcju0Y3JyVgREaUY57BgI8ZMVoxbdPifOsWoc2ISIAFvEjD6A8FBARgYHvfmtJyLBEiABLxKICzICJPZKn/wIgEScB8BClH3sXR2pHmFqBio4XorDj31DL751X3Yv+vOqbFfffs4fvnbY3j2p08gMz3J2TlVcT+3zFWmDBSiynDXyqx67BC90nETfyo/i0/qL2DcYhckOalp2JtTgO0Zq+Hv76+V8jFOEiABBwiwQ9QBSLyFBHRIoHOoF+Kf/L6RYSRGRaGzfwgpUXEAhOqc++ro70dNWzPOC0Ha1oTGzk5M32MjJjRMdo5mJ6fI7XYz4hK89v8KdojqcBEzZRLQGQF2iOqs4EyXBHRKgB2iOi080/Y4AQpRjyOed4IFhah4amTUhO//7Hm89QQz28sAACAASURBVEHx1CCbNmRo9uzQySQoRJVZdBSiynDXyqx6EaJmiwXH6y/gWFUZ6tvbZHlCAgNxz/qN2JdXiJToGK2UjHGSAAk4SYBC1ElgvJ0EdEZASFHrEj+AP2wyyc7R6tYm1LS0oP5G29SHrQTG4IBArF+RiI0padiYmIINiYlYZgzwCGEKUY9g5aAkQAIqIkAhqqJiMBQSIAGPEaAQ9RhaDqxzAhSiyi2ARYWocqF5dmYKUc/ynW90ClFluGtlVl8Xot1DgzhWWYZ3z1eib3REliUtJha7c/Jx74ZsBAcGaqVUjJMESGCJBChElwiOj5EACThNQHwAS0jRmtYWKUnFOaRii/7Jy+DvL7tG5Ta7yfatdt21RT+FqNPl4gMkQAIaI0AhqrGC6TZcK4bGR2Dw94PR3x9j41aEB4XCap2+p4Ru4TBxBwhQiDoAibeQwBIIUIguAZqbHllQiM63Ne58W+m6KSavDEMh6hXMt0xCIaoMd63M6qtCtKKpEW9UlqL4ymVYbTb4+/lhW8Zq7M0tRG5qmlbKwzhJgATcQIBC1A0QOQQJkMDSCNhsaOzukueQyi7S1papc8snB0yMjJoQpKmyizQ1Zmm7VlCILq1EfIoESEA7BChEtVMrvUY6ZhnFpZtteLOqCscvXkRmQgLuXLsW92dnIyooEhZKUb0uDafyphB1ChdvJgGHCVCIOozK7TfOK0Qnt8pdkRCDxw8dvGXinz/7MtpvduMHTz6G4CDtdTVRiLp9LTk0IIWoQ5h0e5OWhOhiW9qNmEz44EI13qg8J998FFdUcAjuz87Fntx8iHO9eJEACeiPAIWo/mrOjElAzQTE7hXnW4QcbUZNSzOudXXID29NXhFBQchKSrVL0qRkrElYAaPBsGhKFKKLIuINJEACGidAIarxAvp4+H5+QPdwL778H8/ekunezZvx37ZuR8SycB+nwPTcQYBC1B0UOQYJ3EqAQlS5VTGvEO3pG8A3nv4Fnjh0EEV562+J8GzFBTzz7MuaPUuUQlSZRUchqgx3rcyqdiHq5+cHs9UEq82CQdMYIoODYbUAgcZlU1vONPd04/XKMrxXcx5j5nGJft2KROzelI97s7K1UgrGSQIk4CECFKIeAsthSYAE3EJAfKCrpq0ZtS3NON/aLM86N1nMM8bemJQqt9jdmGT/Ic5Bn31RiLqlHByEBEhAIQImiwldQ31YGRcru+iae3oRFRyGIOOyqYgoRBUqjsanNZnH5ZqyWK2w2Kywiq9WK8w2G6xWCyxWwGqz/574vsUy/T4bLDZxj/g6cY9VjPHZr+V4NitWxsWgrr0Vz584cQuxmLAwvPj3X4e/TXvNLRovvybDpxDVZNkYtAYIUIgqVyQKUeXY63JmClFdlt3hpNUuRM22MbxfV4P3a2tR09KCjPh4ueXMvrx8VDS24LWKUlQ2NU7lu2NjDvbmFiAjPsFhBryRBEjAtwlQiPp2fZkdCfgigQttrahua0Z1sziHtBkD084hFfmmxcYhJzkVWYkpyEpKxvKISFCI+uJKYE4koA8Cg6ZhtPd142jpWRyvr5dJf27NGhwsLMLyiGhEBtl3+qEQdX49OCIDJ4WfXQ7aRZ9dGi4uA6VEnBSJ00WhzQaL2QwLbLBYLLDYIOWjWYpJi9wZQXydFJVCSJrF81JSCllphdUyU0JOPifvmxjHIsYR48P+nBhv8kPSztNy7Ymndu7EaxUVqG9rm3Ogf/vSfmStSENI4GeS37UZ+bSvEqAQ9dXKMi+lCVCIKleBBc8QFdviimu+LXPn+55y6Tg+MztEHWflzjspRN1J0/fGUrMQNVvHUdVyHd979Y+3gP/7O+9E7/AwXiktxYqIKDyQuxk7N+YidBlfXPjeKmVGJOAaAQpR1/jxaRIgAeUJiKMAaltFB2kThCxt7e2ZEVRsWJg8Iz1rRTLWrUjG6oTlygfNCEiABEjAQQLD44P45u+O4EZf34wnokND8ZvHHkOgf4j8fWeFqBBjQpBNdvDN1Rk4WwaabRbYrDYp5+xicP7OwLlkoFnIPgBmIQMnxaKDMlCMZ49VyELbZ12LUvTZJeJCMlB8z2SeucOAgyXw+duCjAHwN/jD6OcHg78B/v72rwb5a3/4+4vv+U/83A8GPwMM/n5OcbltdaZ85pcffXTLc4lRUfjR/v34u+efl1vhb8tcg62rViOTH+R2irFebqYQ1Uulmae3CVCIepv4Z/MtKEQbrrfi0FPP4Jtf3Yf9u+6ceurVt4/jl789hmd/+gQy05OUi96FmSlEXYDnwqMUoi7A08Gjahaiw6Yh/OqTD2V36OxrXWIiHv/ifWjvHcKWVZk6qBRTJAESWCoBCtGlkuNzJEACaiUgPhQmziCtam6UovRyx40ZoQYHBGJDYhI2JqciOylF/jzAYFRrOoyLBEhAxwSMBn9c7mjGN158cU4KzzzyCN6prsHFtjbZiWiDDeNm0XE4szOQMnD+RbRUGThTGtololGKQsB/mkyUQtHPH0Z/IRT95PfEz4Vk/Ox7E+LRzw/GSSE5IR3FPQa/CSk58VyAvz/EmZxiXPn9yR9T9/nBf+r5CbFpMEA4zKAAhbaltVkxbBnGQ//rf91SjINFRUiLicX/ePedGd+LCwvHdiFHM1ajIG2Vjv8mYOrTCVCIcj2QgGcIUIh6hqsjoy4oRMUAI6MmfP9nz+OtD4qnxtu0IUOzZ4dOJkEh6sjycP89FKLuZ+pLI6pFiF7r6kB7Xy+udXXKroeWnh787e3b8aO33pKdoHNdR75+CHGh0bDZbL5UEuZCAiTgZgIUom4GyuFIgARUR2DUZML13psovXYNVU32LtLZ55CuXZ4o5ag4izQ7KRXhwcGqy4MBkQAJ+C6B0XETmrq7cL2rC409nbje1YnGri4UZa5CWGAgfl9SMmfyDxUWyq7JP507tyQ4zsvAaV2CU9LPcRno5++PACn8li4D7XJRYzJwSdXxvYcGxgYxMDaCd6vP4/26OmxITMQda9eiIH0lIpaFY3h0DGWN1/DplXqUXLmMobGxKQiBRqOUopOCNCKI/0773gpxLCMKUcc48S4ScJYAhaizxNx3/6JC1H1TqWskClFl6kEhqgx3rczqTSHa1mcXnc293Wju7ob4tXhR3DE4MCeu/+Puu3FjYEBuizv72pKRgW9/cQeigiK0gppxkgAJKESAQlQh8JyWBEjAqwRmnyFaf6MN1S1NspO0pqUZfaMjM+JJiY7BhsRkbExOwcbEFIhf8yIBEiABVwkMiw9odHVAbPXd2DUhPrs7533NJ7bF/dVXvoJH//3f55z6v/7hHzA8JrpBrQgM8EdEyDIMDltkJ+LUlqcTnYGii5Dd8K5WkM+7SsBkMaF/bBiBRn+Iz27bLEBUyNzvW4h/o4uvXELxlcto7umeMbX4N3p7xhoUrcrAyth4V8Pi8xoiQCGqoWIxVE0RoBBVrlwUosqx1+XMFKK6LLvDSbtbiPYMDaJFCM/eXjR3d6KltxctPV1o6++D2WK5Ja6QwEAkR8UgJToayTFxSI6KQkpUDFJjYgHY0NbfOef2Sd994AHkpa5C+LJQh3PljSRAAvokQCGqz7ozaxLQG4HZQnR2/i093ahpa0ZNczOq25pvOYc0MijYLkeT7D9WJ6yQWxTyIgESIIG5CAyOjuJad4fs8pTdnt2daOzpQvfg4JzADAYDkiOjkBYTJ7cOTY+NQ1psnHztN2YdxQ/eOIbzTU0znl2bmIgf738IIUb7az5nzxBl5UhASwTa+/twuqFeylEhSsUW0ZPXiogoeVSQEKSbUlL577OWCruEWClElwCNj5CAAwQoRB2A5KFbbhGiZysu4G+/9RP821OPzTg3dPI80bYbXUhcHqvp80MFS3aIemhFLTIshagy3LUy61KE6IjJhOaeLrT02js8xVfxJltrXw/EJ4JnX+LFb2JE5JT4TIkRL3yjkBIdi6iQhYVm13AvRswmfFRXJ7ec2Z6Rgc+vW4fEyGh2h2plkTFOElCYAIWowgXg9CRAAl4hsJgQnR1E38gwqluaUd3aLM8hbei4MePNV7F13/oVSchKTJbb7GYlpiA4UKFz2bxCkJOQAAnMRUB84PV6dzeauj/r9hSdn7O7ziefDTQYZce5kJ5CeKZLARqHxKioBSSOFcHL/PHhhTp8Ul8Pi8WCu9avx30bszE4bIafn/3DGRSiXKN6ISDeVzlz9bKUo6XXr8zYWld8qLwwPRPbMlajaGUGwoKC9IJFN3lSiOqm1EzUywQoRL0MfNp0twjRnz/7Ms5UXJhxRmhP3wC+8fQvcHDPXVKSCjn6vR8/hx8e/joy05OUi96FmSlEXYDnwqMUoi7A08Gj8wlR0c0pz/IU3Z5im1spQO3dnr0jc5/pGRsWhuToGKRExSJVdHxGx8rOz+XhkfIMlaVeQ2Mj6B8bwjKjEWarFYH+gYgKCVvqcHyOBBQnIF7giheyvLxDgELUO5w5CwmQgLIEnBWis6M1mcdR29Y20UXaiAvtbRgZ/+yDbv5+fnLLPtFFmpWUjJzkNMSE8v9jylads5OA+wh0DvTjek8Xmro6ca2r037eZ3fnDBEzfTZxNqcQnmJnH7v0FAI0FqKTzc/Pb0mB+fnbYLWOy2cN/gGwWmeOQyG6JKx8SOMERKeo6Bg9feUySq5cQltf71RG4t/mrKQUKUe3rlrN7e81XuvJ8ClEfaSQTEN1BChElSvJDCE6MmrC93/2PFYkxODxQwenohJdo888+/IMSSrEqbim36dcGs7PTCHqPDN3PCHEVm1bizuG4hg+RsBms2HEPIz69pto7Bbis1t2eoqOz46BfljFgRezrpBly+S2RkJ0ig7P5Ci7+BQCNNAY4GOEmA4JuJ9AZXMjjpYWIzwoGDkpadicmo4VkVHun4gjThGgEOViIAES0AMBV4XobEZWqxVXOm/KN2FFJ6n42jM8NOO2hPAIbExKxsakVClKV8bEAUsUIXqoEXMkAcUJ2GxoH+izb3Mrz/i0n/Up5Of0D0BMj1O8/psSnhNdn2nRcUiImPtMRE/mSCHqSbocWysEmrq7p84dvdDeMuN9G3Ec0VaxtW7marmzgysfTNcKD1+Mk0LUF6vKnNRAQOx8YzQY1BCK7mKYIURnd4JO0hDys/1mN37w5GMIDrJ3kcwlSbVEj0JUmWqZzWbUtrcqMzlnVQWB3uEhNPcK2TnR6dlj7/xs7eud81xP8Y9DUmTUtLM97eJTdH5GhYSoIicGQQJaJCC2PHqnphIv/N038OHFGnxSfwEnLl2QL2KFGM1NTUdeSjoigoO1mJ5qY6YQVW1pGBgJkIAbCbhbiM4VWntfD6pbW1Dd0iQFqfgw3fQrdNkybJBb7KZKUSq23DX6800HN5aZQ5GAQwTEBxrEaz2xzW1jTzeuC/HZ1YWmni6YzOY5x4gICpYdn1Pne0aLMz5jVdUJTiHqUPl5k44IiLN8S6424PTVSyi/fnXGEUZiK12xpe62VatRuDKTOxRpaF1QiGqoWAxVUwTYIapcueYUok8cOoiivPUyKme6RpVLw/mZKUSdZ+aOJ7hlrjsoqn+MUZMJTVJ6zuz0FOJzrnM9xeZDcWHhSI+Lk/IzKSrGvt1tdIzc4nap2xypnxQjJAFlCHx0oQZljdfwwmPfuCWAxu5OnLh0ER/X1+HU5XokhIcjNyVtSpDyE2yu1YxC1DV+fJoESEAbBLwhRGeTEG/Enm9tQnVzk9xq93LHTXn23+Ql/v1anbAcGyckaXZSKs8608ZyYpQaISC20hSv/8T/Ja+Lr53ia4f8IKzYKWquS2x1nRoTM3W2Z3psLFJj4hAZrP4PvlKIamRhMkxFCIi/D8RuRMVXLqHkymXcHOifisNgMGDTxNa62zPWKtLhrQgUjU5KIarRwjFs1ROgEFWuRHNumXtgz11TQnS+rtFX3z6Ol9/4eMY2usql4fzMFKLOM3PHExSi7qCojjHkuZ59vVPneorzPMWLXSE9Z29hNhmx+FSg7O6U53mK8z3Fz+3yM8BgxHxniKojY0ZBAr5B4K3z5Wjq6cYvv/x3DiUkum5OXr6Ijy7W4nTDJWxMSpHb6+alpkNs8cHLOQIUos7x4t0kQALaJKCEEJ1NatxixoW2VlS3NqOmpRl17S23fDAvNTpGnnc22UWaGBmtTeCMmgS8SED82RLbZErx2dUpv4qtbsVZgkKCzHXFh4UjTZztGRuH9KnOz3hNd4lRiHpx0XEqzRO41nlTnjtafPUyLrW3YfqBSOLvBXHuqOgeFbs58APx6io3hai66sFofIcAhahytZwhREUYs88GbbjeikNPPYMfH/76lCSdvG/2NrrKpeH8zBSizjNzxxMUou6g6MUx5Lku/VJyirM8W7o/O9fz5kDfnOd6CrGZGBVlF55SesbYJWhMLMTWRwtdFKJerC2n0iWBV8pKMGax4P/d/+iS8xdb7YqtdT+pr0NNawsK0lchJzkVeWnpWBkbv+Rx9fIghaheKs08SUDfBNQgRGdXQJxXf7WzA9VtzahpbkZ1WxO6Bwdn3BYdEoqs5BRkJ6XITtLM+OU880zfS1nX2Y+Om+R5nte7utDY0ym3uRXy80b/3K8D/f38kBAeKbe2TRfne8bEQ3Z8RsciKNB+9JIvXRSivlRN5uJNAn0jw1KMFjdcRnnjNYyZx6emjwwKxpYJOZqfvhJBAb73d4c3WbtjLgpRd1DkGCRwKwEKUeVWxS1CVAjQ7/34Ofzw8NeRmZ4kBels8TnZNbolbz0eP3RQuehdmJlC1AV4LjxKIeoCPA8+2js8jObergnpaf8qzmFq6+uD+ATw7Eu82I0Lj/iswzNm8lxPscVtBOAnNsF1/qIQdZ4ZnyABRwn89vQJRAWH4F93f8nRRxa9b3R8XHaPCjl6/NIFdA0OIj9t5VQHaYL4+4DXDAIUolwQJEACeiCgRiE6F/f2/j7UtjSjutV+DqmQP9O7VoKMAViXmIiNifYuUvHGhS+KHT2sSeY4PwFxpEljl9jettO+zW13p/yz0DHQP+PPw+QIBn9/JEZGyfM9RdenveMzTm59Kz4cq5eLQlQvlWaeniRgtlpQ3ngdpxvqUXKtYcYHlcTfJzkpqbJ7dHvGGsSGhXsyFI49DwEKUS4NEvAMAQpRz3B1ZNRbhKh46GzFBfztt34in9+0IeOWbXGFJP3179/Gb/7n0zO6Rh2ZUC33UIgqUwkKUWW4i1nFJ3yF5GyW3Z69aOnulF+be7rmPNdTPBMhtrid2t72s3M9RcenJ84RpBBVbn1wZt8m8O+fvI91K5Lwz1+436OJdg4OTHWPnrhUD6PBH3kp6chNtW+xG7YsyKPza2FwClEtVIkxkgAJuEpAK0J0dp7iHFIhRmukIG1B/c32GWcfig8FropLkNvHZyenYFNyKqJCQl3FxedJwCsExPq+1t0hOz2nb3XbPTSzU3oyGPF6Lzk6GunR8UiLi0NadIwUn2IXICFF9X5RiOp9BTB/TxC4fLMdYkci8aOh48aMKTLiEuxb62asxpqEFUv+IL4n4vblMSlEfbm6zE1JAhSiytGfU4gqF473ZqYQ9R7r6TNRiHqWuzizpVXIzt4uNIsuz+6Jrs+e+c/1DDQakRQptriNlWd5ii1uxYtccY5DiJe3NqIQ9ez64Oj6JPCLv/wZt69Zh6/dfpfXAVzpvImTly7i4/o6fHq5HklR0VPdo0KQijeW9XZRiOqt4syXBPRJQKtCdHa1ROfKhfZWKUerW5pQ19aCobGxGbetiIhCVlISspNSpSgVXXNL3S1Fn6uFWbubQM/QIK6LMz57OnG9U3R7iu1uO9E3OjLnVOL1oNjWVmx1Kzs+Y2KRGhMnXyP6U3zOWx4KUXevXI5HAjMJiL/LxLmjp69cQlVTI0zTdi+LCQ3DllWZ8tzRzWnpCDQGEJ+HCFCIeggsh9U9AQpR5ZYAhahy7HU5M4WoG8pus+HmwMDEuZ7daBLneoquz54ezHeu5+R5LuITvslRMXI7I/FVyM/48HDVvGlDIeqG9cEhSGAagR++9RoeKtiCg4XbVMGlqrlRbrH78cU6fNpwCXmpaVOCdP2KJFXE6OkgKEQ9TZjjkwAJqIGArwjRW1jabLjW1YFq0UXaIjpJm9ExODDjtrCgIGQlJktBmpWUjHUrEmH0N6ihLIzBxwh09PejsbcLTV2duNZl3+ZWbHc7W9pPpi0+7JoitrmV8jPefs5nbCxWhEeq5vWglkpEIaqlajFWrRMQ54yea7yG4oZLOHO1Ab0jw1MpiQ91bE5diW2Za6QgjQoJ0Xq6qoqfQlRV5WAwPkSAQlS5YlKIKsdelzNTiDpednGupxSdvd1yq9sWud1tD9p7e2d8Mm76iOIAevsWt9Gy41N8Fb8WW9xqYVsjClHH1wfvJIHFCHzvtZfxzc/fi52b8ha7VbHvn7pcP7HF7gVcutkuzx/NTUlDbmq6vcPGBy8KUR8sKlMiARK4hYDPCtE5ai2kVE1bM6qlIG2SW5FOP4dUnIEmtvbbmDwhSROTIaQpLxJwiIDNhvaBPvs2t91daOzqQGN3l5SfI+OmOYcQ60tIz9SYWKyMjUNqbBzSo2MRx7PdHULu6E0Uoo6S4n0k4GYCNhsutLeh+OplFF+9JDvhJy+x/9Ca5YlyW92tq1YjIz7BzZPrbzgKUf3VnBl7hwCFqHc4zzWLV4XoyKgJ3//Z83jrg2IZy7899Rj277pz3uxfffs4/vWnz8/4/tf+ahceP3RQ/l7D9VYceuoZtN3oumW82d8TN0w/D5Vb5iqz6ChEZ3IXn3Kb6vAUW9z2dMlOT3HO5/Cs7bgmn1xmDJCCU25xG2Xf6jYlJkZucxTs5S1u3b2KKETdTZTj6ZXAt18+gh/seUhulauVS3QziO7RT+rrcOLSRfSPjmBzavpUB2lcWLhWUlkwTgpRnygjkyABEliEgJ6E6GwUwyYTalubcV6cQ9rSgvobbRifts2feLNWiCp5DqnoIk1OwYqISK4pnROwiqNP+nrl9rafic9uNPV0wWQ2z0lHfBhWHHMit7md+hrLc229tJYoRL0EmtOQwCIEOgf68enVyyhpuITKliZYLJapJ+LDwrF14tzRvNSVmmgUUFvBKUTVVhHG4ysEKESVq6RXhejPn31ZZiqEZk/fAL7x9C/wxKGDKMpbPycBIUSLy2rxgycfQ3BQ4Ix7Zj8/+9dCiH7vx8/hh4e/jsz0W7fhoxBVZtHpUYiKcz3benul5Jze7dnS24PuocE5CyG2uF0eESnP8pQdn1H2Tk/R8RkXGuazWxpRiCrz55Kz+haBQ0d+jV9++e+wOW2lphNr7+vFycv1+Li+FqKTNDggALkp6bJ7VJw/6u0zjt0Fk0LUXSQ5DgmQgJoJ6FmIzq6L2WKRUlSeQ9pqP4d0YHR0xm0xYWHYmJiC7OQUZCWmIDM+AX46PGdbzWvaXbGJ14Zi9x8pPnu60dgpvnbID8WKtTLXJdaH6PAU53raOz5jsTImnp3G7irKEsehEF0iOD5GAh4kMGoyofT6FZy+ehmlVxvQP+3f2+CAQGxOX4ntGfatdblbg2OFoBB1jBPvIgFnCVCIOkvMffd7TYgKYXn4R8/hyW8+OiUopwvSuVJaSIjOFp6T3afbCrJk1ymFqPsWiTtH8lkharOhQ57rKbo7u9Dc0zNxrmc3bvT3wWqbvnHWZ0SjQ0LlWZ7ibE9xnosQnylRsUiMitLlJ9coRN35p41j6ZHAX//6l/jTN76NzITlPpf+5ZvtdkF6sRanGuqRHhM31T0qBKlWLgpRrVSKcZIACbhCgEJ0AXo2m9zyVJw/KgSpEKXi9cL0S7xpuyExCRuTU6UgzUpMRKAxwJWS8FkvExBdwWInoEYhPrs65VdR97a+XggpOvsSncPxEZHyyACx3W16XBzSouNkB6hWPwTmZeRen45C1OvIOSEJOEXAZrPJLe1LrlyWP5p6uqeeF00I61ckYVvGGmxdlSn/ruU1NwEKUa4MEvAMAQpRz3B1ZFSvCdG5BOVCwlMEP3vL3Onb5YrvC6H69oclePanT8hcf/bLl/Dj734d0ZHht2ynO327XHEvO0QdWR7uv0frQrRvZFie5WkXn/azPVvFjwXO9RRvaCTJLW5j5Fa3Yous5OgYpEbFIEjjW9y6e4VQiLqbKMfTCwHxYm//v/9PfPqd/y67y/VwlTdek1vsfnyxTp4fUyDPH7V3kK5dvkK1CChEVVsaBkYCJOBGAhSizsHsHR5CVXMjqlubUdPSjGtdHTM+UGnw90dm/HJkyW127Z2kkcEhzk3Cuz1CYHTcJM/zvN7VhcbuDrndrfj1fB+KFW/Cr4iMktvcpsUK+TnxNSYW4mgUXtohQCGqnVoxUhIQBNr7+3C6oR7FVy7LDyVN/3DKioioia1112BTcoouGxTmWyUUovzzQwKeIUAh6hmujozqVSE6XVj+/+ydB3iW1fmHfxlkBwIJO2QzFCSBMK2iAgo4QNRqrdUqaK2iaIertlqprW2trbWL4d4D0L+AgswkjCRsSEJ2GAkJkEXInv/rvBkmYeT95jvO770urig543nu5xjzffd3zhHB9SREOyfQfiTunbdc23Hv6O4D6Xht6WcoLqtQ7hG91J2kQp4WnS7tOH63+GydGj5sY2cCQoimnSyw86j2Ha6+sQHHy0qRX1qqSE/xglY56ra0DJV1XY+3ap9ZvEkh7v4R93gG92u933NY337Krs9AccQtH1UE/L3dUV3fiIucFqVqDDYiAdkIiJ9Lt/73dRx95R/w9fSULX0lXyGE47Na5ei2zCM4WnwG40PClKN1xVfxgRS9PO5uLvDycENlzYXvA9NLnIyDBEiABGwh4Oftjtr6JjQ2XfiUFFvGlqFvTUMdUgrycTj/hCJJ04sKz7tHckhAgHIHqXjjdkxwMIb15e4WR66NqvpaOkHYQQAAIABJREFUZaenEJ/HSlrF57HiYpw5V4ELrXLx+lCcBBQqpGe/QIQF9UdoP3HsbSB6ubk7MlSO7SQCbm6Aj5c7zlXxdzonIec0JGA3AuJnelJuDnblZiE5Lw9Vnd7r8/X0wsSwcEyNHI4pEZHw9fCy27xGHMjX2x0NDc2obzz/dAMj5sOYSUAvBC4fPAS93Pk7oRb1cKoQ7X6npyVCVMAR7Y+eKFLuIBU7TjsL1gsJ085Au7fnD3ItlhsghOjh/HxtJu80a1Nzk7LL83iJEJ6lyotb5UijklIUV567aHyB4v6WQPFCVry4DWr72k/ZAerm6qZ5XkYPwN0VEO+bXeSEYaOnx/hJwO4ETp09i3vfWoHif/7LorGbmlvg5ioOZzPnI3bzbz2Sjo1pqdiSfgTV9fWYEBaOCaGhylfxs1yrR1wJ5+YC8PWkVhXgvCRAAs4gIH6na25p/cPHdgKNzU3IKCzEwRMncPD4cRwsyMfZ6uouA/fx8cHYocGIDglB9LBhGDV4MNz5+sRi+BU1Ncg9c0b5cFVu8RnkFRcj78wZlFRWXnAsD3d3hPTrp9ztGd6/f+ufoCAE9+tH/hbTN1YH8Zu0+H26kT/ojFU4Rovm5ha4mvi1oKUlFu8PHjh+AglZmdiemam8V9j+iF394v+pV48YiWtHjcLgPgGWDm/49vydzvAlZAI6JXDF0KEUohrVxmlC1Jo7RLsz6SxExe7QL9Zs69jxKdpe6k7S7kKUR+Zqs+KcemRuS4siN/PLy1FQVoL88jLlq/jlpuhs+UXv9RR3tIhP8wb37Yuh/YIwNCBAuddTSFAeY+TYdcMjcx3Ll6Obi4DYnfD7Naux97d/NFdiDsjmZHmZcrzuVnH/aHYment5I3pYiHLE7riQUKf+bOeRuQ4oMIckARLQHQEemev4kojTbMTdaIcLTijH7BZVlHeZ1MPNHSMGDcblQ4biiiHDlON2eRfl94jKqipxTHwgtqxY2ekp7vg8UVKMs7U1FyyeeB0oTgASx9yG9uvfetxtv0AM7tMXLuLTTnykI8Ajc6UrOROWhIC471ncOSqO1k0vKujy3qE4eUjcOTolcjhGDw6W4uc/j8yVZOEzTacT4JG5TkfeMaHThGh3Ydm+o/NXD9+JiTGjlIA6H2sr/n3VujjcftM18PbyQPf2QnA+/PRreOW5h5T+3XeIbtiWjKjwYESGDukYW/yD2F0qHgpR5y868elJdzcoRz/VNTbbbRdgRW3N9/d6ivs9lTs+W+/5rG+88PE1bm5uGNy7j3K0rSI8+wUpAjQ4oB8CfHydD4czKgQoRLkQSEAdgfTCk/jXtu+Q8NQL6jqwVRcCGUWFSMhOV47Y3ZmTiagBA1vvHw0OwdjgEIfSohB1KF4OTgIkoBMCFKLOL0R5dTVSCo7jcEE+0k7mI7f4dJc3ccUuFyHwRg8ZptxBevngYAzo3dv5gTp5xjMVFYr0FG9wt54KVIJjpcWoqrvwFTpCGotjbUPF3Z5BQQjtJ04FCsRA/94AxaeTq6fv6ShE9V0fRkcC9iBQWVuriNHEo9nYdzQPNQ31HcP6e4mjdSMwJWI4JoZGwMvDwx5T6m4MClHdlYQBmYQAhah2hXSqEK2prceLr76NdZsTlYy73/nZ/Z5P8e9vffJNB53u7cUu0fuf/PMFv9/9ezfNmNJlNymFqPMWnfjEbH1zNSpqq/HBzl3KsTJXjxiB5mYXuLuo+4VB3OuZX1bWepenuN9TCE9FfJZB/IJysUcciyg+wTVU7PAUwlMI0L59MdC/D1xdXZ0HgTOpIkAhqgoTG0lOYP/xo/hsTyK+Wfy05CTsl/7eY3mIz0pHXMYR7Dt+VLl3tH0HqZCl9nwoRO1Jk2ORAAnolQCFqPaVqa2vx5Gik0gRO0gL85FeWIi6xoYugQX5+WP0kGBFkIqvYYH9jbnbpaUFRefO4ri437O0BMdLzigCVMjPzm9ed05evJEdInZ6tl2FEtImPgUTPiSghgCFqBpKbEMC5iHQ1NyMA/nHlN2j4s/pcxUdyYlNF2OHBCs7R6+MGI4g8SEakzwUoiYpJNPQHQEKUe1K4lQhql2a589MIeq8ajSgBr/67FOs2ru3ddK2CyIfue46zBo9Fp5urReUi18uxFG2QnJ2F58Xu7NF9PPx9FSkZ3BAm/Bs+yp2fHq493JeopzJZgIUojYj5AAmJyB2M25JT8PnDy82eabapdfY1KQcrxuXma5IUnHc7rhhoR2CVNwZbctDIWoLPfYlARIwCgEKUf1Vqrm5GTlnTiH1ZOsxu2knC1Be0/UeUrE78rJBQzF6aDDGDAnGqMFD0MvNXTfJiBxOni3HidLiDvF5rERcjVJ60ZOB+vr4YphyzG2QskNWiE/xJ8DHRzd5MRBjEqAQNWbdGDUJ2ItAXvHp1t2jednIKipE52vTQ4OCMDk8ClPDh2PUoMGGPmGAQtReK4bjkEBXAhSi2q0IClHt2Esxs9gNWlBxCrFLlnyfb5sQ7e3tjfcWLsQr675Vdn2eqjirSNELPe5ubhjSJ6Btt6e42zNQOd5W3PXJF7PmWUoUouapJTOxP4FNaYeRcjIfb9//sP0H54gXJVBWXdUqSDOOICE7A43Nza2CNDgEMcNC0cfbsjdUKUS52EiABGQgQCFqjCqLE3fE7tHU/HykFOYrHwLq/IgdL1H9Byj3pIldpGOGDIO/t/clkyuvPocWl2a4urqgrqERvb384OWu7lSg9oHFa0Lx+lDc69l6zG0pjpWdQUFZGcQHly70iJ2dIYGtsjO0X2Drsbf9guDn1frhWz4kYG8CFKL2JsrxSMC4BM7WVLfK0dxsiBOdOp/IEODtg0lh4t7RKIwPDYe4k9pID4WokarFWI1EgEJUu2pRiGrHXoqZ3d1a8Jf1X+PvGzd+n2+bEBV/8eK8efj6wAHsP3YMLgDEC1nliFux47Ptj/hnccStOHqXj7kJUIiau77MznoCXx/cqxzJ88aPfmr9IOxpFwLi+D0hRrdlpGFHdibE0ezi/tGYYUKQhqGXm9sl56EQtUsZOAgJkIDOCVCI6rxAFwnvXE2NsntUfABL7CQVO0q7f2BVfCB19JDWXaRClIrXauIRL9XO1Z1DyskCxGdm4sDx47j+8stx/Zgx8PfwQR8vv/NmbWhqVGRnu/gUX8VRt4Vnyy/4QVnxanBg7wAM69dP2e0ZGiiOvG3d9elt0rvbjLmS5IiaQlSOOjNLErCUQGNzE/YdO4rE3CwkHc1BaWVlxxDi1AVxNcuU8ChcGTkcfX3P/3+jpfM5uj2FqKMJc3xZCVCIald5ClHt2Esxs6trM95PjMczK1d+n28nIbrspz9FWWUtfD28ERoYqKsjmaQokM6SpBDVWUEYji4IfLp7l/KBkD/eeqcu4mEQXQmkFRYgITMdcZlHsCMnC5cNHtKxe1Tcx9b9oRDlCiIBEpCBAIWoOapc39iAI4WFyu7RlPzjEP/Pq29s7JKcuIvziqHDMGfsFcgrPoO3ExLOS/6jn/0MZefqkFdSrNzv2XrPZwmKKsovCkocUa/s9hS7PvsGIiRQiM9AXolijqVliiwoRE1RRiZBAg4nkHmqULlzVOwezS0+3WW+iKABmBIRhckRURgxcLDDY7FmAgpRa6ixDwn0TIBCtGdGjmpBIeooshxXISCOSqqoK8fI55//nkibEB0SEIB/3XMPfNz1/4koltM5BChEncOZsxiHwDs74jCgdx88N2eucYKWPNLkvBxFjor7R8Uum/HDwpRPAYvjdcODBoBCVPIFwvRJQBICFKLmLXTWqcLWHaSFBUgryIc4Wl48/7n3Xvx9wwbknO76Zq/43oKrr0ZlbS0+3737PDBCcg4LDEKoIj2DMKxvICL6DzAvQGZmGgIUoqYpJRMhAacRKK48h105WUjKy8beY3ld5hVH606NHK7cPSoEqV4eClG9VIJxmI0Ahah2FaUQ1Y69NDOX1pbj0+REvLFpE87V1gItLRgUEICHp03DmKEh8PPwlYYFE700AQpRrhAS+J7Af7ZuxNjgYVh03Q3EYlAC4u6Y7dmZrfePZqUrxx7HhoZhckQ4RgwIxsDefQyaGcMmARIggZ5/p6uua0R9YzNRmZyAuIc0/2wpPN1d8NyqTqcCdco7JCgIP5s2DRtTjig7PsMCgxDcN0g5+pYPCRiVAIWoUSvHuElAHwTEa8V9x48qu0d35WSiQrxf2vZ4uLkjJiS09WjdqBHo4+2jWdAUopqh58QmJiA2kI1RThTj9YBalJlCVAvqks3Z0tKCU5UlCPT3wYbUVDQ3NSHIzw/Nza7ofYG7ZCTDw3Q7EaAQ5XIggVYCr25Yi5mXjcFPr5xGJCYiUCI+EZybie3Z6dh05AhcXVyUnaPRwa33j4pjB/mQAAmQgBkIcIeoGapoWQ6NLXX42fvvorD8/GNwfzR5Mu6aMBle7t6WDcrWJKBjAhSiOi4OQyMBAxI4UliAxLzWo3WPlxR3yUAcpyt2j04Ki3T6KQoUogZcTAxZxwSaUFlfA3d3V/T19sbQvoFwd3WHhyvfC3Jm0ShEnUmbc8HVtQUpBQVobOKnxbkczidAIcpVQQLAkrWr8eNJP8Bt4ycShwkJeLi7wt/HHSUV9ThacgYJWRnKEbvbszMwqHdAx/2jQpS6ubqakABTIgESkIEAhagMVe6a49nac1i9b/cFj8Vdcf/9CO7TX1yoIh8YZmxaAhSipi0tEyMBzQkUn6vAztwsJOZk4dDJfDQ1NXXENMC/t3KkrvgTE+z414wUopovBwZgEgINzfVIL8rHO9u340hhoZJV1KBBeHLmTGVDhL+Hv0ky1X8aFKL6r5GpImxoaoL41BMfErgQAQpRrgvZCTy7+lM8OWM2bhg9VnYUps2/sxDtnmRKwQnl7tG4zHTszMnEFUOHdewevWzwENMyYWIkQALmI0Ahar6a9pSROPqrorYC36YcRnxmJrJPncLUqCjceMUVGBscwk++9wSQ3zccAQpRw5WMAZOAIQnU1tdjz7Fc7MrNwu6jua1XkbU93r08MD4sHFPCojAlIgp+DjhxiELUkMuGQeuQQHVjFZ789BOcKCn5PjqX1iNz8//2GlyaPXUYtTlDohA1Z111mxWFqG5Lo4vAKER1UQYGoRGBxz99D3+e/yPlKBw+5iVwKSHaPWvxolfcPyokaXpRIWJDwpQ3lcXuUXEHGx8SIAES0CsBClG9VsaxcQkpWlVXjV7urqhtbIArXOHp7gE3F3fHTszRSUADAhSiGkDnlCRAAkg5eaLt3tFsFJSXdiFy+eBgRYxODo9EiJ1eL1KIctGRgPUETlWcRVlVFRqbG9HP3wsL33mn62BtQvRfP/4x7p54FeoaeKKm9bTV96QQVc+KLe1AgELUDhBNPASFqImLy9QuSWDheyvw7gMPY7RyqTofMxOwRIh25lBTX48EsXs0Kx3xmekor6nGuE73j/b35/EqZl43zI0EjEaAQtRoFbN/vC4uLmhpabH/wByRBHRCgEJUJ4VgGCQgMYGiirPYlZOJXTlZSCssQFPz9zJlcJ8ATI4YjinhURgzNNjq61goRCVeYEz9ggSq6+tRWlmJsupKlFRXKsKzpPIcyqqrUFol/ojvVXXZzX3lcHEHcBhe37ix65htQvTha67Bs3PmwsOVu0SdsewoRJ1BmXN0EKAQ5WK4FAEKUa4PGQncveLf+Gbx09zxJ0nxrRWi3fGcPlehCNJtGa33j3q6uys7R6ODQ5Wvvp78RVqSJcU0SUCXBChEdVkWBkUCJGBHAhSidoTJoUiABGwmICRNcl42duVkY8+xHIh/b398PDwwITQSE8MicGXUCIh/V/tQiKolxXZGJ1BWVYmSqiqUV1d1iE4hN0uE4GwXnVVVqG9qVJ1qP18/9PPxRT8/P7w47xbM//e/Ud/YqX+bEN3x3HOIChqGxibuEFUN14aGFKI2wGNXywlQiFrOTKYeFKIyVZu5ip+Hty99HXuffxmBftzdJ8uKsJcQ7c4r98xpRZBuzUjDzpwsBPftp9w/Oi4kTBGkfEiABEjAmQQoRJ1Jm3ORAAloQYBCVAvqnJMESEANAbFTNKUgH4l52UjMyUJRRXlHNzdXV+VkKnG07tTIERjUu88lh6QQVUOcbfRKoKGpUZGcQnYqUlPs6lR2d7bu5Gzf0Xm2phrNKk828XLvhb6+vujn649+vr7o6+OLQCE+/fzQ18cHQoL29fFDgLc30CY8BZ+ztRVYvX8vPk9O/h6XiwuuGTECy396P/x69dYrRtPFRSFqupLqOyEKUX3XR+voKES1rgDndxaBipoa3PPWf5H58t/g6d7LWdNyHh0QcJQQ7Z7awRPHlLtHxQ5S8UJ43DAhRlvvHx0xcLAOSDAEEiABMxOgEDVzdZkbCZCAIEAhynVAAiRgFALHS0uUe0cTc7OQXnSyi/gZ1rcfJot7RyOiMHpwMMSR950fClGjVFmuOCtra1FaLURnVevRtUJudhxjW4Wyykrl+1V1darAiFXv7+WtCE5FaArB2fbP7Ts8+3q3fs/bgh3WnScX/2lV1VehvKYKcRkZQEsLfjhpEq4IDkZzYy++N6iqUvZpRCFqH44cRSUBClGVoCRtRiEqaeElS7uovAxPfvER0l76q2SZM11BwFlCtDvt7VkZiMs8okjS3OLTiiCNHhaifBW7SfmQAAmQgD0JUIjakybHIgES0CMBClE9VoUxkQAJ9ERAiKREIUePZmPf0TzUNHx/tG5vLy9MCI/E1PAoTAiNgJeHByhEeyLK79uLQHNzM8prqtvu4Gz92uVP2x2dQoKKnZ9qHjc3N/Tz9kFfP3F0bZvk9PNv/TtfPwS27fAU/yx2TzvnaUZtUz2G9x8Af09fuLtxk4RzuH8/C4Wos4lLPh+FqOQLoIf0KUS5PsxOIPf0Kfxp/ddI/s0fzJ4q87sIAa2EaOdwxIvghGwhSNOQkJWByro6jBP3jw4LVb6KTz3yIQESIAFbCFCI2kKPfUmABIxAgELUCFVijCRAApciII7WPZB/TNk9Kv6cPlfR0dzdzQ1jhw7DNaNGYUp4FHp7+RImCVhFoL6x4fvjaYXUFHd0Vp5DeeX3d3WKI2wtObZW3IMrjqXtuqPTD4E+vm3H2bbe3ekvjq3V6XPZoCHo5e6u0+jMHRaFqLnrq7vsKER1VxJdBUQhqqtyMBg7E0g9mY8VCVux5VfP23lkDmckAnoQot15FZ4th9hBKu4f3ZGTCT9PT4wV94+2HbPr1cvDSIgZKwmQgA4IUIjqoAgMgQRIwKEEKEQdipeDkwAJaEAgr/h06+7R3GxknSpES6cYwgKDMDliuCJHRw0a3OVuRA1C5ZQ6IHCupqbj2Fqxk7Ok7V5OcV9n+/2c4jjb6vrvdyFfKmxXFxf0ETs326RmoLiH088XgWJHp/g75a7O1mNrPUxw9RSFqHaLmEJUO/ZSzkwhKmXZVSdNIaoaFRsajMCeo7n48sAerHns1waLnOHam4AehWj3HDNPFSo7R7dlpGFnbhYiggYonw4eFxKmiFI+JEACJNATAQrRngjx+yRAAkYnQCFq9AoyfhIggUsRELv1hBjdcywHu/PyUNfY0NFciKmJYRGYEjkc40PCePehiZaS2DUsdmu2Sk1xP6fYxVnVej+nIj0rlfs5y2qq0djUpCpzDzf3jl2bfX18FKHZ+Y9YT2KnZ4C3D1yddmytqtAd2ohC1KF4Lzk4hah27KWcmUJUyrKrTppCVDUqNjQQgfjMdOzMycTHDz1moKgZqqMIGEGIds9977E8JGSlY1vmEew5mofY0FYxKo7XjRowyFGoOC4JkICBCVCIGrh4DJ0ESEAVAQpRVZjYiARIwOAExB2ilbX1SMzJRWJuFpKO5ihyrP0Rsit6WAimRAzH1Igo5V5GPvojUFtfj9Lqyq47OquE5Gw9wra08pzyzxW1NV12Bl8qE19PTwT6+rXKTmUHpx8CxV2d4u+U42zFVx/4eXnpD4gOIqIQ1a4IFKLasZdyZgpRKcuuOmkKUdWo2NAgBNanHET2mVNYfu+DBomYYTqagBGFaGcmzc3NbfePHoGQ/SfKSjEuJBTRwa33jw4J6OtohByfBEjAAAQoRA1QJIZIAiRgEwEKUZvwsTMJkIBBCAghWt/QhNqG5o6Is04XITEnC0l5Ocg5c6pLJlH9B2JyRBSmRETxw7OOrnFLC87W1rTu5qyubt3FKXZ0totO5e9bpWdNg/pjawOE4PT2RT8/ITRbZaf4Z0V++rQKUCE+3V3dHJ2hqcenENWuvBSi2rGXcmYKUSnLrjppClHVqNjQAAS+3L9HuRT+73f+xADRMkRnETC6EO3OSaxxcbxuXOYRZRdpfVMTYoJDEDMsVPkT4OPrLLSchwRIQEcEKER1VAyGQgIk4BACFKIOwcpBSYAEdEbgQkK0c4hCxu3MyUJiXjYOnjiOhqbGjm8LaTY5XMjR4cqHaCnQ1BVXHEUrJGZZTVXHXZwlYgenckdn6zG24o5O8VUccavm8XTvpRxL27pzs/UeTiE5FdnZ8fd+6OPtDRcXFzVDso2NBChEbQRoQ3cKURvgsavlBChELWcmUw8KUZmqbe5cP0raAc9evbBk7h3mTpTZWUzAbEK0O4D8slJsz87A1vQ07MjJVI7IGdu2e1QIUg93d4uZsQMJkIDxCFCIGq9mjJgESMAyAhSilvFiaxIgAWMS6EmIds5K3DO671geEnOykXw0B+U11R3fFkJO3Dc6OTIKU8Kj0Mfbx5hAbIi6WhxbW1WJ8upKlAixKe7kVHZxVin3coq7OsurKlFRW6tqFqEt/b280Ffs3vTxg9jZGajs5vRXdnYGtolOcYyxj4eHqjHZyHkEKESdx7r7TBSi2rGXcmYKUSnLrjppClHVqNhQxwRWJGxFaGAQfn3DTTqOkqFpRcDsQrQ71yOFBcoOUnH/6K6cLIwYOKjj/tExQ4dpVQbOSwIk4GACFKIOBszhSYAENCdAIap5CRgACZCAEwhYIkS7hNPSgvSiQuzKE0frZuNYcXHHt4XIGzFosLJzdEp4JMKCBjghE8dM0SKOra2paduxWans4Gy9k1P8c9u/t+3mFMJYzePm5oa+3j6tuzjb7uEUXzvu6xR/L+7s9PWDm6urmiHZRocEKES1KwqFqHbspZyZQlTKsqtOmkJUNSo21CmBN7ZswMSwCDw8bYZOI2RYWhOQTYh25737aA7ihSDNSMPB/OOIDQlrE6RhiOhv3BfCWq8rzk8CeiNAIaq3ijAeEiABexOgELU3UY5HAiSgRwJWC9FuyRSfq8DO3Czl7tFDJ/PR1NTU0WJA7z6KGJ0cMRzRwSEXlHxV9dVogTgetgVNzS3w7uUFDzfH7XpsbG5CibiTUzmitm0np5CcYjdnu/CsETs6q9Dc0qKqdGKXprhSRhGd4ujajiNrW4+xFXdziu/19vQCeGytKqZGbkQhql31KES1Yy/lzBSiUpZdddIUoqpRsaEOCfz5269x09hxuGfyD3QYHUPSCwHZhWjnOojfCcS9o+L+0fisdJyqONtx92hMcCgG9QnQS9kYBwmQgIUEKEQtBMbmJEAChiNAIWq4kjFgEiABKwjYS4h2nrq2vh67j+UiMTcLu4/m4lynI2KFNBwfEq7sHp0cHgl/b29U1VciMS8H8RkZ2HvsGK4dORIzR4/GyAGD4OVu2dG7VXV1bfdwtu/gbPvafi9n2w7PSpXH1rq6uKC3l3fbTk5xXK2fIjbFbs72XZztd3aKY4P5kEA7AQpR7dYChah27KWcmUJUyrKrTppCVDUqNtQZgRf+byUe+ME1mBcTq7PIGI7eCFCIXrwi4kih9vtHt+dkAi0trbtHQ8IgBGlvb2+9lZPxkAAJXIQAhSiXBgmQgNkJUIiavcLMjwRIQBBwhBDtTFYcOZtamK/sHE3Ky0F+WWnHt4VsfHDaNcpmyWXbtp1XkH//5CcI6zsQLnDF2ZpqlFZXt97LWV2pHFkrdnKKOzqVXZ5CdFZVor6pUVVhe7m5t+3Y9G0Vmz5+CBQ7OpUjbMVOztbdnAHePnDlsbWqmLJRVwIUotqtCApR7dhLOTOFqJRlV500hahqVGyoIwJPrfwYz86+BdeNGq2jqBiKXglQiKqvzLGSYmzPysDWzDTszMlEf7/ebYI0VBGk7m5u6gdjSxIgAacSoBB1Km5ORgIkoAEBClENoHNKEiABpxNwtBDtnlDh2TLszBFH62Yj5eQJ/OPuu7EiLg5pJ0+el/ttsbEYEhCAf2/erJqLj6enIjhbj61tvYdT7OoM9BE7O8Xftd7d6eflpXpMNiQBawhQiFpDzT59KETtw5GjqCRAIaoSlKTNKEQlLbyB037043fwjx/+BBPDIw2cBUN3JgEKUetpp57MV47Y3ZpxBLtyszB68FBEDwtVjtm9fPBQ6wdmTxIgAbsToBC1O1IOSAIkoDMCFKI6KwjDIQEScAgBZwvRzknUNTSgoOIMFn34wQVzEzs2n7z+evzuyy+VXZvKzs0u93K27uhsv59THGMrdn7yIQE9EKAQ1a4KFKLasZdy5sbGRqQVnf+pHilhMOnzCFCIclEYicD97y7Dxw8uwqhBQ4wUNmPVmACFqP0KkJibjW0ZaUjIykBe8WlcGTUC86JjERoYZL9JOBIJkIBVBChErcLGTiRAAgYiQCFqoGIxVBIgAasJaClERdA1jdX47ZerLrpD9LbxExDoE2B1fuxIAloREB/q5qlX2tCnENWGu7SzcoeotKVXlTiFqCpMbKQDAj9c9ga2/PI3GNq3nw6iYQhGIkAh6phq1TY0YOXeJCyL36J8MnhezHhMDOPObcfQ5qgk0DMBCtGeGbEFCZCAsQlQiBq7foyeBEhAHQGthWhFbSW2ZKRe8g5RN1fu+lRXTbbSEwHuENWuGhSi2rGXcmYKUSnLrjppClHVqNjFLHYHAAAgAElEQVRQIwJCuty+9HWk/P4v6OPto1EUnNbIBChEHV+9+Mx0/C9uE3LPnMa8mFjcPHac4yflDCRAAl0IUIhyQZAACZidAIWo2SvM/EiABAQBrYWoiwtQ1VCFxNwcxGdkYO+xY7h25EjMvHw0RgwcBG93vi/DlWpMAhSi2tWNQlQ79lLOTCEqZdlVJ00hqhoVG2pAoLSqEgvfW4HMl1+Dm6urBhFwSjMQoBB1XhVzi09jWdxmfJK8C7eOi8WtMRMQ5OfvvAA4EwlITIBCVOLiM3USkIQAhagkhWaaJCA5Aa2FaDv+qvpqtKAZQAuamlvg3csLHm4ekleH6RuZAIWodtWjENWOvZQzU4hKWXbVSVOIqkbFhk4mUFBWimdWf4pDL/7ZyTNzOrMRoBB1fkUbm5qwPGELlidshXjRMTd6PEYPCXZ+IJyRBCQiQCEqUbGZKglISoBCVNLCM20SkIyAXoSoZNiZrgQEKES1KzKFqHbspZyZQlTKsqtOmkJUNSo2dCKBrFOF+NvGb7Dr2ZecOCunMisBClFtK7v20H4sjduE6vp6zI2OxfRRl2sbEGcnAZMSoBA1aWGZFgmQQAcBClEuBhIgARkIUIjKUGXmqAUBClEtqLfOSSGqHXspZ6YQlbLsqpOmEFWNig2dROBQ/nG8tysBG3/xnJNm5DRmJ0Ahqo8KHzxxDP+L24z4rHTcGiOO042FVy8euaSP6jAKMxCgEDVDFZkDCZDApQhQiHJ9kAAJyECAQlSGKjNHLQhQiGpBnUJUO+oSz0whKnHxVaROIaoCEps4jUBSXja+STmILx/5hdPm5ETmJ0Ahqq8ai7uBxT2jb+7YhutGXIZ5MRMQGhikryAZDQkYkACFqAGLxpBJgAQsIkAhahEuNiYBEjAoAQpRgxaOYeueAIWodiXiDlHt2Es5M4WolGVXnTSFqGpUbOhgAlsz0rDnaC4+WPiog2fi8LIRoBDVb8U/StqBZfGb0cfbB/OiYzEpPFK/wTIyEtA5AQpRnReI4ZEACdhMgELUZoQcgARIwAAEKEQNUCSGaEgCFKLalY1CVDv2Us5MISpl2VUnTSGqGhUbOpDAusP7caK0FP+95wEHzsKhZSVAIar/yidkpSvH6WafLlKO0r157Hj9B80ISUBnBChEdVYQhkMCJGB3AhSidkfKAUmABHRIgEJUh0VhSKYgQCGqXRkpRLVjL+XMFKJSll110hSiqlGxoYMIfLE3CXWNjfjr7Xc7aAYOKzsBClHjrIC84jNYFr8JHyftwq3jxD2jExDk52+cBBgpCWhIgEJUQ/icmgRIwCkEKESdgpmTkAAJaEyAQlTjAnB60xKgENWutBSi2rGXcmYKUSnLrjppClHVqNjQAQTe35WgHJX5u5vnO2B0DkkCrQQoRI23EhqbmrAiYSuWJWzBZYMGY250LEYPCTZeIoyYBJxIgELUibA5FQmQgCYEKEQ1wc5JSYAEnEyAQtTJwDmdNAQoRLUrNYWoduylnJlCVMqyq06aQlQ1Kja0M4GlcZsxfOAg/GLmHDuPzOFIoCsBClFjr4i1h/ZjadwmVNfXK2J0+qjLjZ0QoycBBxGgEHUQWA5LAiSgGwIUoropBQMhARJwIAEKUQfC5dBSE6AQ1a78FKLasZdyZgpRKcuuOmkKUdWo2NCOBP6x6VtcFTUCC6+6zo6jcigSuDABClFzrIyDJ45hafxmxGWmK/eMij9evTzMkRyzIAE7EKAQtQNEDkECJKBrAhSiui4PgyMBErATAQpRO4HkMCTQjQCFqHZLgkJUO/ZSzkwhKmXZVSdNIaoaFRvaicAfv/kKt4+fhDsnTLHTiByGBC5NgELUXCuktKoSy+I2480d23DtiMswLyYWYYH9zZUksyEBKwhQiFoBjV1IgAQMRYBC1FDlYrAkQAJWEqAQtRIcu5FADwQoRLVbIhSi2rGXcmYKUSnLrjppClHVqNjQDgSe/+pzPHLNDNx4xTg7jMYhSEAdAQpRdZyM2Orj5J2KHPX38sa8mPGYHB5lxDQYMwnYhQCFqF0wchASIAEdE6AQ1XFxGBoJkIDdCFCI2g0lByKBLgQoRLVbEBSi2rGXcmYKUSnLrjppClHVqNjQRgK/+PxDvHjzfEwbcZmNI7E7CVhGgELUMl5GbL09KwP/i9uErNNFmBcdi1uixxsxDcZMAjYRoBC1CR87kwAJGIAAhagBisQQSYAEbCZAIWozQg5AAhckQCGq3cKgENWOvZQzU4hKWXbVSVOIqkbFhjYQePiDt/Dfex7AuJAwG0ZhVxKwjgCFqHXcjNjraMkZZcfoh0k7MH/cBMyLnoD+/v5GTIUxk4DFBChELUbGDiRAAgYjQCFqsIIxXBIgAasIUIhahY2dSKBHAhSiPSJyWAMKUYeh5cAXIkAhynVxKQIUolwfjiZw79v/w+qfP4nIAQMdPRXHJ4ELEqAQlW9hNDU3Y0XCFiyL34KRAwcr94yOHhIsHwhmLBUBClGpys1kSUBKAhSiUpadSZOAdAQoRKUrORN2EgEKUSeBvsA0FKLasZdyZgpRKcuuOmkKUdWo2NBCAi0tLbh96T+x/ekXMKhPgIW92ZwE7EeAQtR+LI040rrDB7A0bhMq62qV43SnjxptxDQYMwn0SIBCtEdEbEACJGBwAhSiBi8gwycBElBFgEJUFSY2IgGLCVCIWozMbh0oRO2GkgOpIUAhqoaSvG0oROWtvSMzr6qrwx3L/onMP7wGX09PR07FsUmgRwIUoj0ikqLBofzjWBq3GVsz0tqO042Ft4eHFLkzSTkIUIjKUWdmSQIyE6AQlbn6zJ0E5CFAISpPrZmpcwlQiDqXd+fZKES1Yy/lzBSiUpZdddIUoqpRsaFKAmfOncMjH72NzJdfU9mDzUjAsQQoRB3L12ijl1VVYWn8Zry1fRuuGTFKOU43LLC/0dJgvCRwHgEKUS4KEiABsxOgEDV7hZkfCZCAIEAhynVAAo4hQCHqGK5qRqUQVUOJbexGgELUbihNORCFqCnLqllSx0rO4IWvV2H/7/6kWQycmAS6E6AQ5Zq4GIGPk3diWdxm9Pb2xtzo8ZgcHkVYJGBYAhSihi0dAycBElBJgEJUJSg2IwESMDQBClFDl4/B65gAhah2xaEQ1Y69lDNTiEpZdtVJU4iqRsWGPRDIKDqJN7Z+h4SnXiArEtAVAQpRXZVDl8Fsz8rA/+I2Iet0kXLP6C3R43UZJ4MigUsRoBDl+iABEjA7AQpRs1eY+ZEACQgCFKJcByTgGAIUoo7hqmZUClE1lNjGbgQoRO2G0pQDBfj2QmVtExqbmk2ZH5NyDoH9x4/ik927sP6JZ5wzIWchAQsIUIhaAEvypkdLzmBZ3BZ8mLQd82MmYF7MBPT395ecCtM3CgEKUaNUinGSAAlYS4BC1Fpy7EcCJGAkAhSiRqoWYzUSAQpR7apFIaodeylnphCVsuyqk6YQVY2KDS9CYGdOJjanp+KLh58gIxLQJQEKUV2WRddBNTU3Y0X8FixL2IKRAwcrx+mOGTpM1zEzOBKgEOUaIAESMDsBClGzV5j5kQAJCAIUolwHJOAYAhSijuGqZlQKUTWU2MZuBChE7YbSlANRiJqyrE5LamPaYaSczMc79z/stDk5EQlYSoBC1FJibN+ZwLrDB5R7Rs/V1WBudCxmjBpNQCSgSwIUorosC4MiARKwIwEKUTvC5FAkQAK6JUAhqtvSMDCDE6AQ1a6AFKLasZdyZgpRKcuuOmkKUdWo2LAbgTUH9+LUuQq88aOfkg0J6JoAhaiuy2OY4A4XnMDSuE3Ykp6GW2NileN0fTw8DBM/AzU/AQpR89eYGZKA7AQoRGVfAcyfBOQgQCEqR52ZpfMJUIg6n3n7jBSi2rGXcmYKUSnLrjppClHVqNiwE4HPdieiGS14Zf5d5EICuidAIar7EhkqwLLqKiyP34I3t2/F1cNHYV50LMKD+hsqBwZrTgIUouasK7MiARL4ngCFKFcDCZCADAQoRGWoMnPUggCFqBbUW+ekENWOvZQzU4hKWXbVSVOIqkbFhm0E3t6xDQP9++C5G+eRCQkYggCFqCHKZMggP0neiWXxW+Dn6aXcMzolIsqQeTBocxCgEDVHHZkFCZDAxQlQiHJ1kAAJyECAQlSGKjNHLQhQiGpBnUJUO+oSz0whKnHxVaROIaoCEpt0EPjP1o24YugwPDb9BlIhAcMQoBA1TKkMG+j27AwsjduMjKKTmBcTq9w1yocEnE2AQtTZxDkfCZCAswlQiDqbOOcjARLQggCFqBbUOacMBChEtasyd4hqx17KmSlEpSy76qQpRFWjkr7h375bh+mjRuP+K6dJz4IAjEWAQtRY9TJytMdKirEsfjPe37Udt42boMjR/v69jZwSYzcQAQpRAxWLoZIACVhFgELUKmzsRAIkYDACFKIGKxjDNQwBClHtSkUhqh17KWemEJWy7KqTphBVjUrqhkvWrsbdk67E7eMnSc2ByRuTAIWoMetm5Kibm5uxImErliVswYgBg5TjdMcMHWbklBi7AQhQiBqgSAyRBEjAJgIUojbhY2cSIAGDEKAQNUihGKbhCFCIalcyClHt2Es5M4WolGVXnTSFqGpU0jZ8dvWneHLmbNxw+VhpGTBxYxOgEDV2/Ywe/TeHDyjH6Z6rrcHcmFjMGDXa6Ckxfp0SoBDVaWEYFgmQgN0IUIjaDSUHIgES0DEBClEdF4ehGZoAhah25aMQ1Y69lDNTiEpZdtVJU4iqRiVlw8Wfvo8/3XonrowaIWX+TNocBChEzVFHo2dxuOAElsVtwub0NNwaE4t5MRPg4+Fh9LQYv44IUIjqqBgMhQRIwCEEKEQdgpWDkgAJ6IwAhajOCsJwTEOAQlS7UlKIasdeypkpRKUsu+qkKURVo5Ku4cL3V+Dt+x7CFcEh0uXOhM1FgELUXPU0ejZl1VVYHr8Fb27fimnDR2FudCzCg/obPS3GrwMCFKI6KAJDIAEScCgBClGH4uXgJEACOiFAIaqTQjAM0xGgENWupBSi2rGXcmYKUSnLrjppClHVqKRqePeKf2Pd4qcQFsg36aUqvEmTpRA1aWFNkNanu3cpx+n6eXoqYnRKRJQJsmIKWhGgENWKPOclARJwFgEKUWeR5jwkQAJaEqAQ1ZI+5zYzAQpR7apLIaodeylnphCVsuyqk6YQVY1KioaNTU24fek/sef5PyDQz1+KnJmk+QlQiJq/xkbPcHt2hrJrNK2wAPOixXG6sUZPifFrQIBCVAPonJIESMCpBChEnYqbk5EACWhEgEJUI/Cc1vQEKES1KzGFqHbspZyZQlTKsqtOmkJUNSrTN6yoqcGP3/oPMv/wGrx69TJ9vkxQHgIUovLU2uiZHi8txrL4LXh3ZzxuGzdBuWd0gH9vo6fF+J1EgELUSaA5DQmQgGYEKEQ1Q8+JSYAEnEiAQtSJsDmVVAQoRLUrN4WoduylnLmxsRFpRSelzJ1J90yAQrRnRjK0OFVxFk989j7SXnpVhnSZo2QEKEQlK7gJ0m1pacGKhK1YFr8ZUQMGKsfpXjF0mAkyYwqOJEAh6ki6HJsESEAPBChE9VAFxkACJOBoAhSijibM8WUkkHoyH9NHjcbA3n1kTF/znClENS+BXAFwh6hc9bY0WwpRS4mZr33emVN4+Zv/w+7nXzZfcsyIBABQiHIZGJnAtykHsTRuE87W1GBe9HjMuGyMkdNh7A4kQCHqQLgcmgRIQBcEKER1UQYGQQIk4GACFKIOBszhpSPw3s54ZJ05hf979JdwcXGRLn89JEwhqocqSBQDhahExbYiVQpRK6CZqIv4hNTyhC3Y+qvfmigrpkICXQlQiHJFmIFASsEJZcfoxiMpmB8zQdk16uvpaYbUmIOdCFCI2gkkhyEBEtAtAQpR3ZaGgZEACdiRAIWoHWFyKKkJnD5XgZfWrMaPJk7BoutukJqF1slTiGpdAcnmpxCVrOAWpkshaiEwEzXffTQHXx3YizWP/dpEWTEVEjifAIUoV4WZCJRXVysfZHkzYSuuihqJeTHjER40wEwpMhcrCVCIWgmO3UiABAxDgELUMKVioCRAAjYQoBC1AR67kkAbgW8OH8DKfcn4cOGjGDVoCLloTIBCVOMCyDY9hahsFbcsXwpRy3iZpXVCVjq2Z2fik4ceM0tKzIMELkqAQpSLw6wEPtu9C0vjN8PXw1PZMTolIsqsqTIvFQQoRFVAYhMSIAFDE6AQNXT5GDwJkIBKAhSiKkGxGQlcgEBLSwuWrPsSw/sPwp9v/xEZ6YQAhahOCiFLGBSislTaujwpRK3jZuReG1IPIfNUIVbc95CR02DsJKCaAIWoalRsaFACO7IzleN00woLMC86FvNiYg2aCcO2hQCFqC302JcESMAIBChEjVAlxkgCJGArAQpRWwmyv6wExEl4L3y9Cu8veAQzRo2WFYMu86YQ1WVZzBsUhah5a2uPzChE7UHROGN8uX83ymtq8I87f2KcoBkpCdhIgELURoDsbhgCx0uLsSx+C97dGY/bxk1UxOgA/96GiZ+B2kaAQtQ2fuxNAiSgfwIUovqvESMkARKwnQCFqO0MOYJ8BP6zdSOq6uuUI3L56I8Ahaj+amLqiChETV1em5OjELUZoWEG+ChpJzzd3bFk3h2GiZmBkoA9CFCI2oMixzASAXFM0IqErYocjRowEHOjx+OKocOMlAJjtYIAhagV0NiFBEjAUAQoRA1VLgZLAiRgJQEKUSvBsZuUBPKKT+P3a1bjlzPn4N6pV0vJwAhJU4gaoUomipFC1ETFdEAqFKIOgKrDIcUb4yH9AvHUrJt1GB1DIgHHEqAQdSxfjq5vAt+mHMTSuE04W1ODedHjMeOyMfoOmNFZTYBC1Gp07EgCJGAQAhSiBikUwyQBErCJAIWoTfjYWSICX+xNgrg+RuwKHRLQV6LMjZeqU4VoTW09Xnz1bazbnKiQ+sPTC3DbjdMuSm31N/H43V/f7vL9hXffiF8+fKfydznHTuLhp19D4amSS463+0A67n/yz3j39WcxMWaU0vZkSY3xqmWCiClETVBEB6ZAIepAuDoZ+o3NGzAhLBw/v2amTiJiGCTgXAIUos7lzdn0SSCl4IRyz+h3aSmYP26Ccteor6enPoNlVFYRoBC1Chs7kQAJ6JCAOOnAxcXlvMgoRHVYLIZEAiRgdwIUonZHygFNRuBcbS2WrP0S14wYhd/cOM9k2ZkzHacK0b8v+1yhKIRm2dlzeOTZf+BXD9/ZISm7IxZCNHFvGl56agG8vTy6fLt7/4uN1y5DRWcKUe0XcWNjI9KKTmofCCPQJQEKUV2WxW5B/WX9GswZE42fTLnKbmNyIBIwGgEKUaNVjPE6ksDZmmosj9+CN7dvxZWRIxQxGtF/gCOn5NhOIkAh6iTQnIYESMBhBNYe2ofP9yQh0M8PT8+6BYP7BHSZi0LUYeg5MAmQgI4IUIjqqBgMRXcEtmWk4X9xm/HBgkcwISxCd/ExoAsTcJoQFcLyuT+twFOP/giRoUOUaDoL0guFdykhKnaHPv/KCvzxuYeU8dp3n06Jvbxj16lo8+p/P8XTi+7Gb15Z0UW+coeoNv9JcIeoNtyNMiuFqFEqZXmcL369EvdfOQ3zYiZY3pk9SMBEBChETVRMpmJXAp/vScTSuM3w9vBQ7hmdGjHcruNzMOcSoBB1Lm/ORgIkYB8CTc3NWLUvGZ/s3oW7J07FY9fdgNLqKjzw7jLcOCYa88dN7JiIQtQ+zDkKCZCAvglQiOq7PoxOOwKvbliL3t4++M+P79cuCM5sFQGnCdHuAlNEeynh2f79zkfmdj4uV3xfCNVvtiRh2V9/pSQv5Ocrv3kIffv4K8fptgvTfgH+5+1GpRC1ar3Y3IlC1GaEph6AQtSc5f31yo/x7OybMX0U74ozZ4WZlSUEKEQtocW2MhLYmZOlHKebejJf2TE6LyZWRgyGz5lC1PAlZAIkIBWBc7U1WLk3GSv3JSsS9PHpN8DHo+tR7kvWrsb2rAw8O2cugvz8QSEq1RJhsiQgLQEKUWlLz8QvQkBc//LC16vw2g/v4WtVg64SpwrRzsJSjRDtzLT9SNw7b7m2YweoOA73taWfobisQrlHtP1O0u67US90nG5xRZ1BS2bssIUQTTtZYOwkGL3DCPh7uaO6vglNzS0Om0MMfP4NMA6dTurBH3r/bfzr7nsxOSJSag56S76lBbjAVUh6C9OU8bi7ucLH0w0V1Q2mzI9JkYC9CBwvLcF/t27Cm9vjcEfsRNw2bgIG9u5jr+E5joMJ+Hq5o66hCY1Njv2dzsFpcHgSIAGTEyg8W64cixuXmY5fXj8Hi66becmM9x7Lw31vL8NdEyZj/vhY+Hi5o7K60eSUmJ7ZCPC1oNkq6th8xM+5hoZmNDQ1O3Yiju4UAvzN3DbMbyVsQ07xaXz28GPw8/SybTD21oyAU4Vo5yNuRcY97RDtTkW0P3qiSLmDtP043PYdoZ2FafToKDz89GuKJO3+tN8jWt/AH+RarDohRA/n52sxNec0AAF3N0D8jiV+QedjfAK3/fffWLP4CYwZGmz8ZEyWQVNLC9xoRDWpqqsL4ObmgoZG/qDTpACc1JAE3ti0Ef/cvBEjBgzEDydMxLiQUEPmIVPQ/J1OpmozVxIwHoHMU0X4OCkRRwpP4tkbb8KCq6ZZlMQvPv0Yu4/m4ZXbboefp7dFfdmYBLQmwNeCWlfAWPOL3+nEnoVmvo1urMIxWrsSKCwvx9MrP8eCq67Gr2bNtuvYHMz5BJwmRK25Q7Q7js5CVOwO/WLNNrz01AJ4e3koTS92J+mFdojyyFznLzYxI4/M1Ya7UWblkblGqVTPcd657A1s+uVvENy3X8+N2YIEJCLAI3MlKjZTtTuB9SkHsTR+M8qrqzA3OhYzL+NR7HaHbKcBeWSunUByGBIgAbsSOJx/HKv270ZFTQ2emDEbt0SPt3r83Uez8cC7y3Hf1GmYPXqs1eOwIwmQAAnomQCPzNVzdRibMwisPbQfXx3Ygw8XPooRAwc7Y0rO4WACThOiIo/OwvJCklJ8v+h0qSI5xbNqXRxuv+kaRXh2by92iIpdoK889xAmxozq+H7nI3Xb2VGIOngVWTA8hagFsCRsSiFq/KLXNTbgtv+9jsMv/gUBPj7GT4gZkICdCVCI2hkoh5OSgLhfVNwzuiH1MObHiHtGJ8DXs+tdb1KC0VHSFKI6KgZDIQESQGJutnI/qK+HJ56YMQvXjrzcZirubi7o6++J+998G1mni/Dc7Lnw9mj9sD4fEiABEjALAQpRs1SSeVhKoKm5GUvWfolRg4fglfl3Wdqd7XVMwKlCtKa2Hi+++jbWbU5UkLTf+dnOp7MQFRJU/Ptbn3zTga97e7FL9P4n/3zR77d/g0JUPyuQQlQ/tdBjJBSieqyK+pjKqqvwwLvLkPXy3+Hm6qq+I1uSgEQEKEQlKjZTdTiBszXVWB6/BW9u34ofRI7E3OjxiOg/wOHzcoKeCVCI9syILUiABBxPYEt6Kr7Ym4SoAYOwePosxIaG223SdiF6prwWcZlH8OD7K7Do2usxfdRou83BgUiABEhAawIUolpXgPNrQSApL1uRoe8veATX2eFDVFrkwDkvTsCpQlRPheCRudpUg0JUG+5GmZVC1CiVOj/OgrJSPL36Uxx+8fsPqRg3G0ZOAo4jQCHqOLYcWW4Cn+9JxNK4zfDx8FCOQJwaMVxuIBpnTyGqcQE4PQlITmDdof34dE8ipg0fpYjQ4QMH2Z1IZyHaPvjiT99D0dmzeG7OXH5A1O7EOSAJkIAWBChEtaDOObUk8J+tG1HTUK/IUD7mJEAhas666jYrClHdlkYXgVGI6qIMFgeRfaoIr25ch13PvmRxX3YgAdkIUIjKVnHm62wCO3OylON0xbG686LFcbqxzg6B8wGgEOUyIAEScDYBcbTd6v278XHyTtw1YYoiQgf1CXBYGBcSomKy71IP4cH338Qzs2/G1cNHOWx+DkwCJEACziBAIeoMypxDDwRyz5zCi2tW46kbbsJPplylh5AYg4MIUIg6CCyHvTABClGujEsRoBA13vo4nH8c7+yKx6Zf/MZ4wTNiEtCAAIWoBtA5pZQETpSWYFn8FryzMw7zx01Q5OjA3n2kZKFF0hSiWlDnnCQgJ4FztTVYtW+3cjSuOLJ28YxZ8PFw/L3SFxOi7VV4+IO3UFlXi2dm3yJnYZg1CZCAKQhQiJqijEyiBwKf7UlU7hv/aOGjDv0wFQuhDwIUovqogzRRUIhKU2qrEqUQtQqbZp3ELwvfpBzAV4/+UrMYODEJGI0AhajRKsZ4zUBA3DG6LG4LwoP6K/eMjg0OMUNaus6BQlTX5WFwJGAKAkVnyxURmpCdjsevm4VHrp3p1Lx6EqIimDWH9uGRD9/BC7fMx5TwKKfGx8lIgARIwB4EKETtQZFj6JVARU0Nlqz7EtNHXo5n58zVa5iMy84EKETtDJTDXZoAhShXyKUIUIgaZ31szUjDnqO5+GDho8YJmpGSgA4IUIjqoAgMQVoCG1IPYWn8ZpRWVWLe2PGYefkV0rJwdOIUoo4mzPFJQF4COWdOYfW+3cg4VaTsBv3J5B9oAkONEBWBNTc3Y8F7K+DiAvxi5hxNYuWkJEACJGAtAQpRa8mxn94JbElPxfKErfhgwSOIDQ3Xe7iMz44EKETtCJND9UyAQrRnRjK3oBA1RvW/OXwAx0qL8b97FhgjYEZJAjoiQCGqo2IwFGkJiPtFl8dvwfrUg7g1ZoJyz6ifp5e0PByROIWoI6hyTBKQm4C4qmPV/t0QuzmECJ0bre0d0WqFaHvVVu5NxjOrPsFvb7qVb7zKvZSZPQkYigCFqKHKxWBVEvjL+jXo6+uLf999v8oebGYmAhSiZqqmAXKhEDVAkTQMkUJUQ/gqp165N+76DtQAACAASURBVAk1DQ149Y4fq+zBZiRAAp0JUIhyPZCAfgiIN9VXbN+KFfFbMDVyuHKcbmT/gfoJ0MCRUIgauHgMnQR0RkBc07FqX7JyL6gQodeNvFwXEVoqREXQNfX1WPDecvh7euGx6TfoIg8GQQIkQAKXIkAhyvVhJgLiw1UvfL0Kr991L26JHm+m1JiLBQQoRC2Axaa2E6AQtZ2hmUegENV3dd/flQB/L2+8eMtt+g6U0ZGAjglQiOq4OAxNagJf7ElSjtP16tULc8eOVwQpH+sJUIhaz449SYAEWgmIo+xW7ktGZNAALJ4xW3e7Kq0Rou21/Th5J5asXY3f3TQfVwwdxpKTAAmQgG4JUIjqtjQMzEICb23fhhNlJfho4SJ4e3hY2JvNzUSAQtRM1TRALhSiBiiShiFSiGoIv4epl8VvRtSAQbz3Rr8lYmQGIUAhapBCMUxpCezKzcKyuM04XHACt8bEYl7MBGlZ2JI4hagt9NiXBOQmsPbQPny+NxlXRY3A4umzMGLgYF0CsUWIioTKq6ux4L1lGNKnL342bbouc2RQJEACJEAhyjVgdAKFZ8vx0prVuG/KVfj5tTONng7jtwMBClE7QOQQ6glQiKpnJWNLClF9Vv0fG7/FlVEj8NDV1+kzQEZFAgYiQCFqoGIxVKkJ5JeVQnwY6O0dcZjfds/owN59pGZiSfIUopbQYlsSIIHmlhaIqzk+3Z2IOydMwePTb8DgPgG6BmOrEG1P7p0dcXh987d4fs48jBo8VNc5MzgSIAH5CFCIyldzM2W85uA+fH1oHz5a+KiyyYMPCQgCFKJcB04lQCHqVNyGm4xCVH8l++M3X2H+uIn40cSp+guOEZGAAQlQiBqwaAxZegJvbt+KZfFbEB7YX7lndGxwiPRMegJAIdoTIX6fBEhAEDhXW6uI0C/2JuOx667H49NnwdfT0xBw7CVERbKnKs4qd4sOHzAQC35wrSHyZ5AkQAJyEKAQlaPOZsuysakJS9Z+idFDg/HHW+80W3rMx0YCFKI2AmR3ywhQiFrGS7bWFKL6qvhvv/ocD0+bgZvGjtNXYIyGBAxMgELUwMVj6NIT2JB6SNk1WlJViXljx2Pm5VdIz+RiAChEuTRIgAQuRUAIwJV7kxGfla4ci/uIAY+ws6cQbWe1NG4T3ty+TdktGjlgIBcRCZAACWhOgEJU8xIwAAsJJOZm4Y/f/B/eX/AIrhlxmYW92VwGAhSiMlRZRzlSiOqoGDoMhUJUP0X5xecf4oWb5/OXB/2UhJGYhACFqEkKyTSkJpB6Mh/L47dgfepB3Np2nK6fp5fUTLonTyHK5UACJHAhArlnTmPlvmRknirE4hmz8ZPJPzAsKEcIUQHjRGkJHnhvGcYNC8O9U64yLB8GTgIkYA4CFKLmqKMsWfxry3doaGrEuw/8XJaUmacVBChErYDGLtYToBC1np0MPSlE9VHlhz98C//58f0YHxKuj4AYBQmYiACFqImKyVSkJ1BRU4MV27diRfwWTI0YjluixyOKO3qUdUEhKv1/HgRAAl0IHC44gVX7knG2phpPzJiNudGxhifkKCHaDuafm9fjs92J+M2cuQgJDDI8LyZAAiRgTAIUosasm2xR55wuwotrVuOZ2bfgHgN/2Eq2ummVL4WoVuQlnZdCVNLCq0ybQlQlKAc2u/et/2Llz5/E8IG8bNyBmDm0xAQoRCUuPlM3NYEv9iYpx+l6uLkr94xeGTnC1Pn2lByFaE+E+H0SkINAUm62siPU28NDEaHXjbzcNIk7WogKUNmni5S7Ra+OGom7Jk41DTsmQgIkYBwCFKLGqZWskX6SvAt7juXiowcXYYB/b1kxMG8LCFCIWgCLTW0nQCFqO0Mzj0Ahqm11b1/6OhKeegGD+gRoGwhnJwETE6AQNXFxmRoJAEjMzVbE6MH8463H6UaPh4uLi3RsKESlKzkTJoEuBLZmpOGLPUmI6D9AEaGxoeY7ecYZQrQd6l/Wr8G3KQfw3Jx5GMzXavyvjQRIwIkEKESdCJtTWUSgvLoaS9atxg2XXYGnZ99iUV82lpsAhajc9Xd69hSiTkduqAkpRLUpV1VdHe5Y9k9kLPkb/Lx4B5o2VeCsshCgEJWl0sxTdgIFZaVYnrAFb27fhvkxE5RdozJ94IhCVPb/Api/rATWHd6vHPP6g6iReGLGLIwYONi0KJwpRAVEcX+12C06Z3Q0bhs/0bRcmRgJkIC+CFCI6qsejKaVwOb0VLy1fRs+WPAIxoWEEQsJWESAQtQiXGxsKwEKUVsJmrs/hajz61tceQ4///BtZL78mvMn54wkICEBClEJi86UpScgXqyLXaNhgf2Ve0ajg0NMz4RC1PQlZoIk0EGguaVFuR9UHFn3w9jJWDxjlhS7GJ0tRNuBL1n7JRKy0vHcnLkI8vPnSiQBEiABhxKgEHUoXg5uBYE/r/8aQX698caP7rOiN7uQAEAhylXgVAIUok7FbbjJKESdW7LjJcX43dcrsf93f3LuxJyNBCQmQCEqcfGZuvQEvks9hGXxW3Cm8pxylO71l19hWiYUoqYtLRMjgQ4C52prsWpfEj7fk4xF112PxdNnwdfTUxpCWglRAXjf8aNY+N5y3DF+kvJBGz4kQAIk4CgCFKKOIstxLSVw8MQxvPD1Kvzr7p/i5rHjLO3O9iTQQYBClIvBqQQoRJ2K23CTUYg6r2TphQV4Y+t32P70i86blDORAAmAQpSLgARIIK2wAMvjN+Obwwcxf5w4TjcW/iY7sp5ClOucBMxL4FTFWazcm4z4rHQ8Pv0GPHrt9eZN9hKZaSlE28P67VefY/+JY3hu9lz09vaWsg5MmgRIwLEEKEQdy5ejqyPwZsJWFJwtw0cLF8GrVy91ndiKBC5CgEKUS8OpBChEnYrbcJNRiDqnZPuPH8Unu3dh/RPPOGdCzkICJNBBgEKUi4EESKCdwLnaGqxI2Kr8mRIRhVvGjkfUgIGmAEQhaooyMgkS6EIg98xp5Wjc9FOFym7Qe6dcJTUhPQhRUYBduVlY+N4KPHDlNMwaPVbqmjB5EiAB+xOgELU/U46onsDJ8jL8fs1q5f9xD18zQ31HtiSBSxCgEOXycCqBxsZGpBWddOqcnMw4BChEHV+rHdmZyuXjK3/+hOMn4wwkQALnEaAQ5aIgARK4EIEv9iZhWdxmRPQfgJB+gZgcHoWBvfsYFhaFqGFLx8BJ4DwChwtOKCK0vLoaT8yYjXkxsaQEQC9CtL0Yv/7iI2SfOaXsFvX28GCNSIAESMAuBChE7YKRg1hB4OuDe7Hu8AFlV6h4jcSHBOxFgELUXiQ5jioC3CGqCpO0jShEHVv6TUdScCj/ON594OeOnYijkwAJXJQAhSgXBwmQwKUIJOdl4+uD+7Ah9RB8PDwxOSIKk8IiMWLgIEOBoxA1VLkYLAlckEBSbrYiQr08PJQdodNHjSapTgT0JkRFaHGZR7Dw/RVYdM1MzLhsDOtFAiRAAjYToBC1GSEHsJBAfWMjlqz7EtHBIfjDvB9a2JvNSaBnAhSiPTNiCzsSoBC1I0wTDkUh6riiik9Wift+/nX3/Y6bhCOTAAn0SIBCtEdEbEACJNBGQNw1+l3qIXybchBFFeWYEj4ck8IjMTEsQveMKER1XyIGSAIXJbA1Iw1i13pE0ABFhE4wwM8cLcqpRyHazmHxp++h6OxZPDdnLtxcXbXAwzlJgARMQoBC1CSFNEgaO3My8ef1a/DBgkdw9fBRBomaYRqNAIWo0Spm8HgpRA1eQAeHTyHqGMCf7d6F5hbgldvucswEHJUESEA1AQpR1ajYkARIoBMB8aGm79IO49uUA9ielYkfRI3ApLAIZQepn6eX7lhRiOquJAyIBHoksO7wfny+JwlXRg7H4umzMXLQ4B77yNxAz0JU1EV8oObB99/EM7NvwdXDR8pcKuZOAiRgAwEKURvgsatFBP65eT2aW1rwzv0PW9SPjUnAUgIUopYSY3ubCFCI2oTP9J0pRO1f4nd2xCHIzx/P33Sr/QfniCRAAhYToBC1GBk7kAAJdCPQ2NTUJkcPYmPaYeVOHbFzdHJ4JIYG9NMFLwpRXZSBQZBAjwRaWlqU3aCf7UnEHeMn4/HpN2BIQN8e+7GB/u4QvVhNfvbBm6iqq1PEKB8SIAESsJQAhailxNjeUgJZp4rw4ppVeP7Gebh70pWWdmd7ErCYAIWoxcjYwRYCFKK20DN/XwpR+9b4P1s3YszQYDw+fZZ9B+ZoJEACVhOgELUaHTuSAAlchEBSXjbWpxxS7h0VzxRx72h4JC4fPFQzZhSimqHnxCSgikBlXS1WKiI0CY9de73yesHPS3+7zVUlo1Ejve8Q7YxlzaF9eOTDd/DCzfOV/0fwIQESIAG1BChE1ZJiO2sIfJS0EwdOHMVHDy5SNnPwIQFnEKAQdQZlztFBgEKUi+FSBChE7bc+/vbdOkwfNRr3XznNfoNyJBIgAZsJUIjajJADkAAJXIJA9ukibEhtPVo3t/g0pka03js6JTwKLi4uTmNHIeo01JyIBCwiII7fXrk3GXGZRxQJuui66y3qz8bfEzCSEBVRNzc344H3lsPVxQW/mDmHpSQBEiABVQQoRFVhYiMLCZRXV+GltasxZ0wMfn3DTRb2ZnMSsI0Ahaht/NjbQgIUohYCk6w5hah9Cr5k7Wr8aOJU3BE72T4DchQSIAG7EaAQtRtKDkQCJNADgbKqKnyXdgjfphzExiMpihydHB6ByeFRCPDxdSg/ClGH4uXgJGAxgbzi04oITS86icUzZuPeKVdZPAY7dCVgNCHaHr1YB8+s+gS/velWxIaGs6wkQAIkcEkCFKJcIPYmIF6XvLsjDh8ufBTRw0LtPTzHI4EeCVCI9oiIDexJgELUnjTNNxaFqO01fXb1p3hixmzMGj3W9sE4AgmQgN0JUIjaHSkHJAESUElg05EURY5+l3oIg/oEtB6tGxaJ0MAglSOob0Yhqp4VW5KAIwmkFJzAyn3JKKuuxpMzZmNeTKwjp5NqbKMKUVGkmvp6LHhvOfw9vfDY9BukqhuTJQESsIwAhahlvNj60gT+9O3/YWDvPvjnXfcRFQloRoBCVDP0ck5MISpn3dVmTSGqltSF2y3+9D38af5duDJyhG0DsTcJkIDDCFCIOgwtByYBErCAwL7jR7E+5aBy72h1Qz2mhrfeOzo2OMSCUS7elELULhg5CAlYTSA5Lxtf7E2GV69eyoclxVUafOxLwMhCtJ3Ex8k7IU4X+t2Nt+IKO/38ty9ljkYCJKA1AQpRrStgjvkPHD+K3329Cv+75wHceEWMOZJiFoYlQCFq2NIZM3AKUWPWzVlRU4haT/rB91fgrfse4gtZ6xGyJwk4hQCFqFMwcxISIAELCBwrKcaGtEOKID1ccAJXRozApLajdT3c3S0Y6fumFKJWYWMnErCZwNb0NHyxLwnhgf0VETohLMLmMTnAhQmYQYiKzMqrq7HgvWUY3CcAD0+bwXKTAAmQQBcCFKJcELYSWB6/BafOncVHCxfB2tcWtsbA/iTQmQCFKNeDUwlQiDoVt+EmoxC1rmQ/fvM/+HrRrxDRf4B1A7AXCZCA0whQiDoNNSciARKwgkBlbS2+Szvcdu/oYcQEhyo7R8W9o/39/VWPSCGqGhUbkoBdCKw7vB+f70lS7goWInTkoMF2GZeDXJyAWYRoe4Zv79iGf25ej+fnzMOowUNZehIgARJQCFCIciFYSyC/rBQvrVmNB6++Fg9dPd3aYdiPBOxOgELU7kg54KUIUIhyfVyKAIWoZeujqbkZt/3vdex+/g8I8lP/JqVls7A1CZCAPQlQiNqTJsciARJwNIG4zCOt946mHUYfL29MDo/EpPAoRA0YeMmpKUQdXRmOTwJAS0uLcj/op7t34fbxk7B4+iwMCehLNE4iYDYhKrCdqjir3C0a1X8gFl51rZNIchoSIAE9E6AQ1XN19BvbV/v3YH3aIWVXaHhQf/0GysikJEAhKmXZtUuaQlQ79kaYmUJUfZXO1dbg7hX/QebLryl3A/EhARIwBgEKUWPUiVGSAAmcTyCl4ATWpx7C+tSDKKmsxNSIKEwMi0RsaPh5jSlEuYJIwHEEKutqsXJvMj7bk4hF116viFA/Ly/HTciRL0jAjEK0PdGlcZvw1vZt+M2ceYjs4QMwXB4kQALmJkAhau762ju7usYGLFn7JcaFhGHJ3DvsPTzHIwG7EKAQtQtGDqKWAIWoWlJytqMQVVd38cndxZ++jyNLXlXXga1IgAR0Q4BCVDelYCAkQAI2EDhZXtZ2tO4BJOXl4AeRIzApLBKTI6Lg4+EBClEb4LIrCVyEgHgNsGpvMrZlHsHj02/AoutuICsNCZhZiAqsx0uLld2i44aF4d4pV2lImlOTAAloSYBCVEv6xpp7R3YGXv1uHd5f8AiuihpprOAZrVQEKESlKrf2yVKIal8DPUdAIdpzdfLOnMbL33yF3c+/3HNjtiABEtAdAQpR3ZWEAZEACdhIQHwSXLl39PBBbDxyGCMHDsa1I0difEgEgvx62zg6u5MACeQVn8bKvbtxpKhA2Q1639SrCUUHBMwuRNsRi3tFP9udiOfmzEVoYJAOyDMEEiABZxKgEHUmbePO9fqmb+Hi4oK3fvoz4ybByKUhQCEqTan1kSiFqD7qoNcoKEQvXZnUgnwsS9iCbb/+rV5LyLhIgAR6IEAhyiVCAiRgdgI7c7KwLfMwvj5wAO5ubpgSHoVJ4ZEYNWiI2VNnfiRgVwLimOpV+3ajtLoKT8yYhVtjJth1fA5mGwFZhKiglH26SNktKnb8/GjiVNvAsTcJkIChCFCIGqpcTg82s6gQL6xZhRdvno+7+P8Hp/PnhNYRoBC1jht7WUmAQtRKcJJ0oxC9eKH3HM3F6v27sfbxpyRZDUyTBMxJgELUnHVlViRAAl0JBPb2RGVNAw6dKMCGtEP4NuUgTpSWYGrEcEwKj8Dk8CgiIwESuAiB5LxsrNy3G57u7lg8YzZmjBpNVjokIJMQbcf/l/VrlJ/nYrfo4D4BOqwKQyIBErA3AQpRexM1z3gfJu7AoYLj+PjBRejn62eexJiJ6QlQiJq+xPpKkEJUX/XQWzQUoheuSHzmEWzPzsSnP3tcbyVjPCRAAhYSoBC1EBibkwAJGJJAuxCta2juiL+48hw2pLbK0a0Zacq9o5PDIxU52tvb25B5MmgSsCeBrelpWLkvWTmWVOwInRgWac/hOZadCcgoRAXC1JP5ym7ROaOjcdv4iXamyuFIgAT0RoBCVG8V0T6e0qpKvLR2NW4ZOx6/vP5G7QNiBCRgIQEKUQuBsbltBChEbeNn9t4UoudXWLxxmHGqEG/e95DZy8/8SEAKAhSiUpSZSZKA9AQuJEQ7Q2lpaWm9dzTlAL5LS8Gwvv0UMSoE6bB+gdLzIwC5CKw7vB+f70lSdlAvnjGLx0sbpPyyCtH28ixZuxoJWRnKbtEgP3+DVI1hkgAJWEqAQtRSYuZuL35/f39XAj56cBGuGDrM3MkyO9MSoBA1bWn1mRiFqD7ropeoKES7VuKr/XuUO4Nev+tevZSIcZAACdhIgELURoDsTgIkYAgCPQnR7kmIqwHWpx7E+tRDaGxqwpSIKEwKi8QYvtFiiHozSOsIfLEnEZ/tScJt4yYqInRIQF/rBmIvTQjILkQF9H3Hj2Lhe8txR+wkZacQHxIgAfMRoBA1X02tzeiP677CkL598Y87+R6ltQzZTx8EKET1UQdpoqAQlabUViVKIfo9to+SdqCXuztenvdDq1iyEwmQgD4JUIjqsy6MigRIwL4ELBWinWfPLT6N79qO1k0vKsSVkcMVOSokqZurq30D5Wgk4GQCVXV1+GJvEj7bk4hHr70ei6ffAH8vHhnt5DLYZToK0e8x/ubLz3Aw/ziemz2XR6DbZXVxEBLQDwEKUf3UQqtI9h3Lwwtfr8Lyexdi9phorcLgvCRgNwIUonZDyYHUEKAQVUNJ3jYUoq21fzNhK4L7BeLpWTfLuxiYOQmYlACFqEkLy7RIgAS6ELBFiHYe6GxNNb5LFUfrHsSmIymYEBbeIUf7+fqROgkYhsDpcxVYuScJWzPTsHj6LCy67gbDxM5AL0yAQrQrl125WVj43go8cOU0zBo9lsuGBEjAJAQoRE1SSCvTWBa/GWcqz+HjhYvg7uZm5SjsRgL6IkAhqq96mD4aClHTl9imBClEgTe2bMD4kDDlE+N8SIAEzEeAQtR8NWVGJEAC5xOwlxDtPvKW9FRFjor7i4L8/DruHQ0PGsAykIAuCeQVn8HKvUlIKzyJJ2bMwn1Tr9ZlnAzKcgIUohdm9uuVHyH71CnlblFvDw/LwbIHCZCArghQiOqqHE4L5kRpCX6/djV+Pm06Fl51ndPm5UQk4AwCFKLOoMw5OghQiHIxXIqA7EL0z+u/xpwxMbh3ylVcKCRAAiYlQCFq0sIyLRIggS4EHCVEO09y8MQx5c5RcfdoRU2NcqTu5PAoxAwLZTVIQHMCqSfzsXJvMkqqKvHkzNm4NWaC5jExAPsSoBC9OM+4zCPKbtHHrrse00eNti94jkYCJOBUAhSiTsWti8lW79uNTekp+GjhIoQGBukiJgZBAvYkQCFqT5ocq0cCFKI9IpK6gcxC9IWvV+L+qdNw6zi+WSL1fwRM3vQEKERNX2ImSAIkAMAZQrQz6PyyUmxQ7h09gP3Hj7XeOxoeqQhSr169WBMScBqB5LwcrNyXDA83Nzwxcw5mUAY5jb2zJ6IQ7Zn4Y5+8i9MVFcpuUd4B3TMvtiABPRKgENVjVRwTU21DPV5a+yUmhkXg97fc7phJOCoJ6IAAhagOiiBTCBSiMlXb8lxlFaJPrfxYuS90xmVjLIfGHiRAAoYiQCFqqHIxWBIgASsJOFuIdg6zpr4eG9IOYX3KQWxMS8HoIUM75OjA3n2szIjdSODSBLZlpOGLvckI6Reo7AidGBZJZCYnQCGqrsDfpR7Cg++/iWdm34yrh49S14mtSIAEdEOAQlQ3pXBoIAlZGfj7pm/wwYJHlQ8W8iEBMxOgEDVzdXWYG4WoDouio5BkFKKLPn4Hf/vhPcoOBj4kQALmJ0Ahav4aM0MSIAHn7xC9FPPtWRnKvaNCkvp4eLTdOxqFEQMHsVQkYDOBbw4fwGd7EpUjm5+YMRujBg2xeUwOYAwCFKKW1elnH7yJqro6PDP7Fss6sjUJkICmBChENcXvlMn/vvEbuLu54c37HnLKfJyEBLQmQCGqdQUkm59CVLKCW5iubEL0/neX4cMFj+LyIUMtJMXmJEACRiVAIWrUyjFuEiABSwhouUP0UnGmFRa0Ha17EEVnyzE1ovVoXXE0GB8SsITAF3uT8NnuRMyPmYAnZs7GkIC+lnRnWxMQoBC1vIhrDu3DIx++gxdunq98iIAPCZCA/glQiOq/RtZGeKTwJH6/ZhWWzL0DP5ww2dph2I8EDEeAQtRwJTN2wBSixq6fo6OXSYjeufxf2PjksxjWL9DRWDk+CZCAjghQiOqoGAyFBEjAYQT0KkQ7J3yq4myHHN2RnYkfRI1QxKh4k97P08thbDiwcQmI3W2KCN2TiEeumYknZsyCv5e3cRNi5DYRoBC1Dl9zczMeeG85XOCCX14/x7pB2IsESMBpBChEnYbaqRO9v2s70grz8dGDi9DXx9epc3MyEtCaAIWo1hWQbH4KUckKbmG6MgjRusYG3P6/f+Lgi6/wlw4L1webk4AZCFCImqGKzIEESKAnAkYQop1zaGxqwoa0w233jh5GRP8BmBQWgckRURga0K+ndPl9kxM4fa4CK/cmYWtGGh6/bhYem36DyTNmemoIUIiqoXTxNiv3JuOZVZ/gtzfNQ2wod+nbRpO9ScBxBChEHcdWi5FLKivx+7WrcGvMBPxiJj+UokUNOKf2BChEta+BVBFQiEpVbouTNbsQLa+ugjgmN/MPrynn8/MhARKQjwCFqHw1Z8YkICMBownR7jVKzM3G+tRD2JB6UNnFNDk8UpGjlw/mNQcyree84jNYtS8ZqScLlN2g9029Wqb0mWsPBChEbV8iNfX1WPDecmVX/uP8oIHtQDkCCTiAAIWoA6BqNOT6lIP4OHmnsit09JBgjaLgtCSgPQEKUe1rIFUEFKJSldviZM0sRE+Wl+HXKz9Gyu//YjEXdiABEjAPAQpR89SSmZAACVycgNGFaOfMsk8XYUPqYXybcgC5Z05jamTrvaNTwqPg4uLCZWBCAqkn8yF2r5VUVSoidP64iSbMkinZSoBC1FaC3/f/KGkHXl73FX574zxcERxiv4E5EgmQgM0EKERtRqiLAf6w7kuE9AvCaz+8RxfxMAgS0JIAhaiW9CWcm0JUwqJbkLJZhWj2qSL89bu1SHxuiQU02JQESMCMBChEzVhV5kQCJNCdgJmEaOfcyqqqsCHtkCJHNx1Jxf+3dyfwVZT3/sd/IYEQZM8GWLaAFZcqRUHcKbggSrHaYr1dVNCioBa1WtCqeP174a/X5WVvXSsVvaKi0CoISKXiVgGFsgtVcQHCImQhbAlZ7uuZk4mT8ZzknDkzc56Z88nr5YuGzDzze96/IT053zzPnFakwtEiOaV3X+nI85cC/w9h+Refy6srl0vLzEz57bDhcs4xxwd+TkzAOwECUXdtSw/sl7EznpIu7TvKtWcPc3dwRkMAAccCBKKO6bQ4ccVXm+XO12bL9CuukfOOO0GLmigCgVQLEIimugNpdn0C0TRreILTDWMgumbLV/Lsh+/JWzffnqAGhyOAQBgFCETD2FXmhAAC6RKI2uf59w1q5ehqUX927dDRWDmqwtGeuXncFAESWLJpg7yyYrn06JxrBKGqj3wg0JwAgWhzQs6+Pv2DJfLIWwuN1aL92KbcGSJnIeCiAIGoi5g+D/XEO4ul5MA+mTl2grRo0cLnFPzFmAAAIABJREFUq3M5BPQVIBDVtzehrIxANJRtdW1SYQtEl23+TN5Yt0r+Nv5m14wYCAEEgi1AIBrs/lE9AgjEJxDWFaJNzX7FV1/Im8ZzR9fIgcNVMrg+HD2B7R/ju2lScNQba/4lr6xcbjwj9sah58sxhC8p6EJwL0kg6l3vdu4tN54t2regUMaePsS7CzEyAgg0K0Ag2iyRdgd8tWe3TJk3RyYMOUfG8D1Uu/5QUOoFCERT34O0qoBANK3anfBkwxSIvr1xgyz/8nPjYeV8IIAAAqYAgSj3AgIIpINAOgai1r6qN6KMrXXXrpZ1xVvqt9aNrB5tlZWVDreA1nN8ZcUyefnjpfKT/icbQeiRnTprXS/F6SlAIOp9X5545y155v0lcvsFo6RPQaH3F+QKCCDwHQEC0WDdFLNXLJe3/71BXhg7Qbp3zg1W8VSLgE8CBKI+QXOZiACBKHdCUwJhCUTnr10lX+75Rp745VgajgACCDQSIBDlhkAAgXQQSPdA1NrjfYcO1T93dLW89ck66d+9pwzqFQlH89u1S4fbQYs57q+sFDMIve7sc4wgtH1Ojha1UUQwBQhE/enb1yW7ZcyzTxnfO3996pn+XJSrIIBAgwCBaDBuhgNVVXLPvDlyalFfueuiS4JRNFUikCIBAtEUwafrZQlE07Xz8c07DIGo+m2s/Ycr5b9/+ov4Js1RCCCQVgIEomnVbiaLQNoKEIjGbr16XuXCdWtk0YY10qFNGzmlVx8Z1LuvsTUkH+4LfFOx1whC/7Fxg9ww9Dy5Yej57l+EEdNSgEDU37Y/snihzPpoqUy+4Mc8p9lfeq6W5gIEovrfAO/8+xN59B9vyvNjxsvgor76F0yFCKRYgEA0xQ1It8sTiKZbxxObb9AD0ec+fE/atm4tU0ZemtjEORoBBNJGgEA0bVrNRBFIawEC0fjav3bbFnlz3WpZuH6N7N6/z/itfrV69KSeveMbgKNiCqjdWl5dsVzWF281VoNecdpZaCHgqgCBqKuccQ322a4dxrNFz+zbTy4bODiuczgIAQSSEyAQTc7P67MfXPSGZLdsKU/96mqvL8X4CIRGgEA0NK0MxkQIRIPRp1RVGeRA9Il3Fhu/2X/zuSNSxcd1EUAgAAIEogFoEiUigEDSAgSiiRMWl5XKog1rZf66VbL8i8/l9D7fl4G9+hi/6d+mVavEB0zTM1QAqoLQ3fsrZOKw4fKTHw5MUwmm7bUAgajXwrHHn7bgdeMXSdRq0a4dOqauEK6MQBoIEIjq2eQN27fJ3a/Plv+6eLRcetIgPYukKgQ0FSAQ1bQxYS2LQDSsnXVnXkENRB9+a4GcVnSUXHPWUHcgGAUBBEIrQCAa2tYyMQQQsAgQiCZ3O1RWH5ZF69fKgnWr5e+frJWjC7tGnjta1Jc3/2PQfvTl5/LKiuWS1SJTJp4zXM455vjkmsDZCDQjQCCa2ltE/fKDWi06/LgT5dIB/OJDarvB1cMsQCCqX3ef/ee7smnndpl59QTpkNNGvwKpCAHNBQhENW9Q2MojEA1bR92dTxAD0fvmvyYX9z9JLh90mrsYjIYAAqEUIBANZVuZFAII2AQIRN29JT747N+ycP1qIyRtlZVpPHP0lN59pF+Xbu5eKICjvbNpg8xasVy6d+4sE4ddIIN69wngLCg5iAIEonp07Z65c+T9zzYZq0Xz2rbToyiqQCBEAgSi+jTzm4oKuWfebLl0wCD57bDh+hRGJQgETIBANGANC3q5BKJB76C39QctEL3jb7PkN2cOlZEnDvAWhtERQCA0AgSioWklE0EAgSYECES9uz027iiWRevXGKtHt5SWRJ472ruPnNK7r3cX1XDk+WtXyawVy2RQryLjTcFjuh6pYZWUFGYBAlF9urvy6y9l7Iyn5GcnDZKLTuBnc306QyVhECAQ1aOL6nXPyx8vlReuniDH8ppHj6ZQRWAFCEQD27pgFl5dXS0bdhQHs3iq9lxA10B0595y2VZWKurZTtvKSmR7eZm0y24tV50+RIYcfYznLlwAAQTCI0AgGp5eMhMEEIgtQCDqz92xe1+FvGmEo6vk7U2fGM8dVeHo4N59pX1Ojj9F+HyVWR8vk1krlsrFJ55kBKFHdurscwVcDoGIAIGofnfC7X99WVZv+UomXzAqtN8D9VOnorALEIimvsP/OW+O9M4rkAd++h+pL4YKEAiBAIFoCJoYpCmwQjRI3fK/1lQGoir0jASekeBThZ7F5aWytbREurTvID1z86UoP1/65neRovwC6dE5V75f2NV/JK6IAAKBFiAQDXT7KB4BBOIUIBCNE8rFw+rq6urDUfXc0XXSvVNnY1tdtXK0e+dcF6/k/1D7Kyvl1RXL5KWPl8q1Zw0zgtCwBr7+63JFpwIEok7lvD3vw82fytgZT8uVp54pw48/0duLMToCaSBAIJq6Jqvno9/1+mx59spxcu6xP0hdIVwZgZAJEIiGrKG6T4dAVPcOpbY+rwPRXRV7jbDTDD63l6v/XSZby0qkoF176ZWbZ/zWVZ989V+h9M7LNz7PbNEitTBcHQEEQiNAIBqaVjIRBBBoQoBANPW3h3oTbeG6NUZIWl1bYwSjKiA9/sjuqS8uzgq+qdgrr6xYLv/YuF6uH3qe3Dj0/DjP5DAEvBcgEPXeOJkr/O6VF+SzXTvl9hE/ltYtWyUzFOcikNYCBKKpaf9jS96SvQcPyMxrrk9NAVwVgRALEIiGuLk6To1AVMeu6FOTG4Goesi4WtlZXFYiW0tLZUfDSs9SyWvbVnrl5kuvvHw5qqBQivIKjMBTfd4yM1MfCCpBAIHQChCIhra1TAwBBCwCBKJ63Q6bv9nVsHp0087tcprx3NG+Mrior5a/+Pflnm/k1RXLZV3xViMEvfK0s/QCpRoE2DI3EPfAO//+xHi26PU/Ok+G9jsuEDVTJAK6CRCI+tsR9Rpoyutz5Iah58lVp5/t78W5GgJpIkAgmiaN1mWaBKK6dELPOuINRNXzkmJtb9upzRFG6FmUly99CyLb26rP1WrPVllZek6cqhBAIG0ECETTptVMFIG0FiAQ1bf95QcPyKL1a2X+ulWy+JP1cnKv3jKoVx8jHO18RNuUFr6+eKvMXrlcvtlXIb8dOlwuGTAwpfVwcQSaEmCFaHDuj+tffFbUI3Juv2CUlr8EEhxJKk1HAQJR/7r+ysfL5N1PN8rMqyfwjHT/2LlSGgoQiKZh01M5ZQLRVOrrf21rILpn3z7ZVlZiPMvT/NMMQdvntDG2t1UrPNXWtir0jGxvmy/ZWS31nygVIoBA2goQiKZt65k4AmklQCAanHYv3rheFq5bLYs2rDV2UzHDUbWLil8fantftSI0s0WmTDxnuJxzzPF+XZrrIOBYgEDUMV1KTly0fo1c/dyf5ffDL5Izj+qXkhq4KAJBFCAQ9b5r6lnp98ybI6f3+b7cedFPvL8gV0AgzQUIRNP8BvB7+gSifovrfb2S/fsaVnpuKyuVPfv3ytclJbKlpETat24tPY2VnXlyVEEXY2tbFXiq7W1zeAaI3o2lOgQQiClAIMrNgQAC6SBAIBrMLq/a8pURjr65YY3sPXRIBvfuYzx7tH/3np5MaMmmDfLqyuXyvU6d5bfDhhvX4gOBoAgQiAalU43r/M3zf5Z9lYdk0vAfB3MCVI2AzwIEot6Cq9dCf1ryd3l+zHgZ1LuPtxdjdAQQMAQIRLkRfBUgEPWVW4uLlR7Y/23oWVoiO/aWG59vLSuRttmtpWfnPCPoVKHniT26SWG7ztK9U57ktGqlRf0UgQACCLgpQCDqpiZjIYCArgIEorp2Jv66tpTsMVaNqq11//X1V3J6n6OMN+pUaNm6ZXI7ssxfu0peWbFMTu5VZAShx3Y9Mv7COBIBTQQIRDVphIMy5q5ZKeNf+IvceeFPjO3C+UAAgdgCBKLe3R0PvDlPjsjOlid+Oda7izAyAgh8R4BAlJvCVwECUV+5fbtY2YH9olZ4mlva7thbFgk9S0uNYFNtb2uGnmqFp9rqVn3eplV2oxrz2reS8gPVcri61rfauRACCCDgpwCBqJ/aXAsBBFIlQCCaKnlvrnuwqspYNaqCTPXc0eO6fU8G9S4ywtHC9h3ivuirK5bJyx8vk1EnDpAbhw03VobygUBQBQhEg9q5SN01tbUyZsZTkiEiN587ItiToXoEPBQgEHUfVz0z/e7XZ8u0Sy6TSwYMcv8CjIgAAk0KEIhyg/gqQCDqK7erFys7cECKyyOhp/pPPdszstKzVLKzsqSXsb1tvvQtKGwIPNU2t+q3neL9IBCNV4rjEEAgqAIEokHtHHUjgEAiAgSiiWgF79j3Pt0oC+qfO3pEq+yGlaPfL+zynckcqKqSWR8vlZc/XirXnjVMbhx2vnTIaRO8SVMxAjYBAtFw3BLqFzV+P/sl+cOFo+SknkXhmBSzQMBFAQJRFzFF5C//fEc+27VTZl49Qdq1znF3cEZDAIG4BAhE42LiILcECETdkvRmnPKDB6S4rMwIPreVlhihp/pPbW/bKjMz8kzP3PrQM1+t8iwwVn+69X/iBKLe9JVREUBAHwECUX16QSUIIOCdAIGod7a6jaxWOSxav0YWrF8jO/eWyyn12+r269JVnl/6gSzeuE5u+NF5csPQ8yUjQ63F4gOBcAgQiIajj2oWahX8VTOelHbZrY3vVXwggMC3AgSi7twNuyr2ypS5s+WykwfzfcYdUkZBwLGAr4HowUNVcvcD0+WNxUuNgu+9bYxcMuKsmMXPmf+u3Hn/9EZfH3v5CLl53Gjj7z7/qljG3fagbN+55zvj2b924bDBcs+tYySndeS5hMV7DjpG40TnAtXV1bJhR7HzATgzaYGKQwdjbm+b1aKF9Kzf3rZvQRdjpWdku9sCaZ/j/W8uEYgm3V4GQAABzQUIRDVvEOUhgIArAgSirjAGbpAd5WXGc0cXrFslh2tq5aITfihXnhb75/3ATZCCEbAIEIiG73aYufyfcu+8v8odI0bJCd/rEb4JMiMEHAgQiDpAs50yb82/ZPbK5fLC1ROkX5duyQ/ICAiISLucrLRzqDhY7cqcfQ1EH3pyllG0CjRLyyvkukkPyy3jRsvA/v2iTkYFoktXbGgUZJoH2s+3f67O7d6toGFs67XVGASirtw/CQ/CCtGEyRydUHHoUMPzPLeXW7a3LS0xfjPbDDnV9rZqm1sVeKo/U719FYGoo3ZzEgIIBEiAQDRAzaJUBBBwLEAg6pguNCfW1dWxIjQ03WQi0QQIRMN5X5Qe2G88W7Rrh47GNt98IJDuAgSizu8A9VronrlzpG9hF7n/0sudD8SZCEQRIBB1flv4FoiqwHLyfz0tt47/ufTpGfltCHtIaZ9GU4GoWgF6x9Sn5b7J1xjjmatPB590bNRVp/axCESd3zTJnEkgmoxe43P3VarQUz3HsyTyXE9ze9vSEqmTuoZnevbJK5Ci/G+Dz45t9H1mD4Goe/cHIyGAgJ4CBKJ69oWqEEDAXQECUXc9GQ0BBPQTIBDVryduVjT9gyXyyFsL5Q8jRkm/rke6OTRjIRAoAQJRZ+1a/sVncvfcOfLcVdfKsGOOdzYIZyHQhACBqPPbw7dA1B5gqpKbCjzNr1u3zLVul6u+rgLV+f9YJk/ef4sh8MBjL8nU26+RTh3aNRIxw9IuBZ0bttslEHV+0yRzJoFoYnr7KyuN53kagWdZ/UrP8lLZWloqtbW10iM3T4ry8qVPfqEU5avtbfONbW47HXFEYhfS5GgCUU0aQRkIIOCZAIGoZ7QMjAACGgkQiGrUDEpBAAFPBAhEPWHValD1XGS1WvSogkIZc/oQrWqjGAT8EiAQTVz6f97+u+yvPGRskcsHAl4JEIg6l/U1ELUHls0FotZpmVvijh45pGEF6EerNsqDT7wsu0v3Gs8RjfZMUhWaPvPifLE/Q3TP3irnapzpWEAFohuKtzo+P4wnHqiqlG2lpbK1PvRUwee2sjLZWrpHqmpqpLcKOfMLRG1v2ydfrfYsMELP3LZtQ8fR4Ygs2X+oRqpr6kI3NyakkUCGRrWkqpS6OpEMIFLB37JFhuS0zpS9B9x59kEq5sA1EUAAgeYE1JtnhyqrpYrXdM1R8XUEEAioQGYL9fyuVlK2n/eWAtrCuMv+4+JF8vR7S+Suiy6WowoL4z5P2wPV2y38KKhtezwvLMG329q0zpLq6lqpqq71vLSgX2DzN7vkjr+9Kr87b4SMOePsoE+H+jUXyMnO1LxC98s7WFnjyqC+BqLWLW5V9YkEoubxX27ZYazyVCtOrQFrtMDUKmS/VuVhdwBd6UIaDaIC0XVb0y8QPVBVJVtKSoyVnVtLzT9LZUtpiRw6fNhY5dm3oMB4ca3+U+Gn+jy/XePVzmG/VVpmtpDq2jpR++zzgYBnAtxeot6fzuSHYM9usaYGzmiRIVktMuQwP1CmxJ+LIoCAPwIts+pf09Xyf7r+iHMVBBDwWyAjI0OysjLk8GFCAr/tU3G9L3fvlp8+8ScZ2Ku3/ObMYAcd6t3Q9HsbPRV3jabXTPB9gMzMDKmtFd6na6adz334T1myaaPMvXGifK9TJ02bT1lhEshskeA/5hBMvsalny19C0SdPEPU3icVapqBqFod+srcJXLPrWMkp3Ur49CmnklqD1DZMjc1/wrCvGXuocNVxjM9txlb2367xa1a+Xmwqkp65eZJr/rtbdVKz955+cYWt/nt2qemGRpelS1zNWwKJSGAgKsCbJnrKieDIYCApgJsmatpYygLAQRcE2DLXNcoAzXQI28tkFkfL5PJF/xYeubmBap2ikXAiQBb5jattq/ykEyZO0fOPqqf3HHhxU6IOQcBRwJsmeuIzTjJt0BUXcwaWJorOm8ZN1oG9u9nFKO+vmNXiRFyqo/Zb7wjl154thF42o9XAee42x6UqZOvMc63rxB96n/nyrAzT5I+Pbt9Z2w1HoGo85smmTODHohWVh82nuWpQk/1547yMikuV9vblsj+qkrp2TnPCDrVMz1V6KkC0N55BVJA6BnXbUMgGhcTByGAQIAFCEQD3DxKRwCBuAUIROOm4kAEEAioAIFoQBvnQtmf7dphPFv0jL5Hy88HnurCiAyBgL4CBKKxe/OPjevl8XcWywtjx8vJvYr0bSKVhVKAQNR5W30NRA8eqpK7H5gubyxealRsf+anNRBVoaX5/E9zevbj1SrRKydOa5i99ev2r9mfIUog6vymSebMIASiVdXVDYGnsdKzvEy214eeFYcOGr8FqEJO43meeWqlZ2S1Z2H7DsnQcK6IEIhyGyCAQNgFCETD3mHmhwACSoBAlPsAAQTCLkAgGvYONz+/aQtelwXrV8vtF4ySrh06Nn8CRyAQQAEC0ehN+/8L50qHnDby2C+uCmBXKTkMAgSizrvoayDqvEz3zyQQdd80nhF1CURV6FlsbGtbZqz0VMGnCj3Vys+yAweM0FM917NIhZ75hUbg2Ts3X7rwIjeeNjs+hkDUMR0nIoBAQAQIRAPSKMpEAIGkBAhEk+LjZAQQCIAAgWgAmuRDieuLtxqrRS847kS5ZMBAH67IJRDwV4BAtLH32m1b5O7XZ8sDP71cfvJD/s37ezdyNasAgajz+4FA1LkdZzoQ8DMQra6piaz0tDzP01zpWXpgf+SZnrmR7W1V8KlWeqq/69aRh187aK0rpxCIusLIIAggoLEAgajGzaE0BBBwTYBA1DVKBkIAAU0FCEQ1bUyKyrpn3hx5/9NNxmrR3LZtU1QFl0XAfQEC0W9Np7+/RL7Y843MvPp6OSI7231sRkQgAQEC0QSwbIcSiDq340wHAm4HojW1tY23ty1T29uWytayUtmzr6Lx9rb5hUbgqba5JfR00DwfTiEQ9QGZSyCAQEoFCERTys/FEUDAJwECUZ+guQwCCKRMgEA0ZfTaXnjl11/KmGeflJ+ddIqMPHGAtnVSGAKJCBCIiuzcWy53z50t/zHoNLn+R+clwsexCHgmECsQnbvofXlm5jx5+D9vlN49ukW9vjrmvkdmfOdrv/rpcJkw5lLPak524IqD1ckOYZxPIOoKI4PEK+AkEFWhp9rW1r7SU63+3LV3b33oWb+9bZ75XM98ObJT53jL4jhNBAhENWkEZSCAgGcCBKKe0TIwAghoJEAgqlEzKAUBBDwRIBD1hDUUg97+15dl1ZavjNWi7XNyQjEnJpG+AukeiM5ds1L+9q+P5YWrJ8j3C7um743AzLUTSDYQtYemX3xdLDfd9aiceGwfmXTjFZLTupV2cyYQTbIlPEM0SUCHp8cKRGvr6iKhZ/1/amvb7XvLZFtpiezYW26EnpHtbQuMLW7VMz3V59075zqshNN0FCAQ1bEr1IQAAm4KEIi6qclYCCCgqwCBqK6doS4EEHBLgEDULclwjvPh5k9l7Iyn5crTzpLhx50Qzkkyq7QQSNdAVC3OUVth9+vSTaZd8vO06DWTDJaA24Gomn08q0tTqUQgmqQ+gWiSgA5PP1hVJTOXf2AEnzvKy41Vn2p72+1lZdIzN9cIOovyCo3gs1devvF5j855Dq/GaUETIBANWseoFwEEEhUgEE1UjOMRQCCIAgSiQewaNSOAQCICBKKJaKXvsbe88oJ8vmun3D7ix9K6pX6rbdK3M8w8XoF0DESXbv5M7n3jrzLjqmtlaL/j4qXiOAR8FSAQdc7NlrnO7TjTgcA3FXtl4svPN6zyVIFn77wCYwUoHwgQiHIPIIBA2AUIRMPeYeaHAAJKgECU+wABBMIuQCAa9g67N793/v2JjJnxlEwYcq6cc8zx7g3MSAj4IJBugegf314kh6qq5Pmx433Q5RIIOBfwIhD90/TZsmLtJnloyg3SsUM758V5dCYrRJOEZYVokoCcjoAHAgSiHqAyJAIIaCVAIKpVOygGAQQ8EiAQ9QiWYRFAQBsBAlFtWhGYQq5/8VnZubfceLZoZosWgambQtNbIF0C0c+/2SlT5s6WW869UH596pnp3XRmHwgBtwPRlWs2yfhJ/y2PTfudDDjhaC0NCESTbAuBaJKAnI6ABwIEoh6gMiQCCGglQCCqVTsoBgEEPBIgEPUIlmERQEAbAQJRbVoRqEIWrV8jVz/3Z/n98IvkzKP6Bap2ik1PgXQIRF/66ENR2+TOvHqCdOnQMT0bzawDJ5BsIHrfIzMazfnYo3truzLULJRANMnblEA0SUBOR8ADAQJRD1AZEgEEtBIgENWqHRSDAAIeCRCIegTLsAggoI0Agag2rQhkIb95/s+yv7JSfj98ZCDrp+j0EQhzIFpx6KBMmTtHfnT0sXL7iFHp01RmGgqBZAPRZ2bOk4f/80bp3aObmKtDf/XT4TJhzKXa+hCIJtkaAtEkATkdAQ8ECEQ9QGVIBBDQSoBAVKt2UAwCCHgkQCDqESzDIoCANgIEotq0IrCFzF29UsbP/IvceeHFMrjoqMDOg8LDLRDWQHTxJ+vkqffelv8dO15O6tk73E1kdqEUcDMQVUBzF70vatUoW+aG8naJTIpANMTNZWqBFSAQDWzrKBwBBOIUIBCNE4rDEEAg0AIEooFuH8UjgEAcAgSicSBxSLMCNbW1ctWMJ6WFZMjN545o9ngOQMBvgTAGotMWvC6djmgrf/qPK/3m5HoIuCbgdiCqCvvT9Nny93c/alg56lqxLg3ECtEkIQlEkwTkdAQ8ECAQ9QCVIRFAQCsBAlGt2kExCCDgkQCBqEewDIsAAtoIEIhq04pQFPLqimXy+9kvyR8uHCUn9SwKxZyYRDgEwhSIrtn6tdz1+mx5ePQvZFT/k8PRIGaRtgJeBKJl5RVy85Q/GqYPTblBOnZop5UvgWiS7SAQTRKQ0xHwQIBA1ANUhkQAAa0ECES1agfFIICARwIEoh7BMiwCCGgjQCCqTStCU8jBqipjtWi77By5Yeh5oZkXEwm2QFgC0T+/97Z8XbpHXrz6eslp1SrYTaF6BESkqUBUbX0b7ePYo3sbQed7y1aL9Rmi1mO/+LpYbrrrUencqb12oSiBaJK3PoFokoCcjoAHAgSiHqAyJAIIaCVAIKpVOygGAQQ8EiAQ9QiWYRFAQBsBAlFtWhG6Ql5Y+oH8v/l/kz+MGCU/+F6P0M2PCQVLIOiB6PbyMpkyd7b8avAZMn7IucHCp1oEmhCIFYiGGY1ANMnuEogmCcjpCHggQCDqASpDIoCAVgIEolq1g2IQQMAjAQJRj2AZFgEEtBEgENWmFaEspPTAfhnz7FPStUNHufbsYaGcI5MKhkCQA9HXV6+Q11evlJlXT5C+BV2CAU6VCMQpQCAaJ1SUwzLq6urqnJ8e3DMJRIPbOyoPrwCBaHh7y8wQQCAiQCDKnYAAAukgQCCaDl1mjgiktwCBaHr336/ZT39/iTyyeKHcMWKUHNP1SL8uy3UQaBAIYiBaXVMjU+bNkeO6fU+m/uQyuolAKAUIRJ23lUDUuR1nIoCAywIEoi6DMhwCCGgnQCCqXUsoCAEEPBAgEPUAlSERQEArAQJRrdoR6mJ27i2XMTOekr75hTL2jCGhniuT008gaIHoh59/KvcteE2eu+paGXL0sfqBUhECLgkQiDqHJBB1bseZCCDgsgCBqMugDIcAAtoJEIhq1xIKQgABDwQIRD1AZUgEENBKgEBUq3akRTGPL3lLnvlgidx+wSjpW1CYFnNmkqkXCFIg+ujiN6WqplqeG3Nd6uGoAAGPBQhEnQMTiDq340wEEHBZgEDUZVCGQwAB7QQIRLVrCQUhgIAHAgSiHqAyJAIIaCVAIKpVO9KmmK9LdhvPFu3fvaf8+tQz02beTDR1AkEIRD/btUPunjtbfn/+SPnl4DNSh8WVEfBRgEDUOTaBqHM7zkQAAZcFCERdBmU4BBDQToBAVLuWUBACCHggQCDqASpDIoCAVgIEolq1I+2KeeStBfLyx0vljhEXS4/OuWmw2nX+AAAgAElEQVQ3fybsn4DugeiLy/8pH325WWZec70UtGvvHwxXQiDFAgSizhtAIOrcjjMRQMBlAQJRl0EZDgEEtBMgENWuJRSEAAIeCBCIeoDKkAggoJUAgahW7UjLYtSquKuefUrOOupouWzgqWlpwKS9F9A1EC0/eECmzJ0t5x7zA5l0wY+9h+AKCGgmQCDqvCEEos7tOBMBBFwWIBB1GZThEEBAOwECUe1aQkEIIOCBAIGoB6gMiQACWgkQiGrVjrQuZuqC12Xh+tXGs0W7duiY1hZM3n0BHQPRtzaslWc+eEf+d+x4+WGPXu5PmhERCIAAgajzJhGIOrfjTAQQcFmAQNRlUIZDAAHtBAhEtWsJBSGAgAcCBKIeoDIkAghoJUAgqlU70r6Y9cVbZcyMp2T4cSfIpQMGpb0HAO4JJBqI1tTWSnVtjVTX1Mrhmhrjv8jnkT8PG39fLdXquPqvx3uMOq51y5airvHHy69wb5KMhEAABQhEnTeNQNS5HWcigIDLAgSiLoMyHAIIaCdAIKpdSygIAQQ8ECAQ9QCVIRFAQCsBAlGt2kEx9QL3zJ0j7322Se64YJTktm2LS8gEVBBoDQ/t4WIkcLSGkLFCSctxRlBpCSktQWVNTY3UZdRJVXW1VFV/O65RQ02NVNX/ebg+8FR/rz5aZmYa/2VlZkqrzKz6zyN/tlL/Zan/Xf/3WVmSrY7PyjKOVV9X/zu7/nN1TnbLlpKtjs/Kki7tO8iFJ/wwZJ1lOggkLkAgmriZeQaBqHM7zkQAAZcFCERdBmU4BBDQToBAVLuWUBACCHggQCDqASpDIoCAVgIEolq1g2IsAiu//lLGPPuk/OzkU2TkCQOwiVMgEjZWGysYzRWN9nDxu4GjNYCMrHi0HmMGh8Z49UGjdWVkw0pKI8isjpyvVlBagk1zDPVni4yMhqDRDB0j4aIKICNhov1zM1CMhJEqVMyU7KyWkfDRCB0j56i/i4SSkTCzlXFMpnRq11qkNkPq6jLqzzeP+fZ8I9zMioyf2aJFnOIchgACyQgEJRBduWaTjJ/038ZUjz26tzw05Qbp2KGdo6lXHKx2dJ79JAJRVxgZBAEE3BAgEHVDkTEQQEBnAQJRnbtDbQgg4JYAgahbkoyDAAK6ChCI6toZ6jIFJv/1ZVm95Svj2aLtc3JSCmMPCmNvlxpfKKlWLJphYmSsb7dgjax2tKySrF+9+O1qxkhwaY5hHpuZ0cII9cxwsSFAbAgI61c41geQ3waK34aBZhipwkVzhaMROlrOiVwjsgIyWpBphpbRjmmRgrCxU7tWcqiyRg5WRVZ/8oEAAnoIBCEQ/eLrYrnprkflrpuvkgEnHB0VTgWm//OX2XEFpQSiSd57xXsOJjkCpyOAgNsCBKJuizIeAgjoJkAgqltHqAcBBLwQIBD1QpUxEUBAJwECUZ26QS2xBD7c/KmMnfG0XD/kXDkiO7thu9XItqvRn+HYsCVrUysaLSshzdWUDYGj5bmQ5lhZLVrYtk+tX9FoWZForjKMBIWWrVPrVzJGVi1GtlVVz5G0rkpsFDhajjNXLVrPNVdWGisije1ZIysbMzIyuJGiCBCIclsgoKeAG4Go+ra3+ZtdckTrVsYk91dWSZ+8Qqmtq3Nl0nMXvS9/XfBuzLDz4KEqmfboDNmy/RsCUVfEmxmEQNQPZa6BQGICBKKJeXE0AggET4BANHg9o2IEEEhcgEA0cTPOQACBYAkQiAarX+le7ZTXXpV127dFViXWB4CRrVIjW6c2/F2WGTZ+uwVrw7Md61c2GluwWp4B2RBGWp75aK6eNIPIdPcP8vwJRIPcPWoPs0CygeiBw5Wyr/KgPP/hP2Xe6tXGL8mM7N9frjztNMlp2VraZSe/s4AKRD9e9YlMuvEKyakPXVVPysor5OYpf5QNm74wWhTvVrqsEE3yjiYQTRKQ0xHwQIBA1ANUhkQAAa0ECES1agfFIICARwIEoh7BMiwCCGgjQCCqTSsoBAEEPBQgEPUQl6ERSEIg2UB0a/luueyJJ2Tt1q2Nqvh+ly7y+g03SLf2uUlUJ6LC0PsemdFojDsmXiEjzzuj0d81t4rUejCBaFItESEQTRKQ0xHwQIBA1ANUhkQAAa0ECES1agfFIICARwIEoh7BMiwCCGgjQCCqTSsoBAEEPBQgEPUQl6ERSEIgWiB6/8L5xvOVm/vo2KaNDDu2nwy8996oh743aZIs2/yF7K7Y19xQxtdvHzEy6nHxhJ3xHGMOTiAaVztiH0QgmiQgpyPggQCBqAeoDIkAAloJEIhq1Q6KQQABjwQIRD2CZVgEENBGgEBUm1ZQCAIIeChAIOohLkMjkIRAtEA0d+IE41nRzX2MPfNMyc7MlMeWLIl6qPq62vL8iRhft5+055E/GcfbP+IJO+M5xhyXQLS5zjbzdQLRJAE5HQEPBAhEPUBlSAQQ0EqAQFSrdlAMAgh4JEAg6hEswyKAgDYCBKLatIJCEEDAQwECUQ9xGRqBJASSWSGa166tDO5TJGdMnRq1gsW/+52s3bpNdpTvjatCVojGxZT6gwhEU98DKkDALkAgyj2BAAJhFyAQDXuHmR8CCCgBAlHuAwQQCLsAgWjYO8z8EEBACRCIch8goKdAss8Q3VFRIhc9+qj8e8eORhPsmZsri2+9VQqO6Jj0xONZ/RnPMWYhrBBNsiUEokkCcjoCHggQiHqAypAIIKCVAIGoVu2gGAQQ8EiAQNQjWIZFAAFtBAhEtWkFhSCAgIcCBKIe4jI0AkkIJBuIHjpcKdv3lsqT77wjc1evlpraWhl54oly3Y9+JF3ad5I2LbOTqC5yajxhZzzHmIUQiCbZEgLRJAE5HQEPBAhEPUBlSAQQ0EqAQFSrdlAMAgh4JEAg6hEswyKAgDYCBKLatIJCEEDAQwECUQ9xGRqBJASSDUTVpTNbZMjXJbulfZscEamTioOV0r1TrtTU1iVR2benxhN2xnOMOSKBaJJtIRBNEpDTEfBAgEDUA1SGRAABrQQIRLVqB8UggIBHAgSiHsEyLAIIaCNAIKpNKygEAQQ8FCAQ9RCXoRFIQsCNQDSJy8d1ajxhZzzHEIjGxd38QQSizRtxBAJ+CxCI+i3O9RBAwG8BAlG/xbkeAgikQoBANBXqXBMBBPwUIBD1U5trIYBAqgQIRFMlz3URaFogyIFoWXmF3Dzlj7Jh0xffmeRj034nA044OurkWSGa5L8KAtEkATkdAQ8ECEQ9QGVIBBDQSoBAVKt2UAwCCHgkQCDqESzDIoCANgIEotq0gkIQQMBDAQJRD3EZGoEkBIIQiCYxPQJRt/HUeASiXqgyJgLJCRCIJufH2QggoL8Agaj+PaJCBBBIXoBANHlDRkAAAb0FCET17g/VIYCAOwIEou44MgoCbgsQiDoXzairq3PnKanOa0jJmQSiKWHnogg0KUAgyg2CAAJhFyAQDXuHmR8CCCgBAlHuAwQQCLsAgWjYO8z8EEBACRCIch8goKcAgajzvhCIOrfjTAQQcFmAQNRlUIZDAAHtBAhEtWsJBSGAgAcCBKIeoDIkAghoJUAgqlU7KAYBBDwSIBD1CJZhEUhSgEDUOSCBqHM7zkQAAZcFCERdBmU4BBDQToBAVLuWUBACCHggQCDqASpDIoCAVgIEolq1g2IQQMAjAQJRj2AZFoEkBQhEnQMSiDq340wEEHBZgEDUZVCGQwAB7QQIRLVrCQUhgIAHAgSiHqAyJAIIaCVAIKpVOygGAQQ8EiAQ9QiWYRFIUoBA1DkggahzO85EAAGXBQhEXQZlOAQQ0E6AQFS7llAQAgh4IEAg6gEqQyKAgFYCBKJatYNiEEDAIwECUY9gGRaBJAUIRJ0DEog6t+NMBBBwWYBA1GVQhkMAAe0ECES1awkFIYCABwIEoh6gMiQCCGglQCCqVTsoBgEEPBIgEPUIlmERSFKAQNQ5IIGoczvORAABlwUIRF0GZTgEENBOgEBUu5ZQEAIIeCBAIOoBKkMigIBWAgSiWrWDYhBAwCMBAlGPYBkWgSQFCESdAxKIOrfjTAQQcFmAQNRlUIZDAAHtBAhEtWsJBSGAgAcCBKIeoDIkAghoJUAgqlU7KAYBBDwSIBD1CJZhEUhSgEDUOSCBqHM7zkQAAZcFCERdBmU4BBDQToBAVLuWUBACCHggQCDqASpDIoCAVgIEolq1g2IQQMAjAQJRj2AZFoEkBQhEnQMSiDq340wEEHBZgEDUZVCGQwAB7QQIRLVrCQUhgIAHAgSiHqAyJAIIaCVAIKpVOygGAQQ8EiAQ9QiWYRFAIGUCBKIpo+fCCCBgFyAQ5Z5AAIGwCxCIhr3DzA8BBJQAgSj3AQIIhF2AQDTsHWZ+CCCgBAhEuQ8QQCBsAgSiYeso80EgwAIEogFuHqUjgEBcAgSicTFxEAIIBFyAQDTgDaR8BBBoVoBAtFkiDkAAgRAIEIiGoIlMAQEEGgkQiHJDIICANgIEotq0gkIQQMAjAQJRj2AZFgEEtBIgENWqHRSDAAIeCBCIeoDKkAggoJ0Agah2LaEgBBBIUoBANElATkcAAfcECETds2QkBBDQU4BAVM++UBUCCLgrQCDqriejIYCAfgIEovr1hIoQQMB9AQJR900ZEQEEUiuQtoFoatm5OgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII+CFAIOqHMtdAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGUCBCIpoSdiyKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgB8CBKJ+KHMNBBBwLPD5V8Vyx9Sn5b7J10ifnt0cj8OJCCCAgM4CDz05yyjv5nGjdS6T2hBAAAHHAqXlFXLdpIfllnGjZWD/fo7H4UQEEEBAZ4E589+VpSs2yD23jpGc1q10LpXaEEAAAVcEeN/OFUYGQQABnwQIRH2C5jIIpLOAenE07rYHZfvOPQbDD44pksen3SSdOrRrYFE/ON55/3Tj8wuHDW74AZIXVul85zB3BIIroALO5as2NvpeZ4YBaz/ZbEzs2UcmNYQCBKLB7TWVI5COAup71jMvzjemPvbyEY1+mSPWazoC0XS8U5gzAsEVsH6fs//82tRrOgLR4PacyhFIFwH1/a1X9y5yyYizGk35o1Ub5cqJ06K+b3fwUJXc/cB0eWPxUuPr9942puF83rdLlzuHeSIQDgEC0XD0kVkgoLWAelG1pXhXw4sl9eJrx66ShtBTff3BJ2c1BAfWYIAXVlq3luIQQCCKgPkGmvXNM/MHyMEnHWt8L7R/byMQ5VZCAIGgCDT1/aqp13QEokHpMHUigIA91LR+rnRUKBDrNR2BKPcPAgjoKmD9pTVroKnqtf98av9eZn39Z39Nx/t2unacuhBAIJoAgSj3BQII+C4Q7c0y62+nWb9eUlbRaMtcc7Xp+CtGfee32XyfCBdEAAEEbALqB8cvt+yQM085odEveqjvXQ889pJMvf0aY3W8PSC1BwzRVpiCjQACCKRaQL1Ge2XukphbQdpXHFhf06narVvmmm+mDerfj+3CU91Yro8AAo0E7K/L7D+fNvWaLlqY+tiM1+TJ+2/hETDcZwggoIVAtBWi5s+x5iNcrCFn547tZPJ/PS23jv95w/exphYy8L6dFm2mCAQQiCFAIMqtgQACvgs09Ru2qhjrCy/1ufkM0WgvwnwvngsigAACMQSs39vWbdzcKBC1/yKIGsL6Q6T1f9t/GAUcAQQQ0EXAurLArMnc/tv+ix7213TqdZwZiB7fr8hYYfWzkUN4nqguzaUOBBBoEDDfzB8x9BTjFzas4UFzr+nsrweb+iUSyBFAAIFUCEQLRO2/CGJdBdq5U/tGCxVUzdbvdcU7d/O+XSoayTURQMCRAIGoIzZOQgABpwL2rTTMN8+sb4hFC0RvufYyI1y4Zdxo3jhzis95CCDgmYB91ZT9zbJoq6qiBaJqtfzSFRtirr7ybAIMjAACCMQhEG0F6OSpTxsrn7oV5n0n5LSvLlCBqNrlY97fP2zYbjKOy3IIAggg4KuA+TNqecV+eX/5WrE+BqG513RmSHDRuaeKWhn6+LSbjN1B+EAAAQR0EYgViFp3brMHotaV8Woe0QJR3rfTpcPUgQACTQkQiHJ/IICAbwLmb9pOnXxNQ6jZ3GoCVdy42x6U7Tv3yIXDBhMS+NYtLoQAAokIRFs1pc4330D77IttjVaMqq/ZA9FnXpxvXNJcbZXI9TkWAQQQ8EPA/gaa9XXcBUMHN3qunqonWiC69pPNjcIFP+rmGggggEAiAvbvdep13qy5S4xws7nXdE09oy+RGjgWAQQQ8ErAixWivG/nVbcYFwEE3BYgEHVblPEQQCCqQLQw1DywqedNqWeIqhdWKkTdUrzLeDaf+UwDqBFAAAFdBewrRON5huiOXSVy029+Jvc8NKPR81l0nSN1IYBA+gnYt/S27/QRzzNER48cIt27FTT5LNL0k2XGCCCgi0A8Oxg19wxRFZ4+PGWCPPzUK2wNrktjqQMBBBoEvHiGKO/bcYMhgEBQBAhEg9Ip6kQgwAL2bXLtU7EHB009nN3+XIMAs1A6AgiEWMD+fc2+Gt7+fbGp73shZmJqCCAQMAH7L7hF2x5cPeLA3CLS+r3NuvXawP79Gm21ltO6VcAkKBcBBMIsoL53qV9Uu+fWMaK+P1lXiLbOzm60Gt7+ms66jeShysqGZyer73t8IIAAAjoIRAtEm/pepr4PNvWarqmfbXWYLzUggAACVgECUe4HBBDwXCDWVpLWbSGtx1i3xo31zNEuBZ1ZKep557gAAgg4FbCHBGocMwxQ20WqD+v3QPsve6jzzefy9enZzWkZnIcAAgi4LqC+P105cZoxbtfCXOP5odbvU7Fe09kDUXW+PXRwvVgGRAABBBwImL/I9sbipcbZ1meINveazhqIqhChqZ2SHJTGKQgggIBjAft7c/bXcdbXePbve/bvi/feNkYuGXGWUQvv2zluCScigEAKBAhEU4DOJRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwB8BAlF/nLkKAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgikQIBANAXoXBIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPwRIBD1x5mrIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBACgQIRFOAziURQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMAfAQJRf5y5CgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIpECAQDQF6FwSAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT8ESAQ9ceZqyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQAoECERTgM4lEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAHwECUX+cuQoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCKRAgEA0BehcEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE/BEgEPXHmasggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAKBAhEU4DOJRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwB8BAlF/nLkKAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgikQIBANAXoXBIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPwRIBD1x5mrIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBACgQIRFOAziURQAABBBBAAAEEEEAAAS8E5sx/V2bNXSKPT7tJOnVo58UlXBnz4KEqufuB6fLG4qXGePfeNkYuGXGWK2MziB4CpeUVct2kh2X0yCH0Vo+WUAUCCCCAAAIIIIAAAmktQCCa1u1n8ggggAACCCCAAAIIIOBE4POvimXcbQ/K9p17ooZ5Dz05S3bsKpF7bh0jOa1bObmEo3OCEogm4pPIsYmgfbRqo1w5cZo8+8gkGdi/X9ynmmGuOsHv/sZdpAYHEohq0ARKQAABBBBAAAEEEEAAgQYBAlFuBgQQQAABBBBAAAEEEEAgQQEzEO3Ts5uUV+z/zopMr0K85soMQiCaaFDmlSWBaHN3U3JfT7TPyV2NsxFAAAEEEEAAAQQQQACBpgUIRLlDEEAAAQQQQAABBBBAAIEEBcxA9NbrLpO/vLzwO9uCehXiNVdmkALRW8aNjmtlZqosm7Pm600LEIhyhyCAAAIIIIAAAggggIBOAgSiOnWDWhBAAAEEEEAAAQQQQCAQAmYgOnXyNbKleJc8NuM1efL+W0StGFUf9hBPrUacPPXpRseo4+wBpjVE+nLLDnnmxfnGeD84pshYhVpSVtGwVa/6+7GXj5Cbx41uMDPHU2Gjup7a0jfacervzGut/WSzcUzXwtxG9VlrUV+/8/7pxnHNbTFr3U7YWrt6pqn9mvav25uvHE0D82sXDhtsbFVbvHO3YaF68N6yNcZx5hxWr/+soV77eeYWxtYemlvmmn379ejzZeJd/9PgZ3/Gqb2/1rHMWmLNzf78VFVzXqf20uPIwma34LWfa+9bNN9oPYt1n5jztLo3dV9Y79GmjrM+H7ap+8PslarPvN/Mv+M5s4H41kiRCCCAAAIIIIAAAghoK0Agqm1rKAwBBBBAAAEEEEAAAQR0FbAGYH17HynXTXpYBvXv1xBOJhuIqpDSDB6tIZgZjKpwMVqgZwZJZmiowj/zuPFXjBIzmIr2d+pca7BrDdfiDaOibUOrLJav2tiwrXCiKwdjrRC1Bmv2kFbNpXu3goYVqNGe+xkrEFXBqtUv1pysz4iNVku0a5pz79GtoCH8jPeZpLGOs85Vjf+XlxbIdVdc3PDs2mj1R7tPzOPUvzlrv+3+1vvC6h5Pn+O5P+z3oapH+S5+b4X85pcjdf2WQF0IIIAAAggggAACCCCguQCBqOYNojwEEEAAAQQQQAABBBDQT8AeptlDnGQD0dEjhzSEl2r20bbCNQOyLgWdG4LYWFvmWv++dXa23P3AdLGep65hjjf4pGONaycaXEarxzqueb1Ex20uEFUrRM0Vnk3dKXabplaIqhWo5krSaPU2tULUWov9mrH6E8+2wNHqjedfRrT6o9URqy/21c2xjrP/fXOfm7Wbx6lVzcf3K4p6b8YzT45BAAEEEEAAAQQQQAABBJoSIBDl/kAAAQQQQAABBBBAAAEEEhSwh1NmqGOuEtUtELWGWmqq5laz9iBR1a0+1Da8iQaXTQV2Vo9DlZXGilp76BurBU4DUeuKR3Ns67auiQaiTa0AjjV3a1DerTAvZtgXTyBq9mN3Sfl3tl622kXbVld93bq9sheBqD0Qt98/sbaNtgfx5na98a5KTvCfLocjgAACCCCAAAIIIIBAmgoQiKZp45k2AggggAACCCCAAAIIOBeItV2tueXsawvfF+uWqk6eIWp97mKyK0SjBaLm80XtCuZ2sYkGl00Fotb61fW8DEStgaB1S1f7Kt6gBaLKzf78TXvQaYbA1i1/7WG9OidVgeiVE6fF/EdnBrbRAl3rVtHO/9VyJgIIIIAAAggggAACCKSzAIFoOnefuSOAAAIIIIAAAggggIAjgWhhmjV4UoPqHog2t9VsUFeIRntOpRkCWp+RGsRA1H6zms8CVaspLxg62FiBqj6ibflrXeGaqkB08tSnm1zdGu0fo9mnAccf1Whejv7hchICCCCAAAIIIIAAAgikrQCBaNq2nokjgAACCCCAAAIIIICAU4HmtkjN69ReehxZ2BDgNHX8rLlL5PFpN0mnDu1iblOb7ApR65asas7RniFqt0g0ENXlGaJNrcZNZSDap2c3ibU1bjxb5ka7V63m111xcdS++rVCNNY20ubWyIneT9b5xnr2qtN/v5yHAAIIIIAAAggggAAC6SdAIJp+PWfGCCCAAAIIIIAAAgggkKRArIDTut1nPNuW3nn/dLFuBxorNEokELWGfmqa0VZMmn9nf06j+vstxbtEbdfrJMCKdi0V9i1ftbHZ0DdWS+xb3ZrHxepBtLrNulL5DFEViJo1j79ilGFs7Y/1folmoc59Yc5bcut1P5ec1q2MQ+wG9vvEej96+QxR8zqqJnN1arQ+mCtarVsZq3PU33fvViDH9yuSBx5/SX5xyTmivNRHrKA9yX/CnI4AAggggAACCCCAAAJpJkAgmmYNZ7oIIIAAAggggAACCCCQvEBTz8uM9hxHa3hlPrtThZHqw+0VoioQVStU1278whjfGgJaZ24GVms/2dzw19ZjnQSi0eZpf/6jk3FVqPrMi/ONOs3gsHjnbhl324MSbetf+7M2VRjYq3sXSfUK0Wg+qjb1Yd1iOdodGu3Zmuo4e7hotVL9VD4PPjlL3N4y13rfqDqsgav6PFafoz0H1XqPmKGp1cA+dvL/ghkBAQQQQAABBBBAAAEE0k2AQDTdOs58EUAAAQQQQAABBBBAAAEEtBJQIab6uHncaK3qilaMk0Bb+0lRIAIIIIAAAggggAACCIRegEA09C1mgggggAACCCCAAAIIIIAAAjoIqDBx6qMvyOQbf2E8M1Z9xHrmqQ71Eojq2gXqQgABBBBAAAEEEEAAgUQFCEQTFeN4BBBAAAEEEEAAAQQQQAABBBwINLdNsYMhfT+FFaK+k3NBBBBAAAEEEEAAAQQQcEGAQNQFRIZAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAE9BQhE9ewLVSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgAsCBKIuIDIEAggggAACCLdntVQAAABzSURBVCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjoKUAgqmdfqAoBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFwQIBB1AZEhEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBAT4H/A3LhzGRY+ho1AAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the train sizing's results\n", "atom.plot_learning_curve()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }