{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example: Multiclass classification\n",
"------------------------------------\n",
"\n",
"This example shows how to compare the performance of three models on a multiclass classification task.\n",
"\n",
"Import the wine dataset from [sklearn.datasets](https://scikit-learn.org/stable/datasets/index.html#breast-cancer-wisconsin-diagnostic-dataset). This is a small and easy to train dataset whose goal is to predict wines into three groups (which cultivator it's from) using features based on the results of chemical analysis."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the data"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Import packages\n",
"from sklearn.datasets import load_wine\n",
"from atom import ATOMClassifier"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" alcohol \n",
" malic_acid \n",
" ash \n",
" alcalinity_of_ash \n",
" magnesium \n",
" total_phenols \n",
" flavanoids \n",
" nonflavanoid_phenols \n",
" proanthocyanins \n",
" color_intensity \n",
" hue \n",
" od280/od315_of_diluted_wines \n",
" proline \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 14.23 \n",
" 1.71 \n",
" 2.43 \n",
" 15.6 \n",
" 127.0 \n",
" 2.80 \n",
" 3.06 \n",
" 0.28 \n",
" 2.29 \n",
" 5.64 \n",
" 1.04 \n",
" 3.92 \n",
" 1065.0 \n",
" \n",
" \n",
" 1 \n",
" 13.20 \n",
" 1.78 \n",
" 2.14 \n",
" 11.2 \n",
" 100.0 \n",
" 2.65 \n",
" 2.76 \n",
" 0.26 \n",
" 1.28 \n",
" 4.38 \n",
" 1.05 \n",
" 3.40 \n",
" 1050.0 \n",
" \n",
" \n",
" 2 \n",
" 13.16 \n",
" 2.36 \n",
" 2.67 \n",
" 18.6 \n",
" 101.0 \n",
" 2.80 \n",
" 3.24 \n",
" 0.30 \n",
" 2.81 \n",
" 5.68 \n",
" 1.03 \n",
" 3.17 \n",
" 1185.0 \n",
" \n",
" \n",
" 3 \n",
" 14.37 \n",
" 1.95 \n",
" 2.50 \n",
" 16.8 \n",
" 113.0 \n",
" 3.85 \n",
" 3.49 \n",
" 0.24 \n",
" 2.18 \n",
" 7.80 \n",
" 0.86 \n",
" 3.45 \n",
" 1480.0 \n",
" \n",
" \n",
" 4 \n",
" 13.24 \n",
" 2.59 \n",
" 2.87 \n",
" 21.0 \n",
" 118.0 \n",
" 2.80 \n",
" 2.69 \n",
" 0.39 \n",
" 1.82 \n",
" 4.32 \n",
" 1.04 \n",
" 2.93 \n",
" 735.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols \\\n",
"0 14.23 1.71 2.43 15.6 127.0 2.80 \n",
"1 13.20 1.78 2.14 11.2 100.0 2.65 \n",
"2 13.16 2.36 2.67 18.6 101.0 2.80 \n",
"3 14.37 1.95 2.50 16.8 113.0 3.85 \n",
"4 13.24 2.59 2.87 21.0 118.0 2.80 \n",
"\n",
" flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \\\n",
"0 3.06 0.28 2.29 5.64 1.04 \n",
"1 2.76 0.26 1.28 4.38 1.05 \n",
"2 3.24 0.30 2.81 5.68 1.03 \n",
"3 3.49 0.24 2.18 7.80 0.86 \n",
"4 2.69 0.39 1.82 4.32 1.04 \n",
"\n",
" od280/od315_of_diluted_wines proline \n",
"0 3.92 1065.0 \n",
"1 3.40 1050.0 \n",
"2 3.17 1185.0 \n",
"3 3.45 1480.0 \n",
"4 2.93 735.0 "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Load data\n",
"X, y = load_wine(return_X_y=True, as_frame=True)\n",
"\n",
"# Let's have a look\n",
"X.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run the pipeline"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<< ================== ATOM ================== >>\n",
"\n",
"Configuration ==================== >>\n",
"Algorithm task: Multiclass classification.\n",
"\n",
"Dataset stats ==================== >>\n",
"Shape: (178, 14)\n",
"Train set size: 143\n",
"Test set size: 35\n",
"-------------------------------------\n",
"Memory: 19.36 kB\n",
"Scaled: False\n",
"Outlier values: 12 (0.6%)\n",
"\n",
"\n",
"Training ========================= >>\n",
"Models: LR, LDA, RF\n",
"Metric: roc_auc_ovr\n",
"\n",
"\n",
"Running hyperparameter tuning for LogisticRegression...\n",
"| trial | penalty | C | solver | max_iter | l1_ratio | roc_auc_ovr | best_roc_auc_ovr | time_trial | time_ht | state |\n",
"| ----- | ------- | ------- | ------- | -------- | -------- | ----------- | ---------------- | ---------- | ------- | -------- |\n",
"| 0 | l1 | 0.0054 | saga | 480 | 0.7 | 0.5 | 0.5 | 0.027s | 0.027s | COMPLETE |\n",
"| 1 | l1 | 0.122 | saga | 380 | 0.7 | 0.9951 | 0.9951 | 0.042s | 0.069s | COMPLETE |\n",
"| 2 | l2 | 0.0071 | sag | 720 | 0.3 | 1.0 | 1.0 | 0.033s | 0.101s | COMPLETE |\n",
"| 3 | l1 | 87.9641 | libli.. | 920 | 0.3 | 1.0 | 1.0 | 0.030s | 0.131s | COMPLETE |\n",
"| 4 | l2 | 0.0114 | sag | 630 | 0.7 | 1.0 | 1.0 | 0.031s | 0.162s | COMPLETE |\n",
"| 5 | l2 | 0.0018 | sag | 920 | 0.1 | 1.0 | 1.0 | 0.029s | 0.191s | COMPLETE |\n",
"| 6 | l2 | 43.4053 | sag | 780 | 0.3 | 1.0 | 1.0 | 0.050s | 0.241s | COMPLETE |\n",
"| 7 | l2 | 2.0759 | libli.. | 470 | 0.2 | 1.0 | 1.0 | 0.033s | 0.274s | COMPLETE |\n",
"| 8 | None | 0.043 | sag | 110 | 1.0 | 1.0 | 1.0 | 0.028s | 0.301s | COMPLETE |\n",
"| 9 | l1 | 46.0233 | saga | 740 | 0.1 | 1.0 | 1.0 | 0.059s | 0.360s | COMPLETE |\n",
"| 10 | l2 | 1.2173 | lbfgs | 280 | 0.5 | 1.0 | 1.0 | 0.050s | 0.410s | COMPLETE |\n",
"| 11 | l2 | 6.8102 | libli.. | 940 | 0.4 | 1.0 | 1.0 | 0.041s | 0.451s | COMPLETE |\n",
"| 12 | l2 | 0.3324 | newto.. | 780 | 0.3 | 1.0 | 1.0 | 0.052s | 0.503s | COMPLETE |\n",
"| 13 | l2 | 0.0012 | libli.. | 1000 | 0.0 | 1.0 | 1.0 | 0.033s | 0.536s | COMPLETE |\n",
"Hyperparameter tuning ---------------------------\n",
"Best trial --> 2\n",
"Best parameters:\n",
" --> penalty: l2\n",
" --> C: 0.0071\n",
" --> solver: sag\n",
" --> max_iter: 720\n",
" --> l1_ratio: 0.3\n",
"Best evaluation --> roc_auc_ovr: 1.0\n",
"Time elapsed: 0.536s\n",
"Fit ---------------------------------------------\n",
"Train evaluation --> roc_auc_ovr: 0.9991\n",
"Test evaluation --> roc_auc_ovr: 0.9977\n",
"Time elapsed: 0.106s\n",
"Bootstrap ---------------------------------------\n",
"Evaluation --> roc_auc_ovr: 0.9984 ± 0.001\n",
"Time elapsed: 0.111s\n",
"-------------------------------------------------\n",
"Time: 0.753s\n",
"\n",
"\n",
"Running hyperparameter tuning for LinearDiscriminantAnalysis...\n",
"| trial | solver | shrinkage | roc_auc_ovr | best_roc_auc_ovr | time_trial | time_ht | state |\n",
"| ----- | ------- | --------- | ----------- | ---------------- | ---------- | ------- | -------- |\n",
"| 0 | lsqr | 0.9 | 0.9221 | 0.9221 | 0.018s | 0.018s | COMPLETE |\n",
"| 1 | eigen | 1.0 | 0.9121 | 0.9221 | 0.020s | 0.038s | COMPLETE |\n",
"| 2 | eigen | 1.0 | 0.9121 | 0.9221 | 0.000s | 0.038s | COMPLETE |\n",
"| 3 | lsqr | 0.7 | 0.8638 | 0.9221 | 0.011s | 0.049s | COMPLETE |\n",
"| 4 | eigen | 0.7 | 0.9019 | 0.9221 | 0.016s | 0.065s | COMPLETE |\n",
"| 5 | lsqr | auto | 1.0 | 1.0 | 0.022s | 0.087s | COMPLETE |\n",
"| 6 | eigen | 1.0 | 0.9121 | 1.0 | 0.000s | 0.087s | COMPLETE |\n",
"| 7 | lsqr | 1.0 | 0.9445 | 1.0 | 0.012s | 0.099s | COMPLETE |\n",
"| 8 | svd | None | 1.0 | 1.0 | 0.014s | 0.113s | COMPLETE |\n",
"| 9 | svd | None | 1.0 | 1.0 | 0.001s | 0.114s | COMPLETE |\n",
"| 10 | lsqr | auto | 1.0 | 1.0 | 0.002s | 0.116s | COMPLETE |\n",
"| 11 | svd | None | 1.0 | 1.0 | 0.003s | 0.119s | COMPLETE |\n",
"| 12 | svd | None | 1.0 | 1.0 | 0.002s | 0.121s | COMPLETE |\n",
"| 13 | svd | None | 1.0 | 1.0 | 0.002s | 0.123s | COMPLETE |\n",
"Hyperparameter tuning ---------------------------\n",
"Best trial --> 5\n",
"Best parameters:\n",
" --> solver: lsqr\n",
" --> shrinkage: auto\n",
"Best evaluation --> roc_auc_ovr: 1.0\n",
"Time elapsed: 0.123s\n",
"Fit ---------------------------------------------\n",
"Train evaluation --> roc_auc_ovr: 1.0\n",
"Test evaluation --> roc_auc_ovr: 1.0\n",
"Time elapsed: 0.038s\n",
"Bootstrap ---------------------------------------\n",
"Evaluation --> roc_auc_ovr: 0.9998 ± 0.0005\n",
"Time elapsed: 0.091s\n",
"-------------------------------------------------\n",
"Time: 0.252s\n",
"\n",
"\n",
"Running hyperparameter tuning for RandomForest...\n",
"| trial | n_estimators | criterion | max_depth | min_samples_split | min_samples_leaf | max_features | bootstrap | max_samples | ccp_alpha | roc_auc_ovr | best_roc_auc_ovr | time_trial | time_ht | state |\n",
"| ----- | ------------ | --------- | --------- | ----------------- | ---------------- | ------------ | --------- | ----------- | --------- | ----------- | ---------------- | ---------- | ------- | -------- |\n",
"| 0 | 210 | gini | 10 | 17 | 20 | 0.5 | False | None | 0.0 | 0.9803 | 0.9803 | 0.218s | 0.218s | COMPLETE |\n",
"| 1 | 380 | gini | 4 | 15 | 3 | 0.9 | False | None | 0.01 | 0.9816 | 0.9816 | 0.472s | 0.690s | COMPLETE |\n",
"| 2 | 380 | entropy | 6 | 2 | 13 | 0.9 | False | None | 0.03 | 0.9944 | 0.9944 | 0.502s | 1.192s | COMPLETE |\n",
"| 3 | 470 | gini | 11 | 9 | 18 | nan | True | 0.6 | 0.025 | 0.9569 | 0.9944 | 0.500s | 1.692s | COMPLETE |\n",
"| 4 | 100 | entropy | 12 | 14 | 6 | 0.9 | False | nan | 0.035 | 1.0 | 1.0 | 0.146s | 1.838s | COMPLETE |\n",
"| 5 | 470 | entropy | 13 | 11 | 1 | nan | True | 0.6 | 0.01 | 1.0 | 1.0 | 0.750s | 2.588s | COMPLETE |\n",
"| 6 | 250 | gini | 14 | 13 | 17 | 0.7 | True | nan | 0.02 | 1.0 | 1.0 | 0.309s | 2.897s | COMPLETE |\n",
"| 7 | 220 | gini | 5 | 10 | 7 | 0.5 | True | 0.9 | 0.035 | 0.9981 | 1.0 | 0.292s | 3.189s | COMPLETE |\n",
"| 8 | 130 | entropy | 4 | 6 | 11 | 0.9 | False | nan | 0.03 | 1.0 | 1.0 | 0.199s | 3.387s | COMPLETE |\n",
"| 9 | 370 | gini | 12 | 2 | 4 | 0.5 | False | nan | 0.02 | 0.9916 | 1.0 | 0.392s | 3.780s | COMPLETE |\n",
"| 10 | 10 | entropy | 12 | 20 | 7 | log2 | False | nan | 0.035 | 1.0 | 1.0 | 0.044s | 3.824s | COMPLETE |\n",
"| 11 | 70 | entropy | 13 | 12 | 1 | None | True | 0.5 | 0.01 | 0.9928 | 1.0 | 0.124s | 3.948s | COMPLETE |\n",
"| 12 | 500 | entropy | 9 | 7 | 7 | 0.6 | True | 0.6 | 0.01 | 1.0 | 1.0 | 0.624s | 4.572s | COMPLETE |\n",
"| 13 | 140 | entropy | 16 | 16 | 1 | 0.8 | True | 0.7 | 0.0 | 1.0 | 1.0 | 0.192s | 4.764s | COMPLETE |\n",
"Hyperparameter tuning ---------------------------\n",
"Best trial --> 4\n",
"Best parameters:\n",
" --> n_estimators: 100\n",
" --> criterion: entropy\n",
" --> max_depth: 12\n",
" --> min_samples_split: 14\n",
" --> min_samples_leaf: 6\n",
" --> max_features: 0.9\n",
" --> bootstrap: False\n",
" --> max_samples: None\n",
" --> ccp_alpha: 0.035\n",
"Best evaluation --> roc_auc_ovr: 1.0\n",
"Time elapsed: 4.764s\n",
"Fit ---------------------------------------------\n",
"Train evaluation --> roc_auc_ovr: 0.9993\n",
"Test evaluation --> roc_auc_ovr: 1.0\n",
"Time elapsed: 0.207s\n",
"Bootstrap ---------------------------------------\n",
"Evaluation --> roc_auc_ovr: 0.9936 ± 0.0067\n",
"Time elapsed: 0.602s\n",
"-------------------------------------------------\n",
"Time: 5.573s\n",
"\n",
"\n",
"Final results ==================== >>\n",
"Total time: 9.866s\n",
"-------------------------------------\n",
"LogisticRegression --> roc_auc_ovr: 0.9984 ± 0.001\n",
"LinearDiscriminantAnalysis --> roc_auc_ovr: 0.9998 ± 0.0005 !\n",
"RandomForest --> roc_auc_ovr: 0.9936 ± 0.0067\n"
]
}
],
"source": [
"atom = ATOMClassifier(X, y, n_jobs=1, verbose=2, random_state=1)\n",
"\n",
"# Fit the pipeline with the selected models\n",
"atom.run(\n",
" models=[\"LR\",\"LDA\", \"RF\"],\n",
" metric=\"roc_auc_ovr\",\n",
" n_trials=14,\n",
" n_bootstrap=5,\n",
" errors=\"raise\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analyze the results"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" roc_auc_ovr_ht \n",
" time_ht \n",
" roc_auc_ovr_train \n",
" roc_auc_ovr_test \n",
" time_fit \n",
" roc_auc_ovr_bootstrap \n",
" time_bootstrap \n",
" time \n",
" \n",
" \n",
" \n",
" \n",
" LR \n",
" 1.0 \n",
" 0.536130 \n",
" 0.9979 \n",
" 0.9977 \n",
" 0.105813 \n",
" 0.998413 \n",
" 0.111023 \n",
" 0.752966 \n",
" \n",
" \n",
" LDA \n",
" 1.0 \n",
" 0.122947 \n",
" 1.0000 \n",
" 0.9989 \n",
" 0.038458 \n",
" 0.999773 \n",
" 0.090809 \n",
" 0.252214 \n",
" \n",
" \n",
" RF \n",
" 1.0 \n",
" 4.764301 \n",
" 0.9993 \n",
" 1.0000 \n",
" 0.206899 \n",
" 0.993613 \n",
" 0.601960 \n",
" 5.573160 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" roc_auc_ovr_ht time_ht roc_auc_ovr_train roc_auc_ovr_test time_fit \\\n",
"LR 1.0 0.536130 0.9979 0.9977 0.105813 \n",
"LDA 1.0 0.122947 1.0000 0.9989 0.038458 \n",
"RF 1.0 4.764301 0.9993 1.0000 0.206899 \n",
"\n",
" roc_auc_ovr_bootstrap time_bootstrap time \n",
"LR 0.998413 0.111023 0.752966 \n",
"LDA 0.999773 0.090809 0.252214 \n",
"RF 0.993613 0.601960 5.573160 "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"atom.results"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
" \n",
" \n",
" precision_macro \n",
" recall_macro \n",
" jaccard_weighted \n",
" \n",
" \n",
" \n",
" \n",
" LR \n",
" 0.942900 \n",
" 0.948400 \n",
" 0.892400 \n",
" \n",
" \n",
" LDA \n",
" 0.966700 \n",
" 0.976200 \n",
" 0.945700 \n",
" \n",
" \n",
" RF \n",
" 0.879900 \n",
" 0.891500 \n",
" 0.796800 \n",
" \n",
" \n",
"
\n"
],
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Show the score for some different metrics\n",
"atom.evaluate([\"precision_macro\", \"recall_macro\", \"jaccard_weighted\"])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"fill": "tonexty",
"fillcolor": "rgba(0, 98, 98, 0.2)",
"fillpattern": {
"shape": ""
},
"legendgroup": "RF",
"legendgrouptitle": {
"font": {
"size": 16
},
"text": "RF"
},
"line": {
"color": "rgb(0, 98, 98)",
"dash": "solid",
"width": 2
},
"mode": "lines",
"name": "target=0",
"showlegend": true,
"type": "scatter",
"x": [
0,
0.010101010101010102,
0.020202020202020204,
0.030303030303030304,
0.04040404040404041,
0.05050505050505051,
0.06060606060606061,
0.07070707070707072,
0.08080808080808081,
0.09090909090909091,
0.10101010101010102,
0.11111111111111112,
0.12121212121212122,
0.13131313131313133,
0.14141414141414144,
0.15151515151515152,
0.16161616161616163,
0.17171717171717174,
0.18181818181818182,
0.19191919191919193,
0.20202020202020204,
0.21212121212121213,
0.22222222222222224,
0.23232323232323235,
0.24242424242424243,
0.25252525252525254,
0.26262626262626265,
0.27272727272727276,
0.2828282828282829,
0.29292929292929293,
0.30303030303030304,
0.31313131313131315,
0.32323232323232326,
0.33333333333333337,
0.3434343434343435,
0.3535353535353536,
0.36363636363636365,
0.37373737373737376,
0.38383838383838387,
0.393939393939394,
0.4040404040404041,
0.4141414141414142,
0.42424242424242425,
0.43434343434343436,
0.4444444444444445,
0.4545454545454546,
0.4646464646464647,
0.4747474747474748,
0.48484848484848486,
0.494949494949495,
0.5050505050505051,
0.5151515151515152,
0.5252525252525253,
0.5353535353535354,
0.5454545454545455,
0.5555555555555556,
0.5656565656565657,
0.5757575757575758,
0.5858585858585859,
0.595959595959596,
0.6060606060606061,
0.6161616161616162,
0.6262626262626263,
0.6363636363636365,
0.6464646464646465,
0.6565656565656566,
0.6666666666666667,
0.6767676767676768,
0.686868686868687,
0.696969696969697,
0.7070707070707072,
0.7171717171717172,
0.7272727272727273,
0.7373737373737375,
0.7474747474747475,
0.7575757575757577,
0.7676767676767677,
0.7777777777777778,
0.787878787878788,
0.797979797979798,
0.8080808080808082,
0.8181818181818182,
0.8282828282828284,
0.8383838383838385,
0.8484848484848485,
0.8585858585858587,
0.8686868686868687,
0.8787878787878789,
0.888888888888889,
0.8989898989898991,
0.9090909090909092,
0.9191919191919192,
0.9292929292929294,
0.9393939393939394,
0.9494949494949496,
0.9595959595959597,
0.9696969696969697,
0.9797979797979799,
0.98989898989899,
1
],
"xaxis": "x",
"y": [
0.0007899496562088212,
0.0013517103481322477,
0.002246274022753281,
0.0036252394951551982,
0.00568205643369321,
0.00864906686794649,
0.012785797995381548,
0.01835613717652964,
0.025593496531267676,
0.03465555211008663,
0.045573343708617216,
0.05820279457249343,
0.07218910428553715,
0.08695495621577842,
0.10172129963621568,
0.11556446996731674,
0.12750629756136006,
0.13662614373577417,
0.14217749490383028,
0.14368875346777044,
0.14102937083782752,
0.1344284625370193,
0.12444222476000105,
0.11187657795721694,
0.09767995545657475,
0.08282598395031429,
0.0682060072445133,
0.054547333047715786,
0.04236617819682565,
0.03195655296056819,
0.02340967789763706,
0.016654278422501233,
0.011506707552612336,
0.007720958214521844,
0.0050313693596863805,
0.003184168716532088,
0.001957045009983675,
0.0011681548884869657,
0.0006771656650220309,
0.00038122761884343823,
0.00020843419318677874,
0.00011067516002934232,
5.707365344948521e-05,
2.8586976560481952e-05,
1.3915008862261495e-05,
6.602038181030627e-06,
3.1029141102485056e-06,
1.5653876061286836e-06,
1.1147657751813868e-06,
1.4841919314835817e-06,
2.896861677227689e-06,
6.1689777750495846e-06,
1.3064836561266874e-05,
2.7001698423355128e-05,
5.4274784485770157e-05,
0.00010605019773003142,
0.00020144643474671837,
0.00037207430379825865,
0.0006684023415175607,
0.0011682287162103787,
0.0019873482407242586,
0.003292207469749798,
0.005313987891370099,
0.008363242701665673,
0.01284406570543589,
0.019266904852007306,
0.028259566465197127,
0.04057652892542269,
0.0571070137172896,
0.07888179845313169,
0.10707698238489649,
0.14300966871094742,
0.1881163689556843,
0.2439013707744811,
0.3118416859586044,
0.3932400932738827,
0.48902997261620207,
0.5995547689451264,
0.7243676269957546,
0.8621163696951278,
1.0105867923810397,
1.166964725879581,
1.328339528079854,
1.4924103258476797,
1.658281735049463,
1.8271663036383765,
2.002769629118167,
2.1911428187312905,
2.3998589199731035,
2.6365031078075196,
2.9066397917214912,
3.2115948921169943,
3.546519734887648,
3.8992382547735653,
4.250292795825525,
4.5743969831652205,
4.843213354932292,
5.02906496977344,
5.1089440093303065,
5.068067117284487
],
"yaxis": "y"
},
{
"fill": "tonexty",
"fillcolor": "rgba(0, 98, 98, 0.2)",
"fillpattern": {
"shape": "/"
},
"legendgroup": "RF",
"legendgrouptitle": {
"font": {
"size": 16
},
"text": "RF"
},
"line": {
"color": "rgb(0, 98, 98)",
"dash": "dashdot",
"width": 2
},
"mode": "lines",
"name": "target=1",
"showlegend": true,
"type": "scatter",
"x": [
0,
0.010101010101010102,
0.020202020202020204,
0.030303030303030304,
0.04040404040404041,
0.05050505050505051,
0.06060606060606061,
0.07070707070707072,
0.08080808080808081,
0.09090909090909091,
0.10101010101010102,
0.11111111111111112,
0.12121212121212122,
0.13131313131313133,
0.14141414141414144,
0.15151515151515152,
0.16161616161616163,
0.17171717171717174,
0.18181818181818182,
0.19191919191919193,
0.20202020202020204,
0.21212121212121213,
0.22222222222222224,
0.23232323232323235,
0.24242424242424243,
0.25252525252525254,
0.26262626262626265,
0.27272727272727276,
0.2828282828282829,
0.29292929292929293,
0.30303030303030304,
0.31313131313131315,
0.32323232323232326,
0.33333333333333337,
0.3434343434343435,
0.3535353535353536,
0.36363636363636365,
0.37373737373737376,
0.38383838383838387,
0.393939393939394,
0.4040404040404041,
0.4141414141414142,
0.42424242424242425,
0.43434343434343436,
0.4444444444444445,
0.4545454545454546,
0.4646464646464647,
0.4747474747474748,
0.48484848484848486,
0.494949494949495,
0.5050505050505051,
0.5151515151515152,
0.5252525252525253,
0.5353535353535354,
0.5454545454545455,
0.5555555555555556,
0.5656565656565657,
0.5757575757575758,
0.5858585858585859,
0.595959595959596,
0.6060606060606061,
0.6161616161616162,
0.6262626262626263,
0.6363636363636365,
0.6464646464646465,
0.6565656565656566,
0.6666666666666667,
0.6767676767676768,
0.686868686868687,
0.696969696969697,
0.7070707070707072,
0.7171717171717172,
0.7272727272727273,
0.7373737373737375,
0.7474747474747475,
0.7575757575757577,
0.7676767676767677,
0.7777777777777778,
0.787878787878788,
0.797979797979798,
0.8080808080808082,
0.8181818181818182,
0.8282828282828284,
0.8383838383838385,
0.8484848484848485,
0.8585858585858587,
0.8686868686868687,
0.8787878787878789,
0.888888888888889,
0.8989898989898991,
0.9090909090909092,
0.9191919191919192,
0.9292929292929294,
0.9393939393939394,
0.9494949494949496,
0.9595959595959597,
0.9696969696969697,
0.9797979797979799,
0.98989898989899,
1
],
"xaxis": "x",
"y": [
5.746652458949106,
5.9180668596100485,
5.942272929076243,
5.817543185788515,
5.553255752351173,
5.16872896152975,
4.690888266105115,
4.151156521649401,
3.582065161288728,
3.0140889891337674,
2.4731185000726463,
1.9788290234817487,
1.5440255475235622,
1.1748760953779664,
0.8718256866430829,
0.6309225131465656,
0.445287127016613,
0.30650074464381727,
0.20576020578142346,
0.13472434737922917,
0.0860435973442375,
0.05361224087106831,
0.03260860100462931,
0.019395001244833763,
0.011342382644507949,
0.006630027946916801,
0.004054293213123599,
0.002865180616570858,
0.0026378588936333673,
0.0031782904622509474,
0.004457509527582132,
0.00656698593454384,
0.009687070891609017,
0.014061120170352635,
0.01996915538378394,
0.02769669326533913,
0.03749658803524561,
0.049544313650169675,
0.06388986134848817,
0.08041197862189055,
0.09878232680489872,
0.11844774900767521,
0.13863780022120092,
0.15840186210331383,
0.17667581338227936,
0.19237304611574302,
0.20448962725002065,
0.2122097336508208,
0.21499609545945092,
0.21265158448623442,
0.20534218300848306,
0.19357763250978807,
0.17815288302425214,
0.16005964665642586,
0.1403816660087431,
0.12018895875798892,
0.10044513873219842,
0.08193841062634351,
0.06524191985187246,
0.05070393600216909,
0.03846389288946657,
0.02848731912178709,
0.020611460115176467,
0.014593785153871889,
0.010157151512285047,
0.007027572806700702,
0.004962733936328218,
0.0037711670865188374,
0.003323105867821346,
0.003554424741347608,
0.0044648747228756445,
0.006111283963109414,
0.00859579521794845,
0.012048845847903349,
0.016606681014865256,
0.022383834933723177,
0.02944217293603536,
0.03775954201404196,
0.04720245984902813,
0.05750812531742848,
0.06828092450487742,
0.07900726340069919,
0.08908999367177112,
0.09790027081327275,
0.10484106860210698,
0.1094136183852937,
0.11127654860017809,
0.11028798695202867,
0.10652340947871429,
0.10026611520261232,
0.0919719932406826,
0.08221466436962795,
0.07162015502052818,
0.060801389475342776,
0.050301858429419935,
0.04055522693495637,
0.031864119355131774,
0.024397722274226222,
0.018204926311149575,
0.01323795334999808
],
"yaxis": "y"
},
{
"fill": "tonexty",
"fillcolor": "rgba(0, 98, 98, 0.2)",
"fillpattern": {
"shape": "x"
},
"legendgroup": "RF",
"legendgrouptitle": {
"font": {
"size": 16
},
"text": "RF"
},
"line": {
"color": "rgb(0, 98, 98)",
"dash": "dash",
"width": 2
},
"mode": "lines",
"name": "target=2",
"showlegend": true,
"type": "scatter",
"x": [
0,
0.010101010101010102,
0.020202020202020204,
0.030303030303030304,
0.04040404040404041,
0.05050505050505051,
0.06060606060606061,
0.07070707070707072,
0.08080808080808081,
0.09090909090909091,
0.10101010101010102,
0.11111111111111112,
0.12121212121212122,
0.13131313131313133,
0.14141414141414144,
0.15151515151515152,
0.16161616161616163,
0.17171717171717174,
0.18181818181818182,
0.19191919191919193,
0.20202020202020204,
0.21212121212121213,
0.22222222222222224,
0.23232323232323235,
0.24242424242424243,
0.25252525252525254,
0.26262626262626265,
0.27272727272727276,
0.2828282828282829,
0.29292929292929293,
0.30303030303030304,
0.31313131313131315,
0.32323232323232326,
0.33333333333333337,
0.3434343434343435,
0.3535353535353536,
0.36363636363636365,
0.37373737373737376,
0.38383838383838387,
0.393939393939394,
0.4040404040404041,
0.4141414141414142,
0.42424242424242425,
0.43434343434343436,
0.4444444444444445,
0.4545454545454546,
0.4646464646464647,
0.4747474747474748,
0.48484848484848486,
0.494949494949495,
0.5050505050505051,
0.5151515151515152,
0.5252525252525253,
0.5353535353535354,
0.5454545454545455,
0.5555555555555556,
0.5656565656565657,
0.5757575757575758,
0.5858585858585859,
0.595959595959596,
0.6060606060606061,
0.6161616161616162,
0.6262626262626263,
0.6363636363636365,
0.6464646464646465,
0.6565656565656566,
0.6666666666666667,
0.6767676767676768,
0.686868686868687,
0.696969696969697,
0.7070707070707072,
0.7171717171717172,
0.7272727272727273,
0.7373737373737375,
0.7474747474747475,
0.7575757575757577,
0.7676767676767677,
0.7777777777777778,
0.787878787878788,
0.797979797979798,
0.8080808080808082,
0.8181818181818182,
0.8282828282828284,
0.8383838383838385,
0.8484848484848485,
0.8585858585858587,
0.8686868686868687,
0.8787878787878789,
0.888888888888889,
0.8989898989898991,
0.9090909090909092,
0.9191919191919192,
0.9292929292929294,
0.9393939393939394,
0.9494949494949496,
0.9595959595959597,
0.9696969696969697,
0.9797979797979799,
0.98989898989899,
1
],
"xaxis": "x",
"y": [
23.71997003475047,
19.532531216315096,
10.826345465935338,
4.801307495838514,
2.3436470923000736,
1.2708215597971424,
0.5546073063505526,
0.16258968837545845,
0.0328695595481188,
0.027304383095693035,
0.13411400840822593,
0.46901969838235186,
1.0227250777561938,
1.3879611134596062,
1.1722922670818807,
0.6162182775181718,
0.20159201366321353,
0.04104423271541513,
0.005200810500492826,
0.00041013797927789893,
2.012931574761928e-05,
6.148484786293875e-07,
1.1688189840760352e-08,
1.3828226106492863e-10,
1.018182775755844e-12,
4.665788791049548e-15,
1.3306518968387437e-17,
2.361804187674323e-20,
2.6089356331505002e-23,
1.7935887936752427e-26,
7.674011329146264e-30,
2.0434406218197863e-33,
3.386426363416445e-37,
3.492699907638822e-41,
2.2419242047432567e-45,
8.956134151324534e-50,
2.2266925683467324e-54,
3.445402211724254e-59,
3.317871708017493e-64,
1.9884708822702697e-69,
7.416839162394252e-75,
1.7217038790205885e-80,
2.4873564053523878e-86,
2.2364414599171346e-92,
1.2514600747962446e-98,
4.3582927868665214e-105,
9.446169556423344e-112,
1.274192348911004e-118,
1.0696807044938725e-125,
5.5887313543601675e-133,
1.8172396316133225e-140,
3.677486176955088e-148,
4.6315864181795236e-156,
3.630348832363233e-164,
1.7709520214782405e-172,
5.376567156916479e-181,
1.0158818103888103e-189,
1.1945961543984956e-198,
8.7425645467364e-208,
3.981955272454487e-217,
1.1287394142893642e-226,
1.9912728558015064e-236,
2.186289226424664e-246,
1.4939091954909476e-256,
6.353024321792787e-267,
1.6814213350874896e-277,
2.7695696679409923e-288,
2.839145995171108e-299,
1.81135191058695e-310,
7.2e-322,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
],
"yaxis": "y"
}
],
"layout": {
"font": {
"size": 12
},
"height": 600,
"hoverlabel": {
"font": {
"size": 16
}
},
"legend": {
"bgcolor": "rgba(255, 255, 255, 0.5)",
"font": {
"size": 16
},
"groupclick": "toggleitem",
"traceorder": "grouped",
"x": 0.99,
"xanchor": "right",
"y": 0.99,
"yanchor": "top"
},
"margin": {
"b": 50,
"l": 50,
"pad": 0,
"r": 0,
"t": 35
},
"showlegend": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"font": {
"size": 24
},
"pad": {
"b": 15,
"t": 15
},
"x": 0.5,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "top"
},
"width": 900,
"xaxis": {
"anchor": "y",
"automargin": true,
"domain": [
0,
1
],
"range": [
0,
1
],
"title": {
"font": {
"size": 16
},
"text": "Probability"
},
"type": "linear"
},
"yaxis": {
"anchor": "x",
"automargin": true,
"autorange": true,
"domain": [
0,
1
],
"range": [
-1.3177761130416927,
25.037746147792163
],
"title": {
"font": {
"size": 16
},
"text": "Probability density"
},
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABNEAAAJYCAYAAABMw3BUAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Ql8XXWd///3zb7vTdJsbdrShULZhHFFRn/qiKKOzPAbmfkNAoOICsMiCMNPBWaQRSgMOEgFYYozCIjoiLL5VxBREaiFAqUtDc2+r92yNMn9/85pb0zSm+Qu55x7zzmv+3g4NMl3fX5OsL7ne84JBIPBoPgggAACCCCAAAIIIIAAAggggAACCCCAwJwCAUI0rg4EEEAAAQQQQAABBBBAAAEEEEAAAQTmFyBE4wpBAAEEEEAAAQQQQAABBBBAAAEEEEBgAQFCNC4RBBBAAAEEEEAAAQQQQAABBBBAAAEECNG4BhBAAAEEEEAAAQQQQAABBBBAAAEEEIhPgJNo8fnRGwEEEEAAAQQQQAABBBBAAAEEEEDABwKEaD4oMltEAAEEEEAAAQQQQAABBBBAAAEEEIhPgBAtPj96I4AAAggggAACCCCAAAIIIIAAAgj4QIAQzQdFZosIIIAAAggggAACCCCAAAIIIIAAAvEJEKLF50dvBBBAAAEEEEAAAQQQQAABBBBAAAEfCBCi+aDIbBEBBBBAAAEEEEAAAQQQQAABBBBAID4BQrT4/OiNAAIIIIAAAggggAACCCCAAAIIIOADAUI0HxSZLSKAAAIIIIAAAggggAACCCCAAAIIxCdAiBafH70RQAABBBBAAAEEEEAAAQQQQAABBHwgQIjmgyKzRQQQQAABBBBAAAEEEEAAAQQQQACB+AQI0eLzozcCCCCAAAIIIIAAAggggAACCCCAgA8ECNF8UGS2iAACCCCAAAIIIIAAAggggAACCCAQnwAhWnx+9EYAAQQQQAABBBBAAAEEEEAAAQQQ8IEAIZoPiswWEUAAAQQQQAABBBBAAAEEEEAAAQTiEyBEi8+P3ggggAACCCCAAAIIIIAAAggggAACPhAgRPNBkdkiAggggAACCCCAAAIIIIAAAggggEB8AoRo8fnRGwEEEEAAAQQQQAABBBBAAAEEEEDABwKEaD4oMltEAAEEEEAAAQQQQAABBBBAAAEEEIhPgBAtPj96I4AAAggggAACCCCAAAIIIIAAAgj4QIAQzQdFZosIIIAAAggggAACCCCAAAIIIIAAAvEJEKLF50dvBBBAAAEEEEAAAQQQQAABBBBAAAEfCBCi+aDIbBEBBBBAAAEEEEAAAQQQQAABBBBAID4BQrT4/OiNAAIIIIAAAggggAACCCCAAAIIIOADAUI0HxSZLSKAAAIIIIAAAggggAACCCCAAAIIxCdAiBafH70RQAABBBBAAAEEEEAAAQQQQAABBHwgQIjmgyKzRQQQQAABBBBAAAEEEEAAAQQQQACB+ASSJkQbHhnTN799n37xqxendvSft1+pE49dbX7d0NSu86+4VR1dfVM/P3rNMn33xktUXJgfnwK9EUAAAQQQQAABBBBAAAEEEEAAAQQQmEcgaUK0gaE9uv+hJ3XBWZ9RdlaGXn51m6664R5tuPkyLV9SZYZoV99wj66/6jzzaz4IIIAAAggggAACCCCAAAIIIIAAAgg4JZA0IdrsDRuh2gVX3qbLzj/DPI1GiObUJcE8CCCAAAIIIIAAAggggAACCCCAAAKzBZI2RJsdms2+nZNbObmYEUAAAQQQQAABBBBAAAEEEEAAAQScEkjKEC30fLR3n3CkPnvqyWEt1m94RJ3d/br28nPM2z+NT3vfsFNuzIMAAjEKlORnaN/IuEYPTMY4At0QQMApgcqSbHUPDGsy6NSMzIMAArEIpKRIiwqy1DU4Ekt3+iCAgIMCWRmpyslMVf+eMQdnZSoEEIhVoKo0e0bXpAvRQgFaZXmJLj3/jDn3aZxM+/ZdD+mGfzlv6sUChGixXhb0Q8A5AUI056yZCYF4BQjR4hWkPwLOCBCiOePMLAhYIUCIZoUiYyDgnEBSh2iRBmgGFyGacxcNMyFgpQAhmpWajIWAvQKEaPb6MjoCVgkQolklyTgI2C9AiGa/MTMgYKVA0oZoC93C+fRzL2lFfc3UmzmN2zmNz/TTapxEs/JSYSwE7BEgRLPHlVERsEOAEM0OVcZEwHoBQjTrTRkRAbsECNHskmVcBOwRSNoQbfaLA0LbP/dzp5pB2cuvbtPnL75xSuUTH373jOehGT8gRLPnomFUBKwUIESzUpOxELBXgBDNXl9GR8AqAUI0qyQZBwH7BQjR7DdmBgSsFEjaEM2KTRKiWaHIGAjYK0CIZq8voyNgpQAhmpWajIWAfQKEaPbZMjICVgsQolktau94+dlp9k7A6I4L7Bkej2pOQrSouGiMAAJWCxCiWS3KeAjYJ0CIZp8tIyNgpQAhmpWajIWAvQKEaPb6Wj06IZrVookfjxBtWg04iZb4C5IVILCQACHaQkL8HIHkESBES55asBIE5hMgROP6QMA9AoRo7qmVsVJCNHfVK5LVEqIRokVyndAGgaQRIERLmlKwEAQWFCBEW5CIBggkhQAhWlKUgUUgEJEAIVpETEnTiBAtaUph2UII0QjRLLuYGAgBJwQI0ZxQZg4ErBEgRLPGkVEQsFuAEM1uYcZHwDoBQjTrLJ0YiRDNCWVn5yBEI0Rz9opjNgTiFCBEixOQ7gg4KECI5iA2UyEQhwAhWhx4dEXAYQFCNIfB45yOEC1OwCTsTohGiJaElyVLQmBuAUI0rg4E3CNAiOaeWrFSfwsQovm7/uzeXQKEaO6qFyGau+oVyWoJ0QjRIrlOaINA0ggQoiVNKVgIAgsKEKItSEQDBJJCgBAtKcrAIhCISIAQLSKmpGlEiJY0pbBsIYRohGiWXUwMhIATAoRoTigzBwLWCBCiWePIKAjYLUCIZrcw4yNgnQAhmnWWToxEiOaEsrNzEKIRojl7xTEbAnEKEKLFCUh3BBwUIERzEJupEIhDgBAtDjy6IuCwACGaw+BxTkeIFidgEnYnRCNES8LLkiUhMLcAIRpXBwLuESBEc0+tWKm/BQjR/F1/du8uAUI0d9WLEM1d9YpktYRohGiRXCe0QSBpBAjRkqYULASBBQUI0RYkogECSSFAiJYUZWARCEQkQIgWEVPSNJorRNvV3K5LvnGHOrv7Zqz1yFX1Wn/NhSoqzJ/6/lxtQw3uuvGrOn7dqqTZs9cXQohGiOb1a5z9eUyAEM1jBWU7nhYgRPN0edmchwQI0TxUTLbieQFCNHeVeKEQ7dwzP6nTPvp+c1PDI2O68Y6Nem1rg2677iLV11WZ3w+FaNPbukvBW6slRCNE89YVzW48L0CI5vkSs0EPCRCieaiYbMXTAoRoni4vm/OYACGauwoaTYg2V2BGiJZcNSdEI0RLriuS1SCwgAAhGpcIAu4RIERzT61Yqb8FCNH8XX927y4BQjR31YsQzV31imS1hGiEaJFcJ7RBIGkECNGSphQsBIEFBQjRFiSiAQJJIUCIlhRlYBEIRCRAiBYRU9I0ijZE+9OW7frSlbdo+nPOOImWNOU0F0KIRoiWXFckq0FgAQFCNC4RBNwjQIjmnlqxUn8LEKL5u/7s3l0ChGjuqlc0Idrg0B5des2dOuHoVfryOadPbXS+FwtcffFZU89Uc5eMe1dLiEaI5t6rl5X7UoAQzZdlZ9MuFSBEc2nhWLbvBAjRfFdyNuxiAUI0dxVvoRBt9ts5w71pk5NoyVVzQjRCtOS6IlkNAgsIEKJxiSDgHgFCNPfUipX6W4AQzd/1Z/fuEiBEc1e9FgrRQm/cDJ1CM3a3/poLVVSYP7VRQrTkqjkhGiFacl2RrAYBQjSuAQQ8I0CI5plSshGPCxCiebzAbM9TAoRo7ipnpCGasatQWPaRk08MeztnKHBzl4D3VkuIdqim97/wgj625gTvVZgdIeAxAU6ieaygbMfTAoRoni4vm/OQACGah4rJVjwvQIjmrhJHE6IZOwu9WGD6s844iZZcNSdEO1SPwLnn6g9XXqu6ktLkqhCrQQCBGQKEaFwQCLhHgBDNPbVipf4WIETzd/3ZvbsECNHcVa9oQzRjd/9x34/1g0efmnpDJyFactWcEG1aiPbgP31ZH1y5JrkqxGoQQIAQjWsAAZcKEKK5tHAs23cChGi+KzkbdrEAIZq7ihdLiDY8MqYb79iop597yQzSiovydck37hC3cyZH7QnRpoVo13/mDH3+vScnR2VYBQIIhBXgJBoXBgLuESBEc0+tWKm/BQjR/F1/du8uAUI0d9VrrhDNXbtgtdMFCNGmhWj/9P5TdO2n/oYrBAEEkliAEC2Ji8PSEJglQIjGJYGAOwQI0dxRJ1aJgCFAiOau64AQzV31imS1hGjTQrQPr16rB865IBI32iCAQIIECNESBM+0CMQgQIgWAxpdEEiAACFaAtCZEoEYBQjRYoRLUDdCtATB2zgtIdq0EK2+bJFeuOKbNnIzNAIIxCtAiBavIP0RcE6AEM05a2ZCIB4BQrR49OiLgLMChGjOesc7GyFavILJ158QbVqIZvyx7ebvJF+VWBECCEwJEKJxMSDgHgFCNPfUipX6W4AQzd/1Z/fuEiBEc1e9CNHcVa9IVkuIdkip8pJL1LV7t3kSzTiRxgcBBJJTgBAtOevCqhAIJ0CIxnWBgDsECNHcUSdWiYAhQIjmruuAEM1d9YpktYRoh5T+z733anRsUpd99FTVFpdGYkcbBBBIgAAhWgLQmRKBGAUI0WKEoxsCDgsQojkMznQIxCFAiBYHXgK6EqIlAN3mKQnRDgFvampSRiBHpbl5NpMzPAIIxCNAiBaPHn0RcFaAEM1Zb2ZDIFYBQrRY5eiHgPMChGjOm8czIyFaPHrJ2ZcQbVqIFpzIUFVhUXJWilUhgIApQIjGhYCAewQI0dxTK1bqbwFCNH/Xn927S4AQzV31IkRzV70iWS0h2rQQbWQ0oPpSnocWyYVDGwQSJUCIlih55kUgegFCtOjN6IFAIgQI0RKhzpwIxCZAiBabW6J6EaIlSt6+eQnRpoVoQ3vHtbqyyj5tRkYAgbgFCNHiJmQABBwTIERzjJqJEIhLgBAtLj46I+CoACGao9xxT0aIFjdh0g1AiDYtRGvp6NeJK1YpEAgkXaFYEAIIHBQgRONKQMA9AoRo7qkVK/W3ACGav+vP7t0lQIjmrnoRormrXpGslhDtkNJvt27V61ve0kfed4pyc3IisaMNAggkQIAQLQHoTIlAjAKEaDHC0Q0BhwUI0RwGZzoE4hAgRIsDLwFd3RCi7Wpu1yXfuEPfuPRsHb9uVQKUIptycGiPLr3mTv31x0/WaR99f2SdFmgV2ntnd5/Z8shV9Vp/zYUqKsyfsych2iGaH/zP/2jvyKROee8HVJiTa0lBGAQBBKwXIESz3pQREbBLgBDNLlnGRcBaAUI0az0ZDQE7BQjR7NS1fmxCNOtMrQ7RQgHauWd+ciqU+4/7fqxNr2+fN0gjRDtU0/V3363qVeu0ZtkKleXNnTpadwkwEgIIxCJAiBaLGn0QSIwAIVpi3JkVgWgFCNGiFaM9AokTIERLnH0sM4cL0V5tbtLe0dFYhourz7F1dcrLzDpsDL+eRDMCs+7efl150VnKzsowXSIJ6gjRDl1CDz/5pHa0detAUZFWLq7Wh1avjesCpTMCCNgjQIhmjyujImCHACGaHaqMiYD1AoRo1psyIgJ2CRCi2SVrz7jhQrQP3vwtbW5ptmfCeUb99WVf07uW1s9oMft2xtAP77rxq1qzsl433rFRTz/30ow+V1981ozbKR9/5gX95MnnzdtBr1t/v7Zu36WPnXLSVDh12C2TK5eqf3CPpp8Amx5gGf2NT2V5qW677iLV11VNhVuhn4UWNHstkaIOj4yZeysvK9GXzzl9qttc358+LiHaIY3fb9+uh5/9re54+Q86+YjV+uF5X4nUn3YIIOCgACGag9hMhUCcAoRocQLSHQGHBAjRHIJmGgQsECBEswDRwSHChWifv+8e7ertcXAVB6e688z/o3U1tYfNO9dJNCNQuu/Bx/X3p3906hlh4W6BNEK062/fGPZ5Yn/asl1fuvIWTQ+7wo0x17jff/DnhwVpVjwTbb4TZ+FOqBGihblcNzU16ZW3m/TFH25UbXGJXrzqOscvaiZEAIGFBQjRFjaiBQLJIkCIliyVYB0IzC9AiMYVgoB7BAjR3FMrY6XhQrQdnR3aPzbm+EZWVi5WTsbB2xanf6K5nTPcSa3QSbTZD+Sf61TX7ABroVNh7zp2jXnybb7ga64TddP3Of2lAeFCu1DbhZ6Lxkm0Q1JGiNY1sF+n3XmLJiXtuuF2ZaSmOX5hMyECCMwvQIjGFYKAewQI0dxTK1bqbwFCNH/Xn927S4AQzV318kKIZoRKP3j0qRnw02/XnCtEmyucmx2GzRfiGXMbH+OWy0ieVxbp1UGIFqnUPO2MEK1naFRfeOAetQz069nLrtbKisUWjMwQCCBgpQAhmpWajIWAvQKEaPb6MjoCVgkQolklyTgI2C9AiGa/sZUzuDlECwVNJcUFU2+rDJ0aM4xCD+S3KkTr7O4LSx8K7EZHR3XpNXeK2zmtvELjGCsUol37+I/14js79f2zvqC/WrsujhHpigACdggQotmhypgI2CNAiGaPK6MiYLUAIZrVooyHgH0ChGj22doxsptDtHC3NdoZohkvJjh+3ao5y2Dl7ZwL3UI6+4UD0xfF7ZyHNEIh2r2/fVY//tNL+r+f+Iwu+OD/suP3iDERQCAOAUK0OPDoioDDAoRoDoMzHQIxChCixQhHNwQSIECIlgD0OKYMF6K19vdrZPxAHKPG1rWmuERZ6emHdZ7rdspwD9iPJkSbK/SK9Jlosxdq5e2cxtjh9hfJHIRos0K0J994TXf86imdedJ79e2/OTO2q5NeCCBgmwAhmm20DIyA5QKEaJaTMiACtggQotnCyqAI2CJAiGYLq22DhgvRbJssxoFDwdEJR68ynz0W+hhv1rxu/f1Tb8cMBU/G89EieSaa0d641XP6GzanjzH9jZ3h3uJptDW+39bZY75YIFyAF+OWzW7hnou20EsFjH6EaLNCtC0tTfraYw/pPctW6NEvXhxPTeiLAAI2CBCi2YDKkAjYJECIZhMswyJgsQAhmsWgDIeAjQKEaDbi2jC0G0K06YFS6Llkd934VfPWSiMEu/72jVMy66+9UE8/+0fz64WeiRbqNHuM66/6gv77sV8e9myzUJi3dfuuqfkqy0tnhHiz20wP4mIp3+y3ek5/g+dc4xGiTQ/RBkfUv3tIT21+Raf9xfv0vhUrY6kDfRBAwEYBQjQbcRkaAYsFCNEsBmU4BGwSIESzCZZhEbBBgBDNBlQbh3RLiGYjwWFDh4Kwr5x9+rzPQHNyTdHMRYg2LURr6x5Sd2uL9u/do9M//ikFAoFoLGmLAAIOCBCiOYDMFAhYJECIZhEkwyBgswAhms3ADI+AhQKEaBZiOjCU30M043bMP7zyxozbRMM9i8yBUlg2BSHaIcrfb9+uN998W8P79qp2xUodU78i7EP3LJNnIAQQiEmAEC0mNjohkBABQrSEsDMpAlELEKJFTUYHBBImQIiWMPqYJiZE264vXXnLDLvpz1OLCTXBnQjRDhXg4aeeUlfPoOpWrFJWbq6WlJSqMDsnweVhegQQmC1AiMY1gYB7BAjR3FMrVupvAUI0f9ef3btLgBDNXfXye4jmrmpFtlpCtENO6zdsUPXKo1VYWmZ+p7KgUOX5BZEp0goBBBwTIERzjJqJEIhbgBAtbkIGQMARAUI0R5iZBAFLBAjRLGF0bBBCNMeoHZuIEO0Q9QM//an2jQZVtXSZMrOzVZyTq9riEscKwUQIIBCZACFaZE60QiAZBAjRkqEKrAGBhQUI0RY2ogUCySJAiJYslYhsHYRokTm5qRUh2qFq/XbrVr2+ZZuMdwlULV2uksIiLV9U7qZaslYEfCFAiOaLMrNJjwgQonmkkGzD8wKEaJ4vMRv0kAAhmruKSYjmrnpFslpCtENKm5qa1NLer86WRgWDQdUtX6nj6pdHYkgbBBBwUIAQzUFspkIgTgFCtDgB6Y6AQwKEaA5BMw0CFggQolmA6OAQhGgOYjs0FSHatBCtZ3BEw/v3qau1WZMTkzrtwx9TqvG3Cj4IIJA0AoRoSVMKFoLAggKEaAsS0QCBpBAgREuKMrAIBCISIESLiClpGhGiJU0pLFsIIdr0EG1oVAoGzSDtkd89r/7gpK489TNaVbnYMnAGQgCB+AQI0eLzozcCTgoQojmpzVwIxC5AiBa7HT0RcFqAEM1p8fjmI0SLzy8ZexOizQ7RZORoQV3/+GP63a6d+s7nztJfH3diMtaONSHgSwFCNF+WnU27VIAQzaWFY9m+EyBE813J2bCLBQjR3FU8QjR31SuS1RKihQnRjG9t/N1v9NArL+qrHzlVl3zk1EgsaYMAAg4IEKI5gMwUCFgkQIhmESTDIGCzACGazcAMj4CFAoRoFmI6MBQhmgPIDk9BiDZHiPb066/q9l8/rdOPO1F3fO4sh8vCdAggMJcAIRrXBgLuESBEc0+tWKm/BQjR/F1/du8uAUI0d9XLDSHaruZ2XfKNO/SNS8/W8etWJS3w4NAeXXrNnfrrj5+s0z76fkvX+act2/Wd+3+s9ddcqKLC/HnHJkQLE6JNjB/Q717brBteeFbH1y7R4xdebmmBGAwBBGIXIESL3Y6eCDgtQIjmtDjzIRCbACFabG70QiARAoRoiVCPfU5CtNjtZve0K0QbHhnTjXdsVEtHDyFaNOXa1NSknqFRTYyPm2/nbGlr0TWvvKi8zExt/9dboxmKtgggYKMAIZqNuAyNgMUChGgWgzIcAjYJEKLZBMuwCNggQIhmA6qNQ4YL0V5radaekZF5Zz22rk55mVlmm+nt5/r+XINNbz9XG7+eRAuFclu37zJpjlxVT4gWze+CEaJ19u1TT3ur+jo7VL9mrf7hv76v4bExvXHNTSrOyY1mONoigIBNAoRoNsEyLAI2CBCi2YDKkAjYIECIZgMqQyJgkwAhmk2wNg0bLkQ7+aZv6dXW5nln/MVXLtYRJaUy7pI74/579XpHu9n+yYsv0zE1teafT739Vr3a2jLvOD//ysU6fslSKSDlZGQoJZAyo30oQOvs7pvx/btu/KrWrKw3T2g9/dxLM3529cVnzbid8vFnXtBPnnzevB30uvX3ywilPnbKSbryorOUnZWh2XMcuXKp+gf36NwzPzljnNmhVmV5qW677iLV11Vp9s9CC5q9lljLGNoDt3NGIfjHhga99VbDVICWk1+gix7aqLe7OvX4V76q4+uWRjEaTRFAwC4BQjS7ZBkXAesFCNGsN2VEBOwQIESzQ5UxEbBHgBDNHle7Rg0Xop19/71q6O4KO2VQMu+O++ySemWNjqigqFhP9HSpbWjIyMH01b86VXUlpWbfW595Uk29veafjX6TExMaHRnWgbExpaamKSs7W1/75Ke1pPRg+5UVlWaQNvsz10k04zbH+x58XH9/+kennhMWajs9ADMCqOtv3xj2JJfxrLEvXXmLpodd4caYa9zvP/jzw4I0O56JRogWw2/AT559Vu80NJsn0IwAzfjc9OTP9NyOt3TH3/2jTj/+pBhGpQsCCFgtQIhmtSjjIWCfACGafbaMjICVAoRoVmoyFgL2ChCi2etr9ejhQrQdXZ3aPzZ22FTBYFB7hgbVtPNtDfX3q7CkRPUrVys3P1+BgBGhhf8Y/fbv3auWXQ3q7exUXkGBlqxYafZPMf4Ff+gTbYgWbrbQ88PKy0r05XNON5vMFUCFa2u0n/1ss7nahb7/rmPXmCfW5nsm2lwn6qbvYb7bNQnRYrjy12/YoOqVR6uwtGyq95bWZg0fGNPH1x6jmuKSGEalCwIIWC1AiGa1KOMhYJ8AIZp9toyMgJUChGhWajIWAvYKEKLZ62v16JGGaAcDtCE1N+zUYF+vGYAtPWKl8goKFwzQhvftU8uud9Tb0a7cggLVLV+hotKyGQGasa9YQ7T/uO/H+sGjT82gmX675lwB1Fwn3GaHYfM9k82Y2/gYgZ1dLxaYLwgMdz3wds5DKvc+9JACWQUqr6lT+rQjjkXZOVPHJa3+hWI8BBCIXoAQLXozeiCQKAFCtETJMy8C0QkQokXnRWsEEilAiJZI/ejnjiREC51Aa2lo0GBfnwpLS8wgLK+wSCkLnEAzA7R3GtTb1WmeWKtdvkLFYQK0WEK0ULhVUlww9cD90OkwY7zQM8+sCtFmP5ctpB0K7EZHR3XpNXeK2zmjvw5t6fHc66/rtc1vKDe/QBW1RpCWac6TnZ6uI8orbZmTQRFAIHoBQrTozeiBQKIECNESJc+8CEQnQIgWnRetEUikACFaIvWjn3uhEO3PJ9DeNgO0otJSM0DLLyxa+ATa/v1qbnh76hbOuU6ghVYd7Uk04xTYpte3z3hjpZ0hmvFiguPXrZoTmds5o7/+bO1hvJ2zsaVbHU27lJWTqwrjRFpmpnnhHl1VY+vcDI4AApELEKJFbkVLBBItQIiW6AowPwKRCRCiReZEKwSSQYAQLRmqEPkawoVoLQP9Gj0wrqCCMk6SdbW1au/u3eazzMqrqpWTmzdvgGa8RmBsdFSdrS0aGhhQdk6OKqprzP6BWW/fnL7SmuJiZaWnH7b4uW6nNEK07t7+qRNnRsdoQrS5Qq9In4k2e6Hczhn5dedISyNE6x4c0b7dQ+pqbVZGZpZ5Is3455GVVUpLTXVkHUyCAALzCxCicYUg4B4BQjT31IqV+luAEM3f9Wf37hIgRHNXvcKFaMm2g1A4dcLRq6ZeFmCs0Xiz5nXr7596O6bxvdDz0SJ5JprR3rjVc/obNqePMf2NneHe4hlaQ1tnj/ligXABnlWWvFggBkkjROsZGlUwOKl9u3eru63FvKWzsrZOq6pqlZeVFcOodEEAAasFCNGsFmU8BOwTIESzz5aREbBSgBDNSk3GQsBeAUI0e32tHt0NIZqx59lvt7zrxq8NPJH/AAAgAElEQVSat1Ya4dL1t2+cYll/7YV6+tk/ml8v9Ey0UKfZY1x/1Rf034/98rBnm4XCvK3bd03NV1leOiPEm91mehAXbe3CzRcaI7T/cGPyYoFDKqEQzfgyOGkEaUPqbm9VSkqqjjvyaNUuroq2JrRHAAEbBAjRbEBlSARsEiBEswmWYRGwWIAQzWJQhkPARgFCNBtxbRjaLSGaDVufc8hQePWVs0+f9xloTq4pmrkI0cKEaKEgbai/T+1Nu7RmxUodc+TR0bjSFgEEbBIgRLMJlmERsEGAEM0GVIZEwAYBQjQbUBkSAZsECNFsgrVpWL+HaMZtmn945Y0Zt4mGe9aaTfy2DEuINkeINjF+QD3tberpaNeSmlq9/6T32lIABkUAgegECNGi86I1AokUIERLpD5zIxC5ACFa5Fa0RCDRAoRoia5AdPMTom3Xl668ZQba9OepRaeZHK0J0cKEaBPj4+rtbNdgT7dSS0p147O/VElurp66+MrkqBqrQMDHAoRoPi4+W3edACGa60rGgn0qQIjm08KzbVcKEKK5q2x+D9HcVa3IVkuINitEm5yYUG9Hu/mf6uXLlZ1fqE/ftV6pgYCab7ozMlVaIYCAbQKEaLbRMjAClgsQollOyoAI2CJAiGYLK4MiYIsAIZotrLYNSohmG23CBiZEmxaidQ8Mq7ezQ53NjVq6ao3yi4qlQED/597/UO++vXrxymtVW1KasGIxMQIISIRoXAUIuEeAEM09tWKl/hYgRPN3/dm9uwQI0dxVL0I0d9UrktUSoh1SeqWxUdu2N6qlYYeOOOoY5RkB2qHP1378Q21pbdYP/+nLOnnlmkhcaYMAAjYJEKLZBMuwCNggQIhmAypDImCDACGaDagMiYBNAoRoNsHaNCwhmk2wCRyWEO0Q/hO//71e2/yGVhx9zMETaNM+//6rp/TUG6/phr/+3/rH93wggeViagQQIETjGkDAPQKEaO6pFSv1twAhmr/rz+7dJUCI5q56EaK5q16RrJYQ7ZDS+g0bVL3yaBWWlh3m9uimP+r7Lzyn8z7wl7rmtNMjcaUNAgjYJECIZhMswyJggwAhmg2oDImADQKEaDagMiQCNgkQotkEa9OwhGg2wSZwWEK0Q/j/sXGj8strVFa5WCmpaTNK8vuGt/WvP39M/2v1Wm0854IEloupEUCAEI1rAAH3CBCiuadWrNTfAoRo/q4/u3eXACGau+pFiOauekWyWkK0Q0q/3rxZmzdtUVlVtcoqq5Sa9ucgram3R1/87/u0fFGFnr/865G40gYBBGwSIESzCZZhEbBBgBDNBlSGRMAGgZSUgBYVZKhrcNSG0RkSAQSsFCBEs1LT/rEI0ew3dnoGQrRD4puamtSwq0NtjQ0qWVRhnkhLTU83f3pgYkKf+s4tSg0E1HzTnU7XiPkQQGCaACEalwMC7hEgRHNPrVipvwUI0fxdf3bvLgFCNHfVixDNXfWKZLWEaNNCtO7BEe0e6FdXc5MKSkvNIC0tPcNssbOzQ+9ZtlyLi0sjcaUNAgjYJECIZhMswyJggwAhmg2oDImADQKEaDagMiQCNgkQotkEa9OwbgjRdjW365Jv3KFvXHq2jl+3yiaJ+IcdHNqjS6+5U3/98ZN12kffH/eAf9qyXV+68pYZ43zslJN05UVnKTvrYA4U7kOINi1E6xkaVXBy0gzSuttalV9UpLLFVQoEUjTQ06W1S5epoqw87mIxAAIIxC5AiBa7HT0RcFqAEM1pceZDIDYBQrTY3OiFQCIECNESoR77nIRosdvN7ml1iPYf9/1Y73nXUVPB4fDImG68Y6NaOnq0/poLVVSYT4g2X/mM2zmNEM34TBpBWn+fejvblZ2bp9TUNO3bPaQTjztBNeWV1l0FjIQAAlELEKJFTUYHBBImQIiWMHomRiAqAUK0qLhojEBCBQjREsof9eThQrSNv39BbYMD84519vtO1uLCwnnbWDWOX0+ihcONxIKTaIfkpodoZpA2MaGB3m51tTSbLYyXDaw+YpVqSridM+p/c9ABAQsFCNEsxGQoBGwWIESzGZjhEbBIgBDNIkiGQcABAUI0B5AtnCJciPb+G/9NW9pa553lR1+4QPUFhRodGVF+YZEys7MUUGBGn9O/e6deX2CcR7/4Fa2rqTX7leblKT01dcYYodCos7tvxvfvuvGrWrOy3jyZ9fRzL8342dUXnzXjdsrHn3lBP3nyefN20OvW36+t23dp+m2Rs+c4cuVS9Q/u0blnfnLGOKGTZkZ/41NZXqrbrrtI9XVVmv2z0IJmryXe0oXWOntt08clRDukcXiINq6+zk51tbUoJRBQUVm5VqxYqRWVi+OtC/0RQCAOAUK0OPDoioDDAoRoDoMzHQIxChCixQhHNwQSIECIlgD0OKYMF6Ld/NQTah3oP2xU4464fXv2aGxkRB9cskQFGZmqrK5RQXGxUlJSDmv/+JZX1bN7t/lIquH9+zS8b7/MnC0oZefmmv/59HEnqCwvz+y7sqJSORmHP+trrtNXxu2N9z34uP7+9I9O3doYLmQyQrTrb9+oI1fVH3YbZOi5Y9PDrnBjzDXu9x/8+WFBmlXPRAtX1tBejBBxrufDEaKFCdHMU2g93err6lRx2SKlpKWaXy8qr9AHjjsxjl8huiKAQLwChGjxCtIfAecECNGcs2YmBOIRIESLR4++CDgrQIjmrHe8s4UL0XZ0dWr/2FjYoffv3at3tr+lwd4+1a1Yoaq6JUpLT19wGaMjw2reuVNdba2qqKlV3fIVyszKmtEv2hAt3KSh54aVl5Xoy+ecbjYJnUSb/RyxcG2N9rOfbTZXu9D333XsGvPE2nzPRJvrRN30PYQL+ab/PDS+8T1fPBPNAP7mt+/TL3714pTDf95+pU48dvXU14898by+fvN95tef+PC7de3l50y9dSF0Ei0UoPV0tGnR4ioVLzJeJBAwXzbQ096qz/7VaQoEZh6jXPCKpgECCFgmQIhmGSUDIWC7ACGa7cRMgIAlAoRoljAyCAKOCBCiOcJs2STRhGhjY6Pqam3V8L59ZnA2Mjysiurqgwd7wpxECy1yfHxcvZ0dGuzrU0ZmpsZGR1VUWqqyysVKS0ub2kusIZrxAP4fPPrUDJPpt2vOFaLNdcJtdhg233PIjLmNjxHYWf1igdlFDu1zvlNoRh/PnEQbGNqj+x96Uhec9RkzGHv51W266oZ7tOHmy7R8SZX59a0bHtF3b7xExYX5Wr/hEdPs0vPPMP9phGjdA8Pmc9A6m5tUWbtERcbFeuie4cnJCe3u79dxy49Qfl74tzRY9pvGQAggMKcAIRoXBwLuESBEc0+tWKm/BQjR/F1/du8uAUI0d9Ur0hBtbGxMXa0tMk6iGcFZTl6++rq71dfdqaq6pSoqKzMfMzX7EwrQBnp7tKiyyrz1c2ig3wzVShaVq6yiUqmHgrRoQ7RQuFVSXDB1Mit0OsxYx5UXnWVmL1aFaLOfyxbaayiwGx0d1aXX3Ck7bucMBWiRPGPNMyHa7IvJCNUuuPI2XXb+GeZpNCM0W1pbqc+eerLZdHaotqmxUTsaWtXa8LZqlq1QYZi017jXuDQ7W1lZ2SojSHPXv71YrWcECNE8U0o24gMBQjQfFJktekKAEM0TZWQTPhEgRHNXoSMJ0Q6MjamzrVX7du9WZU3t1DPQQgFZd3u7apctN0+XTb8rbmJiwgzLers6VVFdY55YS01NlfH9gZ4edbW3alHlYpUaQVpqatTPRDOCpU2vb59xa6OdIZrxYoK5nkNmVN2u2zmjCdCMdXg2RGtoatfVN9yj6686T1UVZeatnu8+4cipEG36z42Tas+8/LL+9PKrql99pIpKyxQIc1zy4Vde1H0vPKevf+Iz+tIpH3HXby+rRcAjAsV56do3Oq6xA0GP7GjubQQVPOwtPJ7fNBv0lEB5cZZ6BkcU9P6vq6fqtuBmAkEpyKMtFnRyUYNASkBl+enqGQr/jB4XbYWl+ljAL39vysxIUU5Gqgb2HvBxtd2z9bzsP99OGVp1Z3+/dOiOt4nJCTM8O/gWzkJlZmXPCMomg5Pm6bQ9g4PmabTs7BxzmGAwqH1792jfnt3m2zuzcnKUEvjzyweMfiP795v98goKlZOXp7L8/MPezmmMZZw4u/jr/65vXnbOjBDrO/c9qu6eAV31zwdPnBkfI0S74d83mn8Off9nT/9WP33yea2/9qKpFxBMhV7fvEOf+fjJ+tTHPjBVNDMMm/b90Jjli4r1lXP+Zs7izu5nxVVg7PEHP3pK373p8nkDvOlz7R0ej2rqypKZz6YLBI3qJdkn9Hy0UGgW+vpvTztl6hlps0O02+65R2uOOUal5cYz0MJ/HvrjH7X+mWd0zgc+oHvOOivJds1yEPCHgPn/fTH+95vxfzz+GZ8IKi2V/6Hq8TJ7envGbQfGXxO8/9vq6TIetrnx8aDS0vh3k5eqblTT+O/XyeT7a72XmNmLzQJ++XtTwHj9ovHXYX5fbb6irBneDf9tadzF96WrbtdJx67WJV/426mNG3fv/cuN9+rumy41H5FlfG773o/0/R8+YT5j/pqvnm2Ga8az53/089/orhsuNh+dNf1j/Oy7D/ws7BjXXX72jDsFz77kJk3/njGOsYaW9m6znZHrXHPL/ebwobnjqVJoL/ff9rUZz9JfaMxo/147+zbcpAvRQoFZZXnJ1PPOZodqBsphIdqGDVq8Yq35HDTN8eKAlxvf0Tf+50d697IV+vEXL17Ilp8jgIANAtzOaQMqQyJgkwC3c9oEy7AIWCzA7ZwWgzIcAjYKcDunjbg2DB3udk4bpol7yNlvtww9XN943tn1tx88eWZ81l97oZ5+9o/mnxd6Jlqoz+wxrr/qC/rvx3552LPNQrdrbt2+a2q+yvJS3XbdRaqvOxjizW4TyTPMwuGEm2t6u/ne5Omp2znDBWhTxV7gmWi/fOUVbXpps5asXG0GaeFu52wfHNC5G7+nivwC/enr34r7QmUABBCIXoAQLXozeiCQKAFCtETJMy8C0QkQokXnRWsEEilAiJZI/ejndkuIFv3OYu8RCrC+cvbpEd9CGfts1vf0TIgW7rTZdK4F384ZerHAO2+run75wTdzpqTOEJ+YGNenvnOrJo37hm+4XRmph9/fbH2JGBEBBKYLEKJxPSDgHgFCNPfUipX6W4AQzd/1Z/fuEiBEc1e9/B6i/WnLdv3hlTf05XNOnyqc8SD/7t7+qZNs7qqoh14sYNyeef4Vt6qjq29GDc793KlTt3Ua9+N+/eb7zJ8b9/Bee/k5Uw/I29TUpO6BYRmvhu1sblRFbZ2Ky8qVcuiBf5MTE9o90K+LH3tIXcP79cw/f01rq2vdVm/Wi4DrBQjRXF9CNuAjAUI0HxWbrbpagBDN1eVj8T4TIERzV8EJ0bbrS1feMqNoHzvlJNcGaMZGPHMSLd5fJSNE6xka1eTkpAZ7utXT3qrSyioVLyo3H7RqBGg97W26f9sb2tzRpg3/cK4+ue64eKelPwIIRClAiBYlGM0RSKAAIVoC8ZkagSgECNGiwKIpAgkWIERLcAGinN7vIVqUXK5oToh2qEyhEM340jh1NtDTrb6uThUbt3WmpZpf5xUU6We73tZPXt2kK//qNF34oY+5osgsEgEvCRCieama7MXrAoRoXq8w+/OKACGaVyrJPvwgQIjmrioTormrXpGslhAtTIhmfGtifNwM0YwTacZLBopKy1ReXaNfbn9LD774gs77wIf0lQ99NBJj2iCAgIUChGgWYjIUAjYLEKLZDMzwCFgkQIhmESTDIOCAACGaA8gWTkGIZiFmkgxFiDZHiGacRhvs7VFHc6PZomxxlcoqq5SalqbcjEwtX1SeJCVkGQj4S4AQzV/1ZrfuFiBEc3f9WL1/BAjR/FNrdup+AUI0d9WQEM1d9YpktYRoYUK0yckJ7e7vV29nu7Jzcs3gbO/uIfM0WvGiCmVlZmpNZVUkvrRBAAGLBQjRLAZlOARsFCBEsxGXoRGwUIAQzUJMhkLAZgFCNJuBLR6eEM1i0CQYjhBtVogWnJzUUH+f+RKB/KIi8wRaIJBiPhPNOJlWVLZIJYvKdeyS+iQoH0tAwH8ChGj+qzk7dq8AIZp7a8fK/SVAiOaverNbdwsQormrfoRo7qpXJKslRJsWonUPjmh3f586W5rMU2fG2znT0tPNFsYz0owgbaCnSyXllfrg8ScqJRCIxJg2CCBgoQAhmoWYDIWAzQKEaDYDMzwCFgkQolkEyTAIOCBAiOYAsoVTEKJZiJkkQxGiTQvRGna1q21Xg0oqKlVWuVipaQcDtNAnFKT1d3XqtI98XJkZGUlSRpaBgH8ECNH8U2t26n4BQjT315Ad+EOAEM0fdWaX3hAgRHNXHQnR3FWvSFZLiHZI6VebN2vzpi3mGzhLK4wALS2sn/HCAeNE2nFHrFJRQWEkxrRBAAELBQjRLMRkKARsFiBEsxmY4RGwSIAQzSJIhkHAAQFCNAeQmQIBCwWqSrNnjBYIBoNBC8dP2FB3PfCA8hbVmCfQUlJT512HEaQtLS5RUX5BwtbLxAj4VYAQza+VZ99uFCBEc2PVWLMfBQjR/Fh19uxWAUI0t1aOdftVwLMh2q13362aVetUWFoWUW2r8wtUykm0iKxohICVAoRoVmoyFgL2ChCi2evL6AhYJUCIZpUk4yBgvwAhmv3GzICAlQKeDdGe+MMf9NqftmjFUccov7hkXrN9u4d0YGxMq+qXq4Igzcrri7EQWFCAEG1BIhogkDQChGhJUwoWgsC8AoRoXCAIuEeAEM09tWKlCBgCng3RXmls1PYdjWreueNgkFZUHLbi+3bv1p1PPa7fdLTqqo9/Sl/5y49yZSCAgIMChGgOYjMVAnEKEKLFCUh3BBwSIERzCJppELBAgBDNAkSGQMBBAc+GaJuamtQ9MKy+zg51NDdqyao1ZpAWCAQO8gaDMgK0loYd+m1Ptx7b9oYu+OD/0v/9xGcc5GcqBBAgROMaQMA9AoRo7qkVK/W3ACGav+vP7t0lQIjmrnqxWgQ8HaL1DI3KeGmAEaT1dLSpun65CoxbOwMBGbdwtje+o9z8Qv1paEB3Pf8rnXnSe/XtvzmTqwIBBBwUIERzEJupEIhTgBAtTkC6I+CQACGaQ9BMg4AFAoRoFiAyBAIOCng+RDMsJ8bH1dfZroGeblXU1ik1NU1dbS3KyslVRU2dXmxs0Lee/JlOPeoY3fOP5znIz1QIIECIxjWAgHsECNHcUytW6m8BQjR/15/du0uAEM1d9WK1CPgiRDsYpB1Qd1ub+ro6lJqaqrzCIlXWLlF6ZqY2NzfqX37ysN677Aj96Iv/zFWBAAIOChCiOYjNVAjEKUCIFicg3RFwSIAQzSFopkHAAgFCNAsQGQIBBwV8E6IFJyc11N9n3sIZDAbNAK14UblSUlO1s7tTF/5wo45cXK1fXnKVg/xMhQAChGhcAwi4R4AQzT21YqX+FiBE83f92b27BAjR3FUvVouAL0I0I0AznoHW3d4m4y8Vxu2cY6MjKq1YrIKSUvXs3aPP/+cGVRUW6eWr/42rAgEEHBQgRHMQm6kQiFOAEC1OQLoj4JAAIZpD0EyDgAUChGgWIDIEAg4KeD5EMwK0vbuH1NPWat66aZxAC6QE1NvRbr6ds7RysdJycvW399ypnIwMvf1v6x3kZyoEECBE4xpAwD0ChGjuqRUr9bcAIZq/68/u3SVAiOauerFaBDwdonUPjpgn0LpampSZnaPymlplZGaZVR8fG1NvpxGkDamsskrn/ui/VVtcol9ddjVXBQIIOChAiOYgNlMhEKcAIVqcgHRHwCEBQjSHoJkGAQsECNEsQGQIBBwU8HSI1tjSrfbGXcrOPfgWTuMk2vRPKEjbOzSkRVXVes/adUpLTXWQn6kQQIAQjWsAAfcIEKK5p1as1N8ChGj+rj+7d5cAIZq76sVqEfBsiPbcli167dU3lVdQaJ5AS8+YGaCFSj9+YEy9HR3aM9ivj3/oo8o5dFKNSwMBBJwRIERzxplZELBCgBDNCkXGQMB+AUI0+42ZAQGrBAjRrJJkHAScEfBsiHbvww8rkFmgippapWVkzKs5fuCA+jrbddzKNSorKXVGnlkQQMAUIETjQkDAPQKEaO6pFSv1twAhmr/rz+7dJUCI5q56sVoEPBuirb/7blWvWqfC0rKIqrxncEB1xSWqraqJqD2NEEDAGgFCNGscGQUBJwQI0ZxQZg4E4hcgRIvfkBEQcEqAEM0paeZBwBoBz4ZoP332We1saFL96rXKLSicV2t4714179yu97zrL1RTsdgaWUZBAIGIBAjRImKiEQJJIUCIlhRlYBEILChAiLYgEQ0QSBoBQrSkKQULQSAiAc+GaC81NGjrWw3mGzjrVx+l3IKCsCDD+/aq+e3tys0v0AnHHK+KwqKI4GiEAALWCBCiWePIKAg4IUCI5oQycyAQvwAhWvyGjICAUwKEaE5JMw8C1gh4NkTb1NSkzr596mlvVW9nh5atWauc/JlBmhGgtby9Q9l5eaqsrVN1WbkqFzi1Zg07oyCAQEiAEI1rAQH3CBCiuadWrNTfAoRo/q4/u3eXACGau+rFahHwdIjWMzSqifFxdbe1qK+r89CtnQeDtJF9+8xbOLOyc7R4Sb3SMzNVmpun6qJirgoEEHBQgBDNQWymQiBOAUK0OAHpjoBDAoRoDkEzDQIWCBCiWYDIEAg4KOD5EM2wNIK0rtZmDfX1qu6IVUpNTVPrOzuVnpGhqqVGgJZlkh8YH1dJbq7qy8odLAFTIeBvAUI0f9ef3btLgBDNXfVitf4VIETzb+3ZufsECNHcVzNW7G8BX4RoRonHD4yps6VZgz3dSk1LU3ZurqqWLldG1sEA7ZXGBn39fx7VB1eu0YP/9GV/XxXsHgEHBQjRHMRmKgTiFCBEixOQ7gg4JECI5hA00yBggQAhmgWIDIGAgwK+CdEUDGrP0KBaG97W5OSkquuXq7CkVIGUFJN7e2eHLn74AR1TU6cnLrrCwRIwFQL+FiBE83f92b27BAjR3FUvVutfAUI0/9aenbtPgBDNfTVjxf4W8EWIFgwGzWegdbU1a2xkxDyJpqBUXlOrvIJCM0hrHxzQuRu/p6WlZfrd167x91XB7hFwUIAQzUFspkIgTgFCtDgB6Y6AQwKEaA5BMw0CFggQolmAyBAIOCjg+RDtYIC2V11trQpOTpi3cKakpJjPSBsbHVF5VY1yCwq1d2xUZ2y4Q0XZOXrz2psdLAFTIeBvAUI0f9ef3btLgBDNXfVitf4VIETzb+3ZufsECNHcVzNW7G8Bb4dogyMaNk6gtTYrGJxU1dJlyszOMStuBGhdLc06MDam8uoa5eTl65PfucX8WctNdyoQCPj7ymD3CDgkQIjmEDTTIGCBACGaBYgMgYADAoRoDiAzBQIWCRCiWQTJMAg4JODpEK25vU+dzU0m5cEALXsGayhIM146sKiqRuc8tFF7Rkb0xjU3qTgn16ESMA0C/hYgRPN3/dm9uwQI0dxVL1brXwFCNP/Wnp27T4AQzX01Y8X+FvBsiPbbrVv1+pa3zOedVS05PEALlf3PJ9JG9a9//J06dw/pd1d8U0vLFvn7ymD3CDgkQIjmEDTTIGCBACGaBYgMgYADAoRoDiAzBQIWCRCiWQTJMAg4JODZEO0HP/2p9o0FzRNoGVkzT6DNtj0wOmre8nn9879S4+4h/eLCy3Vs7RKHSsA0CPhbgBDN3/Vn9+4SIERzV71YrX8FCNH8W3t27j4BQjT31YwV+1vAsyHa+rvvVvWqdSosLYuownsGB/Sdpx/XnpQ0fetvPqd1NXUR9aMRAgjEJ0CIFp8fvRFwUoAQzUlt5kIgdgFCtNjt6ImA0wKEaE6LMx8C8Ql4NkR7+Kmn1NU9qNoVK5Wdlzev0ujwfrXtesd8a+cJRx2j6orK+FTpjQACEQsQokVMRUMEEi5AiJbwErAABCISIESLiIlGCCSFACFaUpSBRSAQsYBnQ7Q/7NihN97Yof1796juiFXKzg0fpB0M0BqUmpqm8ppaLaus0qKCwogBaYgAAvEJEKLF50dvBJwUIERzUpu5EIhdgBAtdjt6IuC0ACGa0+LMh0B8Ap4N0TY1Namte0jdrS3at2d32CAtdAItNTXVDNCyc3JVUVikivyC+FTpjQACEQsQokVMRUMEEi5AiJbwErAABCISIESLiIlGCCSFACFaUpSBRSAQsYCnQ7SewRGNjY3+OUhbsWrq1s7pt3BW1NaZAZoCAZXl5auqsChiQBoigEB8AoRo8fnRGwEnBQjRnNRmLgRiFyBEi92Ongg4LUCI5rQ48yEQn4C3Q7ShUSkYNIO0rpZmDe/da55IS0lNMZ+BJgW1uK5eWTk5ZoBmfIpzclRbXBqfKr0RQCBiAUK0iKloiEDCBQjREl4CFoBARAKEaBEx0QiBpBAgREuKMrAIBCIW8H6IdohibHREnc2N2jM4qLT0dPM/1fXLlZX95wDNaFqQlaWlpYsiBqQhAgjEJ0CIFp8fvRFwUoAQzUlt5kIgdgFCtNjt6ImA0wKEaE6LMx8C8Qn4JkQzmIyXDDTv2KaJiUktWblKeWFu28zNyNDyRRXxqdIbAQQiFiBEi5iKhggkXIAQLeElYAEIRCRAiBYRE40QSAoBQrSkKAOLQCBiAZ+EaEGNjY6qs7lJewb6lZqWrvSMDFXVL5t6FlpILDMtTasqFkcMSEMEEIhPgBAtPj96I+CkACGak9rMhUDsAoRosdvREwGnBQjRnBZnPgTiE/B+iGY8E210VF2tzRret1d1Kw4+E6298R0Fg0FV1i2dEaS92dai5eUVOmnp8vhk6Y0AAhEJEKJFxEQjBJJCgBAtKcrAIhBYUIAQbUEiGiCQNAKEaElTChaCQEQC3g7RjCYYpeEAACAASURBVLdzTgvQalesVHZungkzOjys9sYGBQIpCr2dMyjp1DtulvGKgdabvxMRII0QQCA+AUK0+PzojYCTAoRoTmozFwKxCxCixW5HTwScFiBEc1qc+RCIT8DTIVpb19DUCbTpAVqIbHR4v3kiLSU1VRXVtcrKydXfbPh37Rsd1fZ/vUV5mVnx6dIbAQQWFCBEW5CIBggkjQAhWtKUgoUgMK8AIRoXCALuESBEc0+tWCkChoBnQ7Tfb9+uN9/YoeH9+xQuQJsRpO16RylpRpBWp/MffkDde3brpauuU3VxCVcJAgjYLECIZjMwwyNgoQAhmoWYDIWAjQKEaDbiMjQCFgsQolkMynAI2Czg2RDt4aeeUlfPoPkMtKzc3HkZp06kpaTqW7//jZp3D+mZf/6a1lbX2szP8AggQIjGNYCAewQI0dxTK1bqbwFCNH/Xn927S4AQzV31YrUIeDZEW79hg6pXHq3C0rKIqrxncEANb27RPW+9oXf27dXDX7hQ71+xKqK+NEIAgdgFCNFit6MnAk4LEKI5Lc58CMQmQIgWmxu9EEiEACFaItSZE4HYBTwbov3gpz/V3tGgqpYuU2Z29rxCY6Mj6mpp1ujIsO5741Vt7urUhn84V59cd1zssvREAIGIBAjRImKiEQJJIUCIlhRlYBEILChAiLYgEQ0QSBoBQrSkKQULQSAiAc+GaC9s3aotW7aZb9qsql8+Z5A2NjJivnzgwOioymtqde8ff6en33pDN5/+Of39X7wvIkQaIYBA7AKEaLHb0RMBpwUI0ZwWZz4EYhMgRIvNjV4IJEKAEC0R6syJQOwCng3RNjU1qaW9X50tTQpOTqqq3jiRljNDaipAGxtTeXWNcvMLtPEPv9XDr7yof/n4p/Tlv/xo7LL0RACBiAQI0SJiohECSSFAiJYUZWARCCwoQIi2IBENEEgaAUK0pCkFC0EgIgFPh2g9gyPm2zm7W1s0MTGhauPWzpyDQVroFs4D0wK0QEqKfrPjLT3zxhad+Rfv1edOem9EiDRCAIHYBQjRYrejJwJOCxCiOS3OfAjEJkCIFpsbvRBIhAAhWiLUmROB2AW8HaINjUrB4MwgrX6ZUlJSzRNqB8ZGVV5da55AMwK00KckJ1c1xSWxq9ITAQQiFiBEi5iKhggkXIAQLeElYAEIRCRAiBYRE40QSAoBQrSkKAOLQCBiAe+HaAbFoSDNeHnA2Oio0tLTFJwMqqK27rAAzWhemJWtJRG+1TNiaRoigEBYAUI0LgwE3CNAiOaeWrFSfwsQovm7/uzeXQKEaO6qF6tFwB8h2qEgbe/QoFoadioYnFR1/XIVlJQqEDBePTDzk5eZqWVl5VwdCCDggAAhmgPITIGARQKEaBZBMgwCNgsQotkMzPAIWChAiGYhJkMh4ICAb0K08QMH1NXSpP7uLqWmpio7L88M0jKysg9jzkpP18rySgf4mQIBBAjRuAYQcI8AIZp7asVK/S1AiObv+rN7dwkQormrXqwWAV+EaBPjRoDWosG+Hi1dtUYpqalqbdiptPR0862dGZlZM66E9NRUrams4upAAAEHBAjRHEBmCgQsEiBEswiSYRCwWYAQzWZghkfAQgFCNAsxGQoBBwQ8H6KZAVpriwZ6urR09VrzGWjGZ2T/PrW8vUOZ2dmqXLJ0RpCWEgjoqKoaB/iZAgEECNG4BhBwjwAhmntqxUr9LUCI5u/6s3t3CRCiuaterBYBT4donX371NPWqr6uDtWvWaucQwFaqOzD+/aqZecO5eTlq6KmVukZmVIgoODkpI6uqVVK4M9v7ORSQQABewQI0exxZVQE7BAgRLNDlTERsF6AEM16U0ZEwC4BQjS7ZBkXAXsEPBui/bGhQVu3Nqh/jgBtdpBmnFArr65Ralqa+ro69Z6jjlVO9uHPS7OnDIyKgH8FCNH8W3t27j4BQjT31YwV+1OAEM2fdWfX7hQgRHNn3Vi1fwU8G6L95Nln9U5Dc9gTaLPLbZ5Ie3uHcgsKzBDt1be368ST3qOT6pcrd9bz0vx7qbBzBOwRIESzx5VREbBDgBDNDlXGRMB6AUI0600ZEQG7BAjR7JJlXATsEfBsiLZ+wwZVrzxahaVlEcntGRxQw5tbNDYyoh92dWhbT5ce++LF+otlKyLqTyMEEIhNgBAtNjd6IZAIAUK0RKgzJwLRCxCiRW9GDwQSJUCIlih55kUgNgHPhmj3PvywlDntWWfz+IwfOKDejjYN9fVqcmJSD+zcple7OnTfWV/Qx9aui02WXgggEJEAIVpETDRCICkECNGSogwsAoEFBQjRFiSiAQJJI0CIljSlYCEIRCTg2RDtN6+/rtc2v2G+TKCipk7pmZlhQcbHxtTb2S7jJFp5da0yMjN10y9+qj92tuu2M/5BZ7zr3RFB0ggBBGITIESLzY1eCCRCgBAtEerMiUD0AqkpAZUWZKh7cDT6zvRAAAFHBQjRHOVmMgTiFvBsiLapqUmNLd3qaNqlrJzcsEGaEaD1dLRp3+7dWlRVrYLiEgVSUnT3r5/W/7z+qr75yc/qCyd/KG5kBkAAgbkFCNG4OhBwjwAhmntqxUr9LUCI5u/6s3t3CRCiuaterBYBT4doPYMj2rt7t7pam5SRmaWK2jrzn8YnFKDt37NHpZWLVVBSopSUVPNnD738B238/fO66EMf09f+6jSuEgQQsFGAEM1GXIZGwGIBQjSLQRkOAZsECNFsgmVYBGwQIESzAZUhEbBRwNsh2tCogsFJ86RZd1uL0jMyVVlbZ54262lv1/69u1Vasdg8gZaSejBAMz6/eH2zvvPrZ/SP736/bvjs39nIz9AIIECIxjWAgHsECNHcUytW6m8BQjR/15/du0uAEM1d9WK1CHg+RDNKHJw8FKS1tyolJUWpaWnmWzjNE2izAjSj/W+2v6Ubn/qZPn3sCbrrzLO5ShBAwEYBQjQbcRkaAYsFCNEsBmU4BGwSIESzCZZhEbBBgBDNBlSGRMBGAV+EaKEgbfdAv9oa35GCQfPWzuKy8hkn0ELOf2rapat/+og+uHKNHvynL9vIz9AIIECIxjWAgHsECNHcUytW6m8BQjR/15/du0uAEM1d9WK1CPgmRJsYP6Ce9jb1dLQrNSVFeUXFWly3NOxbO1sH+vWdXz+tY2rquJ2T3xEEbBYgRLMZmOERsFCAEM1CTIZCwEYBQjQbcRkaAYsFCNEsBmU4BGwW8EWINjE+rt7Odg30dKuydolSU1PV1dqirJwc80Sa8ay02Z+M1FStrqyymZ/hEUCAEI1rAAH3CBCiuadWrNTfAoRo/q4/u3eXACGau+rFahHwfIg2OTGh3o429Xa0q3r5ESooKpYCAfNlA+2NDcrNL1BFTZ3SMjJmXA2pgRStrarmCkEAAZsFCNFsBmZ4BCwUIESzEJOhELBRgBDNRlyGRsBiAUI0i0EZDgGbBTwdonUPDJsn0DqbG7V01ZHKPxSgmabBoPbt2a2WnTtUWFKq8ppapaalT3EP9fXqA+uOs5mf4RFAgBCNawAB9wgQormnVqzU3wKEaP6uP7t3lwAhmrvqxWoR8GyI9kpjo7Ztb1RLww4dcdQx5jPQwn3279mtXdu2qrS8Uouqa8w3dxoB2vZXN+msMz+v9LQ0rhIEELBRgBDNRlyGRsBiAUI0i0EZDgGbBAjRbIJlWARsECBEswGVIRGwUcCzIdoTv/+9Xnv1jXkDtJCrcWtn47Y3VVZZZb5ooHH7Vi1fu04nHXm0MgnRbLz8GBoBiRCNqwAB9wgQormnVqzU3wKEaP6uP7t3lwAhmrvqxWoR8GyItn7DBlWvPFqFpWURVXnP4IAa3tyisdFRLT/yaJVWLtaKRRXKmfWstIgGoxECCEQsQIgWMRUNEUi4ACFawkvAAhCISIAQLSImGiGQFAKEaElRBhaBQMQCng3R7tq4UXmLaswwzLhFc76P8fIB482dxrPTxg8cUHl1rfmMtBUVi5WflRUxJg0RQCB6AUK06M3ogUCiBAjREiXPvAhEJ0CIFp0XrRFIpAAhWiL1mRuB6AUiDtEGhvbogitv0+tvvaP/vP1KnXjs6uhnc7DHrzdv1uZNW1S2uFpli6vmDNImxsc10Nut3vY2MzjLyMxS045tKi5bpJOOfZdK8vIcXDVTIeA/AUI0/9WcHbtXgBDNvbVj5f4SIETzV73ZrbsFCNHcXT9W7z+BiEM0g2Z6kGZ8/YkPv1vXXn6OsrMykk5uU1OTGho71L6rQcWLys3nnaWm//ntm8aCzQCtp0v9XV0qXbxYxWXlSklNlfGygZc2v6LUskV698o1OmFJfdLtjwUh4BUBQjSvVJJ9+EGAEM0PVWaPXhAgRPNCFdmDXwQI0fxSafbpFYGoQrTpm3751W36/MU3Tn3rX684R5899eSkcTFCtO7BEe0Z6FdnS5MKiktVtnix0tIPBn5mgNbdpYHeHpWUV5hBmxGghT7/+fyv9fDml/XPH/4rXfGxTybNvlgIAl4TIETzWkXZj5cFCNG8XF325iUBQjQvVZO9eF2AEM3rFWZ/XhOIOUSbDvHYE8/r6zffZ37r6DXL9N0bL1FxYX5CrYwQrWdoVMHJSe0e6Fd3W6vyi4rMWzsDgRQzQBvs61XxokUqKis/7HbPn722Sd997v/TWe/5gL711/87oXthcgS8LECI5uXqsjevCRCiea2i7MerAoRoXq0s+/KiACGaF6vKnrwsEHOINvsk2rmfO1Vn/93Hp56blugwLRSiGcWbNIK0/j71drYrOydXqWnp2rd7yHxzp3ECLdyLB3791pv69jM/16ePPUF3nXm2l68B9oZAQgUI0RLKz+QIRCVAiBYVF40RSJgAIVrC6JkYgagFCNGiJqMDAgkViCpEa2hq1/lX3KqOrj5z0XMFZcMjY/ruxp+aoVqiTqRND9HMIG1iQoO9PeatncbHeEbafG/ufHlXg77xs0f1wZVr9OA/fTmhRWJyBLwsQIjm5eqyN68JEKJ5raLsx6sChGherSz78qIAIZoXq8qevCwQcYiWyLdzrt/wiJbWVs545trsQG92qHdYiDY+rr6uTnW1tSglEFBR2SKVV9cqLSP8SxHe6mjTpY/8l46tqdMvLrrCy9cAe0MgoQKEaAnlZ3IEohIgRIuKi8YIJEyAEC1h9EyMQNQChGhRk9EBgYQKRByiJWKV05+1NvvFBUaIdvUN9+j6q87T8iVVhy1vxu2cExPmWzj7urpUXLZIqWmp6u/pVl5BocoWVytt1ls7jcFa+/t03g/u1dLSMv3ua9ckYvvMiYAvBAjRfFFmNukRAUI0jxSSbXhegBDN8yVmgx4SIETzUDHZii8EIg7RQifRLjv/DJ147OrDcIzA68VNW3Xt5ecoOyv86a5YRec6iRZJiGbcxjnQ062ejjYtWlxtvkhACpgvG+hpN142UKJFi6uUOitIG9y/X5+7504VZefozWtvjnXp9EMAgQUECNG4RBBwjwAhmntqxUr9LUCI5u/6s3t3CRCiuaterBYBy0I040UDt254xJY3c0ZyO+fs57MZJ9G6B4Y10NutzuYmVdYuMW/hTElNNatuvGxgz0C/+Yy04rLyw56PZoRs//uBexSQ1HLTnQoEjD/xQQABqwUI0awWZTwE7BMgRLPPlpERsFKAEM1KTcZCwF4BQjR7fRkdAasFLAvRjKCrs7vfsZNosyFmz7+psVFNze1qfvtt1a044mCAlpIyo1swOKmh/n617mowT6MtqqwyQ7bdgwPa/tpm/aSrU2vrlujbf/s5q90ZDwEEDgnkZqdq9MCkxseDnjcxdkgc7/kye3qDhXnp2r3vgILe/3X1dB1nby6ooAL828lTNTf+ypuXlabd+8c9tS824y8Bv/y7KT0tRRnpAe0bnvBXgdktAi4VKMpLn7HyQDA486/G059LNt8eF1eUasPNl4V9Plm8NuFOos0e03hG2rfvekg3/Mt55htBn3n5Zb356mtasfYoFZeVKRCYGaCF+hvbHRro165t21S9dKkyMjO1fctrWrZ6jcoqK3VUdY0y0tLi3QL9EUBgDoHMtFSNT0xqwgf/qzwYDCgQIH3gl8G9AtkZaRoZGxdXsXtrGG7lk5PSrP8/o7c26MPdGKFoZkaKRsb4H+U+LL9ntuyXvzcZJ0fTUlI0Os7vq2cuXjbiaYGczJn50GEhWmj3Cz0TzU6lWEK02773PS1esVZFpWVSBLdiGrd2vrP1DY2Njap+zVqVVSw2+x1RXqHsdGuf8WanFWMj4DYBbud0W8VYr58FuJ3Tz9Vn724S4HZON1WLtfpdgNs5/X4FsH+3CUR8O2ciNxYuRHv6uZe0or5m6uSb0cb4XHr+GeY/jRCtcvmR5ts4FwzRgkHzRQO7tm3V2MjwwRCtssrst6xskfIysxK5feZGwNMChGieLi+b85gAIZrHCsp2PCtAiObZ0rIxDwoQonmwqGzJ0wJJHaLNvpV0+i2jxosMPn/xjVPF+cSH3z3jeWy/fOUVbXpps+pWrjaDtMAc9ykEJyfNAK2l4W1V1NQqMytbDVtfV82yI1RWuVhLyhaZb+jkgwAC9ggQotnjyqgI2CFAiGaHKmMiYL0AIZr1poyIgF0ChGh2yTIuAvYIJHWIFs+WjRcLvN3QqtZ3dqpq6bIZb+YMjXswQOtTe2OjSisrzdNnxosF9g4OaOcbr6l62Qods+YoleXlx7MU+iKAwDwChGhcHgi4R4AQzT21YqX+FiBE83f92b27BAjR3FUvVovAvCFa6DloZ5x2iv7yfcfpgitv0+tvvTOn2tFrlum7N15iPtg/0Z9NTU3qHhjWYG+POpobVVFTp+JF5WZIZnwmJybME2hdrc1mwGYEaKnTXiBgBGnG7Z3ve8/7tbSqJtHbYX4EPCtAiObZ0rIxDwoQonmwqGzJkwKEaJ4sK5vyqAAhmkcLy7Y8K+Ddk2hNTeoZGtXk5KQGe7rV096q0soqM0gLBALmCbSe9nYVFBerbLERoM18TalRceNlA7mBgI5du86zFwAbQyDRAoRoia4A8yMQuQAhWuRWtEQgkQKEaInUZ24EohMgRIvOi9YIJFrA8yGaAWycOhvo6VZfV6eKysrME2fG1/mFRWawlpZ+eIBmFiYYVLakI2rqEl0n5kfAswKEaJ4tLRvzoAAhmgeLypY8KUCI5smysimPChCiebSwbMuzAr4I0YzqTYyPq7+rU93treZLBopKy1ReXTt3gPb/3vS5e3hYb7W3anFRkT657njPXgRsDIFEChCiJVKfuRGIToAQLTovWiOQKAFCtETJMy8C0QsQokVvRg8EEikQVYi2fsMjeunVbVPPPWtoatf5V9yqjq4+zX47ZiI3ZcxtPBPNuJ0z9DFPo/V2q7O5yfyWcQun8fbNcLdxhvq80daiyx99UO9aUq//+fJlid4S8yPgSQFCNE+WlU15VIAQzaOFZVueEyBE81xJ2ZCHBQjRPFxctuZJgYhDtOGRMX3z2/fp3Sccqc+eerJmf/3YE8+rsaVTl55/RlJATQ/RJicntLu/X72d7crOzVNqapr27h40T6MVL6qY8UKB6Ytv+n+h2xf/+36tWFSh31z+9aTYF4tAwGsChGheqyj78bIAIZqXq8vevCRAiOalarIXrwsQonm9wuzPawIRh2ihN3Vedv4ZOvHY1QqdQrvhqvPMr19+dZtu3fBIUr2d0ziJFpyc1FC/8RKBVuUXlZgn0IwXCxjPRDPe3Gm8mdN42cD0N3OGitzc0a7zH/mByvLy9do3bvBa7dkPAkkhQIiWFGVgEQhEJECIFhETjRBIuAAhWsJLwAIQiFiAEC1iKhoikBQCMYdos0OzZAzRugdHtLu/T50tTeaps+kvETCekWYEaQM9XSoprzSDtJTU1Kmi7N+zWw07tumKF55VQFLrzd9JioKxCAS8JkCI5rWKsh8vCxCiebm67M1LAoRoXqome/G6ACGa1yvM/rwmEHGIZmzceCba0tpK83ZO48+d3f269vJzlJ2VIeN2zhc3bZ36OtFQxu2cDbva1barQaUVlSoN8/wzI0gb7O1WX2eneULNOJVmBGlGgLbrrTdVXF6hC37+E41NjGvHdbcoNysr0dtifgQ8J0CI5rmSsiEPCxCiebi4bM1TAoRonionm/G4ACGaxwvM9jwnEFWIFnoO2i9+9aIWV5Rqw82XafmSqqlbO7901qfNgC0ZPr/avFmbN71mvoGztMJ4gUBa2GWZLxzo6Tbf2llZU6f0zEw1bn/LDN7Kq2r0+Y3fU+++vXrpqutUXVySDFtjDQh4SoAQzVPlZDMeFyBE83iB2Z5nBAjRPFNKNuIDAUI0HxSZLXpKIKoQzU07v+uBB5S/qMY8gTb9Ns1wezCCNOP5aB1NuzQ+fkDl1XUqr64xg7cL/us+Nfb16Jl//prWVte6iYC1IuAKAUI0V5SJRSJgChCicSEg4A4BQjR31IlVImAIEKJxHSDgLgHPhmi33n23alatU2FpWUQV2TM4oIY3t2h0eFgrjjrGDN+MzxWPPqjX21r08Bcu1PtXrIpoLBohgEDkAoRokVvREoFECxCiJboCzI9AZAKEaJE50QqBZBAgREuGKrAGBCIXiDpEM56F9v0fPhF2hqPXLEuat3M+8Yc/6NU/bdERRx2j/AVuw9y3e8h8BprxXLSMrCzzz8vXrjOfkfbgH3+n4bExXfihj2lFeUXksrREAIGIBAjRImKiEQJJIUCIlhRlYBEILChAiLYgEQ0QSBoBQrSkKQULQSAigahCNCNAe+nVbUkTlM23w1caG7V9R6Oad+4wT5blFxWHbW4EaMYz0ErKK8znpxm3cA719Wr7q5u06tgTzJNsNUUlKsnNjQiURgggEJ0AIVp0XrRGIJEChGiJ1GduBCIXIESL3IqWCCRagBAt0RVgfgSiE4g4RBsY2qMLrrxNZ5x2StK8PGC+rRpv5+weGFZfZ4c6mhu1ZNVq5ReVKBAIHOwWDGrv7iG1NrytgpJSVRgBWnr61JBGkNbw5utatmat1iw/QovyC6KTpTUCCEQkQIgWERONEEgKAUK0pCgDi0BgQQFCtAWJaIBA0ggQoiVNKVgIAhEJRB2iXXb+GTrx2NURDZ7IRkaI1jM0KuOlAUaQ1tPRpur65Sowbu0MBGScQGtvfEe5BYWqqKlVWnrGYcs1XjbQ/PY2vfe9J2tZVU0it8PcCHhWgBDNs6VlYx4UIETzYFHZkicFCNE8WVY25VEBQjSPFpZteVYg4hBteGRM3/z2fXr3CUe65iSaEaIZn4nxcTNIG+jpUkVNnVLS0tTd1qLsnFzz67SMwwM0o18wGNRgb7dyFNCJx57g2YuAjSGQSAFCtETqMzcC0QkQokXnRWsEEiVAiJYoeeZFIHoBQrTozeiBQCIFIg7RjEUaz0Tr7O7XtZefo+ys8MFTIjczfe7QSbTQ9ybGD6invU29nR1KTU1VXmGRKuuWKD0jc94lBycnlXrggI5atiJZtsY6EPCUACGap8rJZjwuQIjm8QKzPc8IEKJ5ppRsxAcChGg+KDJb9JRAVCFaQ1O7rr7hHl1/1XlavqQqqSFmh2hGGDbU32fewmmcMKusXaLiReVKSU2dfx/BoNImJ3Vk3dKk3i+LQ8CtAoRobq0c6/ajACGaH6vOnt0oQIjmxqqxZr8KEKL5tfLs260CEYdooRcLvP7WO3Pu9eg1y5LmzZ3TQzQjQDNeImCcREtJSTHfwDk2MqySisUqLCmdO0gLBjW8f59GBgf0wZPe69Yas24EklqAEC2py8PiEJghQIjGBYGAOwQI0dxRJ1aJgCFAiMZ1gIC7BCIO0dy1LSkUok0FaG2tysjKMp+BFkgJqLejXft271ZpZaUKisMHacP79qqzqVE52Tn6yPs/6DYC1ouAKwQI0VxRJhaJgClAiMaFgIA7BAjR3FEnVokAIRrXAALuE/B0iNY9OGK+hbOzpUlZ2TnmWzjTM7PMKo2Pjam30wjShlRWWaV840RaSspUBUf271PrOzuVlpaulmBQ2dlZOud9p7ivwqwYgSQXIERL8gKxPASmCRCicTkg4A4BQjR31IlVIkCIxjWAgPsEog7RXn51mz5/8Y3mTs/93Km69PwzZDwr7fwrbtWXzvp00ry50ziJ1tjSrfbGXcrOy1NFtRGgzXyJwPiBMfNE2t6hIS2qqlZBcYkCKSka2bdPzTt3KDMrS4uX1OszG/5dQUmtN92pQCDgviqzYgSSWIAQLYmLw9IQmCVAiMYlgYA7BAjR3FEnVokAIRrXAALuE4gqRHvsief1yOPPmc89e/Z3m9XY0mmGaMYn2d7c+dyWLXpt85vKKyxUuXECbY63cB4M0jq0Z6BfFbV1SsvIUGvD28rMztHiJUuVkZmlz33vTg0O79fm/3u9ygsK3VdlVoxAEgsQoiVxcVgaAoRoXAMIuFKAEM2VZWPRPhXgmWg+LTzbdq1AxCHa8MiYvvnt+/S3p52iE49dLSNQmx6iTQ/YigvzEw5y78MPK5BVYJ5AM4Kx+T7jBw6or7Ndg709mpicVF5BoRbXLZ06uXbeA/eodaBfz152tVZWLE743lgAAl4SIETzUjXZi9cFOInm9QqzP68IEKJ5pZLsww8ChGh+qDJ79JJAxCGa8XbOq751jy7/0t9p+ZKqw0I04zbPWzc8kjRv51x/992qXrVOhaVlEdVrz+CAGt7cotGREa1Yu06llX8Oyy595L/0VkebfnLBJTqpfnlE49EIAQQiEyBEi8yJVggkgwAhWjJUgTUgsLAAIdrCRrRAIFkECNGSpRKsA4HIBCwL0YyTaC9u2qprLz9H2Vnzn/yKbGnxtfrps89q584m1a9Zq9wFbsEc3rtXzTu3Kze/QGnpGepua1H96iOVX1xiLuKbP3tUL+1q0H9+/nx95Mij41sYvRFAYIYAIRoXBALuESBEc0+t10Ve4QAAIABJREFUWKm/BQjR/F1/du8uAUI0d9WL1SIQcYhmUBnPPVtaW2m+PGD67ZyhWz0ry0umnpGWaNqXGhq09a0G88UB9WuOUm5BQdglTQ/QjGenGW/j7O/uVMvOHVpx9LHKLyrWLU//XL/a9qZuP+Mf9P+z9x7gkV7l2f89VTOj3suMuna1u9rmBgsGY1MSsOMvfJBsgD8JxpSNSUIAx8SEjwAXCXZwbEyoS3FoIdhJwHwETPhisI1xX2/flVZ1pFEb1ZE0mqaZ+ecc7cjqGmm1M3Pe936vy5eT1Vue53efXds/TvnDqw+luzV+nwQ0RYASTVNxshmNE6BE03jAbE8zBCjRNBMlG9EBAUo0HYTMFjVFYFMSTSzpvO3Oz+P2I4fRN+Bd2BNNyLXnTrRmzFJOkZA4nXNozI+RAQ9GhwbQsHsvHLlLRVrAP4Pe9jY4cnJRUV27sAdaPBbDuHcYve2tUqT9y4lj+MnJY/jk770F77/utZoaAGyGBNJNgBIt3Qnw+ySQPAFKtORZ8U4SSCcBSrR00ue3SWBzBCjRNseLd5NAuglsSqKJYhOzzn726DMLtd/0ukMZs4wzUZSQaCO+EKJzc/D2ezA2PCiXaCaWdgb9frmE0yZP4axfEGgLTcXjGBsegru9FSeiUfzbyWP4y9e9ER/93d9Ld2b8PgloigAlmqbiZDMaJ0CJpvGA2Z5mCFCiaSZKNqIDApRoOgiZLWqKwKYlmirdJySaqFeItGFPL3xjo6jZ0QyjyYT+rk5YrFZU1TWsFGgXm4wLkTY0iF+++DyGzSa849CruCeaKgOAdSpDgBJNmahYKAmAEo2DgATUIECJpkZOrJIEBAFKNI4DElCLgC4kmohkLhLGcF8vJka8MJnNsGdno6quEVabbd3EYrGo3FfNFo/jVS+/Vq10WS0JKECAEk2BkFgiCVwkQInGoUACahCgRFMjJ1ZJApRoHAMkoB6BNSVaYv+z0+e7ku5q3+6GjNkXbfFMNNGAmFU245uEp7MdsVgMzvpG5BcVw2A0rt9fPI5gYBahyQm8+ppXJM2CN5IACSRHgBItOU68iwQygQAlWiakwBpIYGMClGgbM+IdJJApBDgTLVOSYB0kkByBTc1EEwcIiOsjRw4vebsQbh/77DdwxwfehsbaquS+fJnvWizRhEATe6CJJZ3hUAhms1lKNXEaZ05e/roiLRwMwuvphdVoxOtffcNlrpqvJwH9EaBE01/m7FhdApRo6mbHyvVFgBJNX3mzW7UJUKKpnR+r1x+BpCVa4kCBQ1ftwVtuvG4FqbUEW7qQJiTavECbwXB/H+KxuNwDzWg0zgu1YBClTteaIk38XNwnTvHcsXsvDtQ3pqsdfpcENEuAEk2z0bIxDRKgRNNgqGxJkwQo0TQZK5vSKAFKNI0Gy7Y0SyBpiZZY3nn7kcO45uCuFUB+9PMn8NBPH8us5ZyTQQQuzkATMq2qrh5ZdoesPRIKYqivF5FwGGVVLmTn5S2ZkRYJhTDg7kYoEEB10w7k5OahpdKp2YHAxkggXQQo0dJFnt8lgc0ToETbPDM+QQLpIECJlg7q/CYJbI0AJdrWuPEpEkgXgU1LtMM3X7/qTLTnT7Ti3qMPZZRE6x0Yw1CvW7IVM9Cy7PYlnMOhoDxsYC4cljPSsnPnRZqYgTbQ04VIOITqxp2wZWfL5/Y7q9OVE79LApolQImm2WjZmAYJUKJpMFS2pEkClGiajJVNaZQAJZpGg2VbmiWQtEQTBMSSzSHvOD59x62w26xLoKz3s3TQ+825czh98jyMJiMqa1cKtERNQqR5PX1SnJW7amC2WjDo7kYkEkF14w7YHPMCTVxiJpppo4MI0tEsv0kCChOgRFM4PJauOwKUaLqLnA0rSoASTdHgWLYuCVCi6TJ2Nq0wgU1JtMSSzpcd3LXkcAExC+2WD92Nb99/56pLPdPB57sPP4zZsJiBVg+rbekMtOX1iKWbYu+zUGAWcQAGgwGu+iZkOeaXfiauXeWVsJrN6WiH3yQBzRKgRNNstGxMgwQo0TQYKlvSJAFKNE3GyqY0SoASTaPBsi3NEtiUREtQELPOvvWvP1+Asm93Q8Ys41yo8Wtfg7N5P/KLS5IKb3pyAp1nT8kZaY0t+1FcUbnkufOD/ZgKBHDj3gNwFhYl9U7eRAIksDEBSrSNGfEOEsgUApRomZIE6yCB9QlQonGEkIA6BCjR1MmKlZKAILAliaYCugd/8QsMeSdQ09QMe07OuiWHZmfR39MJo8kEo9EE/9QUanY0y8MGEtfHf/wgXuztwfdvvQ037GpRAQFrJAElCFCiKRETiyQBSYASjQOBBNQgQImmRk6skgQEAUo0jgMSUIuAZiXa0xcu4MyZC5idmZZCzJ69ukhLCDSTyYwyVzUsFiu8Ax6Me4fRsLsFjtx5kXbXz3+CJ9pb8aW3vwv/+4pr1EqZ1ZJABhOgRMvgcFgaCSwjQInGIUECahCgRFMjJ1ZJApRoHAMkoB4BzUq0Y243Brw+DHv64J+en1m2XKSJPdD6uzuREGh2cYiAwYDoXATefg/GhodQv6tFzkj78q9/if88dRx/9/t/iHdf+xr1kmbFJJChBCjRMjQYlkUCqxCgROOwIAE1CFCiqZETqyQBSjSOARJQj4CmJdrIZBDhcEievilF2qKlnfMCrQtGoxHl1TVICLREhNG5OYwMeDA6OID63S34j7Mn8a/PPY2/esON+PAbblQvaVZMAhlKgBItQ4NhWSRAicYxQALKEqBEUzY6Fq5DAlzOqcPQ2bLSBLQt0XwhIB5HJCxO3+zD7MUZaWLvMyHQxFVZUwebOIXTYFgR5LxI68foYD/ORqP49vNP4X2vvgGfuvmtSofO4kkgkwhQomVSGqyFBNYnwJloHCEkoAYBSjQ1cmKVJCAIUKJxHJCAWgS0L9Eu5hEJBTHY64Y4hdNstsBstcBZ3wibfXWBlohRiDRvfx9+cfJFPNTdgT+46uX4wh/9sVops1oSyGAClGgZHA5LI4FlBCjROCRIQA0ClGhq5MQqSYASjWOABNQjoBuJJqKZnZ6Gu70VsWgMtTubkZNfkFRikVAIP3vqCRw99SJev6sF37n1tqSe400kQAIbE6BE25gR7yCBTCFAiZYpSbAOElifACUaRwgJqEOAM9HUyYqVkoAgoA+JFo8jHAphqM+N6YlxmCwWeQpnVX3Dir3Qlg+LxCEDz7eew1dbz+Dq2nr85M9u5+ghARLYJgKUaNsEkq8hgRQQoERLAWR+ggS2gQAl2jZA5CtIIEUEKNFSBJqfIYFtIpC0RJvwTeO2Oz+P0+e78O3778Q1B3dtUwmX5zXidM6Ri3uiCYE27OlFwO9HTdNOiD3RBnq6EI/HUFFTt6ZISwi0ce8Qimob8OuuduypcuFPXvHqy1M030oCOiRAiabD0NmysgQo0ZSNjoXrjAAlms4CZ7tKE6BEUzo+Fq9DAklLNMFmsUgT//9NrzuET99xK+w2a8ahkxJNnM65INBmUN20E/bsHFlrKBCQIs1gMKx5OqcQbxMjXtQ170Z2Xj7MRiP2VDozrlcWRAIqE6BEUzk91q43ApRoekuc/apKgBJN1eRYtx4JUKLpMXX2rDKBTUm0xY0+f6IVt3zo7oVf+sxHb8VbbrwuY1gIidY/7Ls4A21GzkCzXRRoiSJDgVkp0sTMtDJn9cKMtLlIRB4mIARa/a49cOTmLfS131mdMT2yEBLQAgFKNC2kyB70QoASTS9Js0/VCVCiqZ4g69cTAUo0PaXNXrVAYMsSbXHzP/r5E/jE5x6Qv7RvdwO+eveHUZifm1Y+T7W14eyZCwjMzl4UaNmr1rMg0owmlLuq5X5p3n4PfKMjqFsm0MQL9la5YDQY0tobP04CWiJAiaalNNmL1glQomk9YfanFQKUaFpJkn3ogQAlmh5SZo9aIrBlibZ8Jtp73n4j3v22Ny3sm5ZumfbgI49geHRqXYGWCPIlkWaEwWjC7Mw0apqa4chdKQJ3V1TBYjJpaQywFxJIKwFKtLTi58dJYFMEKNE2hYs3k0DaCFCipQ09P0wCmyZAibZpZHyABNJKYFMSrdM9gCMfvReDw2Oy6LVEWSAYxle/87CUaumakXbf0aNw7tyH/OKSpABPT06g8+wphINBNLbsR3FF5arP7SyrgM1iSeqdvIkESGBjApRoGzPiHSSQKQQo0TIlCdZBAusToETjCCEBdQhQoqmTFSslAUEgaYmm2umc33v4YcyEYqiqa0SW3b5u2uFQEMN9vQgHA/K+OABXfRNs2SuXgDaUlCEnK4ujhwRIYJsIUKJtE0i+hgRSQIASLQWQ+QkS2AYClGjbAJGvIIEUEaBESxFofoYEtolA0hJtm76Xstc8ee4cTp9qlULMWb+2SBMzz4Y9bkRCYZS5qmGxZmGotwehYEAu6Vwu0mqLipFvd6SsD36IBLROgBJN6wmzPy0RoETTUprsRcsEKNG0nC570xoBSjStJcp+tE4gaYmWmIl2+5HDuObgrhVcxOECzxw7h0/fcSvsNmvauYnTOfsGxjHU50YsFoOzvgFZy+SXFGh9bkQiEZQ5XcjOzYPBaISYmTbo7oHYK235qZ6ugkIULTvlM+3NsgASUJhAvsOCQDiK8FxM4S5YOgnog4CQ3pPTYfB3qz7yZpfqEjAaAfHP14mZiLpNsHIS0AmBLIsRNosJvln+ftVJ5GxTcQLbJtHEQQP3Hn0oI07mFJkIiTYyGURw1o9hTx+i0Tk4xdJOx/wsMrmEs9eNuUgEpYsEWiLPSCgkBVzikAF7Tg5OeXrR6R3CG/cewMvrmxSPnuWTQGYQ4Ey0zMiBVZBAMgQ4Ey0ZSryHBNJPgDPR0p8BKyCBZAlwJlqypHgfCWQGgW2TaPcdfQhD3vGMmok24gsB8TgCs354EyKtvhFGo0kKskg4hDJn9cIMtOWRCJE27OmFf3oKNTua8Z9nT+GBp3+D217zevyfm96cGQmyChJQnAAlmuIBsnxdEaBE01XcbFZhApRoCofH0nVHgBJNd5GzYcUJbCjRxDLNT3zugQ3brCwvxtHP3Y7G2qoN703FDXImmpBo4roo0uThAaEgzBYL4rE4yqtr1hRoiRrF/ULAidM7j09O4HtnTuDtL3sl/vEP3pGKNvgNEtA8AUo0zUfMBjVEgBJNQ2GyFU0ToETTdLxsTmMEKNE0Fijb0TyBDSVagsBGe6JlGqklEu2iSJvx+dDX2Y5YPAZXfSPyiophMBjWLz0eRzAQQG97G4719+K77a14U8t+fPNd78+0llkPCShJgBJNydhYtE4JUKLpNHi2rRwBSjTlImPBOiZAiabj8Nm6kgSSlmiqdbdcoom9z8QhAuPeIZhMZtizc+BsaITVZl+3tVgsitHBAQx0d6F/LoIvnTyGVzQ04d//9EOqIWG9JJCRBCjRMjIWFkUCqxKgROPAIAE1CFCiqZETqyQBQYASjeOABNQioAuJFp0TAq0Xk2OjqGveDaPJDE9nu1zWWVXfAGuWbdXU4vE4xgYH0N/diYaWfRiancUH/+372FPpxP/78MfUSprVkkCGEqBEy9BgWBYJrEKAEo3DggTUIECJpkZOrJIEKNE4BkhAPQLrSrTEEs7DN1+PG669Arfd+XmcPt+1Zpf7djdk1umcvhCkQPP0YWLEi7pde+QeaOISp3b2dVxAls2Oitq6FSJNCDQxA83T1Y6mvQeQW1CI0elp/PEDX0FlfgFe+PjfqZc2KyaBDCRAiZaBobAkEliDACUahwYJqEGAEk2NnFglCVCicQyQgHoEND0TbWhsBt5+D8a9w6jftQeOiwItEVPQ70dvRxscObkod1XDYs0CDAbEYzGMDQ/C09mBpr37kVNQKB8JRSJ481fug91qRcff3ade2qyYBDKQACVaBobCkkiAEo1jgASUJkCJpnR8LF5nBLicU2eBs13lCWhWoj3b2Ylz5zrWFGiJ5AL+GTkjTYi0Mlc1zGYzxoaG5BLOxQItcf//+tI/IhKNovuu+2E1mZUfAGyABNJNgBIt3Qnw+ySQPAHOREueFe8kgXQSoERLJ31+mwQ2R4ASbXO8eDcJpJuAZiXaj3/9a3R19a06A2059IRIy87Jg8lixshAP+p3tSCnoGBFPv9+7DnkZmXhz1/7O7BbrOnOj98nAeUJUKIpHyEb0BEBSjQdhc1WlSZAiaZ0fCxeZwQo0XQWONtVnoBmJdp9R4/CuXMf8otLkgppenICnWdPIRwMorFlP4orKtd8bmd5BWxmS1Lv5U0kQALrE6BE4wghAXUIUKKpkxUr1TcBSjR958/u1SJAiaZWXqyWBNaUaIlDBdY7SGA5vkw6WOCbDz4IWHNQXl0zv9fZOtdcJCwPEfCNjSEWi8q90ypXOWwg8YrG0jJkb/BODi0SIIHkCFCiJceJd5FAJhCgRMuEFFgDCWxMgBJtY0a8gwQyhQAlWqYkwTpIIDkCmp2J9vjp0zh5/CwcueLQgBpYslYXaXPhMEYGBzDjm0CZsxrWrCx4ujqkeKuqa4DVZltBsq64BHk2e3KEeRcJkMC6BCjROEBIQB0ClGjqZMVK9U2AEk3f+bN7tQhQoqmVF6slAc1KtGNuN3r6vBh0d8PmyF5VpM0LtH74p6ZQWuVEXmERDEYjgrN+9HW2w2KxXBRpS4WZK78ARTm5HD0kQALbQIASbRsg8hUkkCIClGgpAs3PkMAlEqBEu0SAfJwEUkiAEi2FsPkpEtgGApqWaCOTQSnIhjxuWLNsUqQlZpYlBNrs9DRKKiqRW1QEo9G0gDQ0OytP6DQYDVKkZdkd8mfRuTkU22yoKV97z7RtyIWvIAHdEKBE003UbFQDBCjRNBAiW9AFAUo0XcTMJjVCgBJNI0GyDd0QWFeiJfZFO3zz9bjh2itw252fx3p7pGXSnmhiJtqIL4R4PCZFmrffA4vVKvdIMxqMcgba7Mw0issr5Qw0o+klgZZIX8xIG3T3IB6Pw1nfALPFiomRYVTkF2LPjmbdDBI2SgKXkwAl2uWky3eTwPYSoETbXp58GwlcLgKUaJeLLN9LAttPgBJt+5nyjSRwOQloeyaaLyTZxWMx+KfnRZrRaIDJbJGncIoTONcSaPMPxhGcncVQnxtzkYjcX80/5cO+lv3YWVN3OXPhu0lANwQo0XQTNRvVAAFKNA2EyBZ0QYASTRcxs0mNEKBE00iQbEM3BHQh0RIibWpiHP09XVKOlVfXorCkdNUZaEvSj8fhn5lGX8cFRMJhlFW5sKNpJ+pKSnUzSNgoCVxOApRol5Mu300C20uAEm17efJtJHC5CFCiXS6yfC8JbD8BSrTtZ8o3ksDlJKAbiRadi2Ckvx8jQwMwGY3IKShEZU3dmqd2JqCLWWzj3mH0d8+f2DkTi6MjGsGVtQ34w6tffjmz4btJQBcEKNF0ETOb1AgBSjSNBMk2NE+AEk3zEbNBDRGgRNNQmGxFFwQ2LdES+6Qt3hvtPW+/ER85cjijgCX2RBNFicMARgcHMDHqRUV1LUxmM4b7emFzOOQeaUKOrXaJvdAmR7xy9lpVbb28/9j5s/js00+g0OHAmU99LqN6ZjEkoCIBSjQVU2PNeiVAiabX5Nm3agQo0VRLjPXqmQAlmp7TZ+8qEtiURHv+RCtu+dDd+Pb9d+Kag7sW+v3Rz5/AQz99DF+9+8MozM/NCA4JiRaLRuUhAkKiVTfuQG5hIQADZqen5Omb2bl58tROs9W6om5xiEBvextqmppRUFIKg8GA/hEv3vuv30ZJTi5O/u1dGdEriyABlQlQoqmcHmvXGwFKNL0lzn5VJUCJpmpyrFuPBCjR9Jg6e1aZQNISLRAM45P3PIBDV+3BW268bkXP9x19SP5apsxIExLNOxHA6NCAPGGzfncLcvMLAINhvnax19n0lNzrLL+oGGWuanngQOLyjY2i48xJNLbsR0FxycJzYnnnTV+8R97Wc9cXYF7lVE+VBwRrJ4FUE6BESzVxfo8Etk6AEm3r7PgkCaSSACVaKmnzWyRwaQQo0S6NH58mgVQTSFqiJZZx3n7k8JJZaImCM2022gs9PWht64Gnsx1New8gp6BgVbZiRlp36zkUl1Wg1OmCyWyCb3QUbSdfRPPBq5AvBNqy6x3f+BImZv14/m8+g6oCMbONFwmQwFYJUKJtlRyfI4HUE6BESz1zfpEEtkKAEm0r1PgMCaSHACVaerjzqySwVQKblmiHb75+1ZloYqnnvUcfypglnT976imcOnEGO6RAW190+aem0NN2DsXllbBkWeFua0Vjy75VBZoA/Rc/+DY6Robx0z//K1xZU7dV9nyOBEgAACUahwEJqEOAEk2drFipvglQouk7f3avFgFKNLXyYrUkkLREE6jWW7IpZqI9c+wcPn3HrbDbVu4vlmrU9x09CufOtUXY8nqmJyfQefYUwqEQGvfsQ3FF5Zolf+on/45nezrxzT95H96090CqW+P3SEBTBCjRNBUnm9E4AUo0jQfM9jRDgBJNM1GyER0QoETTQchsUVMENiXROt0DuOcrP8Rdf/O+FQcICMFWV12x6iy1dBD7yne+g5xSl5Rh4jTO9S5x+MDEiBdDfW7MRcIorXKhfNkeaYuf/6dHf4FHzpzEZ998GO965cr94dLRL79JAqoSoERTNTnWrUcClGh6TJ09q0iAEk3F1FizXglQouk1efatKoE1JVpiD7TT57uS7m3f7oaMWc75q+PHcfzYKZRUOlFSWbWmSIvOzUmBNjrYLw8XsGbZ4L7QisKSUpSJUzstLx02kADxL8/+Ft9/5kl88LW/i79+481J8+GNJEACKwlQonFUkIA6BCjR1MmKleqbACWavvNn92oRoERTKy9WSwKbmommEi5xOmdnzyAGujtRWFqGkooqmJYJsXmBNozx4WEp2gpKSmE0mSAOG+hpPYf84lI5I81sXbo8tW1wAJ5RL2664hrsLK9QCQtrJYGMI0CJlnGRsCASWJMAJRoHBwmoQYASTY2cWCUJCAKUaBwHJKAWAU1LNO9kENMT43KZZl5hkRRlZsu8EBMCbdw7jMnRERSVlUvRJgRa4pqdnkZfRxuy8wtQ7qyGJStL/kgs/fSNj8Eai+EVV16jVtqslgQykAAlWgaGwpJIYA0ClGgcGiSgBgFKNDVyYpUkQInGMUAC6hHYlEQLBMP45D0P4GePPrNqp5m0nFPMRBvxhRCPxTA1MQ7vgAc5eQUoraqCwWCUAs03NorC0lIUlJStutxTnNo50NMJmyMbFdW18h4h0MaHh1BZ5cShfQfVS5wVk0CGEaBEy7BAWA4JrEOAEo3DgwTUIECJpkZOrJIEKNE4BkhAPQKbkmiJEzg/9sH/D3f907/gD2++Htcc3AVx4MDH7/oG/v5j70NjbVVGUEhINFFMLBbD9MQYRgYHYHdkSxkmBFlBScmaAk02EY/DPz2Fwd4eWK1ZsOfkYGp8HNl5+ah0VWNfdW1G9MoiSEBlApRoKqfH2vVGgBJNb4mzX1UJUKKpmhzr1iMBLufUY+rsWWUCSUu0xCy0Q1ftwZtee0jOSEtINAFAnM4pro8cObztPNY6+VNIvU987gH5vZtedwifvuNW2G3zyzUXSzQp0qJRuXRTLO0Ul1jaWVy+8cmd8XgcM5MT6OvqkLPaxL5p5RcPHNjvrN72XvlCEtAbAUo0vSXOflUmQImmcnqsXU8EKNH0lDZ7VZ0AJZrqCbJ+vRFIWqIlTuu8/chhOftsudhKzFJbLLIuFeZiSfaZj96Kt9x43cIrnz/RinuPPrRwGuhyibdcook90MaGB+Ht98BoMEgZVuZceWjA8pqFOPONj8LT2SH3TMvOzUNlbT2sNht2V1TBsmgftUvtl8+TgB4JUKLpMXX2rCoBSjRVk2PdeiNAiaa3xNmvygQo0VROj7XrkcC2SbTlUms7Ya42E235ry3//pLlnNGoPIVzbHhIHiBgMpkxPjKMnLx8lFQ6YV52audC7fE4fBNjGHT3oKC4FDaHQ+6lZrFaUVFdgz2uWtiXndy5nX3zXSSgBwKUaHpImT1qhQAlmlaSZB9aJ0CJpvWE2Z+WCFCiaSlN9qIHAklLtMXLOcWMMCGtfvPsqYXlm2LW2EM/fWxhZth2wlsuzJbXIr61fF+2hEQTyzgnRrwYGexHaaVTSjRxicMGRgY8yC0oQmllFUyriLSp8TH0dbbLnxdXVMFoNMo90ryePnla57XXHEKBI3s7W+W7SEB3BCjRdBc5G1aYACWawuGxdF0RoETTVdxsVnEClGiKB8jydUcgaYkmyAiZNeQdl3uPBUMhfOyz38AdH3gbqspL5B5pFWVFKdkTLSHRFu/JtppEC4TEEs5h9Lt74KyrQ5E4hfPi8stYLArf+Lj8WXFZGcqqnHKGWuLyTYyj/ewZuOrqUVpZufCzWDyGGZ8PA71uHLriStQ7XbobNGyYBLaTgNVixFw0hlhsO9+ame8SLRozszRWRQJJERD/oh8MR5O6lzepQyAWj8utLnhph4CIU/zzNRTWwT9ctRMbO1lGIBYHjDr4o8loNMBsMiAc4e9X/iYgARUI2LNMS8o0xMVO+kleYjbaLR+6W969fGP/JF+R1G1bmonW04Medz96O9pR07QDhSWlMBiX/udrPB7D1PgEPN2dcrZZSUWl3PdsenICbSdPoHbnTnn4gJiBtvgSiJ5tO48n2i/gxiuvxjsPvTKpPngTCZDASgI5NjNCkRgiUR38i0PcABiS/iOWw4UEMo5AQY4VU/4wxH/Y8NIQAZGnDv5DVUOJbdiKkKK5djN8s5EN7+UNJJCpBPTyR5PVbIT4ayY4l6lRsC4SIIFFBApz5g+zTFybkmipIrmVPdF++fzzOPbccdTvbkF+cQkMa/wvrEKITU+Mo7e9DRU1tbBm2dBx5hRqd+5CUVn5CvGW6Pm/zpzE/Y/+An941cvLgKjKAAAgAElEQVRx/x/9capQ8DskoDkCXM6puUjZkIYJcDmnhsNla5oiwOWcmoqTzWicAJdzajxgtqc5Aptazpmu7leTaBudzvn5r38dlU0t8hTOZC4x+6zz7GlEQiE07GmRe6Ctdz3f04W//cm/4TU7d+MH7/2zZD7Be0iABFYhQInGYUEC6hCgRFMnK1aqbwKUaPrOn92rRYASTa28WC0JbFqiTfimcdudn8fp810L9N7z9hsvy15o4rCCT3zugYXvVJYX4+jnbkdj7bzgWvzz5ctJhUSraNwjl3Fio30+4nF50EB36zmEg0HU79qD4sqqNWeviW93/c9hBX/2g3/GrooqPPqRv+FIIgES2CIBSrQtguNjJJAGApRoaYDOT5LAFghQom0BGh8hgTQRoERLE3h+lgS2SGBTEi2xB9q3778T1xzctfDJy3ky5xb7wv974QUce/44anY0o7CkbM1lmfFYTAo0T2c7ylzVyLLZ0XXuDJwNTXKPtOX7qCXqmfT78fZvfkmeznn2U/+w1TL5HAnongAlmu6HAAEoRIASTaGwWKquCVCi6Tp+Nq8YAUo0xQJjubonkLRES5yIeeiqPXjLjdetACeWXIrrI0cOZwTUYz09aO/0wNPVgaq6BrmsUxwasPgSAs03PobB3h4Ul1egpKJK3jMzOSH3RXPWN6L44mEDy5+b9k3i7d/7JsSJVu67vgDzsndnBAQWQQIKEKBEUyAklkgCFwlQonEokIAaBCjR1MiJVZKAIECJxnFAAmoRSFqiJZZx3n7k8JJZaIl2M2022jG3G96JACZHRzDU50aZsxqFpUKkmWXJsWhUzkDzevpQUFIi90Azmed/Jq6ZyUl0t51FubNGirTEz4R4m5nyyef+9rePYTwYwNN3fho1RcVqJc9qSSBDCFCiZUgQLIMEkiBAiZYEJN5CAhlAgBItA0JgCSSQJAFKtCRB8TYSyBACm5Zoh2++ftWZaMs3+k93f0KijfhCiMVimPyf/ctGBvqlDCssLZN7nU2Nj2FkcAB5hUUoqRSSzLKiZHFqZ19n+9JZalM+jPR7YLXZcM9zv8UF7zB+8oGP4Oq6hnS3zO+TgJIEKNGUjI1F65QAJZpOg2fbyhGgRFMuMhasYwKUaDoOn60rSSBpiSa6W2/JppiJ9syxc/j0HbfCbrOmHUZCoolCxKyziREvxoeHkF9SApPJjIlRL3LzC+QMNLNlpUCTDVw8cGDQ3Y28omLYs3Mw7h2GNSsL5a4a3P3Ln+GprnYcfed78Hv7r0h7zyyABFQkQImmYmqsWa8EKNH0mjz7Vo0AJZpqibFePROgRNNz+uxdRQKbkmid7gHc85Uf4q6/eR8K83OX9CsEW111xaqz1NIBZrFEE9+Pzs1JieYd8MjDAgqLS1HqdK0t0C4Wndg3TeytZjKZkJ2bh8raeliysvBCTxeMBgPe2LIfFfkF6WiT3yQB5QlQoikfIRvQEQFKNB2FzVaVJkCJpnR8LF5nBCjRdBY421WewJoSLbEH2unzXUk3uW93A75694dXCLakX7CNNy6XaHI22qgXQ71u+RVxiMBayzgXlxGPxzE9OSFP7xRCLb+kFBWuGpit87PtynLzUJGXv42V81UkoC8ClGj6ypvdqk2AEk3t/Fi9fghQoukna3aqPgFKNPUzZAf6IrCpmWgqoVmynDMWxdT4OEaHBuDIzpGHC8xMTaKgqASFZeVLDhRY0mM8Lg8REOIty2aDLTtH7qXmyM1FaaVTirRCRzaqC4tUQsNaSSCjCFCiZVQcLIYE1iVAicYBQgJqEKBEUyMnVkkCggAlGscBCahFYNMSbbUZapk0Ay2BPyHREssxRwY8yBWHCFRUyYMFxB5p4uROcTJnYenqIm3GN4mBni44cvNQ7qqWe6mJEz3Hhgblr5VWVqEwNw/1JaVqpc5qSSCDCFCiZVAYLIUENiBAicYhQgJqEKBEUyMnVkkClGgcAySgHoFNSTSxJ9qRj96LD7zr95fsfSYOFfjKd36Co5+7HY21VRlBQUg072RQzhwb6nOjoLhUns6ZOERA7JEmRNrEyDCKyirkqZ1Gk2mh9tnpKbgvtCK/qBilzmpYLi7fFMtC50XaALLzClBdW4fdVa6M6JlFkICKBCjRVEyNNeuVACWaXpNn36oRoERTLTHWq2cCnImm5/TZu4oEkpZogWAYn7znAVSUFeEjRw6v6FUcLDDkHc+o0zk7uwfQ392J4vJKFFdUwGReegqnEGliNpoQYiWVThSUlEqR5p+aQnfrWRSVlaPMWb3i8IGESBsdHEBRSSmuv/rlKmbPmkkgIwhQomVEDCyCBJIiQImWFCbeRAJpJ0CJlvYIWAAJJE2AEi1pVLyRBDKCQNISLbGM8/Yjh3HNwV0rin/+RCvuPfpQxhws8Ojx4zj+wkmUu2pQVC4EmnlV4IkDB7weDyqqa+Spmz2t5+SstTKna4V4S7wkFotiemIcwx4P3vqmm+USUV4kQAKbJ0CJtnlmfIIE0kWAEi1d5PldEtgcAUq0zfHi3SSQTgKUaOmkz2+TwOYJaFaiffk730FeebWchbZ4meZqiIRIEzPSBtzdmItEpEwTAk0cQLDeJfZbE0s7r2xqRrbDsXn6fIIESACUaBwEJKAOAUo0dbJipfomQImm7/zZvVoEKNHUyovVkkDSEk215Zz3fu1rcDXvR35xSVIpT09OoPPsKYQCATTtPSBnoiVzib3TmsoqUFJUnMztvIcESGAZAUo0DgkSUIcAJZo6WbFSfROgRNN3/uxeLQKUaGrlxWpJIGmJJlCpdLDAI08/jePHTmHHvgPyVM71Lv+UD93nz6KksgpWmx3d58+gsWW/3CNtvSvgn8GPn3wcXsTxnuteh2ubdnJEkQAJbJIAJdomgfF2EkgjAUq0NMLnp0lgEwQo0TYBi7eSQJoJUKKlOQB+ngQ2SWBTEk28OzEj7WePPrPwqX27GzJmL7REUS/09KDtght9HRekEMstLFwVjRBoPW3nFw4REHun+cZG0XbiGJoPXIn8EjGTbeV+Z0G/X777x90d+LW7C5+6+a1436tv2CR+3k4CJECJxjFAAuoQoERTJytWqm8ClGj6zp/dq0WAEk2tvFgtCWxaoqmC7JjbDe9EAGPDgxh096B25y45I23hAIB4HDNTPng625FXVIxyZzVMlpdO7xQirfPsadTvbkFBcQkMRuN86/E4ArN+DHR3yVM7n5oYxXeffQofeM3r8fGb3qwKHtZJAhlDgBItY6JgISSwIQFKtA0R8QYSyAgClGgZEQOLIIGkCFCiJYWJN5FAxhBIWqIlTuc8fPP1eMuN12VMA2sVIiTaiC8EcWjA2NAgRgb74axvRJ5Y2mkA/L4pDLi7kJ2Xj3JXNcwW64pXicMGetvb4GpoQmFpmRRwYgnnYK8bRqMRVXUN+E13B/7xlz/DW6+4Bv/09ndlPBcWSAKZRoASLdMSYT0ksDYBSjSODhJQgwAlmho5sUoSEAQo0TgOSEAtApuWaLcfOYxrDu7K+C4TEk0UGp2bkyJtYmQYZa4aiCWb3v4+2B3ZKHfVwGxdKdDEc/F4fP7Uzp4ueWKnzZGNkYF+8RMp0MT+aSf63PjYj36Iaxt34qEjH8x4LiyQBDKNACVapiXCekiAEo1jgARUJ0CJpnqCrF9PBCjR9JQ2e9UCgaQlWmIvtENX7VFqJloipOhcRAqw0aFBmEwm5OQXoKKmFhZr1ro5xmMxjHuHpUizZGXBmpUFZ30Tsux2+Vzf+Bje/71voqm0HI/f8QktjAn2QAIpJUCJllLc/BgJXBIBzkS7JHx8mARSRoASLWWo+SESuGQClGiXjJAvIIGUEkhaoomqfvTzJ9DTN4SPHDmc0iK38rHFM9HE80KG+f5HeAkZJmaYiZllhaXlMJpM678+Hod/ekoeIhCJRFBa6URplVPOZhPXbDiEt371fuRm2dD6mX/cSql8hgR0TYASTdfxs3nFCFCiKRYYy9UtAUo03UbPxhUkQImmYGgsWdcENiXRxL5oH/vsN3DHB96GxtqqjAa3WKIJgSYOERAz0cReZkKAhYMBFJVXIr+oeG2RdvEQgeE+N6JzUdhzcuCfmkJhSSkKy8oXRNqbv3wvQnNzcN/1BZg3knIZTY3FkUDqCVCipZ45v0gCWyVAibZVcnyOBFJLgBIttbz5NRK4FAKUaJdCj8+SQOoJJC3REgcLnD7ftWaV+3Y34Kt3fxiF+bmp72TZFxMSbUGg9XtgtdnkHmgGowGjg4PwT/lQXF4hT+dcbUaaPETA3SMPFBB7oInTOCdHvZgYGZEndiZE2vu++w14Jsbx5Ec/ifqS0rT3zgJIQCUClGgqpcVa9U6AEk3vI4D9q0KAEk2VpFgnCfBgAY4BElCNQNISTbXGhETzTgalKBvqc8Nmd0iBJvY1E9dcOIzRoYF5kVZRhbyiIhiNLy3tDM764enqgNlsQWVt/cIeaOKQgokRLybHhEgrlad2do+PodBuxzX1Tci5+H7VeLFeEkgXAUq0dJHnd0lg8wQo0TbPjE+QQDoIUKKlgzq/SQJbI8CZaFvjxqdIIF0ENC3Renq9GHB3wZGTizJn9YJAS8Cei4TljLQZ36Tc5yyvsAgGoxFBvx+9HW3IstmlQBMz2BZfCZHmEyJNLO0sKUNdWTkK7I505cjvkoCyBCjRlI2OheuQACWaDkNny0oSoERTMjYWrVMClGg6DZ5tK0sgKYn2/IlW3PKhuxea/MxHb834EzofO3UKJ4+fQU5B4bxAs1pXDWkuEsHY0ACmxsdRXl0Ds9UKT0c7bA4HKmvrYMlaKtASL1mYkTbqlQcU7GpoRGVhsbIDgYWTQLoIUKKlizy/SwKbJ0CJtnlmfIIE0kGAEi0d1PlNEtgaAUq0rXHjUySQLgIbSrSEQPv2/XfimoO7kNgb7fDN12e0SPvmgw/CYMtDubNairH1rnmRNoiJUS9i0Shy8gvmBZp1funnWpcQaWKPtLHhYTTV1uFgy/505cjvkoCyBCjRlI2OheuQACWaDkNny0oSoERTMjYWrVMClGg6DZ5tK0tgQ4l239GHZHMfOXJ4oUkh1u49+lDGHCKwGv37vvY1OJv3I7+4JKlwpicn0Hn2FELBIJpa9qO4ojKp52anp9DTdh7lRcW44dU3JPUMbyIBEniJACUaRwMJqEOAEk2drFipvglQouk7f3avFgFKNLXyYrUksK5EW2vWWeLXbz9yWM5Oy8Tr4cceQ0d7D+p3tyA7L3/dEgMz0+htv4DsvDy57HPY04f6XXuQW1i07nOhwCz6uzthMplRWVGJq/fsy0QUrIkEMpoAJVpGx8PiSGAJAUo0DggSUIMAJZoaObFKEhAEKNE4DkhALQJJSbTlsiwQDOOT9zyAQ1ftydglnc91duLc+S6MDvavK9ICMzPyEIHs3DyUu6phMlsw7h1Gb3sbduw/iNyCwlUTDQUCUqAZjQZUVNchNzcXuyudaqXPakkgAwhQomVACCyBBJIkQImWJCjeRgJpJkCJluYA+HkS2AQBSrRNwOKtJJABBDQr0Y653Rga82NkoP+iSNsrZ5otvgL+GSnLxOmdFdW1C6d3xmMxKdLcF1pXFWnh4LxAi8eBqrp62OwOmIxGtFS5MiBSlkACahGgRFMrL1arbwKUaPrOn92rQ4ASTZ2sWCkJUKJxDJCAWgQ0LdFGfCHE5ubg7fdgdGhgyYy0oN8vBdr8KZz1CwJtcXzisAEp0vYdWFjaGQ4G0d/TiWhkDtWNO5DlcCw8srfKBaPBoNYIYLUkkGYClGhpDoCfJ4FNEKBE2wQs3koCaSRAiZZG+Pw0CWySACXaJoHxdhJIM4GkJNrp811Jlblvd0PGHDYgZqIJiSYucYqm19OLybFR1OxohtFkQn9Xp9z/rKquYVWBJp6Lx+Py1E4x60zsrWaz2zHY64YQadVNO6WAS1yf/dnDON3fhx/d9mE0J3koQVJQeRMJaJwAJZrGA2Z7miJAiaapONmMhglQomk4XLamOQKUaJqLlA1pnMCGp3Oq2v9iiSZ6mIuEMdzXi4kRL0xmM+zZOVKgWW22dVuMxaIYHRzAoLtbPiMuIeJsjuwlz935H/+Kk55e/OC9f4bX7NytKjbWTQIpJ0CJlnLk/CAJbJkAJdqW0fFBEkgpAUq0lOLmx0jgkghQol0SPj5MAiknoBuJJmaVzfgm4elsRywWg7O+EflFxTAYjetDj8cRnJ2Vhw+IvwvxVlxeseK5z/3XT/Hr1nP4/OF34vDVh1IeJD9IAqoSoERTNTnWrUcClGh6TJ09q0iAEk3F1FizXglQouk1efatKgFdSDQh0IL+GQx7+hAJheRMNPFrZa5q5OTlryvSxNLNYU8vZnw+OHJyIE7lFM/lFRbJZaGJ61tPPoZ/P/Ys/vqNN+ODr/1dVccD6yaBlBOgREs5cn6QBLZMgBJty+j4IAmklAAlWkpx82MkcEkEKNEuCR8fJoGUE9C8RFsQaP19iMficiaZ0WiUYkwIslKna02RNi/Q3Aj4/ahpaoYly4rRwUFMTYyjtMq5RKT9+PgL+PoTj+Ldr7wOf/fmwykPkh8kAVUJUKKpmhzr1iMBSjQ9ps6eVSRAiaZiaqxZrwQo0fSaPPtWlYC2JdpkUAowIcLicaCqrh5Z9vnDACIhIcj6EA4FUVblQvayGWni5wPuHoQDAbiadizshzYXicg90mamJlFSUbUg0p640Iq7HvkJbtx7AN/4k/epOh5YNwmknAAlWsqR84MksGUClGhbRscHSSClBCjRUoqbHyOBSyJAiXZJ+PgwCaScgKYlWu/AGIZ63TAYgMraBmTZ7UsAC4HmvbjEU8xIy87Nk0s7xQy0gZ4uRMKhi6dwLj1EQBxSIESaf3oKxeWVUqSdHx7EX/3bv+DKmjr89M//KuVB8oMkoCoBSjRVk2PdeiRAiabH1NmzigQo0VRMjTXrlQAlml6TZ9+qEtCsRPvN2bM4fapV7lsmZqBZbUsFWiKwhRlpwSDKXdUwW60Y6OlGdC4CV+OOFadwJp6bC4cxOjQv0krKKzExF8FtD34PzoJCPPc3n1F1PLBuEkg5AUq0lCPnB0lgywQo0baMjg+SQEoJUKKlFDc/RgKXRIAS7ZLw8WESSDkBzUq07z78MGbD80s41xJoL4m0kNwjLRiYBeKQs9FcDY0LSz/XSmVhRtqUD9FoDH/52C9hNhrhvvufUh4kP0gCqhKgRFM1OdatRwKUaHpMnT2rSIASTcXUWLNeCVCi6TV59q0qAc1KtPu+9jU4m/cjv7gkqWymJyfQefaUXMrZ2LIfxRWVST03Oz2FnrbzmPZNAqXleMt1N6A4OyepZ3kTCZAAQInGUUAC6hCgRFMnK1aqbwKUaPrOn92rRYASTa28WC0JaFaiPfSLX2DQOyFP1bTnrC+1QrOz6O/uhNFsgslowsyUDzU7muVhA+tdQrgN9bkRjURgtlgw65/BTa9/IxxZNo4sEiCBJAlQoiUJireRQAYQoETLgBBYAgkkQYASLQlIvIUEMoQAJVqGBMEySCBJApqVaE9fuICzZy7APzMthZh9jdlhCYFmMptR7qqRMsw74MG4dwj1u/YiOy9vVZTiUILhXjcikQjKnC7Y7A6Me4exr6EJ5aVlSeLnbSRAApRoHAMkoA4BSjR1smKl+iZAiabv/Nm9WgQo0dTKi9WSgGYl2jG3GwPeKbnXmdj8fzWRFgrMz0Azmcwoc1XD7siGOMpTHCrg7fdgbGgQ9btXirRIKCRnoIm/i+cSp3pG5+ZQmZODiuJSjiwSIIEkCVCiJQmKt5FABhCgRMuAEFgCCSRBgBItCUi8hQQyhAAlWoYEwTJIIEkCmpZoI76gFF3Dnr55kbZoaWdCoBmNJlRU18LmcEiBlrhi0Tkp0kYHB1C/u2VhaWdCoIWCAVRW18GRlwuDwbjwXEVuHso2WAaaZDa8jQR0QYASTRcxs0mNEKBE00iQbEPzBCjRNB8xG9QQAUo0DYXJVnRBQOMSLQTE44iEw0tmpJlMJjkDDTCgsrZOLsVcLNASyYuZZSMD/Rgd7Jcz0rJsNgx5eiEOE3DWN8KRmwfDIvEmnivJyUVVfoEuBg+bJIHtIECJth0U+Q4SSA0BSrTUcOZXSOBSCVCiXSpBPk8CqSNAiZY61vwSCWwHAe1LtIuUxAyywd4eTE+Mw2SxwGK1wlnfBJvdvqpAWyzSvP19EH+JgwbmwmG5NNSRk7vqc/l2B2qLircjG76DBHRBgBJNFzGzSY0QoETTSJBsQ/MEKNE0HzEb1BABSjQNhclWdEFANxJNpDk7PQ13eyti0ZgUYbkFyc0YE4cI9F5og3/ah9qdu1FQsvaeZ9nWLDTyYAFd/OZhk9tDgBJtezjyLSSQCgKUaKmgzG+QwKUToES7dIZ8AwmkigAlWqpI8zsksD0E9CHR4nGELx4GMD05AXESp8ViRVV9w8JhAmvhTBwyMDLgkbPP5iIRuBp3IEfse7ZsKad4h9Vkxq6Kyu1Jh28hAR0QoETTQchsUTMEKNE0EyUb0TgBSjSNB8z2NEWAEk1TcbIZHRDQvkSTAi0oDxcI+P2oadoJo8mEgZ4uxOMxVFTXwZ49fyrn8isaicA74MG4dxj1u/bAarPJ98xOTaGyrh7ZeWJPtJcOFRDP3/b9b2EyMIuzn/qcDoYPWySBSydAiXbpDPkGEkgVAUq0VJHmd0jg0ghQol0aPz5NAqkkQImWStr8FglcOgFtS7TJ4CKBNoPqpp2wZ+dIaqFAQIo0cTBAuatmhUgThwoMe3oxMeJFXfPul07nDM+f9hmc9aPCVTsv0owvibTDR7+A6WAQJz/xWZTk5l16QnwDCWicACWaxgNme5oiQImmqTjZjIYJUKJpOFy2pjkClGiai5QNaZyApiVa/7BPirDEDDSbmHG26AoFZjHQ0w2j0YgyV/XC0k6xZNPr6cPEqFfOQBOncC6+xCEF4r1ihluZsxrZ4pROoxFi6eeR730L/VM+/PIv/xotzmqNDx+2RwKXToAS7dIZ8g0kkCoClGipIs3vkMClEaBEuzR+fJoEUkmAEi2VtPktErh0ApqVaE+1teHMmQsIzc7KGWjLBVoC3XKRZjZb5EmcvvExOQNtuUBLPJcQaeLvpU4Xsux2jA8P4a5f/RfaJifw3Xf/KV63e++lJ8Q3kIDGCVCiaTxgtqcpApRomoqTzWiYACWahsNla5ojQImmuUjZkMYJaFai/fCRRzAyOrWuQFsu0sTSTjErbdY/I0/vFAcJrHdFLu61FgmHYDKZEQzM4ke9PXi8qx3/+AfvwNtf9kqNDx+2RwKXToAS7dIZ8g0kkCoClGipIs3vkMClEaBEuzR+fJoEUkmAEi2VtPktErh0ApqVaPcdPQrnzn3ILy5JipI4tbPz7CmEg0E0tuxHcZInbM5OT6Gn7TxmfJOobmrGL/q68dCx53DH79yED73+TUl9mzeRgJ4JUKLpOX32rhoBSjTVEmO9eiVAiabX5Nm3igQo0VRMjTXrmYBmJdr3fvITzASjqKprQJbdsW7G8vTOvl4p0MQVj8fhamhacwlo4mVz4TBGBvshRBpgQBxxHJ+ewgPPPYU/PvQq3P2Wt+l5bLF3EkiKACVaUph4EwlkBAFKtIyIgUWQwIYEKNE2RMQbSCBjCFCiZUwULIQEkiKgWYn25LlzOH26FfE44KxfW6QJcTbc50YkEka5swZmqxVDvT0IBQOoaWpeU6QtCLSZaZRUVMLmyMHoYD+e6u7AA2dO4nf27MM/33IkqRB4EwnomQAlmp7TZ++qEaBEUy0x1qtXApRoek2efatIgBJNxdRYs54JaFaiHXO70Tc4jqFeN2Kx2KoiTQi0oT43opGIPBwgccqm2Ots0N2DoDiUYMdO2LNzloyRl2agzQu03MIiGE0mRMJhPH36BO568tc44KrBzz/4UT2PLfZOAkkRoERLChNvIoGMIECJlhExsAgS2JAAJdqGiHgDCWQMAUq0jImChZBAUgQ0LdFGJoNShA17ehGNzqGqrhE2x/zSzsQMtLllAi1BTRwWIATc7My0nJFmz5kXaXORMEYG+uGfnkJpZRVyC+YFWuKamfWjq7cHb3n1DXBYs5IKgTeRgJ4JUKLpOX32rhoBSjTVEmO9eiVAiabX5Nm3igQo0VRMjTXrmYC2JZovJDY4Q2DWD6+nT4o0Z30jjEaTnIEmRFmZs3phBtrygRAJhaSA809NoWZnM6zWLLkH2vTkJMqcLuQWFsp3Lb+icxFcUdug53HF3kkgaQKUaEmj4o0kkHYClGhpj4AFkEBSBCjRksLEm0ggIwhQomVEDCyCBJImoH2JJlBcFGny8IBQEGazRR4eUF5ds6ZASxAUSzuHPX2YmphAdl4egrN+VFTXIq+wCAajcU3QeyqrYF5FsCWdDG8kAZ0QoETTSdBsUxMEKNE0ESOb0AEBSjQdhMwWNUOAEk0zUbIRnRDQh0S7KNJmpnzo62hHLB6Dq74ReUXFMBgM60cdjyMYCKC3vU0KNDGTraisfF2BJl64s6wCNotFJ8OIbZLA1glQom2dHZ8kgVQToERLNXF+jwS2RoASbWvc+BQJpIMAJVo6qPObJLB1ArqRaGIvMzETbdw7BJPJDFt2DlwNjbDa7OvSi8WiGB0cwEB3F+zZ2QAMcmnn8sMGlr+kvrgUuTbb1pPhkySgEwKUaDoJmm1qggAlmiZiZBM6IECJpoOQ2aJmCFCiaSZKNqITArqQaGKPMiHQJsdGUde8ByaTCX2d7TBbLKiqb4A1a3XZJZZ8jg0OoL+7E40t+5Bld2DQ3Y1gYBY1O5phcwiptvpVZnegoqhYJ8OIbZLA1glQom2dHZ8kgVQToERLNXF+jwS2RoASbWvc+BQJpIMAJVo6qPObJLB1ApqXaNFIBMP9fZgY8aJu1x65B5q4xNO9vGAAACAASURBVNLMvo4LciZaZU0drMtmjQmBJmag9Xd1oHHvfuQWFMrnxJ5qAz1dmAtH4Gpomj/tc/GS0HgcE6Ne5JstOLj3wNaT4ZMkoBMClGg6CZptaoIAJZomYmQTOiBAiaaDkNmiZghQomkmSjaiEwKalmhDYzPw9nsw7h1G/a49cFwUaIlsg34/ejsuwJGdjbLqGnn6phBi8VgMY8OD8HR2oGnvfuRcFGiJ58LBeZEWj8dQWVO/INLEc5OjI3C3t+KV174GTc5qnQwjtkkCWydAibZ1dnySBFJNgBIt1cT5PRLYGgFKtK1x41MkkA4ClGjpoM5vksDWCWhWoj3b0YFz5zvXFGgJZAH/jJyR5sjJRZmzGiazGePDQ3IJ52oCLfFcKBCQIk0cTCBO+czKssnlouLXXI1NqHHVoq64ZOvJ8EkS0AkBSjSdBM02NUGAEk0TMbIJHRCgRNNByGxRMwQo0TQTJRvRCQHNSrQf/+pX6Or2rDoDbXm2i0WayWzB6FA/6ne1ICe/YN1hkBBpRqMRWXa7XDJaUV2LsXgMf/HD72K/sxqP/OVf62QosU0S2BoBSrStceNTJJAOApRo6aDOb5LA5glQom2eGZ8ggXQRoERLF3l+lwS2RkCzEu2+o0fh3LkP+UnOBpuenEDn2VMQSzUbW/ajuKIyKaKz01PoaTuPGd8kqpuaUe6qhi8UxDu+8SWU5+bhxU98Nqn38CYS0CsBSjS9Js++VSRAiaZiaqxZjwQo0fSYOntWlQAlmqrJsW69EtCsRPvWgw8ibs2RSy0tYq+zda65SFgeIuAbG0MsFpV7p6122MDyV0Tn5uRy0ckRL+bmIrBnZ6PcVSNP7bzpi/fI2/v+4YtyyScvEiCB1QlQonFkkIA6BCjR1MmKleqbACWavvNn92oRoERTKy9WSwKalWiPnz6NkyfOwpEtRFotLFmri7S5cBgjg/1yJlmZa/5wAU9XOyxWK6rqGlec2pkYMtG5iBRovrFRFJaWyz3Vhj1uxGNxVNTW4f0//C5GZ6bxwsf/DpUbLAvlMCQBPROgRNNz+uxdNQKUaKolxnr1SoASTa/Js28VCVCiqZgaa9YzAc1KtGNuN3r6vBh098j9ysReZctFWkKg+aemUFrlRF5hEQxGI4Kzfng62yH2R3PWN8Bqsy8ZIwsCbXwMhSWlKCgpkwcShIPisIFuRKNR3H/iBXSMevGff3EHrqiu1fMYY+8ksC4BSjQOEBJQhwAlmjpZsVJ9E6BE03f+7F4tApRoauXFaklA0xJtZDII//QUhvp6Yc3KkkstrTabTD0h0Ganp1FSWYXcwkIYjaaFEREKzMoTOsVSzKq6BmTZHfJn80s4h+BbJtASD4o91QbcXfjK88/g9NgIvvWu9+ONLfs50kiABNYgQInGoUEC6hCgRFMnK1aqbwKUaPrOn92rRYASTa28WC0JaFui+UKIx+PwT/ng7ffAYrGgvKYWRoNRLuGcnZlGSXklWqcm0e4dlqNhv6tG/iWuFzou4PEzJxGOzsHsyEY4FsOMfxqzwSBKcvOw01mNq+sb0VhavmQkCZF2788fxhN9bvz9mw/jlldex5FGAiRAicYxQALKE6BEUz5CNqATApRoOgmabWqCACWaJmJkEzoioHmJJrKMx2JyRpoQaWJmWfe0D5iL4qrmXcgtKML3n30S//r8MzL2P7r6EG591fUQRwE89MKz+OaTv153OLz96lfgT66dl2S/aW9F58gwDrhqcaq3Bz889iw++NrfxV+/8WYdDSm2SgKbI8CZaJvjxbtJIJ0EKNHSSZ/fJoHkCVCiJc+Kd5JAuglQoqU7AX6fBDZHQBcSbTYcwrGeLvym9Rxe6O1GIBrFK1w1+NhN/1vuk3bBO4RnujpgNBiwu9KJq2rrJcXWwQGc9vTCEI9hesSLWCiI/LwCVFfXwJxlw6n+Plxd14B9zmoYYMDnfvF/8au2c/LZG5r34JSnF+999Q1yZltkbg5v2LNvc+nwbhLQAQFKNB2EzBY1Q4ASTTNRshGNE6BE03jAbE9TBCjRNBUnm9EBAc1KtIePH8fPTpzFcz2dUmYtvrItFry+uQV/+trfAQxiztkaVzyOwKwfXWdPY2bKJw8eqN25C/acXDmjbfl1pr8P5wY86BkbxVsPXo3Z/l4M93vwiG8C58bH0FBShve9+gYcvvrlsFmsOhhebJEENiZAibYxI95BAplCgBItU5JgHSSwPgFKNI4QElCHACWaOlmxUhIQBDQr0Qzvec+ShKsdOdiRkyNnmV17xdXIEidurifQAIjDBS6cPC73TsstKET9rhbYs7M3fE4cWnDh1HF4hwYxHg6hzWzG0+4uRGIxWVOezYZ3HnoV3vuqG1Cel8+RSAK6JkCJpuv42bxiBCjRFAuM5eqWACWabqNn4woSoERTMDSWrGsCmpVoez7xCVTkFuBAeSXypnwwRiIoKiuXM8msWbYNRVgkFMK5Y88h4J+RAq2xZR9s4oTODcRbQqBNTYzDbM1CVk0tbI5s+Gf9+O+TL+K5gT5MRyJy0JlNJty87yD+9Po3YG+VS9cDkc3rlwAlmn6zZ+fqEaBEUy8zVqxPApRo+sydXatJgBJNzdxYtX4JaFaiHXO70ds/ivMvvoBwKIjC0jI07N4r90Db6BIC7czzTyM4O4vsvHzsOngVrDbbRo9hsUCzWK3Y+7JXoG96GnH5ZBzRcARjA304NdiPYxPj6PdNyp9cUVOH//zzv9rw/byBBLRIgBJNi6myJ60SoETTarLsS2sEKNG0lij70TIBSjQtp8vetEhAsxLtN+fO4YlHH0ckHEZBcQma9h2AOYl9yMLBIM4dexYBvx+OnFzsufplsFiTEG/hEDpOn4RvfAzWrCy0XPMKZNnt6B4dwdzFZZxiAEXDYYwP9Mm/T9jteLzzAmotVhwqKMIbX/e7ODU6Ip9558uvRb7DocUxx55IYAkBSjQOCBJQhwAlmjpZsVJ9E6BE03f+7F4tApRoauXFaklAsxLt/m98A5NTsygoLkXTvv0bC7R4XM48E3uZiT3QhEDbfdU1Gwu0eByhYBDdrWcxOTYql3w2H7wS9uwcObr6JsYQjMwtGWlz4RAmPH1S8AVCQYz2uWHLzkX9gYP4yjNPYsA3KfdK+/57PoA9lU6OUhLQNAFKNE3Hy+Y0RoASTWOBsh3NEqBE02y0bEyDBCjRNBgqW9I0Ac1KtHu+/GVYsguTFmhCnHWeOwP/lA85eflovuKqpASaEG/u9lZMjo5Icda4dz+yc3IX9k4b9E1iJhRaOojiccxOT6Hn1HFMDA0gu6gE9fsOIL+kFC/2uvHImROYCgTw6Ec+jtriYk0PQDZHApRoHAMkoA4BSjR1smKl+iZAiabv/Nm9WgQo0dTKi9WSgGYl2rceegjljXs2nIEWj8cRmJlGd+s5zPgmpUBr2ndQLsVc97o4c62v8wLGR7xSoDXsakF2fj4Miw4f8E5PwRcIvPSqeByRUBAD3Z0Y7u4ColGU1daisnEHshw5C/JNLOncUVaGXRVVsJnN+PmZU7jtNa/jiCUBzRGgRNNcpGxIwwQo0TQcLlvTFAFKNE3FyWY0ToASTeMBsz3NEdCsRHu6vR2+wPyW/mtdQqCJmWd9HRcwNTmB3PwC1O9ugd2Rvf4pnEK8+f3o7+7EuHcYjpwc1OxoRm5hIQwG45LPXRgewvisH8VieWc8Lg85GBICracLVrsDVY07EAuHYDQakV9eKX9t+QmgX/n1L9E6NIArqmvxhbe9C42lZZobiGxIvwQo0fSbPTtXjwAlmnqZsWJ9EqBE02fu7FpNApRoaubGqvVLQLMSTZzOOeJbtoxyUc5SoPl8EDPJpoVAKyxC7c5dcAjZtWgm2YqhIZZi+mcw0N01L9Byc1HTtBO5BYUwGJcKtF+ePYXP//cjuKauEX986FUvCTR3t5zp5mreg6LyCnmq53h/n5zBJkWaPFDAsPDpF3s68O/HnsNMOAyryYzb33Aj/vQ1r4PZZNLvyGXnmiFAiaaZKNmIDghQoukgZLaoCQKUaJqIkU3ohAAlmk6CZpuaIaBLiRaPxzDj86G/qwNTE+PIKypGddPOJXuZrZpwQqD1dGF8eBjZeXlwNTQhr7BohUATzx9zd+H/PPxv2Fleife/8rr5GWhSoDngat6NwvKKhZlrc6Egxvs98rMFFS+JtNhcBEO9brjbzuF4MIi24CzE/Dpx4MCX334LdlZUamYwshF9EqBE02fu7FpNApRoaubGqvVHgBJNf5mzY3UJUKKpmx0r1ycB3Um0lwRapxRo+UXFcDU2wZGbt2QvsxXDQS7hnEG/EGjeYWTn5sHZ0Ij8wuJVBZp4vnvUiw/8yz+jPDcP72zcCW9PN7IcKwVa4lsJkRaPxVDkdMGcZcVQTzc8F1phMpnh2rUHIYcD33vmSQxN+eRMtA/e8Dv4y9e9kbPS9Pn7VxNdU6JpIkY2oRMClGg6CZptKk+AEk35CNmAjghQoukobLaqCQLKSrRO9wCOfPReDA6PLQSxb3cDvnr3h1GYn4vVlnOKJZzi8ID+rosCrbgYzvpGZOctPQxgVYE265fPSYGWlyefEwJu+RLOxc9OBWbxR1//IrKMRhzOLZDLNKt37VkyA235txIiLRoJYy4ODHV1wGixoGb3HpRUuWAwzi/h/HXbOfznyWOIRKO45w/egXe87JWaGJBsQn8EKNH0lzk7VpcAJZq62bFyfRGgRNNX3uxWbQKUaGrnx+r1R0Bpifbxu76Bv//Y+9BYW7UiueUSbX4PtEl45BLOCeRvQqAFZ2fR19mOiREh0PLXXcK5uJC5SBi//9X7EYvHcUtpBer2HUBRWTmw7PCB5cWHZ/3oOP4CfKMjMGdloX7fQRRXVi0ItMT9E/4ZPHHhPN79quvxirpG2KxW/Y1gdqw8AUo05SNkAzoiQImmo7DZqtIEKNGUjo/F64wAJZrOAme7aScwGw6hZ2wUfeNj8EyMIRCOIM9ul3/l2x3Is4n/24F8m03+ms2y1LPoQqItnMLZ2Y5psYSzuCS5GWgAQoFZuC+0YXLUK5d8VjfuWHMPtMWjIRqJoOdCK/7P4/+NyUgYt9Q3Yu+Bq+ZP31znikXnMNjVib7zZ+Qst4KSUtTtPYCsnNx1n7MYDAiHQ/jxqeP44jtuQZE4YZQXCShAgBJNgZBYIglcJECJxqFAAmoQoERTIydWSQKCACUaxwEJbC+BydlZeCbH4RkfQ9/EGHrHxtA/OS63xOoa9WI6GNz0B0uyc6RYK3A4cOyTn1jyvCEujJMC1/LlnIuXcoryF2aiiRlo09NwX2jFjG9i/hCBhh1w5G2wBxqAcDCI7tazmBwdladw1u5oXvUUzuW4hEDrbjuHsaFBPNDTiV7/DN61Zx9c2bkoqq6BJcu2KmEh0MRhB4NiDzRrFmp2tQCxOURmAyipq19TwMVjUQz3ufHFZ57EdCwGEfAP3/8X2F3pVCBJlqh3ApRoeh8B7F8lApRoKqXFWvVMgBJNz+mzd9UIUKKplhjrzUQCz/V04pdnT+GRM6fQMzaybolmgwG5FgscBiMsWVkwWa1L9sePRGMIRMIIhMOYDq0UbvFvfUtNibacyn1HH8KQdxyfvuNW2G1WKdHEMkoh0NpOn8bU5CQKS0rQ2Nws9zQzGAzrgo2Ewzh3/DgmRkfl/TtbWpBXWLjhc3ORCC6cOQPvwIAM5D+Gh/FkVxfef+21aLBYEIvFUFZTA6ttqUiLRqPouXABfefPyyWczVdcgZLKSoj3jQ0MIDgzg4qGBtgcS2eyiff19/Sg5+xZ+KNR/CoQQBhA29//PYpycjJxfLOmZQTWH4nEpSUCkWgcFpNRSy2xF50REP/oVON/atNZMJfYrviXRf7ZdIkQM/Bx/n7NwFBY0qYIzP/ZxH9T3hQ03pwWAkrMQkoLmcv70Z+dOoWHX3wRPzl+HGN+/5KPlefloTQ3F6U5OSgRf8/NRXF2NqyBAALDwxATn0qrq1FUVQWzxQKs44dC4TBGvF70dnfDHwziu3/7t9qQaGJm2j1f+SHu+pv3LRws4BkcR/vpk/BPT8klmHXNu2HPztlQhAmBduHUcbn005adjaaW/RsfPgBI4SVmro0PD8NoNqH5wJX4wakX8WTHBfz+gauwp7QMk0ODEKdvFrtqpCwTV2IG2sCF1ot7oB1AQWk5jPIQgTjmwmH4hgcR8vtRWtcAi80unxMz0LyeXvS1npP/UVO9azfyK6ow6vdjV2UlXtmwAwYYkLtM2F3eocy3b5aA3v/Q1dtMtA38/WaHD+8ngZQSKC+0Y2QygJje/+BKKfXL/zHx7xD8s+nyc07lF8RMNPHP1xFfKJWf5bdIYFsJ6OV/tOFMtG0dNml5GVVvarCLZZj/dfYUfnH2JB5rO4fZSGThw8XZOWipdGKvsxo7yithNi6duCAczNSoF2N9vYjORVDkdKGgvBKmZfudLe9ELNSc9U1gpKcLkWAIeWVl+MyR92hTov22tRW/ffwpzM5MyyWYDXv2wi72Cdvg3xKFsBICzTc+DpvdjuaDV8Ih9iPb6DmxB1rrWYx5h2EymdB88Crk5BdIYTfu92PMPyOFWCQQwMTggIRe5KqG0WTCQFcHhEAzXTxEoLC0bNkhAnFEw2Ep4EKz8yLNbLVipL8PfefPQgTram5BqcsFk9myEKjRAHz98V/BYbXi63/yXoiBxYsEMo2A3iRapvFnPSSwGQJczrkZWryXBNJHgMs508eeXyaBzRKgRNssMd6vJwIjM9P4vydekPLst53tS1qvyy/A/tp6tDhrUJlfsCaWeDyG6dERjPb2IDY3h8IqFwoqq5a4k1UfFgJtyofhznbMhUPIKy1DcXUtPnzTG9SUaP/12HNoqnctnMwplnOK6yNHDsu/f+nb38bomA85+fnYse8KZInZWBsu4QzhwskTmJ4chzUrC3uuevn88skNBVoYPa3nMTY8BLPFjJ0HrkSuCPHic1PBAIanpi6Cnhdp4/0e+f+HIhEMdbXDbM1C3f6DWCnQEvkkRNqAnJEGqxUDHe1yXY1r9x6UuWpgNJmXhCnE3ed/+TOI75fl5uFr77wVL69v0tPvOfaqAAFKNAVCYokkcJEAJRqHAgmoQYASTY2cWCUJCAKUaBwHJLCSQOvQAL7++KN48NizCz+0m82oszvkX1c270FZZdWyyUcr3yME2szYKLzdXXIlX2GlE4VVThgXTT5anX8cgakpDLa3yqWfeSWlKKmtlzPX/uIN16kp0Z4/0YpbPnT3QvE3ve7Qwn5o4hf/4YtfhMGajd1XXiP3JtvoioRCaD99AlMT8wJt78teuWLfstXeIWau9Vw4Lw8RMJst2HlwqUATz4gN6TyTE0seD/mn0X3qOMb6+2HLz0f9vitQVF4OGNbfLykSDKCv9SwGO9phyc5Gze69KK+pXXPwTAcD+OYTv0L32AhMRiPufOP/wgeuf/1GOPhzEkgZAUq0lKHmh0jgkglQol0yQr6ABFJCgBItJZj5ERLYFgKUaNuCkS/RCIGfnnoR//zk43i2p1N2ZDGZ8Ir6JuzMyYXDNwnAgNLaOuSVVcCwbMnmcgRSoI2PwdvZIfemL6ysQpGcfCS2zVrviiM4M43+8+cQm4sgt6QUZfVNMJrnJy0pK9E2GiNf/s53UNNyJSzWjQVaOBRE59nT8I2NIstmx+6rroFNLP3c4BICrbejDSMD/TBbrNix7wByC4tW7Lkmllt2jnoXNmOORSMYcvfA03oec4FZVDbtgKt5Dyxy77K1V1QLcypknfv0SYRmplHsdKFu30FkZYta11mJHY/hu08+hhc8vbKj1+9qwZfe8W7ulbZRwPx5SghQoqUEMz9CAttCgBJtWzDyJSRw2QlQol12xPwACWwbAUq0bUPJFylKYCYUwg+e+y0eePIx9E2Myy4KHdl4zc7deEV9I0IT4xh1d8uVfmI5ZUG5EGjrizAh0GYnJzDY3ia3vxL7n4lnkxFoYuWf59xpufQzp6gE5Y07FgSapiXaU21tmAptsMVfPI5QMICetlZMjnqRZXdgx/6DyN5oD7R4HJFwCJ7uToz0e6Soq9u1BwXFJWvaUM/EOAKRCKJzYQz39mKg7TwMZjOqGpsQD4dhtTvkulyx19lqQiwenZPLRXvPnpbTCSsam2AVJjQOOR3RKk/tXKVfsf53YgIdJ47h9MQ4XgjPH9F6wFWDB9//QYo0Rf+g0VLZlGhaSpO9aJ0AJZrWE2Z/WiFAiaaVJNmHHghQoukhZfa4GgHhSI4+/ih++MLTmA3//+y9B3hj93nm+7KBFSBRiEIA7J0zHI2qe41csrGdtnac3GzqdYrjxPtsyuO93r17926SdYpLrpK14zhxspvdOHbiHtmWLVuyZUnW9Bl2ggRA9F5JAARw7n4fAA7JIXFAieQMyT+eR48sCwfnnPf/P9CD37zf++b4Lf1aHV4/PoULlj5qYOQss6BjlY1KlGVGbrJaAZpveZFLHcm1puslgLYz/urOa5I4Oss9dwuFzTzaNRoGaNtz5081RLvscFRvJJIkZDbW4VxaRDQYQGt7OwYnz6NDpaqegSZJyGWz8NhXEHCv8chn38g4unTdVe2E4VQKwXgUgTUHXIsLXD5gnZiCrseMfDbLIXcE0jqNpjtAWgWgOWZuMA3tGR2HqX+Q/3clW63LaOLjd+S3SRIS0TBs1y4jm0rDODyCvFaLv3/uGYTX03jXA4/gw+/6WfFECwXuqgICot1V+cXJhQIHUkBAtAPJJd4sFLhrCgiIdtekFycWChxYAQHRDiyZOOCEK/DM8iI++d0n8a35GRQlCfV1dbjP0oc3TJxDr0bLd1cs5EsAzb7KnIWMQwcCaEuL7ECjNk1db788QCM+RCOcdE35AgM049DoDgdaRfZTO85ZFaJJEjbW03DZlhEJ+tHW0YH+scmtNs199yQ71zLwOu0M0KiswDo0Wi4DqJ5llkglcW3mBtyL86ivb4BlfBLdZssWRd3cWL8N0qiStbnkSNsa4dwF0CoUNZ/NMEgjMttpMN4GaVIR8UgYK9euIJtOwTg8it7RCd4E8fV1/M33vo1/+6rX4cde8Zo7xk9P+DMpLv+EKSAg2glbMHG5Z1oBAdHO9PKLmz9BCgiIdoIWS1zqmVdAQLQzvwXOjADX1xz4D1/6HC7TaCaVajQ24RVDI3jt2CSPb1ZeWwDNsYr6+np0GXsYosk50CAVkY5GwQ60AwK0jUQc3uUFUGSXUqOFYR+ARtd49iAaAbR0Cu7VFUQCPrQpVegdHt0zy2zHbi4DNJ/TDj8DtFZYBoeh0RtkA+1oIXzuNXzve9/hhbeMT6DbbL1jE1RAWlNLa6lytakRYa8Xux1ou22IJZC2xi40mvWlbDXKd1u5cQ25dAqmkTFYR8fvoK+FzRzaCwW84vxFeJNxTJrMZ+YBFjd67yggINq9sxbiSoQCcgoIiCankPj3QoF7QwEB0e6NdRBXIRSoRQEB0WpRSbznJCuwFg3jD776RXzpxhW+jc7WVrxpchqPDA5DsWvEkkxEiWCAHWj1DbUDNMpAS0ci8NkWQWH0NY9wUnZaPAb/io0nBDu0WhgGd2ag7db+bEE0ScJ6OsWjmBG/H+0qFYMwFZUBVGt22AXQWlrb0DMwCI3eyGS02iu/uYmAywmbbRFXvF4M9g9gbGRsX4paAWmUjVZsaODyAR7hHCuNcO43x7sF0iSqsGiEe2kR2fU0TMME0Mb2PY4y4R779jcQ2ljH3/3Cr+JlgyMn+fkU134CFRAQ7QQumrjkM6uAgGhndunFjZ8wBQREO2ELJi73TCsgINqZXv5TffPJTAYfeeJf8NfPPIXNYgGKhgb80OR5vHFsCk3lpsvtAlB+WTzgQ8hhL41wmmpzoHELZziEwKoNxUKRiwe0NWSgVcoHCNhtZjNQaruhHxySHf08OxBtO0AL+NGurB2gUXun11FyoDFA6x+ExiAP0Ar5PHxOB9x2G77mc+PZYABvPXcBbz1/serDQuOXq9ev8DgmucsoO83YNyC7mLmNNJwztxAN+FHIb8I0Og7ryP4ArXIRn/zOE7jpdaO5oQGXP/gHUHPbp3gJBY5HAQHRjkdncRahwGEoICDaYagoPkMocPQKCIh29BqLMwgFDksBAdEOS0nxOfeKAvlCAZ9+9ml85InHEdtYRx3q2HX2tun79y02JAda3O9DyOlAXf0BSgSKRSTDQW7vJP5Co59aa68sO2HnWjSCsNOBXCYDVXc3Z6c1NFGsVpWXJOF9b3rtjjfUSTQ8egpeOzLReIQzDfeqDRECaCoVzAND6NRoZUcxCaB5VlcQ8LjQ3NrKx9XiQKMF9DpW4XGsorGxEV6FAo89/wxGDCa87w1v3ldh2jxB9xrsN6+juLmJLr0Bg/fdD0VrdbAlSQVEfT7Yb91Abj0NpVqLwYsPoFWpktkERURDQfz9M0/D0NCAP/v190Ov05+CHSBu4aQoICDaSVkpcZ1CAUBANLELhAInQwEB0U7GOomrFAqQAgKiiX1wmhT46s2r+P2vfgEOMgQBGNbp8a6HXwGDqrMqA4n5vAivOdhEpDVbOd5KLgONnGuJUADhNScKm5vsXNNYCKA1yHCw0uhn2OVELrMBVbceWksvGhXNsgBtPRHH7/3k2085RCuXCLhXlhEJBA4E0DZzObhsSwgyQGvj0U+13iA7wkkAjUZGCaI1NDbCMjSCFo0WP/XJx9BYX48/+df/x56fQQCNRj9d87MoFoswDQ6jsa6OQR8vanPLnotKx0V8XqwtzGEzk0G3tRctzS1c56rr60NTS9vem0EqIhYKwbUwh41kHGqjCRq1Fm977Rtgi0TwyuHR0/Q8i3u5RxUQEO0eXRhxWUKBPRQQEE1sC6HAyVBAQLSTsU7iKoUCAqKJPXBaFLjucuID//wPoL/Ty9DeSVA7qQAAIABJREFUgR+7/2FMmq3VgVaxgKjXU8p4lyRorX3oMppqA2hBPx9XAmhmqM2W2hxoZYC2yQDNAI3ZgsZmAmh1+18rTTYm4oi4nPjQ+3/jFEO0WAaZjQ2sLS8gGiSA1llbBhrAC+FYWkDI64aipRXW4VFouvWyzjUCaOR4ozFOCsLrHRmDztjDNPRX//un4IiE8Buv/SGM9lh2CE8gzE+jn4tz3CRhGZuEobeP2yGiHhf/f3uBtEp7p2thFpvZLIwDwzANDPJnR90unu3t7htAU+sukLYF0GaxkUxAa7GiZ2gETY1NeGbmBj43P4Mfu/ggPvauf4MGmdy30/Lgi/u4OwoIiHZ3dBdnFQq8GAUERHsxqoljhALHr4CAaMevuTijUODFKiCcaC9WOXHcvaAAlQb8l698AV+5eZUvp72hAY+OTuB10xdRX1c9P55YRtTjRtTrZt5B45SdXNwo4yQjBxoDNFcJoPWY2YVW39hUHdiVywfCbic2Nzag0hug7rGgqQaARqYjcrxlUkl87IMfOL0QzeWPwbEwx+OK7R1KBlrKLrU8CNvchH1hDiGfB4qWFvSPTqBL1y1/XD4P18oyAi5qygQGxifL2WmlTfDn3/4GvnLjKl7fO4C3P/zyrXlbBmhrDrgXCKCBAZreai1TVIkXOObzsLOM7IkVR9ptB1oZoA0Owdg3iCayIdbVoZDL8obMbWygu38Q1PrJL6mIeDiMtfmZ2wBtcAQtVCtbV4dba3YO/8tLEl49PIq//cVfQ7PMhrwXHmBxDSdTAQHRTua6ias+mwoIiHY2113c9clTQEC0k7dm4orPrgICop3dtT/Jdx5fX8dHvvk4Pv39p7k0gCbo7u9S460XHyqZj2oGaCXO0d0/wK6wqoWPjDJ2AjRykXUaTGhoqgGgUQbamhPsQCOAZjKjqYWm/ao70Mh0FHLakUml0KHR4A/e+yunE6I9u7iI55+9hHg4hLYOJfrGJqDs7JJdFGrTtM/PIuz3okmhwODkOXRqdLLHkQONARrZEAEMTpyDhinqbfr69OI8/vDxL2JA1Yl/c/4iz/mSQ60E0ObZvmgZn0Q32RB3QCuJQVjc5y2DNCsaFE2I+HwMwioONGP/wBZAq6xqYTOHmNfDTZ0M0pqbkYiE4ZybwXoiAZ2lFz3Dw2ihzLW625vHEfTjz7/9BDKFPC5YevE/f/k30NW2z1joSX76xbXfdQUERLvrSyAuQChQswICotUslXijUOCuKiAg2l2VX5xcKHAgBQREO5Bc4s13WQEqDfjr7z+Fj37zccQ3Nhg/jXco8UptNwbHJtCu1tQE0CIeF2JeLyjgnybnKJfsoA60EkAzypYBlEoEopy5VhnhJPeaLECDxM4zau8kgNauVvO46W+/462nE6L91Wc+A7fbj9b2DgxMTKGDANo2SLTX3stv5soAzYfGxiYMT98HVS3OtfxmGaC5+Bx0PnX3ndlpVPH6zk98DI119fidBx5mSJejAgLbEqjNwTo2AZ3Zioa9XF+SxKF3BNKKhTzqFAp4bEvYzGRhHBzGXgCtdI8SCrkcYn4vsqkUWjq74LYtYSMRh663D+bhUTRTZtoe2vhiETz25NeRyGbRp9Hhn37t/TB1dt3lx1ac/rQpICDaaVtRcT+nWQEB0U7z6op7O00KCIh2mlZT3MtpV0BAtNO+wqfn/r5y4wp+/6tfhDNaKg3o61DhVZ1d0LW0wDg8hvauLkDGgVYsUAZaCaCRiUjXNwClrlu+DKBYQCIYKGeg5TnHrFaAth6LIuiwI5+lFk4DZ6fJjnBCYn7iX1lmQxLBQeInitY2vO/RU9rO+Ud//ueQ6psxfP4C2pQqWYBGJQL2hVlu76Q2zdEL99cI3jbhXiUHWgmgkQONRj/3a4R4z999EmvRCH795a9Bvd/HhQCNrS3VAdrWcychm07Ds7SAgNOOuqYmmAZHOAOtkapY94WEEvLZLPyrNriXFiHV1fEGsI6OQdHcWuU4IJ5O4aNPfBVhGgntUOIf3/ObGDWaTs83gbiTu66AgGh3fQnEBQgFalZAQLSapRJvFArcVQUERLur8ouTCwUOpICAaAeSS7z5Lihw1WnH//WFf9wqDTAqVXidyQL9Zo4n74wjY2gns40sQMvzlBwVCVDElK5/EEqtTr4MgABaKIgItXDm81CbzejiEU5FVTXIgbYejyG4usLTe516fSkeS0HHVRnhJICWTsO3vIjcxjrau9TleKzS6Of7Hn3NjvPWSZTodgpef/apT8E6cRGt7TvHFPe6NQqjW52fQdjvR0NjA8bue4BHP/eHUqVPqZQI+NecvAY0+qnW6atS1C9cu4RQIoGehkbEaFHSSRgHR9A7ObV/i2bloqUiFySs3riGjWgEmh4zBi5cREuHqvqKUZNEMoGlq5eQDPig1Ogw/MDD5Y1ebfMA5M678fz38ZU1B0KQoGlrx83/9KFTsEPELdwrCgiIdq+shLgOoYC8AgKiyWsk3iEUuBcUEBDtXlgFcQ1CgdoUEBCtNp3Eu45fASoN+H+//Hl89dY1PrmyuQVvPTeNkYZGJIMBHtskgNbWRVN/NZQIEEBzl0oTKQNNKcNO6JwEwlKhEIKOVRQKeWYgXSbz3tN7OySSsJFIwLe8wGWNKp0e2t6+GgAaeOTTPTfDk4BtnV0wDo3saO88tRDtu7OzSOcbZXcaAbRKiUBDYyPGyIFGI5wyo58E0Dz2FXjJEUYjnONTnIG2nwOtciFkX3TYV/H8959GsViAcWAIyOeZblKV676NElQGEAlj5doV5NbX0d3fj5amZjQqmso0lSpZ935l0iksXv4BUuFQqfGiSw3KStuztXPbRxBAW3jheW4HVZkteCoWxet6+/HBd/8cGhuqN2bICi/eIBQoKyAgmtgKQoGTo4CAaCdnrcSVnm0FBEQ72+sv7v5kKSAg2slar7NwtVQa8OFvPo6/LZcGNDU04PVjk/ihsUkkvR7EfF7U1deVRjjVxE7kAVrM7+NMssoIZ00tnOU2TRqppEgrKgLQmK2ob5TjPJRlloJnYZajrTp03dD3D8o612htiZM4b15nkNaq6oRpdByNVNy47XVqIdplhwPBeLbqHqcSAcfiPEJeNxqbmjAyfZEz0GpxoHkdqwzRyL5ILZxag0m2fIAAWtjnxcr8LGxrDlgmp2Ds7cdmJoPAyjLP2XYSSGvYtSkkCYloGLarl5FNp9AzOg7LyBjXuVJLBI1y0lzvXrbE7MY65n/wLNLhEPSDwxg4N80bl+pg87ksj3WWWjt3OtLI7kjgLepyQtPXj9H7H0J9fT3ifh8UhQLe9da347LTjlcMjZyF7xFxj0eogIBoRyiu+GihwCErICDaIQsqPk4ocEQKCIh2RMKKjxUKHIECAqIdgajiI1+0Ap/87pP48BP/gkQmw5/xyMAQ/tX0/VApFAi7nDyOWV/fAMPwKDrUxE7kARoxBOIWxByIP1CbpmwLZ7kMgJxkUlFiwxGF+suZligTnkYxXbM3eXKQxkUNQyOyI6N0r8RHnDeusnOtRamCeWJqT8fbmYVoBIlcK0sIeNxoalJgaOo8VBqtrAONwBu3adpX0NDQAOvwGHQmE2+kai8GaH4vu96YcCpV0FgsqKsvATOCYwTSaJFVBuPtRZaKSESjsF27xMF2ppExWEfHt/49EdKQw87NEtT2uQXSJAmZ9XUsXHquDNCGMHDuwtYmoA1CVkomumYrFK1lkCZJyGY2YLt2hR1oaouVARpnrgEo5vOI+714atWGJ9fs+K03vBm/+5a3veiHVBwoFBAQTewBocDJUUBAtJOzVuJKz7YCAqKd7fUXd3+yFBAQ7WSt12m92m/M3sR//vI/YzUc5Fsc1HXjXQ+9gosFC/lNZgNRj4fjr7oHhtDB7KQ6QCMGkgj6mVfQ9J7GYmUYJtvCSVlmsSi8S4ucnUYFAiWAJu9AqwC0Yr6Ado0GxqHRmpxrZGxyzd5iB1qLUgnzxLl9R0bPHkSjlstsFh67jcsAmppb0D82gS6tTpaGEpH0u9fgXrVx+YB5cBjdJrMsDSVQRXlrVFxAm8dg7YNCq0Mil9vxDFZAWodWxxuFwFwiFoHtKgG0NIzDI+gdm7hj82xurDPZJUcZbcoGhQIbqRSWrr6AdIgcaDsBWuWkJZC2hmJRgtrUwyAts57Gys3rTJjJ3TZy8cEtgFY5rpjfxJPXLuNLS/P8f330nT+Lf/3gI6f1+0Tc1xErICDaEQssPl4ocIgKCIh2iGKKjxIKHKECAqIdobjio4UCh6yAgGiHLKj4uAMpsOjz4gOf/wyeW13m46hM8EcvPojz5l7+ZxpvLJUBuDl6iuKhlDpdDQAtj2QoiKB9lTmLusfMzKFWgOajQkRJgkpvYPdaLQCNRjjdc7dwUICWXV+Hd3GeY7NKAG1vB1pF2LMF0RigZeBxrCLgckHR0oLekVEuA5CzExJAC3hccK8so6GpCeb+QXT3WGoAaORA890GaJZe9PQPIlMowBOP3bHBt0CaRoP65has3LjKDjTj8Ch6Ryf2pahbIK21FU2t7XDM3eIMNP3A4A4H2u4TUs0rjXaS7bG5QwXP6jLiPi+6eswYnL4IRTM1UNz5oofp8twMLnnW8N/f8z70aLsP9LCKNwsFKgoIiCb2glDg5CggINrJWStxpWdbAQHRzvb6i7s/WQoIiHay1uu0XG0olcR/ffxL+Myl51CUJLQ1KfCWcxfw6pFxNNSTw0zi+CjKPyMXGjEQraUXym597QDNUQZoph7OM5MDaOQ6S8eiuA3Q9AztZAGaJGEjmYB3cQ40OUguuVodaATe/LYlZNfTaKMMtLEJ2dKCswPReEwxA5/Tzm6y5pZWWIaGoek2HAig0Vijqa8fegq0kwnXL41w3gnQqMCgUCxiJVSySu5+ZZIJOG5eQyIe57ncnpHx0ginTIAeATj3/Ayi4VCpfIAA2tS07CYgy6J3aYHHTTPpNG/wgfPTaG5tq1r9WshlEbCvIOzx4O2PvgXNWh2sai2ULXuDt9PyhSPu43AVEBDtcPUUnyYUOEoFBEQ7SnXFZwsFDk8BAdEOT0vxSUKBo1ZAQLSjVlh8/nYFcoU8PvH0k3jsya8jlc2ivq4Orxoeww+fvw9tWwH6uwGagkcxqeFSznxEDCQZCnCbJmWqdxl72IUmB9CohTMdjcC3TCOcgEpfK0ArYj0Rh395CZu5LJSacgaaXPkAxV+lkswziKMQQKOct90lAnfuHgnve/S1O/7vOok8c6fgtaNYYBdAa2lthXlgCBq9UXYTUEMludbcq8s81lgzQCsWEPZ6YV+cK41wlh1oBNAqL2ckjGw+v1NtqYhYMIDlK5eQW09DbezB8P0PoKmFgFaVF2enRbB6/SrTW6VGi5EHH0FLe4fMcRLSiRjsMzd5XrlV2Ymh6fs4m61qSCDR3nQKroU5hN1r2GxuxtfTKZjVGnz2V34L6vb2U7CLxC0chwICoh2HyuIcQoHDUUBAtMPRUXyKUOCoFRAQ7agVFp8vFDg8BQREOzwtxSdVV+CL1y/jD/7li3BFI/zGKZMFP37/Q+hWqnYcyCOcFQeaQgFNjwWqGsxHUrGAeKCcgdZQzyyjVoCWCofhX1niEkSV3ljTCCeBt/VYDEH7CjazGVAslmFwuGbnGkViEUhr61Jze2epcLEqdOHSgt/+0R/e8abTB9EIoGUz8DlKDrSW1jYep9Rw5lj1IDyyL/pczlIGWlMTevoGanagUeOnY3GBSy+N1j4+53aARqoHU0nE1te3FoA2QTTgh2PmJgM0naUXzU1NaFWpmOA2lMP971hWqYh4OIy1+Rmsx2PoMhjR2tLKAK3U2rmzkvX2CYtIxeNwLc4hEQqiQ62BUqliBxqNc26VDew+YRmgeZYXEfG40dLRgboOJT5rtyGazWBEb8Bn3vObMKg6xfeYUEBWAQHRZCUSbxAK3DMKCIh2zyyFuBChQFUFBEQTG0QocHIUEBDt5KzVSb3Sq047/sMXP4uraw6+BZOqEz/xwCMYNZjuuKXSCKenNML5YgEaZaDRCGeNDrRKdhplyd9u4axeIsAALRpF0GnnMgClrhvdzFyaZDgYjX7GEVpzIpNMol2t5pHRfdnHbXjCAC3iWsMf/MavnGaIlkEuky1loB0QoNECeh12buEsAbRB6M21ZaBRdtpa2YZIzjVT38AdAG0tGsZj3/oG6uvr8Iuvej0kqYCIz4e1uRnkNjZgHBqBZWQU1BJBC0WLSu2bd4A0cq6FQnAtzLKNkcCbZXQMdRIQWnPwJtIQSNudbSYVkYrF4VoigBZCp14P6+gEmhQKRD1u0KYk4tzEI53bXmWA5l5e5HDB9k41LGMTaOvogMflxKdvXEUoswFzlxqf+7X3o1etPanfNeK6j0kBAdGOSWhxGqHAISggINohiCg+QihwDAoIiHYMIotTCAUOSQEB0Q5JSPExdyjgCAfx0W99DV+9cRXpXA4dimb8yIX78Yqh0T3VogJBMsnEvG7mDsQRanWgkXMtvOYolwhYaisRKBZ59DPkdKAC0DQWKhFoqLqaldHP8JqzDNBo9LNvf9NR5dMkiZlJxOVkB1p7lwZaay8UbdVjrGi+tALQ0rEIPvbBD5xeiOYJJNhFRi2cza2tsAwOQ603yDvQ8nkGb177KsMvOq67p5YWzgL8rlJ7Z7FY4JFR0z5NEtF0Gj/9V4+hubERH/qJdyNKAG1+hqGZYWgY5qFhNDQqONCPigUIWFGT6A6Qtg2gbSQS0FqsMI+MoplGP+vqeEPRxqpvqIfG0nvbkUYAjR1o8+xA69QbYBkZR7tKxcdVygZoI+usfWis2Bppbng9DdfSPCIeD9q7umAdm4RKo+HRz0IuBy+DtCsIbKxD196Bz/7q+zFqMIqvNKHAvgoIiCY2h1Dg5CggINrJWStxpWdbAQHRzvb6i7s/WQoIiHay1uskXK0/Eccff/0r+F8vPLt1uT80cQ5vnppG8z5OLcoyI7gU9XnYRMQlAjVkoNEIJ7V3hl1rfC6CUuQmk81AKxY5TooMQ4X8Jueyq2vInWeAFokg7CoBNIJ8lNcmm2W2G6CpNcxImmsGaE6OzWpRqvCh33rv6YRozy0t4eqVmwh63FC0tMI6NAKNXr5EoJDPMwSjAgJqgegdHoXO1CNLQ2nT+V1OeOyrKBTyDN5ojLMaRf3Fv/k4vIk43nP/wyi4XcjlsjAODsHUP7RzExC8SicR9/nQqFCUQFpj45YDjZootGYrzMOjpTKAurqtRaWNFaX2zTpAYy5trlQixllmyVCIA/tKAK1zx3FUaEDH0d91fQMM8LIb61hbJIDmQnuXegdAq5yQ5qcDrjX87c0r8KTTULW08GjntKVUkSteQoHdCgiIJvaEUODkKCAg2slZK3GlZ1sBAdHO9vqLuz9ZCgiIdrLW616+WoqK+rNvfQ2f/v7TyBbyXBrwsoEh/PD5i1DtnjDbdiNkniHzDbnJGpoaebxRqe2WzY8ngEZTbJVJNjqu00C58zJOsgpAc7tA/EDdQ841s2yR4hZAczuxuVECaBRf1dRM8VW3Gcgda8TtnXG+R3agEUAzW9HMOe5VjiND0/o6O+zS0SjHbJFx6Xd/4u2nE6L9jy99CTabA80tLegdHoOaqljlMtDym3Cv2DgHjcoA+scmoDWYZAEagTcCaATeCoUCAzRq79ydgbZ7MT/89a/gifkZPKJUYaxRAcPAEIwDA2hqat4BtPg4qQiqX00E/Ly56hUKeGxLXOVKC9kzOIKWtvY7j4PEG4zmmovFIlpUnfCu2JAIkwPNyKOf7cqdAK1ynQzSPG7kacbYYILPvlICaGoNrOOTUKlLDrTdL3oQQl4P/ueNK1hNJtDe3Iwvv/e3MWa8c+b6Xv4SEtd2PAoIiHY8OouzCAUOQwEB0Q5DRfEZQoGjV0BAtKPXWJxBKHBYCgiIdlhKnt3PSWcz+MR3v41PPPVNbtwkLDRt7ME7HnwEuo6dpQG7VSKARuOUcb+X+QXlilFAf90ev/O3H0smIhr7pIk56qZkgFZDcSOBt0QgwFyB8tfUZnMp/10my2ynAy3DZiACb00tLUcG0HIb6wg57EjHYmhVKqG19qFVqcL73nRK2zn/5C/+AptSI/rHJ9FFm0AGoOU3N7mBk0Y/61CHgYlJqPU1lA8QQFtzwrdWAmjkeKPRT7lNQJvuC899D5+89BysjU34qQv3w0iOLyoB2OYk27HJpSI2kkn4V20Il6EYA7ShEbS07gXQKkdLyK2vI+BYRXDNgc3NPBNi6+g42qiJY7/zAUyGgw47fHYbspkMOjQa9E6ch7Krq2p7J1kyQ641/I/LzyMHCU/87v8NtSgaOLvf7FXuXEA0sS2EAidHAQHRTs5aiSs92woIiHa211/c/clSQEC0k7Ve99LV5gp5/M0zT+GxJ7+ByHqaL22oQ4l33Pcg+s2Wqr/X6b2UgcYAjYw69fUwDI2gXaOpAaDl2WxDzjUy+9DkmopNS3IONAJofs5dI4BGmWvEJfYtUCyLfccIp97ImWu1AbQEqIUzm06VHGg1jnBSTj21flJxI4EzgoQtHUpmJ+979DU7tsGpaef86Cc/CdPwFLul5AAaOclctiVQIQC9BifO1TT6SSDMt+YoOdDyBViHR6AzmXmGuNqLHGERvxc3527hj25eQ1NdHX7/bT+xj5Ns2ydJRSTCYazeuoZUMMizxv3n70N7JwEtGftiOoWV61d4s3d0qTF48QGotN3Vj2OItomla5cQsq/wvPDwA49ATRlnMmSaNLXP3IB3cR7FhgY8/Jo34Mdf+0ZsFgpQtcpVx95LX03iWo5aAQHRjlph8flCgcNTQEC0w9NSfJJQ4CgVEBDtKNUVny0UOFwFBEQ7XD3PwqflCwV85tJz+PAT/wJfIs63bGpuwesNJlyYmkbrrqimvTRhB5pjFYlggKGZcWQUbV1qWYBGTrKI28UAjeBWd98gN2PKlgHsGuGkccpaABpBOsoiI0fYZjZT+wgnJJ7kC6zatgAa5b3LlwiAI618Sws89dfS3oHugSH+e4W5nFqI9s3Ll7HZ2C67CTgDbWUZfsoNg8QAjUY/5TZBJQPN61hlgGYZovIBiyxAkwigBfxYsy0il83iTxdmkchl8esPvgyjg8Ocw7bnS5KQjEdhv3mdaajaYEJbezta2zvQRc63Jioh2PuV3UjDduMaEn4fb7pOtRqN1Npp7eWss/1eBNBsN6/xw6XU6Xi0VSoU0N03AAWNju7zIk2d8zPwLS+hpVPF2XCblI/WN4CPPf1N/J+veSPe9/o3nYXvN3GPNSggIFoNIom3CAXuEQUERLtHFkJchlBARgEB0cQWEQqcHAUERDs5a3W3r5TGJr94/TL++OtfhT0c5MvpaWvHw0oV+pUqmEYn2DVV1WBDDjQe4bTzWCXFWBFAo6ZKueO2MtC8njJAGygDtH0YRlkwYiDUwkllADzC2WNhQ5CcAw1UBhCPImhfRS5DAE3PJQKyGWjlLDP/8iKy62mGg8ww2MxTLQOtZCLyLsxhPRlncKYfHEZLR8eO404tRLtktyOUyFXd57cBWqlJYnDyHNS62gBawF1u4aQMtKFRHuGUc6DR5okGA3AszmMzl4XB2ofP2Bbx7cU5vLHHgteNT+1tg5QkpJNx2K5fxXo0iu6+fh7FlAp5tkIqWttKc8R7OOCI1i5euYSE38ubdWBqGvX1dYh6PaBNyU0We4A02jzLN64gZF+FymDE8H3386hp3O9jkkuWTTrv7hdp6pifgd+2xAR85P6H0NrRwbbNZ5fm8bi7pPX73/gW/M6bf+Rufw+J898DCgiIdg8sgrgEoUCNCgiIVqNQ4m1CgbusgIBod3kBxOmFAgdQQEC0A4h1ht/6xOxNfOhrX8acz8MqmFSdeIW2Gz1FCfWNDbBMnq8hKL8M0Bx2bsYsOdDG0NbVJWs+YoDm9SDqcUEqSujurxGgSQTQggztivl8CaBxUWL16T0GaIk4cwVyhhFAo0wyKlqUA2GUZUYgjEYy2zq7oB8ckh/9LE/huedusYONpvBMY+Nl5rETvJ1aiHbZ4UAwnt33Mdtq4VxzMH09iAMt6HFhzbbEQf2UgVZLiQABtFg4hJXZW8jnN2GwWGEZGMa3lxfYhvnqgWE80tbORHZHlSxtnnQSy1cuIR2NQN8/iN6JSTQpyEEmIZtOI+x0oEWp5GPrt23G/GYOC5eeR8zjZtfZ0PT9UFBzRR2wmckg4l7je6e54O2VsNsBmlJvwNiDj6C5pZWPo39HFbZEdInmNm0DafRQEEDzLS+ipbMLo/c/tNX6SQ62eMCHH9gW8U2vG3/3S7+OVw6NnuGvQXHrFQUERBN7QShwchQQEO3krJW40rOtgIBoZ3v9xd2fLAUERDtZ63XcV/sDuw3/6Uv/hOsuJ59a19GBt05egDmbRSoWYRhlmTrP0EcOLm2VCAR8qD8gQKPxTXKSQQIDtJoy0KQiUuEwj1TSJJ+6xwxND7VwygA0UJtmgqOhCrlNdrvROWWdawDy2QzWZm7y6GebqpMh4XbWsd/6EecoAbQkmlpaYZk8ty94O5MQjTaPe3UFNIpJeWkDE1PQ1tAkQdAs5HXDsTDPDRTUwmns7ZMd/aT3JiJhLN28BoJ3BN16R0Z5w6/nssjlCwimksgkEzx7S+4wGrskOyVVqs6/8CzS4RBbCQfOTd9BbXPraQRWltmmSFSXRkIJoM2/8Bxi7jVoevsZaDXuGvnczGwwgKO2T3akKZoZktluXkVwZQVKgx6Tj7zyjk1HZQNRtwu5zMYWSGOAtjBbAmgqFUbvf3gLoFU2KoM0vxfBgB/9o+N49dQ0zF1qUJtIe5Wx0uP+ohLnO14FBEQ7Xr3F2YQCL0UBAdFeinriWKHA8SlAUwfdKgX8sf3/QPn4rkacSSggFKimgIBoYn/spcBD/i15AAAgAElEQVQtjwu//9XP4+mlBf7Xna1teMvUBTzS24/A6jJSkTC3aVqmptFcJWqp8tkEscJrDsR8HmYgppGxGkc4i/wbnpxkDPH6Bmpq4aQss1Q0wnyADEXUpEnmHbnYrIpRyDV7C1RWqNTqYBgcYWYh9yJO4bh+lZ1rLUoVzONTe07r7f4cOo97tgTQiIn0TV9EAzve9n6dOYhGAnmdDnhWV1DfUI++0XHojD2y5QO86fxe2OfnWMme/gGY+gZkNwGF7SWiUSzduMrtnd0mM/pGx+4AYY5IiGFaCaTNs1VR0dHBICwdIoA2hIFzF/a1PebWU/Cv2NCh1qC1Sw3bjauIutagsfZh9IE7AVplOxBIoweCRjXbdTqsLS6UM9D0GH3wYTTvMbJJxxZyWQ4UJD07DSb4XY5SBppShaH77odyn5lqAphxn5fDAbXWXnxjcR75OuDjP/NLonBA7lvhlP57AdFO6cKK2zqVCgiIdiqXVdzUKVRAQLRTuKjilk6tAgKindqlfVE3ZgsG8IePfxGP37rOx7crFHh0chqvGZ1AXSGPwOoKUuEQGhRN6BmbvCOva6+TkuGFptBoHJMglmFwGB0aykCrr3qNNMJJzZ2UkU4GH2IUXQajfAunVMR6LArv0gKbj7oMJj62doB2E8V8AR0aLTeG1gLQyHm2dusGO9EYoE1MyY+MknMtl2XH20Yiwc6z3vMXZB1vZwqikTvL7yplmTU0NPIopo6dW9WrWAn8hP1+2Bdm2SJp6u1jiLZvCUB5K7IDLRphgEYQjmBd39j4nosZTCYQ29jgIzcSMd4AyVSKoZphiBxo+wO0ys7PppJwL8wiHotiPRaD2mLd04G2+0khJ5vPtoRYMIh0PApltx5DFx9EKxHtKq2ftEEDjlWEPW6kqPpV1YmB6fvQqdFWfSCpSjfsWoN9xYZ/CniwLkkY0Rvw97/0XpjVmhf1ZSMOOrkKCIh2ctdOXPnZU0BAtLO35uKOT6YCAqKdzHUTV302FRAQ7Wyu++67dkcj+KNvfAX/fOUFFCUJLU1NeN3oJN44PoXmpkbkczk2v1C+GLmljMOjaFWpZEc4yfQS9bgR9bqZgdBYZIdWJ5uBRgwkGQwiyNN7ddCYqQyAzEfV2QmZiAig+ZYWuXygU2+Elqf35Jxkpagq12wJoLVrNDAOjdYA0CTOPvPMz4Ky0GoHaBJHXFHmGmWvUd47gbdqxYulNZPwvkdfu2P56iQiP6fgtTsTjTYdlQG4Vm3cTGkeGOIygIMANMoPM1h60dM/yNbJaq/tI5zFQhFaown9+wA0+pxkJlOqpy2XCCz84FnefGR7HHvoETRyBlqVlyRhg7LTrl7mkMAOjQ7jj7wcza37t2iW9oCEbGYd9ls3EHa50KpUYvj+B6EkmFWNTEsSNnMZuBYX4F9ZRmNLC/rPTUNrMss+WGSz9NpX4F6YAw0ZPJ3fRGBjHZq2dvzjr/wmJkzmU7ADxS3UqoCAaLUqJd4nFLj7CgiIdvfXQFyBUKAWBQREq0Ul8R6hwL2hgIBo98Y63K2r8MZj+IcXnsWffOOrW5fwhrFJvGlqGm2KZoY2+WyW88gSwQC7pfQDQ2hTdcm2adLvbsoyozIAipIimEX5YlQoUO3FAC0U5FZMGv2kLDO16aAATYJKr4eut18eoEkSj1K652cODNAIvNHIKGW2UzNpz/hkDQ60EngL2lfYfNTc3s7ZafLtnaW1+Lc/8qbTD9EYoHlccK8s80xsT98g9GZLDQCNRjh97EA7EEArFhGPhLF88zqKxQK0xh7OANurPbOifqFYxErQj2Q8BvvN60hFQmx7bG1u4Q1L7rB96S2VD6QScMze4vZMsj22t7ah02jiz9jX/kibdSPNICzsXuMKV6VSBZWum7PV9m2+kCTkshl4V20I2Fc4a02lVvMIJx3HrZ37ONjoQQ6sOeFemudQwi5dN4+tft65Cls4hNamJvzVz70HrxuduFvfY+K8x6yAgGjHLLg4nVDgJSggINpLEE8cKhQ4RgUERDtGscWphAIvUQEB0V6igCf0cCoK+Ph3vokv3biydQevGh7Dm6emOf+s9Cq5pSIeFxKBABStLdD1DqC9iwBaNRAmlQoBKwCtSQGtxbqzwHAf3bYAmmMV9fX17D4jiCbnQKMMtHQ0WspAkw4G0DYScXiXF9htp+QRzhocaMQy0kkEVmzsYKOpOBPFZu3Kgb/zNiXk1tfZ1UcRU83tHTzeSiCtejFDeS3cLvyXX/2l0w3RbgM0GxqbmmDq6+dgf1kHWrGIsM8D+8LcgQFaLBSEjYLwCnl0m3o4d02uwpXC9m7ZFrF04xpvvu6+fvRPnecFpgBACtSj1s47gBg51xJxOBdmkQj4eUa5b+o86iRwC0Y7lQ3sau0sPY/kXEvBvbyAiNuNdrUavRPn0NzczOejRooSSCP6ve1FAC2TgddOAG0VzW2tsIxPQanqZIsoUe1Og3FPkFYCaA64lxb5gbSMT0DdbWTnHH05fN3nxmWXE/V1dfjIO38WP/nAwyf0K1Fc9kEUEBDtIGqJ9woF7q4CAqLdXf3F2YUCtSogIFqtSon3CQXuvgICot39NTjOK/jCtUv4m+89hUvO1dvwbGgUb5w4B22HcvsPb/6NTKOY9HuZfp/revu4TFDOSXbbgeZGo6IJ6h4qLtTL5sBTBhrBuqDzYACNxjbTkQh8tkU2yqj0Br5W2RFOGv2MxzjbnbLJOAOtlhIBYhmpBEL2VWTSKbR1djEIa5QtKyyNjJKrj5hLS0cHuvsHa8iVKwE0cvSRG/BjH/zA6YVo3lAKAZeTM9DILUVFALU60EI+D7dwkgONGjjpWNkRzmIRkaCfj9vM5fhclRbOag8mATRyrl269Dx8HhdvuL7xqRLAog2SiPPD09bVxa2dWyCNGi/icawtziEZDDC86h2fQmt7R6nZM53iEECyNXaaem6DvC2AtoiIx80k2zo+xW4yIto0SxymsgFywZktt2nuDgfaKpcOEAjTGIx8HGWkUWAhadZpJEda6xbNpVlsv9MOz+ICA0zz2AT0FisTbSopIEpOmXVXEgk8Pn+L5fr3b30H3vv6R4/zO02c6y4oICDaXRBdnFIo8CIVEBDtRQonDhMKHLMCAqIds+DidEKBl6CAgGgvQbwTcihFN/3988/gr5/5DtyxKF81jWq+engUrxubQnvzLuNK2YFWAWg06UXNlmR8qR2guXiyrHaAVkQ84EPIYUddQz3HStU6wklFB2TgoRgrMvBQgaAcQKtkp9HIKJUC0JgpjanKHcd8JBlHyOlAJpViTbr7BnjMVc5Jth2gUYwVjZq2ELiskgNfcQNuX4s//ne/dToh2vM2G27dXICbxw1phJMAWg0OtEIBQY8bTho3pBKBvv6aABqNbUb8fqwtL2Izl0U3AbRhauGUyU4jgBYOYW1lGYGAD5utbbCOjkPRQgCq/GJCG+dRTbIpqrq7GUQRQHMtziERCqFLb4BlbBxtHaodm4BAWnjNiZb2dh7vJEdcyYG2yM4xorbWsUmodrVzbG6QxdHBDx6FCJItkjLQPCs2LhNggDY2ATW1c2yzklZAGmmn7ulhYk6lCj7HKtyL86Ua3rFJ1me7JbQC0sh26izm8ZlrV/DYT/88fvjchRPy1Sgu88UqICDai1VOHCcUOH4FBEQ7fs3FGYUCL0YBAdFejGriGKHA3VFAQLS7o/txnNUZCeEvn34S/3jpeaRzlAYOzgF//fgUXj40AsWeYfsV11PJgVYCaFa0qzXyAC2/iZjXzQYc+v1Ov+PJhEO5ZtVe3MLp9/HvfyoRUPdYagNoxSKS4SAbdwr5PI9+1grQ0tEIwk4HT7kR3yCgJTuKWTYYkZNsI5lkgEbH1ZJlRgAt4lpDKhZhk5HW0st/rw2glRxolbX4wLt+/HRCtM898QRmZxa4RKBnYBD6nloy0PIIuF1wrSyjWCxygUBPn3wQHkEiyk5zry4jl83CYLbCTHbCpiaZzVpELBzirLb1dApOSUKwrg4/NDV9x2ISqd2Ix3jxKLusXqFgoEWblqyZltEJtO+5CSRkUyl+kIjONqtU8NtXEfGSA00Ny+g4VPu0aW5mNtiRRlluHTo9u/ooA625rX1PgFa52RJIc3EbBz1IYZ8X7sU5BnjWiUnoenYCtMpxDNL8XuSzOSg0GuRSSRgVLfjxt74NsfV1dLVVZsOP4ytPnOO4FBAQ7biUFucRCrx0BQREe+kaik8QChyHAgKiHYfK4hxCgcNRQEC0w9HxXvqURb8Pf/j4F/GN2Ztbl2VSqfCWcxdxsbe/yqVK2MxmebqLJs0OAtAoy4x+gxNEY4BmsUKlq22Ek6bCKNKJzDHcwllLiQCNfoaCbNgp5jf5dz+55eRisyqjnwTCiDdQ9jsBrTtipHarRMaiRAIRl5NLCAgq0nEKZgR1VTWtALR0LMLtnZQP16rslAdotBauNSRDO9fiN9/0utMJ0f70v/03ZPJ1sA4NQ2eSb+EkchpwrcHjWGHnFEEwo5XmeKtXuDJAI0hkX2EbosFaGv1sUiiqPsfkXIuFQvDYbVhPpaAzmvCHP/g+XPEY/v2/+lEYqW1j14vGPqmxM+Rysnstm9lAp94A8/AY2lVVNkG57SLotCMeCmFjPVUGaBN3ONB2n5M2NrVWUM5bKpFAc3sbj36q9YaqJJxAWmjNgWjAj2Qsyg9y3+Q5aGUeSJrfplnjiM+LeDTCM9VBvR7XfB586ufeg/usfffS96O4lkNQQEC0QxBRfIRQ4JgUEBDtmIQWpxEKvEQFBER7iQKKw4UCx6iAgGjHKPYRnmotGsbnLv8An730PByR0NaZBjqUeOPkOUwPjMi2adJvaIJL1Ix5kBFOAmh0XMzr5Qw0raXcwinjQKPjYj4Pwzf63U2xUhQRJVciwNlpwQDDvsJmvtTe2UPMRX4KLxUNM5gizkDZaZoeCxp5nHV/EMaGokScjysBNC00Fgube2oBaKQNcRRynhHok3eggdkOAbvKWhCwayuP077v0decToj2kb/8S+isw9BSqH4NIMy35oDXYQdtJMvQCAw1UFQCaCGfFx77CrdVEnQz9faj6Y6Z5p1PK8Gw7Q40AmgE3j757Hfx+MwNvPPBl+FVI+N3PuKSxPZDau8kuyVVxvaduwCVRlf9gSy3cNpv3mBnWWtnFwam7+NRzOqtHkAxn8fKrevwLy3waObAffej22KVP66Qx9rCHFyzt9gSOnjfgzD0D9T0QJLDbm3mBjeK9J6bxj+7HLAFA6zH07/zHzHUrT/Crz/x0cetgIBox624OJ9Q4MUrICDai9dOHCkUOE4FBEQ7TrXFuYQCL00BAdFemn538+h0NoOv3LyGz/zgWTxvt+24lJH2DrzKZMH46HhN0IbMJJQPlgyHeDyx1hIB4hc0hhn3e3nyi/LBOnQ62dFPAmHU+hnzeiAVJej6+tmgIw/QStlpNOlG11wZ/axvlJnC4/KBMMLbABodW2InVZxklQy0NSeyZQeaxmytqU3zdgtnDK2qWkc4wfdVbS1OLUT7yve+h/oOLerr5Z1k/jUnvE47z/FahoY5O00uy6wywkkAjRxhBNDoLwVtgirBdJUSAdfKEtaTKYZ8Pf0DaG1rx7cXZvFHX/8KWzx/4ZU7LYIUoLeeTMA5N4NEKMBlAEpVF7d2EsGt1v6Zy2zwcWH3WqlkQK1h51pXj7mqbZIAmnNxFj7bMm9Sjc6AltZWaKy9DNT2e9GD7FlZhocy0BQKaA0mNDU1cvOFopVo8d4vepD9TgePfkoSoNEb0NTYCN3AEJ5YXuDWzo/+1M+is0WMdd7N/1gc9rkFRDtsRcXnCQWOTgEB0Y5OW/HJQoHDVEBAtMNUU3yWUOBoFRAQ7Wj1PexPLxSLeHppnh1nX5+5gUx+c+sU/Rotxts60FdfD5Wqk/O6anE90e/uwOoyAzQq9+vuH6iphZMdaE4HYn4f6hvqOZi/Q1sbQCMIFmWAViwDNHKgyWWnFTmnjZxrZHgh9xkVCchlmfEIZzTCzq7cxgbntNGxsmUA5RZOukfKQOtQa3hMldiEnAOtNFG3inQsyiOcOmvfwdeipQXdfYNc8Lg9B/7UQrQXVlcRTt7e0Hs9PBx4v+aAz+lggGYdHuHRT7ksMxrFDPt88KzakC070GoFaIloBM7lBWyk0jsAGoG3aDqNn/6rx9DWpMB//cmfvn3J3KaZhH3mZqmF02iCZWQMKEr8zy1KJeei7UV/87kcVmeuI7y2hg6tFn0T5xhMxYN+vk+aXW6gFtBdL9LDOT8Dn22JywwGzt+H1rY2ps6kG9kg6QHf/aIH2W1bgndpAQ3NzXycsqsLCb+f62R1/QNsTd392g7QyEpqGZ9kp1w6HOIvE8PQCJrbO9BYX4+H+wfhioYxbelFswzxPuwvTfF5h6+AgGiHr6n4RKHAUSkgINpRKSs+VyhwuAoIiHa4eopPEwocpQICoh2luof32bNeN4Ozz199AcFUcuuDte0deKh/CA9ZepHzurGeiHPjIznC5JsfS5NfPtsi0pEIjzUahob597dcCyc70Bx2hlrEEozDozWVD1QcaHGfl3Pg6TqVOr3s9B7Btu0AjbLTaPST8tPlRjHT0ShnrvEIZ60ADRKPbhIIq7Rwaq19aJbNQCuNYgZsS0e2FqcWol12OBCMlxow9gNoJQcaNUkUagZotHmoRICcZFQiULMDTZKQjEZgX5hDZj3N7izz4BBaCChtc6794qc/Ae/2XLTyKObKjetIBPzcktE7MYnWdiWkcjsFWTdpRJNB2rY5ZKLDtptXOeyPKmMHzk2jnbPWJGTSadCDQ+2bFBy4nR4TQHPMz8BvW0SLshPDFx+AskvN17m5scHh/wTSOABwG0jbDtDoC6D//H3sJqPjCrlNPo5KDnaDtL0Amo4aQRubeLw24fdxaGEFpK1Fwvizbz2OEb0Rf//L74WOamnF68QqICDaiV06ceFnUAEB0c7gootbPpEKCIh2IpdNXPQZVUBAtHt34UOpJP7pSinnbM7n2brQ1qYmXLT24+GBYQx263n8z7s4jw3OEG+HfnAYLR0dMm4pAmibbFpJRcL8u9w0Utvo53aARrDNODLGk2pyUU30u3vLgSYRQBtkTiAXf8UALRRgJxk70MxWdDFAq54DD3KgxWIIOlaxmcnwuKjaXMMIJyQ24PhtS8iup9HepYGur69sxqlWIlAaxdxai44OdufVvBbLS6DMNio5MI2M7etcO5MQjQCQ3+WEx75azkAbRTeNNtbQphkJ+NlJtpnNwWjthamvH03k5Ko2wklZZvEYVmZvIbOxDq3eyNCumUYidx33kSf+hVs83vnAI3jV6ARoFHP52mUGSTR+2T95Hi0UoFc+jqyRGWqpcLvQrtFsgTQGaDeuct2sUm/A0IWLaOvYVuEqFXljRr1udpRVQNoWQFteQkunCqP3P7yrtEAqgTSfh8l1xZHGAG1lmTcsATRyoHV1UxtIZZxWQiGXY6spg7S+fija2kEPcmDNCdf8LBnQYB2fRAWgVb6lpEKBHXAUXmgYHEYCwMe//Q3+EwCDqhP/65d/A2NG07377SuurKoCAqKJDSIUODkKCIh2ctZKXOnZVkBAtLO9/uLuT5YCAqLdW+uVzW/i8VvXGZx9d2keBcoZAjhaaMLYg0cGhnGOzCTl0cdCfhPuuRl2TVHQvXFktIbA+zJAK0MbipIyT5yrDfZsc6C9NIBGDjQCaDJlAFIRyWCQSwMJ+lGOWS0jnBxHFY8hsGpjZxg50KgVU65EgAw/lGVGk230dxqlJBAmO/oJ4M61GKvJucYwc3kRqWiEjTzmiamqa3HmIBoBtIDbBdfKMmgs0zo0An3Z9VTt8SX6Gg0FYZ+fRX4zx8UDPQODJYBW9UAJ6WQCSzeucXYaObP6RsehIAfXHuDtOwuz+NDXvozezi68/9EfxsKlHyDuc0Nt7sXg+Qt7gjfaoBvJOAcKkhuNSK3t1jWE7CWARiCshWyPu88nSciup7jlgh74jm493MuL8C0vobWzEyP3P7RP66fEVsyo283OTRoJDbjXShloZYCm3gHQtnBYyZHm8zBRJjtmPBKCc3aGXXXWiUnoLVbUN9wZSrgdpNFDFE8l8KlnnoZvMwf6k4C//NlfxhvGp+6tb2BxNTUpICBaTTKJNwkF7gkFBES7J5ZBXIRQQFYBAdFkJRJvEArcMwoIiHb3l4J+iz6/uszg7Ks3ryKZvT3RZu3S4OGBITw0MIS2Xb/9GdqQUSaVZJdUz/gklwJUz+u6DdDS0TBHMlmmztcGe7hEwM4TahWAtjuvay812YHm9SDqdvHvbspcq2mEUyoiFQ7xSGWhkIeGMtBM5qp57KXzS+zK8y0vgOKl6FxUlEAOL7kXcQaCkmQmauvs4mk02fIBAmibBDNvr4V5fBJNNa/FbYBmnToPhczI6JmCaATQgl43nEsLvHksg8MMw+RKBMjtFQ+HYZu5gfxmHgaLlRs85ZxrtEHWU0nMX7nE7Z0ElgYnz8mCt5/55GOIrKfxFrUOqlSSYdPwfQ/ItH6WN+rSApKpBNNipcGA8YdeDkWVEgDa4ORIC6wsIx6NIhEOorWrC6MM0MgSup9dkkBahp1u0WAAiUiYN+nA9EWou6nVY79QQnKkbXIdbsjjQjIW5fdaJ85Bb+2tSsLJ7UYjqAHHChKJBNfp3lA04VYkxH0eH3jrO/De1z8q91yKf3+PKSAg2j22IOJyhAJVFBAQTWwPocDJUEBAtJOxTuIqhQKkgIBod28fOKNh/MPz38c/X30Ba9HI1oV0trbiob4hvGxwGHpV554XuB2gUcRR77npHVFH+91VJQONRjiJQ1impsvOteo6bC8RqKuv49HPWkc4Yz4vRzzRb3/KQKNiQtkWznKbpp/MR4UCFwFQK6acc42jo1IpeOZnebSS3G7dA0M1gLfSKKbzxjV2rlEuXM/YhPzIaMWBVoaZNGVnPchasAON1qIJJYC2fxFiZYXODETjNk2flzPJJEgwDwzB1NsvP/8rSQyIyElWKBSgN5vROzIuC95IYMo+m3nhOWzmcujSdmP4/DQa5eaGAXxn9iYci/MorDnR2WPG5MteWdNx5JBbvPQ8A6p2jQ5Tr3i1DEArbQP6Ali9dR2BFRuaOzow+uAjUKq1VUdU6Tge4VxahHthFvVNCgxeuMjFDJBt9Sgg4HLCfuM6CFBaJ6bQMzgs+yDTTHU8HMLiC88zwDMNj6Bv8hy+u7yIz1/5AYoAfuT8RTz27p/j8gTxOhkKCIh2MtZJXKVQgBQQEE3sA6HAyVBAQLSTsU7iKoUCAqId/x4IJOK4uubA//fk1/nvlVcj6nBfbx8eGRzBmLGn6oUR7HHPzyKTTPB4Yt/0xZphD5lXqDiPDDk0winfNFn63R12ORHzephfkDuLmipryUCL+/0IOVfZHUdusE6DSb6Fk9s0o+wkk4oSj2+SsUcuO61i0HHN3uTiRqVWx9cqD96AfC4L542r7FyjNk0aqSSwJffauRYt6Ju+78jX4rfe8oYdl1UnkUXrFLy2FwswQPP7YF+Y5TsjeNbTPyC7mBygF4ti6cZVpq86Uw+PYsouJrdppjF7+fkyQNNh+PwFeRDGJQLrWLx+FevJJGLZDKQ6cNNG1YdEkrCZy8A+O8POMGoB6Wjv4A2r6u6u+nDRZnUtL4IIMz3IynIVb5fBhPoqIIrAW8Bph2thDjROqupSQ20iOm3hUMT9LKw0lhn2e+EgV18mA5VGy9lpWmtv9aBAqQhqNrVdu4JMIg6VthudajWXFLS0KzHv8+CvvvskcoUCPvOe38SrhkdPwS4+G7cgINrZWGdxl6dDAQHRTsc6irs4/QoIiHb611jc4elRQDjRjn4tV0MBPH7zOr42ewOXHQSUbr8sLS2Y1nTjtQ+/HK1VJ7joGAn5bJbzs6iFkya+LJPnanKgEeyhschkOMhcwDQ6jhYlFeTJBOXnNxH1uBD1eNDQ2MCurg6Ntob2zgK3aVKDZ11dHTQWK8OwWhxo67EovEuLIBMLNXCWAJqcSaU04UYArZgvcF67cWi0KlMorUJpws01e4sjo0gTgouyzKW8FnSdFG3FazF1vqaRUcpqDzpWkAyFSoUOB1kLtwv/zy//3OmGaExt/X4GaLR5DNZe9PQNyjrJiCUStCkBtCK0RhP6x+QBGh23nkxg4dplbu/s0tYO0DbSKSzP3EQ6EecssuHp+7DkciKwusIbt12tuZMaU65ZZgPO+VmujSUH2tB9F1FflJgcU/A/WSjveFgYvGXhXlkqOdDaO9B/bhotLa0c/kfUWGUw7vmw0BeAf80BN2WgNTSgd/IclF0abuugWfBOo2lPkCbxWvgYoJGN1Tw2wc61uNfD47VdPT1QtOyd3ZaIhhmgZdMpmIZH0TM4xCOr9M8UbkiNG/5kEkt+L97z6jdgwlT9Tw+O/qtanKFWBQREq1Up8T6hwN1XQEC0u78G4gqEArUoICBaLSqJ9wgF7g0FBEQ7mnW4vubggoCvzVzHUsC/4yT9Gi2sDY0YaW6BprOrRtdTCfaQk2w9HufcrJ7RcTS1tsncQAm80TglNVzSuCG1d7bRmGiVckL6UPrdTXni1KhJ2WnkJOPf9nX7RSeVLoUYSDIUZGhH0Uk0iqk29dQM0HxLi/z7nMY+6Zy1ADQa4aRMsoMCtCyVCCzOI7exzmag2hxopbUgI9BGZS3GJtBUIwQNrTmRLK+FYWgYrcoa14Jy5bxufOyDHzi9EM0fWd9yoNFGoyyznv4aABo50Aig3bzGAE1nMqGPRjjl2jvLLZzLt64ju7EBta4bQzSPKzPCWQJvSQZ91OKp7OzCULlEgGp1XS4nIh431MYeJrpbQIyda2msLc5zOQBBtoHzF9Be3gSZZBx+2zI3b1LhwPbjKKPNu7IMv32VQwz7JsCwjfoAACAASURBVM+jq+xaIzBFXw4dWh2T5+0PDT3IAQZoC2zntIxPodts5s+mjR922vcEaXcAtNEJGMtuwHw2wyOoBDkJwO0AaWUH2vLVy8il0+zK6x0b52uia6GMNAodpHIDrq4tf6FYutRwR8Po03bjgb6Bo/lmFp96KAoIiHYoMooPEQociwICoh2LzOIkQoGXrICAaC9ZQvEBQoFjU0BAtMORulAs4tmVZXzt1jV8beYGvPHY1ge3KxSYMFkw1WPGkLITCZcTmXSKQZZplHK35MYGJf6tG7TbsR6PsgGFpr7od3R1J5mEzWyWf6snggEoWlrQ3T/IgfnVAZrEQfmUZUYutIYmBU9uHQigOVZRX1/PRQC1ADRynaVjUVQAWqfeAG0tAI1LDhPwLs4hv7lZGuEcHKnJgUbgzb+yxA42XgvKQJMd4Sy1dwYdq9z+SWthHBqRLQNgx9v2tWhtQXffi1uLD//evzudEO2FlRXMLzpuO9CoTbNGgBYLh2C7dQOFYgHdxvIIpxxAKxY5JH91fgaZ9XV0EUAjO2ENAI2cZ1R2kIzFoFSrMUiVqkS06+qYAK+EAkiEQoj7feg0GEqOtLp6ZNZTcC0tljLQujTomzqHjk71jgdyIxHnEU96CDqowpZgVzYD36oNfvsKA6/eiSmo9YYdY587QJreyA9BCaA54V6a58+xjE+i22zZQbS3QFpbO7oMRjQoFKCx2LDPA8cMWTvzTOxN/YM74NwWSKuv5zntUhmCxBloK9evlhxoI2OwjpYAWuVVovNenqHu1BvLVbTAotOBx77/FL/t0z//K3h08vzhfDuLTzl0BQREO3RJxQcKBY5MAQHRjkxa8cFCgUNVQEC0Q5VTfJhQ4EgVEBDtxcsbTqfwnflZLAd8+PT3n0Yim9n6MHOXGpMmM86ZrRjQ6TmCiFo0A/YV/m1J0MYwPFrD+J8EckuFnQ6kYxF2SxEIYwNH1VHMkluKIFicAVoru7rau+j3ejUn2Z0AjUYxVToyxcg50ArssCLAxADN2MMutFpGONPRCI+pQgJUemrTpPx4mRFOqchjrf7lJZ5yU2rKGWhy+eQvaS3S5bWI8lroBwYZpNWyFhGPqwwzaS36ayhm2HstPvgz7zydEO3L3/serl2+XhrhrBGgFYtFxIIBrM7PMkXt7jGjb3RMloZydlo0wmUAG+tpqHV6DExMyrZw0nGpRBwu2xIDOJVag97RcbTRJthm7UxsbMAXj4I2NtkyOzQ61Dcr4FuxIexx8+ITCFPu+UBKbHEk0Eaz080dSnaS+R2raG5tg2VsEhrDToBW2RH05RJctTG0a9doEfa6uUiAHkjL+AS6zdY9H8jtjjSygFKzqWO2NMK5F0CrnG87SFN1G7CeSsFOrr50GqaR0TsA2hZIy+UQ83u49VPZrecH2DE3g2f8PsxuZjGo0+O7v/sfX/y3szjySBUQEO1I5RUfLhQ4VAUERDtUOcWHCQWOTAEB0Y5MWvHBQoFDV0BAtNolzRXyeM62jKcWZ/HU4jzmfJ6tgxUNDRg19uBcj4X/Um0fs5SK2EgmEXLauTmyrasL+v5B+fE/ik5aT3OoP7m0WjuUDF/ks8wqAM3NuWRkXKGYpXa1WnYUs2ISoRHORkUTRxfRb2M5gCYVC4gHShlo9Q0HA2ipcJgdYQQayZhSiwONCgLXYzEE7SvcpklTbIbB4ZrA2/a1IJZBUFJ2FPMQ10Jr6UXbgddCUV4LPX7zza87nRDtwx//ONazRRh7+2DqG5DNQKPigEjAD+fyAjdCdPdY0DsyKgvQCLyRW4pAGGWaafRG9I6MsVWz2osAWjIeg3vVhmQ0ik6ayx4eQVuHck9rpyMSQjaXA23wqM+DdDKJVDyK9s4udoQRgNuXaNO4aDzGD//6eprbRisATW0wVH2QKyAtk80gFgru60Dbfa+bbHddQYboezBQykAbn4Cxr3qhA4E0mhdfTyURDQexubHBAM0yPFb1gSzksoh6PUjFoohHI/ynC0T6/S2tGDb14A2jUxglWChe95wCAqLdc0siLkgosK8CAqKJzSEUOBkKCIh2MtZJXKVQgBQQEK36PpjzuhmYPb00h+dsS8gWClsH9HR2YcJk5r+GuvVoqG+448MI9mwkEpzfTU60ti41gzBFK00+VQn1Z2iTQsTlKjnQlCoeqWztUMmOYlYcaDzCyQDNujVNVu1ut2egNSqat6BNTQDN70PI6SgBtBpHOAm8UVMoZacRDym1cPbKgjBiGaQJnY/uVaXr5sI/uVHMyloQl6C16OhSQ1vjWtD4bdS9xjDzpa3FAWBmOQON18Js2XIDvu/R15xOiPanH/84Oo293MTZIGMnLBYLCPt8cK0s8ZwsOdcsQyOyx9HmiYWDcK3YsJFKQmswwTI0jGYaRawSEkibh0Y3twCaVgsLhQsqVeyc2+u1sZnDk3MzMLe1wXHrBttCyZHWd26a2y2rWkIliXPDHLM3uTSgpUPFx2lpFLOGUEIqLaCQwMbmFvROTXOWmawltFiAx7YM+/UrfE/Wc9MwD4/KP5BSAQGnA/brVG+bRc/YJPomz8keRzPcYa8H9hvXkEklmGb3TU3vWIvOtlb8+be+jl945Wvx9gsPiP9q3yMKCIh2jyyEuAyhQA0KCIhWg0jiLUKBe0ABAdHugUUQlyAUqFEBAdF2CkUjmk8tzOE7i7N4enEewVRy6w2tDQ2wNrdizGDEQ5Pn0EVZ4NVeZCZJxLcAGk1YkQuJSgHkxv9oGopNKBVoY+lFq7IGgEZ53y4Xj1UeBKAV85ugccOY18MZaLWOcBIIo3gjKhmk3/Yas4Uz0eV/rxfZJUcGlkI+z7lp5Jaj3PPqkhaRjoRZm9xGhrPXybxC1yy/FjHOhyN20nGgtUgh7Fo7+FpkKHv9Ra6F28WlDpxHZ7FCuW2c9tRCtM9985to0/bIwhd2oPl9cK3aOCvMYLbCPDBUbpfcfxuUAFqIQRiVAmiNRj6ukmW235EE0FLxOB+XiETQqdXycdTGuR9Ao8/69DNP4TOXnsPLug0YyW2y002l0UJr6illnVWZVyYY5bYtcctnY1MTVFot1AYTWzWrhShSq4fPvgrXwlyJaGt06OzW81w10dh977FYQNC1BufcLc5DI5cd3afW2l+1/pe+ABhmzs+ULKGdXXxsd99A9dYTqYhYKATXwiz/KUObSoVOtQY6ax9T6grQvGxfwd8++zRf9tum78cf/cS7oeI/gRCvu6mAgGh3U31xbqHAwRQQEO1geol3CwXulgICot0t5cV5hQIHV+CsQzQa0Xx+xXZ7RNPrplguftXX1WGAssY71dAXC9AUJSi7DQw1yOAhB202knGGL5lkgjPECUw1t7fLA7T1NMOeVDTCzjM6X2sNbZqVeKJKBhoBOy4GlDWuFBBxO3myqrGxCRprb00ZaLcBmpOlIBcZuclqAmihACIM0DYZumnMNQK0aITB22Zmg6OUtOZeNDbvzwb4wqh8IFFei1SCXXm8Fm01rEW6vBaxCENMXosa2jR5wo0KHRhmtjI8rWTLV9s3zIdcTp7+I3ZCYHF3Ht2phWg/sNkQSd+2eu4lFAkU9nvhoXDBTAZGKznXBtAkswl2ALRUEjqDCab+AbTSJqjqQJO4fdO9soxErDTCWQJo5ECrEhIoSbhhX8XvfemzaEQd3m22YmRiCg0SkI5H2ZJKeWd7gbRCPgfX4gL8qyv8hWEZm0BzczPTY0VbO9fW7mW7JIDmWbXBszDH5QC9E+fQoepkWk3vJ1LdsAdIowc54HQy0CpKRVjHp6Du1nOLpgSJN+9eX3glgObl48gNaBwc5pHaZDDAQG1fkLYdoCUT/PmG3j5kEwmeX9eYrWjeFvo453Hh099/Chubm9D975n2x97983j1yNjB/2snjjg0BQREOzQpxQcJBY5cAQHRjlxicQKhwKEoICDaocgoPkQocCwKnEWINu/z4KnFOf7r+ZVlZPL5La217R2YMPZgoseMUb0RmzSK6V7jdkzKBiNDRxNHJ1UfxWSAtlYaG2RoQ78LawBo1PwYWnOUXE8dSgZTZMyQA2GFXI4z15LhIOd70XG1QZs8X2fc7+UyPxo1pYZLeRBWAOWmRQk6Fot8XKfBWMNxJQcaObRofJQy1wii1TKKmY5Edq6F2VJmJ8ewFlsAjUwy1QsWyERERRC316Kvpjw6YiC1rMWphWiXHQ4E49l9v/juBGh9nJ+mIDBUDYRVMtBWlrFOuVsHAGjUwrm2vMglAp1aXU0ONKrHyG5swLG4gE9ceR6ziTgumMz4pde+EZTHRmUDBMToAaXxzrpt9kvKIXMuzMG/usxfAL2T5xhoUeMnkWAqKSD6SyCtfluVLAO0lWV4FufZvth/fhoag4mdcjSLnPD70dDUyG0f20EagTC/0wH34hyfg7LaDNZefpCJVJM1la55N0i7A6ANDMM4MICmpmZ+sOnLgcZR7wBpewC0nqFhtLS2M1GnNlOq26UvlFJjR+mV2FjHp57+FlYjYf7ndz/0cvznd/wk2qq4647lv6Bn9CQCop3RhRe3fSIVEBDtRC6buOgzqICAaGdw0cUtn1gFzgJEoxFNGs2sjGgGkomt9WpubMSI3si5ZuMmM7opI5zNS6XfujQ2SDnZBwNoCR5vrIwN1gzQNjYQcqwiHYuhVUkAra+GEU7wb8/g6gpDG27h7Otno4sceKPf3ZQrxgCtoZGbJimgX+44+v1cAmieEkDr6+cpM/nstJcG0HgtMhvMD9SmWmHm6VuLMwnRKhlo5LTKZsmB1sd/KciBJgfQImGsUYlAKgWt0YSeGhxoZF9MJxPc3klONBrDtA6NVM1Aq3yr5DIZrM7P8LhiTtGEP75+GZvFIn7vLW+HWa2BVCiUWjvDpdbODq2WoRXNNTsXZuC3LTM57z9/AV1a3Ra1pQePQBqFHba0d2yBNHqQySnnJYCmaMbg9AWo9cbbtFcqboE0IuVErWm0cydAA6zjk+i2WFDf0FS+FYm//GJ+L4cW0hcZEXpJKiDs9cI1P8utmqbBYRhofHMbzOSARa+HnWUcAkmOP4kKHcJwzs8gk0hAZ+mFabgE0CprSHPlBNJIH8pIo2ZSWov1VAKOmZt43uPCtVwWRUkChVL+xc/8Ah7qH/r/2XsP8Eby68r3kCDBAIIRBAOYc+g8PVEzI8mykhUsrS3JlmRrV7ItJ9ler+NzeNbn3ee3Xq/D23WSLNleBdtKtiRLsiRLo5nRxJ7OzZwDQIIgiEAiEenp3CqQIBtEFXu6e4bdVf31xwQUqu6t+lf9f3XuuUf2AnxUN9yAaEc1c8Z2340RMCDa3Zh1Y5+PYgQMiHYUs2Zs890agTsRouUr0aRmqaW6FgNNzQLOumx2FBbuVRbtADS1bFA3QEMa0c1NeBbmpAsnfbdqW/WUDULgEP3D2ZCPAhSCKe0mApAGeuxsubXhRXFJqYCw8qpqTbWUAtDmpaMmxSqN3X26Sj8571a801YEoNV3dIovmbZyLRugxcU7jco1LS+z63KhF6C9LHLRjfKqKn25WFBzUaidi7sOolEJteFekWYA9EA7DEAL+jawODUhXTgJ0Bwd3SilKWEe8CbQJrSFubERbAUD4tXV2tsvXTjzeaDxIsIuoVPXLks3zbKKCnQODONzI5fxmReeQ3utDf/l9W9WKH1KAWkERiTQpZVVWJocw+rMFMoqK9F18kzO7p086QjS+D6+jhBuZWEWK1MTMJWUoPP4KdTaG64/6FSQxvcVFZsFwLEs1jkxRuGcKNBsjpYcktC9II3SUarylsZGBKA1UoHWsRegZS6mmVa/MZbPtnWA3UIXR68hHAjA1tYGR3efdBzdnwsOaoG1VVHdseVuqgCYv3ZF4CHrxU3NDnzqhefApyM//crX4Hfe9Pa79fr9ku23AdFestAbH2xE4NARMCDaoUNmvMGIwEsSAQOivSRhNz7UiMANReBOgWgTqyt4fGoMj4+P4tm5GUQT8Z14lJtM6Km14URnN4YdbbDks0+iAs3vE8BEQUkVSzgdDgFUWs0ACM4IwmKhLanUoke2dhMBzrtjWJ2eRCQQECsggrBSi1WjCycBWlzm3ApAK0FDdx/KdXinCUBbmJeySqrOGnv7dCnXFIDmFIEJ4RYrtWh4r9kMILVXgUZBix6ARuGK5GJhXtiJkgsdJZwEaC8mF1OTYDkuxT71N5gLQkk9PnY3kou7CqIRGm2srWJxekqBNlSg6SnhTKcF9syPjyASDqOuoREtXb0opSl9PoAGIBoOYfrqZVGiWWtq0dE/iHKWFmq8jwBt8spFENyVWSzoHj4hzQe2k0m872N/gUA0gh9/8FGc7ejaA9Kka0UkLB06Squq0Hv6LCqqag78PGkzGwhIbXMotAX/mltqzDuOn5LSzwOJtgrSfE4ntoJ++Nc98loq0HIDtMwYmsY2FWkrToGD3D+q5hq7exWAVnyQGjAN1pn7VlcUKLYZRCwUlk4gLb39eTui8sQg8GNH01A4LAMB5adtQ8MoK6+QmH7lygW8694HcV9HFxoqq+APh1EtXVuM5VZHwIBotzrCxvqNCNy8CBgQ7ebF0liTEYFbGQEDot3K6BrrNiJwcyNwVCGaLxTCdyZ3u2hml2iaCgrQXl2DZs4PS0rR19mtCBj0dHAM+LE2P4N4NCYKK6WJAI3r8/hu0QIpHIZ7elKql1hKScBEQ/n871NKMV3jo2IDRGjT0N2rwztNBWjTU9jyecWAvrl/SBRsWvP8XWizpijQevthqT54vr4zi84u4RSA1gWrzabZSJEMhJ1ClS6cccUDTWcu6L/umZ9VcmFnEwG9uQjBPT0lueC+2W5LLialEQRFPs39g4fMRQZm6svFXQPRePD4PGuYnxwThVdDazuapWzQrKkko4Js+toVxCJh1Nob0SbQplTzBKGP1/jF8whvbcJaXYPuoePayjVVgTZx+QKCPh9Ky8vQf/IelNMcXwVv3xi5gj/596+hsrQMv/eD70CRKn9NxLcxfeEcvM4lKeEcuO9BWCopJc034CgDB8sb3XMzKCotRfepe1Bjb9CUhIp32syUKNBYf906dFw80LL91XJdYkjQ153LmL96CclkEk3dfXD09MoBr6XqC3o9mDp/TowlKbFtHzwGM59KaOxjLBLC6NNPIuwPoLq5GT0nz+RUrnF7C5DGr37203j/Kx7Ff37tDxheaTf3PuG6tRkQ7RYH2Fi9EYGbGAEDot3EYBqrMiJwCyNgQLRbGFxj1UYEbnIEjgpEiycSeG5+Fo9PjODxyXGMZnXRZEjsnH+yIUBTMxpNJgSWl6TUkY0Aqpscmsb1mQ6OVHZRGcaOiHVt7SjifD0vQFNKMQnCOF+3fM+mx97Vo918AMo82Dl6TVRTVKw19w/AzOomjc8TBdr0FEI+rzQDaBk6rg+8qSWcQSnhpAKtH+XV1fo80FZcIgpJp9JSwmm11WsDtDQBmkdUfUou9DURkGq6YADuTC4IM1t15iISFj4Qj4RRzq6qXd36chGPwzmm5KKkvBxNh8qFAtDYHKFl6Jj+XGSrAfv6pQxXjx/dL7z+1XtGgYI0HeHvgCW7sUCmm+bs6DUkEnE0tLSipbNHPSHz7Kz4Z21i4tIF8U6rrbejY2BIgTYaCztMjrzwLKLhsCjI+k6c1gXeCPgI0Kh8oy/Y8L33ozRHmeKHPv23MJmK8N4HHkZVWbmcFAvjo1idnhBSb7VWCtSy1Nbl3VKCsJW5GaUUE4C1sgpNPX2oYiOBfbXp2SsSEOZaFvhGhZiVg1V7h3id5YVo4mXmwezlS4huBWGtqkFds0OeFORtUyy52ML0xXPYWvegoroGNXa7SGaVge7ghXBx4oXn4HcuCwlnSS0HyJKKypxv+tb4NXzx4gvyt3fecz/+5F0/ppVu4+8vIgIGRHsRwTPeakTgNkfAgGi3OeDGxxkRuMEIGBDtBgNnvM2IwEsQgZczRNsp0ZwYw7PSRXO3RLOsuHinIcCwoxXVZeVSYsjSxrXZGfHBJkCrbXZoiizoCUQvM9fkGJLbcQFEBEWayjURoMSwdO0K4rGolFISTNGzW2vZBWib4tVN+KLZ9ROKBxpLP6lAE2gzfFygjyZ4yzQRWFtF4SEBGqvMaOpP6yTdHmjMhdcr5a23LRexGJZGbiAXOwDtsLlQYGYmF63Dx3WV7+740bnd4sfXeAiAxlLa3/2P79lzeN1xEI1MkGWDU1Q9JRKwO1rR1tunTcJZihkKCQiLb2+j2laPnmMnFLWUDoB27flnECV9tVoxdOY+tfVr/jdmSjgDG15pcnD8/lfALO17r1+CkQhKi4uxuOGV/VqYIECbRGllJfrO3IuCNITGNw8MiZw115JOJeCam4VzfBQmsxldJ05LiSqll2zJy/rqXAovaQbgcmH+6mXpttk2fEyaFqzPz0nteVVjU24qzlz4vJi+eB7boS009w2IItDnXJZunwRw2d0+s7eZUtDxc88i5F2XJwtt/QPSJZSDJeWhHPhyLQRofJ/fuYTatk70njqNkNcrRN4uUt3drp3Z759ZdeEfn34C32+14uff8wG0OVoQCIdRlaPEc8S1jFg8jjPtnVqHhvH3HBEwIJpxWBgRODoRMCDa0cmVsaV3dwQMiHZ359/Y+6MVgZcTRMuUaD4+OYonpibgDgZ2glmAArTV1mGgsQmDTS3ooBIquxoonRY1EEUdFLGwAV1dS7umXxfJUCwUwvLoNVGGWetsaOjqFYWX1kLf7IXLFwWksRLLMTAMU3Gmsd3B784GaFS6tZ88owvYCUCbmRRQaKICbfgEStj0TmMhxGK3UP+qS4QqTVLCWatZTcU4snMnlWRcOO/V04WTXmZKLiYlF7Qyqm1pO0QurgpjuP25KEH7ydM3lIvW4RNKA0JduZgX+yslFwO6y2n97lV4F+fxZ7/9m3s+5Y6CaGv+iJRETl25KPS1vtkhpZgkxnmXdFoA2Mi5QwK0dBqxaBTjF8+JaspircTgPfcqnSY1Fhr1zYxcRcC7LsqzgTNnUarjIHBteDFy5YIQWA4c3afOwKqekGG/T7ps0qhw/0kqEtSFeSxPjMpA0zF8EnVNTdJEILoZkOYCNGLcD9KoQPOuuMScn51BWwaH0djeIaWfNHBcm52Wtrw0KmSb3p0lnRL/swxA48Ha2tcvr6H8lmaFNGOsbnbslewyppEIxs89owK0bnQeOyk55GBJAMdBsK6lDcXZNe/ptJgfTl04J6+pbWsXuEgIKh5pqytgfDgQ0Twy+8kBVYRz1y7LYGWtt6P/7P1orLPhZz75MbzzngfwG298i5R4ptIprAaD+NXPfkr8ANjs4e2nz+IdZ+9HR129VsqNv6sRMCCacSgYETg6ETAg2tHJlbGld3cEDIh2d+ff2PujFYGXEqKxRPP5+Vl8h9BschwUB2SXpVnNJRhqdmCwuQWDjQ6USWnl9QsVaDL3nJoASwFZ1cTyPy3D+12AdhWpRBIVdXW6ARrFFMuqAq3MWonmwWHteb6qXOMcORIMwlxWilbOLXUIZQjs1uZnsbW+LvPVJvHd2juPzBUbgjf6j/tWXDAVmWDv7NHdhZOdO9cX5qTEkCIXzrE1u3C+RLmgGjARi+K25WJuFlvew+Yijg3nMnwrToGgFOewgysZSL6FDCQ7F3/6W79+Z0K0F+bnMTO/sgPQbI3NaO8f0D6x1BLOsQvnFAVanQ09x09qK9DSaUSymghQgTZ4RgdAE/AWwfz4GPxejwC03pOntZsPEBJRujo9hefOPYPisnJ0njiFKpZvZh0EYf+GSDjrO7pUwlqIZGIb7sVFOCfHBGK1Dx9DXVMzCgpMOwdDBqTVt3XAUmeTEzedTEgXTpZwpuIJOAYG0dTRiYLCXViWAWmU4LJrp4A0FaDNsCx2awtNvX1o7RvYA9lYM01oxdJMMTrkAJ2GdEKdPP/8dQAts6EEaRvLSzJYUy4sIC0NRCMhzFy5hIDLieqWFvSdVgBaZiFEJH3m9ta2sO2xokjbjkWwMDoiTwoqbDZ0nzqLsnILzi/O4++fflxe01hZhf/yyteg29YgA+c3Rq/i6yNXMLbq2ln/CUcrfvDUWfzQmXtRb81dNnq0Lu+3bmsNiHbrYmus2YjAzY6AAdFudkSN9RkRuDURMCDarYmrsVYjArciArcbok2qXTS/MzGG5+ZmEIlv7+xWUUEBmktK0W6pwImOLvR19+qGNqtTk1LOWWlvlOZvewQVudGbqkBTAJqlthbsqKitQFMa1bHqij7ZNPN3DB3TnucjjXg0CvfsNMIBv8w7HQNDB1Y07W5yWjzVOVdlNRNLRRt72PmRczxt73Gfy7kDbWhhRMGJlu8WRR+bHg88BGiFBah1sBlA86FzQdUafeVuWy6oBtQFM9VczEyJ95rkYnBY7cCaF2fdeC7icclDBqAdJhdBz5qIfpRctOJ33/fuOxOiffP8eTz31HNIJVOoa2xChw6AxtLPUDAgXTHZTlcvQOP7IlubmB0bkfeLB9rJ09reaVS8hcNYnJ6Ab90jsKZ7+Lgo2LQM9qmycs3PYc25jEgygXKeWLb6HBQ1jdDGhtRQs5sGVVce5xKWJydgMpnQOjgMW7Mj5wlJkMbBkNS7rKoG/vU1LIxckTpwlmI2dXTlPCH3gDSbHVubAcxcOi+DJJsItPbvBWiZI5CDIOWRlMQSwNGHbvrSBYRYetnVg85jJ3IOjiTeJMpUE/OpB5sVzI1eFbUZTSx7Tp3JqQbk0wS+hg0gahqbkS4sxPLkONaXF1FRW4euE6dQTt80VabM0tl/eO67cPp9ssmnbXb8zKtfC4e9EaGtTYxOTuCybx3nVl1YVl/D1z3U3YtPvP9nUKrjCcetuDC/3NdpQLSXe4aM7TMisBsBA6IZR4MRgaMRAQOiHY08GVtpRIARuNUQjSWaj0+N4fFJ/h/fU6LJbUXfqQAAIABJREFUz6dAYKChEW1lFlg3gygqNKGmuVlKAPWqnhSAlpYOjra2Dm1ow3nw1qbYCnFueRiAxjklyxRp9yOqp4EhXQCN4I2dJgnQON9ktZZ2E4E0ErGYzKWDHg+KS0tg7+xGuWbzvjSScUW0wWYArPyiMo9CE10AbV0FaAWFIhSpoeClcFfwkuvMyagBbzwXI4eGmTcvF/06OqmmwYqxjRvOBRszOG8sF/NzKDAVyjnBXNyxjQX+5CMfwWZoG7amJrT3DmjWRkvrV78Ps2PXpHywuq4e3ceOayrQeLCGgkEsTI5jKxCAtbpaunAq5oIHLwLeQltwzk5L19DyCiva+wdRIR0h8hBtVbm2sjCPNdcySkrL0NrTi+2SUmzGYrk/UDV4JGhKAvCuOFHIdsMDQ7A5WvKekARp7plpFJrNAuyo4GruUxRo+Yi2gLSZKRSWlGJteVEBaDkUaPs3mCCN3mrpAsC7tioAsL6zG53Dx/MOjgRpHNyoHqSn3KbXK3X4XcdPwnyAXxo/myCN5oDhzSBCoS2QMtPXrYMws7Ia7s0gzEVFqK+woq6iQjqifubcM/jUc09hO5lEqcmE999zP7rLLKiqrISdZaVmM2Y9bjw2PiplnjZLBT79kz+P6nILSnTU9t9ttxMGRLvbMm7s71GOgAHRjnL2jG2/myJgQLS7KdvGvh71CNxsiBbejkmJ5tMzk/jO+ChGVpx7QsSGAP0NTehvdOB4SysqiotFYUXVE03WOYfSC9BCvg3x0+bctsreoEv1xPlzJBgQEEaFl27fLRW8scqKAC3TREC7FDMtr/cuLiDk90klEUsqSyz0z8qnJFPUUpxDB9fXZE5pa++Q7p/5y/8U5VrAvSoAjaWfVC/RJilf4z4mSVGgrcGzOC/zdSUX+gDakciFWDVl58IqUPJGclHf3iHdNPXlgjDTqeaC3u/1unIhCrQcufjQax/dc07dMZ5of/QXf4Hy2ka092l7oIlh34ZXQFg0HEJNfQO6hoZ1ALQ0tgJ+LE1PYjPgRyXhS/+gKMq0lGT0THPOzcDncYvyrLW3H9bqmkMBNJZ+Orq6UVvfIAcBFVLh7V05bnZmCZmWxkfhmhqHubwCrcPHxNRfm2gn4ZqaxPyVSwIiKbN0dPfqeLqQgnthHjPnn5e6eirX2oeO6XrfusuJWZbTxqKo7+xBN80FdfjY+T1uzF06L1CTqjuWt4qvnAaUpOni3NVLCHrcqKxvQPvxk6isqcNXrl6UMs37O3vwu2/5D3uMM1f9Pvzpv38Nl51LEuaqkhL8/ft+CiU5OoVusGRUbWBQXmwWQ06COWNRImBANONIMCJwdCJgQLSjkytjS+/uCBgQ7e7Ov7H3RysCLxaisRzzhfk5PDU9gWdmpnDJuYhEktIJZaHbU3tdPQabHRhoaEa7zQY2CeCy4/UkoKBQSgapfNKeI6qdH2czAE1n2SAFKH6/2A1R4cXSxoauHu0STgpQNoPiDxYNbaG8qgYNXd0oKsndhG/3CFCaFniXFlWAZpXultpeZipAcy0L1DKXlYmSjA37tJRkItJYperJhSJzMWocrajUAdCuy8UhYCa9wehNrsDMw+TCh7W52ReVC0tVDeyHygVhph9lVqv4k+vOhXMZm4SZZeVSKac7Fysu8aNTYGaLTpiZRHBtFetLCypY3qsGvGMh2qe+/GVUO7o04UsGoBGEhQk76u3o6B/S7KYp7XsDASzPTmPTtyEAjU0LqCjLB20yCjTX/Cw23G5YKivR0tUj789LptWmBauL83A7l8Q7rbmzC7X2RkmskOt0GksbXlxzLaOvoWln7KDx/triPJxTE0gnU6iiYWNHlxDYfGqyTBMBlnBKq+GaGjS0d4pnWWE+qJVOYWPNLaWfHLQICZs6u1DT3JLftDGdQsDrxeL4iBhTEkY2tLWjrq0jf5viTC4mx0RJZi4pRb2jBaTTSoeOA54wZNSA05PYcDlRXFSE2sYmbFZY8c8jl+HZ2pQYfl//EH71DW/JGouVBhLMxRNj13De78PJtg68+76HxJMtkojDctCAnuaAHEF/Uwsq5OmHsRgQzTgGjAgcnQgYEO3o5MrY0rs7AgZEu7vzb+z90YrAYSFaNL6Nc/NzeGZmEk9NT+KFxbnrdphVNJwP9jc2Y7CpGSU55m6cBxMUeMTriaVqhwFo6wLC2LyPdjp6PNCUckM/PAuzovCiAo2KME0PtAxAW1pAdHMTlupqAWHFUm2UX0nGuSj9symaILShP1hZll1P7iNFAWhULlFkwfkdm9ixWkkfQMuUcCrQhiINLQXazclFShoP6M+FD575ORGuSC4IM7MbA+YKTiYXi/OIspGi5KILxaWEmbc+FwRo9DM/dC4I0Jr15iLTRODg8+KOhWjPTk/DH07lHUEFoHnXBYSFtzZR29CI1u7enGqi7BVlAJpzdgZB/waqaurQ0t2DcmulppKMoE4A2pqiQKOSjO/XAmj0QJMSTueSbF9zBwEajfv31kb/9r98BucX5vATj3wfTrS0iSR0dX4OrqkJFBaZ4OjpR1l5uQxgpLfsgJLrZCFAW3ctSxMBxsnRNyDqLJJ4DkDSNCDXYJxOYmPVjaWxa2L0SNPF+iYH/C4nzOXlIknNKblNp+BfX8fSxCgiAb+Q/sa2DhnYqULjyUITx+sWAjS/H8tT4wiur6Pa3oDGjk5E2Y45Den2yScH153UWQCN5oKUgjZ39+JLI5dx3r0qH8OLzy9+/xtxT3vnHoAmfnQL8+ItJ7kgzKxXc5FK4a+e+DaenBrH206fxZtPnNntYqN+5sriAkrMZjxy/0OoyFNqerQu/ze+tQZEu/HYGe80InC7I2BAtNsdcePzjAjcWAQMiHZjcTPeZUTgpYiAFkTbjEYxurKMKfcqPn/hHJ6fn7luM6uLitFqsWDA0YoTPX2oUpumHbQ/onpyK0obWglRfVbd6NDspikWSF6PmKxTqEHlGlVBWvBFLJB8G6IIozdZpa0ede0dmpVfbB4X2QzI++ihxvmrrbVd5pW6oI1zST6XzQfE59talb9KSW0+kAFoAm0crbq6aTIefhrXu1xSwaUANJZwaniZXZcLpYmAVmdTycW6R8oNX1Qu6uvFx06zLJa5CAbEQulF5cJaKVCSfnZ5K8Zy5UIvQGMupKHDrcnFHQvRzi8swBM4wCNMpKsp+L3r4knG0sq6xkY4OntQSuCSp/xvD0DzbYiqi++jokzLy0w80OZUgCYKtG4BU1pkWqDN3Kx4oHH7HJ3dqMlSoGUPjl+5chH/+7FvoNhkwode/TqYg0HpwkkQ1To4BFtzi3SyJI3ngCIgrXYvSOOg6llewuLYNWnMwPc1tndIvXEkEBAiX2qpuA6k8X0bq6tYGh+RxgxN3T0Cptg+lh5pHIyKS0plUJDum5lFBWjLE6MIB4Owtbaipadf6s5Jxlm/TgDIAWyPZDcLoG2ur8v2sOsnYSa7drIGnU9HCOCKS7M86rIBmsuJ8upqNPT045+uXcKEe0W26u2n78WPP/gISouL91x7uF+EoEouytVcNOyoAfniX/7MJzC2onTq/ON3vheDTQ75nvlnHk3FRWimdLWsHO21dZhd96Cn3n6weu2luJrfxs80INptDLbxUUYEXmQEDIj2IgNovN2IwG2KgAHRblOgjY8xInATIrAfok2vuXF+cQ4XFuYEmE2qD/izP4qey732RjSykiYWFd/mWkebCm2UKqWDFs7ZaHjvXVqQeS9tcCh00IY9KfEGI9CiaT6Va7UtBGjahvc7AC1KgGYXoJVTIJG90VnQhk38Kmpq5fMU73F9qqeQfwOlAm1adQE0aSLgXFJLOPWrnihc2XAuidc2YRTnn3pLOG97LtSmg2yuR8hHoKUnF+yiSVP/TC74Pt0wc3kJh82F0kRgaaeEU68C7ebkolCOGVbg5Tov7kqItgPQ5mZEgVbX0ARHRxdKeULmBWiKBxrBW9DnUwFat3Tj1ARo4ZAo3nxra/pLOAHEt2NYnpmGh00Eysql9LOGKjC1hDPX4PiRJ76Nf754DmVFRXh9WTmqS0rROnQMtqwOKzy4OJiFfD5RYWUUaRxU15YWscxOKekUWgeGpaQyc/AwdpGgX6g3SyV54nGgkNLP1RV5Hw/4xq5uNHX17D5dYDlqaEsGbNaGVzU2KyerADQPlifGpM7d5mhDc28vSgi91Fyw/JGDEmv3axwtinSXIDDgx/LkGDIAraWvH5aspwsC0pzLSMS3Rdkm3VekI2pIlGsbLpciQWX3zEsvYGHDi6rSMvzXt70TPQ2N14U2Vy6oBswFQUddy9Iy+v0PvwoF6TT8wQD+4ptfxRt6BjDUPwizSF6BBe86fuWzn0J3vR3/+JMfQqWo5u6uxYBod1e+jb092hEwINrRzp+x9XdPBAyIdvfk2tjTox2BUCyKkdVlXF6ax+MTk7iwOIdAJHLdTjVVVqGLvt02O3obm1BpLsHG8gJ8KyuierK10ixd27ieczaqc2iWz3kY50gHgYI9PIulnx63zMkUgOaQeZkuBRqhjXMRcSrQ6htEoVVUwgqj/M30shVoLN+joEKPAX0sHBZAyCYCVDvpA2gQEQbfxy6cigeavhJOija8ywvw33AulmSOSguj6oZGfTDzxeSCzfgEoB0iF1kKtMPlYteP7vbkIiFKOeaiKLsjah52wuN897zQl4u7DqLtB2i2hibpNKnVDIBeZqFgAEszU9g8JECLRsLSfIBdOFnC2dLdq+2BJp0j41iYGodnxSVdONt6+lAjktD8TxcS8Tj+r89+CldplF9YiJ958FE0t7Red0LugLSNDVhqakSVRljnHB9DGmnp3mnP0XyABxmlnBmQZq2rR8DrkcYFBE2NXT1o6ui6nminU4iGQgi4V0QZxwF7KxgEFWgEaKTZVK5RobUfZvJEp5KNSkAOoFTnLU2MSQknO8HsB2iZQV9RpDlloKhv60CqAFicGBO4ZqmpQ+vAIEzlFmkSQE+5P3zHe6TN8/6FMV28gVwkEwmBrl8euYx/XZyX1b7r3gfwqr4hdNjqsRoM4Nc++ynxX+uzN+CzP/1LsNFX7y5aDIh2FyXb2NUjHwEDoh35FBo7cJdEwIBod0mijd08chFY8HqkCcALC7NiwTO+6kIyzTZsuwu7Z7IRQBe9uuvq0VFnQ2nxbhUP53CEPRQnsOKH5uzSbbBAW4HGeRGtbNKptHSa5DxKlwJNoM0yaJpPn2ux6NFo/CYlnBsbAt5o80NoU+NwSGWSNkALyj7uKNB0AjR+zvpCBqDpLeHkvHtbupNSnGEuK5XyRj3G9XtzUSwxfTnnYgdm2hskj8WHgJmHzkU4jHW1I6r40bW26yjh3J+LMvF4052LxQX4VdZQ396JCjbRuAXnxV0F0TJNBJZnpqSE09aoH6CFN4NYnJrApt+HqlobHF06SjgBxCIRLBDaeD2wWK1o61G7cGqAMAK0+YkxrK+6RLXU0TeIah2tWAltqHhzLi7gY7OTcEXC6LE34Bde88acF5l0MiGlnQRiMcpXWYZYUIAWArSW1gOfLmRAWsDtRiwWhW/NjUQijqbOHjTQ6JEqs1yqPoK0rS0BadFwGAHfhrQcVgAay2kP6qaZlqcXfHIS2drC1mZQJKHVDU1oUUs4D1IRclBkaWc4EEA4GkVgbVVKWNsGh6UjalN1DbaiUSmBrcsBsJiLuYlRUdrdSC7WSMMTcVyKRfHt2emdPPTZG/H6YyfFu+73vvQ56a7KC+VnfupDcNTUHrmbghvdYAOi3WjkjPcZEbj9ETAg2u2PufGJRgRuJAIGRLuRqBnvMSJwcyMQ4/3/0gLOz8/hHKHZ/Cy84dB1H1JrNqOvoREdjc3otDXIA/2DqpwIbQgm6GfGyiSawbOiSD8ocImtEQFDpV2PX1dGgZYF0BqbNP2zsj3QMqon+q5pGtCzhHOLXTgV4/qKWv0KNDYDWJuflQZ1LOGkd5q27xaQSiTgnpsGO1xy++rbu8TuRyumSi7mwflwoalQmiTozQWb2rH0U3LR0am/+cAOzIwLkORcWMvL7LpcEKA13eJcRCJYm59DOKCqAQ+Ti9lpbG0wF2USG1bN6c/FqpQXy3lRq++82HAti3LtMLm4ayCadLzwbQgIi4RCqGtsEnN+muznNbRLp6Xkk0BrM+BHVW2dNB/QbCLAUsxYDDOjV6V5Abt2tvcPwsqDQIeSbH58FOvuFZjNZnQNHZfP1XqfAtCmsEZ5Lo3xu3vxO9/8Cta3tsQc/30PvTLnlYGQaXFsBGsLcygwFaFt6JgC0DSeLiSTcazOzMA1PSEqLqrIGju7DwZo6qenk0msO5ewOHoN8fi2DHD0MmO5av5cpBD0rmPm0nlRtFHJ1j50DOWaHVYgpaTjzz8t7XTZSrnrxCkBaIRVZVlPdvYHiAq0+fEReN2rsl9dQ8f052JmSrzTuHQNHpNGEL5IGP96+QK+evUSAlFFqm02FeGh7h7MeDxY8nnRUFmFz//0L6LTZr+5V/KX6doMiPYyTYyxWUYEckTAgGjGYWFE4GhEwIBoRyNPxlbeWRHgfTzVZYRmVJqNrjiRSO1tdMcume21tagvNKEulYbDWomewQFU19UiFMvfFC8DbYJrbpkzsYGbni6FUqpGBdpqFkDTZXi/D6A5WnRDm7DPJ00LDgXQkBbDenaMlM6PNTWiXtL2QAMSsSjcFMoEA9JEgJCQX/Mb1ysAbXVmUhRzLDFtYLNAViVpqJckFwvzUuJ62FzsQJu0CjMPnYu4lMSyE6c+gOYTVd8N5WJuVubdh8kFPc3XjkounMui6CRoFLCsMxe/8PpX7Rm8CtKsW7wDluzGAtylTd+GgDD6YYkHWld3zrLBPbtOEh4OYWbkqpRysglAe18/yiqs+T3QwJrqbUwRlNC832JB1+BxWKo0vNP4Pqqexkew4WZXyiL0njiNyuqaQwM0wh52jFwO+PBL//B/UFVeLmo0i0g2dxcOqu6lBfEyo+LKWlmF5v5BRdqbb/BIp2QbF0euSkwrrJUC0HhC54Vv6bR0NF24dgWhDa/AyPrWNtjbO2HK1X0zs6mql9ns1csIrDolB3WNzXLxUNobH7xwv2avXpJ2yqXlFaiutwt862pugbmo6MA37s9F34nTAt50wcwsgNY9dPy6MtxEMonHJsfwLxfOYXZ9TRwBPvLjP4E/+rcvY2LNjdpyC/7xpz6EYTaCuMMXA6Ld4Qk2du+OioAB0e6odBo7cwdHwIBod3ByjV17WURgO5nAleXFPaWZa5vB67atvsIqD8Y7bfXyv6GiEu6ZSWxteMU7uqlvAJU1VSgpLsJWNHHgvu1CmzWZhzb29sFSXaMJe3YAGlVPKihguaGmlxkFKOtrYiQvHmgs4RQFGpuu5fMyS4logaWRVIZV2e2ocbRqlw2C/tkhAWGsUuK+sTRSPK3zNhFQyv9WJscRCQbFM40qpNKKCs33pRIUhEwpuTCb0dQ7oE+5lgXQOF9u7O0Xn20t8HZ9Lrqk9FOzMcP+XLARhA6ARs+7lzQXFRY0dPagRG8upqew5bt9udhRA/K86OgCLap05cLjxm+/9113NkQjQKMB/ezoNdCbrM7eiNYeGtfn78LJqMQiYUxevihKNMKTzoFhlFkOKjfcjSMB2uTlCwhSSlpejt7jp3Qp13ahjRumIhP6T92DCpEv5us+AmRKONecS7IRhDYs/cwcBBOrLjRWVYsijYqxHS7FJgLLi1geGwV/29I/gPJyi9BYdr+oqKk7sCST5ZsLI1dlcGzs7kZVbT02PW6RTbLevSBXlxbJhQ9zVy8jHPCLAs3uaBGYVlxWpnTtPEAVxu4h05fOI+heRXWTA47uXkQDfjC/3NY9XTuzDmkO+tNXLsC7MA+rvQEdQ8dREI9jsLcfpaq5f66rleRibAQbazeSi1014P5c5Pqsa84lnF+Yxesd7fB51/FX1y5h0ucVhdpHfuwn8NqhYy+Lm4VbtREGRLtVkTXWa0Tg5kfAgGg3P6bGGo0I3IoIGBDtVkTVWOfdHAF3MIBz8zM70OyaaxnxZHJPSMwmE9rrbGLPwiYAhGblWSIBgTbTUwj5vCgsKoJj8JjAHnNRIcxFpgMh2q4CLQPQ+nWVGypm6U74XLtlg7oAWjolVj8sG+U27wK0XV+2nMcCK7iCfqzNzoBqpJ3Oj1q+W4B4phGEbYfDsm/2zi5VKKE1D47DOTYiCraScosALT3KtUwuCG0oXMnkQgvYZSvQbhigqSWcunPh8Yiq79C5CPixNpfJRYPShbOEOczf2VTJxURWLrq1y3Dp5554MbmYFIupF5ULNhmsOgzMpN96WgVoNm2wzPPCs4b1pUX8yW/8yh0M0fxRhDaDmLxyCYQwtfZGtPcNwMwTWQNMsRRz9PzziIS2BKB1D59AKTsnaryPAG3i8gXxTiOoGzh9Vh942ykbdKOouAj9JwnQKCXVGjgScM5Nw720hILCAikbzAZo2dkNb2+L7xYXDqqe5SUp42Q3kJaBYdhbW1BYaJKOnVRtkcjSfH/Pkk5Jg4T5q5dFEkolWHNXN4qKzNJsgHXhlfaG66WQbMywGRQQFvH7RC7ZNjCEYrNZnjqwi0appQJVOUwq2V1z4oXnEFhxSVvjzuMnUVJaKgCP0mSOA2w2sB+kCUC7fAHr83OwNjSg7577UF1ZiebqWpjylNRmw0zJBWGmyHp15GJ2Gu5l7Vxkx5QdXQhAl2dn5AmR83tPQv763DPyEpbhfunnlZM0GImgyFS452J8J9zMGBDtTsiisQ93SwQMiHa3ZNrYz6MeAQOiHfUMGtv/UkZgMxrF+KoT/nAYnzv/PM4vzmEl4L9uk6qKi9Flb0RPY7M0DGvdP2/Kekd22aCpuAiOoWMCfTiRMRfxf26IlvFAC66tSjVMY49+gEbPLTYDYMM4zr3YvVNTaZNOiTcYSyr52fQxo4BBq4kAkBYl2Or0hFRkVdrsqGtrv77RXI7EErg5R6/JfJ0QxN7dq0O5pkIbCmW2NmEuL4ejf0iEGZogLAtmUlnnGDquD7ypHmgspz1sLujrzcZ2Ly4X+ho6XJeLejvqWjtEbae1cH5PKJnJRUN3r3YnVbUhonNMyQWPa1a26c+FAtDYTbNl6LjkUjOH+3PR26/LOy3ThXM3FzrVgDwv1teFkXDu/me//Zt3LkRbdK5j7MI5bMdiUk7HEkcxvNdYCNCuPf+MKNcslVUYOHWPGMprLdkAjXDo2H0PKj5fGosY14+PwiudJIrk86hA0wNtXPMzWFlY2AFoNfYGMZk8aGHLZHfAh/UVp5RU0iuudfAY7K1tWfQ1LYaMJNA8Acq4LVzSKQQ2vJi5dAHxcBhNvf1w9PRmDarK4Lk2Oy1Qy2qz7chao6EtTJx/DiGvF/aublGEUcKsrlhA2vrCnBz8VY1NO9tCgDZ+7ln4XU4ZiHtO3qMOqrJBAtK8S4sSN36mSR0cMgq09TkFoF0uLMRgSyvedfYBFOaBYdfl4vRZ/QBtbgari2ou1HJardJPnoQelxOL0xNCwum3Z3e0whMO4RsjV9DT0IihWhsKYzFc8Hnx37/+r3jt4DG8+cQZ+coy3aO+GBDtqGfQ2P67KQIGRLubsm3s61GOgAHRjnL2jG2/nRFY9m1gxLWMkRUnRpxLoMKMv9u/FBcWorW2DnVpoJ7fWyvRf/LMgdUw2e/PADSWDXLO0jJMaMNyQ2U5CKJxnuBdmod/lQCtQOZeeroUEhT43avwLi7IfIndO/V04eRcb2tjA+7ZKQEFNJ9nxY9W6Sc/gx5mrvERKf2sqKuX+Z42eFNKMRevXBLlWplqK6Tl88WYiepJBWgUUrQdO3FDuWgdPgGzwMz8y24XzkwuBnSXcLLKi/NVxklp6KCjI6p0NvXCPTut5KLZIXPdw+aCarf6ztuXC3ZebT1+Uhc8lfNimgCN50UxWocJ0HTmQrpwKmCZ54XectrdXEBt6KCjuUaOXHz4A+/bc8DcMZ5oT46O4olvPY749jaq6+rRc/xEFrQ5+CTZjkYxev45aT7AZgBDZ+/TDd6mrl1GcMMLc0kphu99ACVCwvMvhEQLk+NYX3EJfc34bukBaCsLc3DNz4p6rGNgCHUNjZp+XTwJp2ancOHZp+XpQuvQMTS2deRsbUyQxsHQMTiM0soq8ZWbuXheTPqb+wbQ0tuf80SObgawOjUBW1unmPizQ+n4uWcQ8q5LjXrnsRM5B1Wul5JTK0tCGxqRTCQxef55+JYXUdvegb4z9+bMIYk5FXAEpDWOFgrrxAONUM5sq8fT21FMe9YkEf/0wV9A5QEeapKLiXHpiHrYXLgW5rByA7ngZ7F7q5TTdnZLLnI9IVr1evBHX/wcRvZ5LbyiuxdvPHYKbzx2Ukp2j+JiQLSjmDVjm+/WCBgQ7W7NvLHfRy0CBkQ7ahkztvd2RYDKslHXMq66lgSeUWCQa2muYgOyGrTV2kRl1mKthGt8FJHNoChz2k+c1jR1z8AeCgw2vesyv+C8qsSy168rF0TjPG1jeUnKMTk3oCKooqZWl+9WYM0t8yCqeWxt7ahqaNKcI7IaRkQUUxNIp9Lif0ZTfy3lGsEQxRDLo1fFYshaa5NtZbmq1pLYjglA41c2AaA6Ty94c46PIiq5KEX7iVM3mItj4qGmR/XEqikq+w6dC7cb64s3kAufDysUWbyYXNSpuTDpzcVFURGysymP05dtLpYW4V/N5KJPPS/yV4wRLLOjLZnBYc+LkG9DYJ/koqkJdS3t+MU3vPrOhGh/+tGPwh8MS2ljD8l0ng6MEgFpIhDG1BXFA40AbfCee7UBWjqNWDQq/ln+jXVpVtB/6gzKZHDMs6TT2N6OYXlmGp4VJ8xq58dKacWa/yAg7FldWhSAZmI3zd4+MdnPp0BTBvGEdJlcmBzDdjyOojqbtMYtKDz4xOJgSlluhc0O5+w0YlupNackAAAgAElEQVQEaH1o6R3IS8IJ0qhkIwxjx9DQen6AlomUgLTZaTl53bywqSWcvWfO5s1hPBKWDikcsP0+r0iXI5VVuLgdw8L3FFxl3zPB/L23/jBOtLRdn5SdXEzBs+I6fC4WF0CIdvhcrAhALUABmto75H++pwuRWAyPPfkYJsNbuOZchnM7tmdfTrW240/e8V70NTZpXbNeVn83INrLKh3GxhgRyBsBA6IZB4gRgaMRAQOiHY08GVt58yMwtebG4sY6JlZXML++hjmvBzOeNdDTLNdSQmVYdS0cNbVoqVG+7i3LTINVSu7pSen8aC4rQ8vgMR2qp7QACc5PNr0eUeZQMVNqtV4HbfZDNKqsfK5l8TKjco0WOxV1nCMeXG3EfSN4C9KzaWFelGtULhGGFRSaNKalKbCbpoCCdEq6PioATQu+7AK0VCIp3tj6AFoa2xGlbJBiiDJrJZp1QZsXm4s5BWbmycX+QEkunMtgOabkorNL9vNW5oLWSjzeWKWk5CK7YuygVDIXW1gevQbJRV0dGrr0wMwXk4soVqcmBSyzAUTL0DEdCrTMefHic0HfPMuN5KKlTRoz6DkvFIA2JawoOxcfeu2jdyZE+x9//ucorqjRDdBCW5vSfIBdOOl/1X/6Hl0AjeBtcWoc/nWPgLPuYydg0WqnS/AWi8I1NwuPa1lKRTv6BlFVZ9N8SkBlnXtZAWhFRcVo6eqBralZ8ymBAtBUaMOOLq3taGrvxGZ8G3/zxLflc984fBLF+58apNNwz89i5vzzKCguRlNPn3iZaQ6q6TS8rmVMPPeUUNv6rh508ylBETu65IeLfo8bU88/Iwq22rY29J25TxcE3fR5MXPhHFy+DYyaTFiMReWDKktL8d/e/iPosTfkBGiEoCyLZVml5KJ/CFU8IfOUxXJF8e2Y+J/t5KK7BzbCzFxNFbI++fpcdKC5Iz9A49s5kAa863j6sW9g3e+Hta0DqK/H6IoLoyvL2AiF8Pmf+SW0VteixlKBt/35/0S7rR6v6O7Dj7K0WCv2N/8+RtcaDYimK0zGi4wIvCwiYEC0l0UajI0wIqAZAQOiaYbIeMERjsCiz4uF9XVMeVYxt7Ymne5nPWvg7/MtVUXFqCkuRqOlQpqMtdTVg90zD14UwOCZm0E4EBCvJnbTVDpG5p3QCHjbWFqUDpcscWM1TvkBHsvZEI3ljQQ2/hWnzJtsbR2osNn0Q5vFeXltrXiZNesGBe7pKQXa2BvEQkdzrkcPtM0gXONjYFneYQAalWusWmITv7IKq26Alp0LNg9gLop15sK7tCDNEpiLhq4eKR3VrPw6crkYVQDaIWDmnlxYrWge0KNAU84LVpBFAgHxk2uiB9oB1V67Z4oCQffkorsHZVa9uXCKGlDOi/YOqXg7HMwsRK1D6TKrC6CxtHlGPS8aGvaA5TsWon3sM59BQ/eQJnzhYBHe3MT8xKh08aQXWc+xk9qlmKJcC2F5ZgobnjWUWyrQOTis7Z9F1RMB2sIc1pYVgEYlWY2N9bj5ny7wacYaFUhz09Je2NHRhfrmFk1oI/X07lXZR6rcGlra0NzRJTTdsxnEj3/8L+XYrrNU4Efuewj9jc3KsZ5OIcgSzkvnEQ0GxR+uffj49U0D9l9D2IUz6Mfs5YtiTEl1HpsBZHud5bzsMBdbm1gYvYrA6orkrn3omDZ9T6cRjYQwPTqCr89NYyER31n9206dxY/c9yCqcg2wKsxcmZ+TuCq56EeNrV4jFyTocaUZwNyMIs3u6EZ9s0NHLggz3TlzkfdSzNbGvg1MXbmEVCqF8qoq/NnVi6i1WvGj9z8CS0kJvKEtySGXUCyG3/zCP8j35kIT/vl9P4mW+kbYbDZ88BMfE0XesKMFp1raUf0S+6oZEO0I38Uam37XRcCAaHddyo0dPqIRMCDaEU2csdk7EVgLBgSOza1TSeaWr7MeN+a9XmwnEzkjxVoe3vPbrZWor6yE3VoFu9WKKlMREqsriIdDUu1Cz2dt3y0FFLAsMsSGceUWUVlpl/8poGDDuYTg2pp0Nazv6ISlquZAaKNAtEIENiOgZxNVaJzrsZsimwFozRGpQCMg8izMCVSoaWoWDy0tUMC5HveNaiLOidlNk3BCE6BxHrwZlG6arJAitGns7tNRwpmWqib6fFE1VWqtUnOhIbIAcxGGZ2FeSk4lFz29O40Z8kFQycXykij0mAt7RyfK8+RCnQSLt9t1uai364I2O7koLERN4w3mwm4XgKo/F2Ngc7zD52IK0VBo149OU3Sh5mJ+HuFAJhd9OhozqOfFnlx0iR96fpiZ3pcLs3Je1Nfrz8X8HApM6nnRdAPnRY5c3LEQ7ZmpKQQidJrKc1qxY2QwgKXpSQT9PunC2TkwhDIa2uUrqeTAEdqCc24GG2trKK+oQFvfAKzV1fmTqZZ+ri7Ow+1cku6dVJJpNQPgHghAcxGgzYgCjaV/NKDXUj0pAG1FvL7YxTIboGUic3FxHv/ft/4Nq6rM+Wx7F95++iySoS3MXb4og1xjTy9qbQ3YXF9DZX2DImPNpbhi61e/D/PXrogZoq2jS1RvvBhU2uphrWdXmBzSYOneGcDi2CjY8YTArbmzS8o5LTW1QowLc53UBGiUrk5PSKfOr0TC2NiO4U3HT+Hd978CtQeV1ebKRXcPaurzN2bYyYVzCU5VDUhFn92hF2ZmckGY2boDM7UAmt+7jpmRK2IsSeVhrKoav/y5T8vbKswleM+Dj2C4uWXPanxUV64sY2F2Bs3RqOTC0tiEP/j21/e8zlFdg+OOVpxsbZevBGs14g9wexYDot2eOBufYkTgZkTAgGg3I4rGOowI3PoIGBDt1sfY+IQbj0B4Owan3w+CMna9XA34EVMfgj81PYnLy4uIZj0U3/9J5SYTGmtqUW9VQBm/2iqsaKisQnH2/ITzhK1NgUv8SiWY0vlRq2FcGrFwWBQzLK0rrbBISSV9u/L7ZylNzzgnCXrcosxhWaSlpibvHJEQrTCVhHNxCT6nUwAaFTOEWlogjHMDzs8I+wjbqhubpZum1hyRZZssVROlTSolZvf6oE1KylrdM9NIxKKoqLXB3t2jq9pIycWsNCG48VxUqLnY6yt3/dF4fS7oD6fdmCEb2rwUuUijUjdAe5G5mJ+VeTRzoXTh1HNehKRJgnJeHDYXyyrMLBOvvhvLRSsqCdA0SpQzYPnFnRfMBc+L65WZdyxEO7+wAE9gr2dU9slF2k7lGZVkhD7Wmlq09w2IoiwfQOP7CNBYirmx5obFakVrT58AuLxPCfZBG6qzHJ3dqJXuHBoKtPg21paXFIBWbD4UQFtfZQnn2HUKtFyXvb97+nH807ln5U9lRUU4U25BezIl9futfQOyDg62mx6P1FmzBnkPEKNybWNDlGRhvx+29na0D7ILZxEiwQA2lpcFiPHA3wPE2AkmEMDyxJhInllv3M5mBuUV2I6EsDY7IycZTTF5UdlZMjBzegLbPj/a29oAmx3NDQ2wV+Yx2ZdcRLCyuCBqskPlguW0ziW4dnKhH6BJEwF6oO1TA2oBNJ9nDXPjI/J0gcrD9r5+uVAt+bz4w3/7MqbX3LKKh7r78PbT96KEMVI7qS6OXtvJRcfgccTSSTw7PorZFRc82zGsbG1e9/HdNjue+LXfld+vb23iG6NX0dfQiIFGBypKtLvbHvaWyoBoh42Y8XojAi9dBAyI9tLF3vhkIwKHiYAB0Q4TLeO1NyMCm4RH4S2xF4lsb++s8tLyIsZWlsWTTAFmAYT2+frm+nyzyYSmqhrUWSyoMZfAHA7DijRa7U1oZXMzLeN6VS1FI3EBaFU1oIcS1UhaIIwlblQvbfk2FFDQ3pnTy2zvducCaG0y99EqOStMJ7C1tgrX/IIo5BSApj1HpFk6xQdUaHE+qVeBRoC25WXnRwI0xespFyjYnxel+YAfnvlZ6abJcrqGzp7D56K6BvYO5kKrCZ/iuUZTf4E2Vivq2zoOn4uyMjGD14KZ3F+W0+4o0Mxm1Dbrz4XS0GFeUT3pVKDtyUU6jWp7o65y2py56OrRrVzLnBeW6hqBkofNRZnVKtA1l8dfvvOCpdBUkpVrgOX9uSgym1HTTICmrcyUJgJqLgpNCljWo8zMzoV4oOXJxZGGaF/46hP4nT/8uOTpTa95AB/+1fejrNQsP+eDaBIgQht2SvFtgGb+BGF6vMzC2QCtslKUZJUcHPOBsBwAjSqrWnujdjOAeByry4sC0IoPCdDYsGBxckKuE01tNK7vlBLOfMu8Zw1//PUvY8q7Li9rsVTgg695A6pURRcPytDGBrY21lFeUyuKNAFphDbedSyOjQgws7W2o5W10RmizQtZMCCdNFiDTkWa+KOpuViaHBMZMuvw6blWZrHuwMztcEiervDpDxVqIr9WAdr6/ByKolHU1dcfKhcri/NZAK0LNTpyQYjlXloQBZqSC/0AbTcXBWhqU/zotHLBss2NtVXJYTy+DXtzi5T+7veV+8dzz+Dvn35C8mUxmwWmdVsrkXQ5D8xFOOiXklnmwl9UBBfPh411zHvcqEin8XBZObr7BhGqsOK//tuXZN2v7h/CJz/ws/I9wd1T0xPS6tvOdtTVNajV0ZI417FnQLSbcetqrMOIwO2JgAHRcseZCortRFKUFLF4XEqNMj/ze5pWZzooz62vySSSS1e9XZQTXPj7Be86YomEvD8Wz3xV15dM4tGeflENc/n3sWv45uhVKeV/xz334/XDJ+T3f/Pdx/CFC+dExRHdjitf49vyfUwtgfr9t70D73/olfL6v3v6CXz58gX5/icefhXeePzUzu//9cpFlJhM8nCGvpolxUXKV/V7eqmeae+U1z85NSGlVnUVFTjT1inXBS4LXg/Wt7ZgLipCiakI5uIimE1Fsk5+tcqE1lhudgQMiHazI3p3rS8biG2EtuAjVAorXznmbIRDO7/b2NqCJ8dDWa2IEY6x9LKqjF/LUF1uUf6XlYuyjGNDpmMkwcR2NAKrrR717V17H6rn+iABaAFRzEQ2N0FQwDJFNgXQBdCcCkCjXxeVZDS+1yo5y1agERTUtrTqAmg0rt9aW5Hqm2SB6VAAbQfaHBKgSbnh/Jw0Itjtwpl/jii58Pmku+FOLsQeSNvvek8uamoEvujOBWGm//blgp5bSjnt4WBmQLpwHh5m7s1Fs7aNkfhkU0Wo5IKNGeS8uN25aGtHWcUtPC+knNYpqk7TYWGmdOFcUMBys0PgspZyjWpMNgDZPS/y5+LIQrRzl8bxP//6M/jL//c/o6bKij/+68/IEPrLH3ynfD0IoglA8wfEVyzo86Gqrk7gS7m1Mn9XTPp1ZQCahwo0/QBtOxaDa2FWfLeoetIN0BIJEPZkjOv5PoIULXkuZb38rKUZpb6d/meEaNrQJokN9yqWZqbwtMuJb3lWUW2pwG+96W1IZVXGppNJbPm8okrjUx1S/U2/H0sTowq0aWlDS18/zCVley44jD3NB4NrqyipsIoiLcKWyJPjCK6vo9regJb+AZTnOCFZUjo1M4mmaqW0k+b8MbcbidDm4XMxPyulsYoCTR9A4+etLMxLHumBxpjqz8WSxJTgr+kwuVhdxdLslPgq2Fva0Nrde2AOOfGiKo3eEZnlvVU1ai4GYCbMzCpR3s2FW56wcfBlLuibt+n1ioFpY3cvXJEwnp6ZhGdzU8pF33LyDAoSCTwzNY7PXbu857aluNCE2ooK8WXjDdDptnbxXkum0+ANVpDdd4qLUW4uQSKVQjKVlK8lxYWIbCcQjSfE7+0wCwfHIvlvQpFJ+d5UUCgNMkz8fUEhTOrvi0xF6msLYeLr+Xf5m0l5rYm/4/8C+Z7rkd/xv6xH+VupVqffw+yA8VojAkcsAi8HiDbv9WDF788buU5b/Q60+s7EKM4vsL088JrBY2AnYy78/VMzkwK7tgWCJRQIlkxKB2uCrB9/4JEdqPTxp74jwIkTyF957Zvwn16hQKjf/eLn8LGnvpN3e37jDW/Fu+59AMl0Cn/09a+ADz+4/Nyj34c3DxxDcVkZ/vLJb+PzF87lXc9PPPJqvG7gmEzuPnH+WTw2NyOv/+Fjp9BJWBYO4wWO0a6lvOt52+BxvObEaYQDfnz6mSdwOaDE891nH8Drjp9CYUEBPvHsdwXS5Vve0dOPt5w4IzYDH336cfzzxReUe7HvfyPeefYB8MHbH3/jq/jsJeX3By2//4M/jPe/4lXy59/70ufxhQvPC4z71de/BT+QBfW+MXpFwJv8J9DLgnH8mVDvNJvufO/Bz+OT49KZj+u5p70LTfRdAcDjx7sP6hEKEvLdSVDPgGh5D7m76o/ZQMwXDsk92X4gxt/5IsrfbgSIMaAso6TFiKW0FJZis3zlzxWlZTCzNHMziLI00OxoQWtHl6ZiJlNuSBBGbzLOGwi02Fkx75IN0LZUgNbaLk0B9AI0znFKKypR19qqw/Rc8XpiB0eWcApAc7TCUqutQKMhP4FN0O1CSWkJLPZm3Qo0qqVYbioeaI4W/aCApZ9LC0jGE6hpakJtC0vVtLt3MiY3lItgQJRkka1NVFTXCiQ6dC6slahrOUwuFA+0w8BM5mLDtaw0dDgkQHtRuVhckHktQU9tC7twHjYX9E5r1/b4I8uQyrAbzMXyEkL+DfEUpJJMF1iW8+JGchHHhotNBDK50K9A28mFALRDnheHyMWRhWiEZh2tjfgPP6C0F90P1XJBtEwJp3N2F6CxpJKG+SyxO3AR1VNIwBs90CyVlXB0daOqRkcHx1gMy3PT8Did0qxArwcaTybCM4IbU3ERWjp7dBrXJ6V7J5VrBBLcPyqftEwJM95pfB+hH73TLI2NCMZi6LTZ1SfZfJodl6fkse2YQDT6nm0l4mKcmQyHZWB00OixtDznExtSXoI2gjSCucDGOrZ8Pqk3bukbECDmCW3BHfDD5fdhxb8hXm1Ov0/S87On78VAkwPpSBh+j0dyoUsNyG6a2bkoL5OYltfWyXqThDppgp0UUun07s/JFBIJqgGX4HY5xQfO1uSAta5O9i8Dg1Kp9M77k6k0UukUEskkfOsebKyvgb+z1tZK4wpiIu47IRI/K57kV352GimCpWQK4dAmNjc3kUgk5EJTUlaOdAHfw21LCphifvmVMU2o276xuYmtWFT+VsNmCoWFoPVqMsn3cN8gf+Pn8X1F29uwxONIFBYiVVAAczKJSFERwsXFsp0HLcWpFEz8/MJCJAsKQMaazncOZa2oIJ2W2O1wWf7Mhe9X/3aU7m4t5hKYCN6yYByBogLmFKiXDeME0BUWQF4jYE4BdMp79gK8PespLJQJnrwnC+opADHHevbBQZZFcFLF7drz2VngUIGIKjCU7S4U6GksRzcC2QopQqKMwkl+n0yguapmj2LIpcKpDlv9DnSgkoiGzhz7y8sK4fGHEeV1IKO4Sibxiq7eHUXSYxOj+PrIFSkH/6HT9+5AKCpmP3v+OYFVO9shii1FxcXyng+/9YfwEw+/WsbWD3/p8/j4049L8H/j9W/GD584g+3vKY//11PfwT9ceD5vUn7uld+P13X1IplM4KPPPImvTY3L69//wMN4+9n7kUYBPvbkt/FFVYF10MoeranDvfZGNHX3SuOab45dk5f+0D334ZV9Q/L9Fy++gG+NXwPPMVNBAUyUfycTAuvLyspQai7B9w0R3ilwhyre8/Oz8v3DXb1oLyqSCeILHjeu8YaRXpeVVaiwWnfhvgr0jzvaQECYSsRxaWocK14vSqnwCgZRkkxIB21zvR2RZFLOcz5QkP/yvQnUGfC6zet3Mg143S6sB4MottXD5mhBc109qlRVMRsP+SNhuUbF43Gwi/lWwIc4n9ZubiISCaPX3ogzJ07Jw69rrmWMUL0Ri+KBrl4MO1plTP/m1Ys4PzeDBK93iQTiyQTSBYVIFxbINYzH1Y/c+xAe6umTmHz23DN4cnpCvn977yDub3Zge3sbXxi5jEuqd+tB+frQ970ePzB8AtHNID7CvE+Myks/eO+D+NEHHxHLjj/65lfxmRcU64qDlv/nbe/E+x5S7i9/518+iy9eegF1Vit+/Q1vxRtUxd/HvvuY2B1kVHUC9AjislR7bzp2akc5mE+ByPK3jFKPaj/zTYB6BkQ7uuP2/i2n6uvy0gLoIxaObcvXSDyOSHw758NHlkxeWJq/eUCMYMxsRlEigYJYFGUFhai3N8De0AhLSZk0t6o5oBqB95q0auHEnUbt7BZJwKQ1L9kBaMuLiEciUsFS52hFkdiKaMzZqEBbXpJxgKWU/Dw9zQBiBIxLGdWTCm10dHBMbLPboNKF0yweaPpKODn3Ylx8qy6UlJjR1NGBokrtuSUfTlAt5XUugTfT/Dxd3QaZC4+aiwRz4RDVm65cbGwICFvbDAAUQtA+h17XajkmS3U3o5G9hy7H91BIwCKvcQ67XeApmwKsBAIyz+P1otfegObqWnnvFTZt21iXY4XzRSreis0lUjmTyf2p1rZ9r1c6svL39rJyyf2lxTmsJeIotlSgoNgsczLeV8j/ZEK+8qHagNpM75sjV3BlfkY8yB+w2XG6f1AaOnxrYhSj+R5KpYEHWSoYCsk2jCON2c2gHKKvGzohc1Yu3xofwcSqa+d+nffx6fg2EuEwCtMpEfM8NHQcrXX18vprziUsbij7dbKlDY4aJT5XnYtYXHEhxs9gR9TKKlTV2VBiLtlZdzOtk9S8rG0GEYyE5VpsLShA3LMmpc2xsnIU19WhvNyiChF25xKcB+wKBpQc8jjd8vsEnOmDmRC/POaC5wXnsXqVmdnnBYUreptr8LxgV1uWYTP+fJ/+88It76MqlOcFx5qc3u9ZR/iRhGiR6Db+7//xcTxwz9AORJtZcOG3/uCj+G+/+ZPobm++Ton2YgAan+xSSeSjAq2ySje0YbeSxalJrK+oAK27F7VqfTsnDQQa3C75RyjCn6F0fnQtzcO9tCgJbG7vQrVdqf+V1/FVAmoIIwhFlPcTlNADjSorgpZ6PpWQzzOJ7JOvF9jBr/J5ys8EdgGfF+tuN+LbMVTb6lFts0t9e2b75LXqe3gicvDhJMy/toaLs1MYi0ZQzZbRNXUoMZsFiAhEUJVBlWXlKC0ulv1LJVPY9nkRda8KJCrgwFhXh+mNdTEZPWjhE66WqmqYkkmZvPEzWB+NQtMO9NoBYCoUE9CUAVy8ec8Amzvn3upF7QlvQ0qSSVRsb8uxECkuRsJsRmEhgQsVWwUoLCgUVQJvyAvBr5wo8n0JWEJh0NEvUVaG7bJyxNVjk1CvrNiMipJSeR9LAdyBABKpJByVVehIJFGINObTacyFtvLuQ0+9Hb0NjXLMTywvYSkYQHFhAdpqbei0NwpAJGQleJXbqoICgeI7t1g8R+IJ8LbLzOOytFTgHydzPF74Wu4rASoni7y48pxSjqWknFdy3nA/jeMHpUXFChzcD+N2YKGqDJTjJ6MSVFR8uwrAjOpPUQruwsJsBaCiJMwASAX8qWPKjpKQY5uSGxD7qt8zdzz3+bf6SiuaKqsFPhIK8Ck7t6uttg5N1TUyRhHU82881nnMU5Wyf2mvs+3ApkWOVT4F7Gf/nuVsz89N5z2eX9k/CDZv4ZL9+lf1D+EetSzuiclxPDk1JupMgU1SIpj5qiil/uNDj+DNJ87IeqgY+hdVAfSfXvHozu9//1+/gL964tt5t+dDj7wa7zh+WhSp//vJx/B/nnlSXv9Lr3kD3nnvg3Lt+F/f+gb+8QVFOXXQQhXRW0+ekevT3z31OL6kwqkfEyXXCWxvx/G33/4GHl+az7ueHzx9Fq8ZOCavycApfn+fxYqeggJ5UusqKcVVtyvvROrR3n50lJZj4dplzLF8vaREbvpPdXWj09Yg6+cNLXOZrVIlSE5uR0GrAHZxY7n60PFTqKm3wxsOy7hRQXVFDvNdWg9Mnz8nD4foLdJx/CTqdLRRZynG/JVL2HCvyHW+/fhJUR9rlR7wBpUK8PWlRXno4egdQFMny5wUW4uDFvq9rM5OY5VgK5EQr598D78y62HZDydRyxPjiMWiqGlyiF8qb/7zljmlUvB73Fi4dkU8Za11NrQOHkNlDTvV5faEDUYi2IpGYKIn7Og1aQLFa0xZSwtKrJXysEmZEHHM3p0cDTY2i80Ac/HNpx7HjG8D24WFeGRgGPcNHZOYfnvsGthQKXsytfN9MiUlrw+UlKKnpBTdJ8/gm64lPE01OSHsKx7Fo31Dck3826cfx2PjCqQ7aPm1178Fbzt9VsaZ//61L+HzFxWl4Yff+sP4oTP3gY+TfudfPoMvXDqfdz1/9MPvxo/e95C85tc//w/45HNPyfe5fk/vUqVstljU3/zsDJT7pe9/I14zMCzv/ciT38bXr12R73/21a/d+T3LhAls8i2vGz4hjYi4sITXHQzK9931djlnMr/3hcMKHJQSYNNNgYPZ28WxMc5jgaA3SUCb+aocGwT28jc+tEwR2PLhgXLM8HfxhPJ1z/vV32WAr6w/a13b6sPOzOfxb/K52e/b/xqqWzlx50PS+K5XWN4g38Q/7ijESkpgTqdh4gORoiLY6upRU1WNirJy8bzlQ7NcQCwzOaViilCMpXj00NIaowSgedzYcC6Lz5RSVuXI3Sgsa38FoG1sYG1pQWB9ea0NFs6DioqQSKXVcz6JOsKcbIgTCYMgrCgYhCkaEYCWqKpGTLk5PDCiLKkvSaVEnXXVuQw/0gJtznb3gUCCiwJ3FKiRvTA2VPQSNAzU1mGgt18+96rLufP6bOjD84tQhvcnHMMJbXgfai4tRbHZLA8WXj98Ev0q3Mm8np/J3/fZG+BbceKbI1cxHdpEAedWBYXXASI+nPix+x/GvZ3dsrmffOZJPL+gPLx5XX0DHuwblOvpp194Ds/PK4rmg5Z3UulMABOL4dt+Ly6pXsw//sDDuK+zR1v1/x4AACAASURBVOZ2n3z2u3hOVUYftJ73nH0AD/b2Sy4+8cyTeE793Pc9+Aju7VC2M/v3B61HeX2XXHfk9ernvvfsA+gpKhZg91XXIi55dqtzcq0rs/206/m773wTl9RqnnefuQ8P9g9KXhi3ZzX2661tXThht4sa8J+uXMTz6uvf99AjONveLUeenv2i8v2+rm4BXp989ik8q95Pyv52diOdTOFvn/gWLqw48+ZL1iN5T+MTzz6F59T1vLWjC/3lFpRVVeNrziWcW8x/P/beBx7GKXujnBdfnBzHWEjx0X7v/cy7kq9PPafkXeYGO1U9yv1/QTIpoO/hxmacGRiWyjXCxFHXsnIcDp/cgZj/PnYVk+5VWUcqGkEyFpP7/wprpTR8LCoqEkU5m+FxIUxc2tiQ72lx0VxZKWWf56cm4N2Ooaq2DhVVVSiW7cpUHylfHTV1OzYSqxTrrK5IY46qQhMcre0yRnnCiq8jt4Hj5+6+Kd+bi0z4hdcp6vnMUpAmKXmZLxmI9o63vAr3nhqQrd0P0e758IdlwssBnBMq3ihGI1H5SjjEgYonB9U9mcmWwCkVFjEK/Jk0lBdSTqS5UGIpihuBWQqQEsBEkKWuixfou2o5pHqIg0lZIiH/uURNJlE+5TzwDrnuG4l7WVGxTM5FQUC1jjqR5s88eeRn+ZuiKuLAsPNfBTCZn3liCXwSiKgoi5TvlRJC+XnnNQogUF6jTN4zr5HPJDBQP1sBWtd/Nrc3s37e1CtliMp6RHWkrmdn/Vk/f/K5Z/B3T303b8i+f3AI73lAuXHPXqQsmjc4iwsYCwRwwetFcWnJgcapD3b34JX9yrnKltjOqUkpTQ0SXFVasZ0GxldcGFtZUZVyhCCKoo8Alr4YVOklozHlCQ+Ad5y5B28+RYiQxmfOncNXrmaVl+YYxmpKSlFTVoaiErMoQ67wSQWAd569F286QQ+gND73wgv48pVLu7uaYz31VquUrHJhvK+5lIvZD546jVf1D2ArGMCXXngB57Iv3jnWQ/8Pxe9DWc+CenPWb6lAf70dZTXVuLa6ipEV5cmVjDlquWtGOctziRMUkzoO8XsBfQUFcnNZXV4ucJClS/5wSIHm6oST26xslnLm8RiTMVEFizIu7vw1K/v7lYP5jiCd6kR1Qw5eU9Z6rlMy7j0wc64j+9ZZl2IyR74EJGcAbWGhTM64sANwraVcLqrezS1R0u4sOdZDpQqVQRLzggIEo1H5vrGiAg3Mb0EBVhMJuGNZjXFyrEdRFxXKNY4Toi01RvbyclRV0HpZaQzi51NO9Zq1f4xlLIvTaRQVFCBVVCSdnzkx5MLzLtNIhKXYoVhMbgTl+EkmkcmDQJAC5fiRz+ExyYm7OhbJ8UnP0G2llIfl4HzdZkkJNrP3K8exwsmche/f3ERJJCIPlZLl5YiVW0TFxCW8vY0tNYbXHUfJpDx0YS+1SrMZUUsFUiblYdT+hTdL3EcuBckUChkHbhNjo173y0tK5OHA/oXXfn52QTSK9NYWAmopBmOa63jjA6UyPgBSz8GC+DYswaDElLEKVVVhK5WSfcu3lLKEPhoRdQjjH66wYttslglNZuFEKrp/Pek0CpMpFKRTcs7zmCwqKxM18s5G7ftgHu9cT2EqJf9l23mzy2Mwk3eqsHIAaB6jZhpQh8MImUwIFBfLg4zr4qj+gsc2jxvGlGrpqq0tpPjUvsiETYtFeQhCKKGeg7lixFhWxeOw8EFdYSECFgsSal6oQswsAuCojFN/wfcVqfdwfBXfw3tGXldlbOQ4qb4283BR7huTVHfv3vsxlozLnml7Rm0NqPca7MaXQuH2NuKMI88vHm85dmhPtYS6LXxZ9fY2ylIpRIuLEeT5kf3eA27nC5l/9TpBFbrmkmM9cshnvzHXWL///k1renELrhd59+0IbE9m8ib5LyjYGRM6q6pQW6DYSyzF41hUqzUOOn/px1hVWipKXqo6napi6AMPP4qHexUF6Me/+6Q82NlZcsSn1mxGdUWF+ALzOJ1SYcoHHnklHu7p1b0e2R7xJmNlRnrPel7R3S22Ih//7hO4rD6sOmi/WKJdWVamXJuy1vO2tnbc39aOqgY7/uHyZTw5rUDwA+NTWYVyUyFYzsdxbUGFwj/5KPerDyhI42NPPokn6DOdZz12NkCoqJB7YVZ/TK0pEEdZT68ooD/+5ON4Ymoy73q4X4wPz7Hs+PzkI6/EPU1N8Cws4Asz07i47sm/X7IepYkCHwpPe5TXv7W9A689c49Ux3z8qe9q5r2+vBzlaifE6koroknlXuVNJ07ieIsC07927SouLyrwneXDvOeUe9ase0ab1QqL+gCKeeM6KktK8Wh/vzzY5HJxYR6Ty0sIBwJYj0XhikRkvMx+UGMtKVWaqNG7m1U+atOzoTobTOvrKCwyYSYURpj3+yWlWPZtYMq9Co7Iyqkk34nHJwEL5xfNpiJ0VCoPhIYHBlGvbg/9S3kfxYXzlAvqPvJnXtsoPimWuRqkdPRYayv6Gprk9c3VyvHJherQ9c0tgfajy4u4srCg8AOOx7zeFRbKfmQe4jpqanZAD4Ehf6Y45/FLFzC75pF7fX86BffWlvowWWUYcl9q2akiYUl1KBIRb+2HbDZ0WitRabPhGY8Hl5aWZHu2IlFRBO4X2vA4tBSZBJ7y2rKsqu0++Oir8EBPj1wEPvr4Y3h6NgvC5hg37PQ5tFbIfJpK9hl1fvTTr3w1HugmZCzAX3M9M1kPoXOsR+KpQvN4OoUZ9fz64CtfhWPV1fCtrODzMzO4rPq6H3S+Z9bDe6XY9jbm1XHm3cPH8H2nzoj/2t88+R08NZ1/e9IfV3z5M8uRgmj5lGgFH/jAnh17Of7AJ4RyIquTM97KZCYivCBkvs9M3nhiZ76XCW/2a9QJWWZdGXWNTPpyrGvnM/l3Tn5EwJO1/uztUkFRZoK0f7vkfd9TLnCQ8UUiMnjKEzyRzCoTruMtLehiV86sdWW2i5MGlsFwEsNBscZiEerLCSJvpDkZ49fMzUQ2Ed6BV1LipqrfBExlFCuqkkUFTJmJy8vxeLjd23RhYQFfHxmBd3MT/kgEgXAYW6xdD4UQ4M/RKH7u1a/Gb/zAD6hlqwqQFiUiS7kiEVEC/vUTT+AP/u3/b+/+g6Qo7zyOf0F+GW9ZwZVduGNJIDnAuBYJR7AMUZBKWbLBGC+3F3JV0WBxBO8qJXJwkAuxPL1AsIj+kUg4Ci9WJUXclFQSwhpMKeBZJTGiRJQfd6WAnIoKogERSJE9v8/MM/Q2PTPdzMAzzzzvqUrFHXq6n+f17Z6Z/szzdP+mZPO/OXWqLGpvN6MePzh2TPr27WtCtD/pCLjubhmg1wPatEnuWb++5Hpuu+YamXX11fLmu+/KwP79pbW52Xy47j14UPYcPGhOqn61bZusfS53kexijymjR5upyfq4+bOflS9+6lPmv3/y9NOydutW80GiI432R7/AJazs2jFjCnegumXSJJl+xRVmOvRPtmyRR55/3owY0hF4OoKl1GN8a6tsffVVs8ji9naZ9bnPGeNlGzbIj/47NzIozVTX6Hq+M326zJkyxbz0nl//Wn74ROkRSdH2fbq1VZ7Lt0fX843Jk837iFnPxo2pd9XRzc2y+83c3WO/OnGiTP34x82XqkdeeEF+89JLqdfT0tAgB47kfgH7m9ZWuaypyUxBfv6110zwqgGWGY1b5qSoQU/e8z+AaECj0+D0ZPz9P+kF2HOjMXOjb1M8omFifnE9AdeTUz15zjrFuU9+u3rybddhTsRTNMWcEOt7uG5fT/zzJ+QpXtpjEX19qZDRvGerc9qTXeuiocGH0zP19YWgJh8YlGujBsT6P7tNa2OnkZd7vXWxvhrApDFNs97oMiaQ1M+8/NT4tK9Xkz75UEr7pP3T/uroqXKBr13WvE5rcxbb13bq9vSRta5p+6jt1D5q4KZfxMv1y6638DoNlvTzPd/OtPu3PS5MaKSXdDjL2vtwXJgfUnr1KlxeIU1tTGhr33fO0qawnYT3Q/NvGjzmF0pbd3PMRo6LtPW2bemnP3Lkj6nhjY2iPyzoSdG+w4cLI+bS+DRddJEczJ80/u348fKZkSPN91L90W7LK7kRPWkenxgypBCmfO/LX5aOCRNMcD13zRp5+NnS1wqMrn/s0KHm804f37vxRvn7CRPM96h5nZ3SubX0SMboesY0N8uu/Ofysi99Sb561VXme9QdDz8sa373uzRdMsuMbWmRnQcOmP++f8YM0x59ZF5PpF+6no7x4833qPmPPCI/f+45Eyzo94Zj+e9sxRp41ahRuZkD3d3yz1OmyOTRo8009NVPPy0bd+fCL71cwb786JVi67n+8svlE01N5pyofdw4aRueC4kee+kleWF/7sfXZ/fulc3/EwnCElbWfsUVMqalxfzL9W1t8sm/zE3r0xP/Nw4fNn3s2rFDfvpM6UsT/MPEiXLT+PHmtaOamqShTx9z3rZfQ6YjR8wU/Ud37JAfPZm7wVixx+xJk+Rfr7suN9pNB4icPGm+e+t0OftYsXGj/Pu6dSXX84+TJsm3v/AF87pil0JKs55/uvZas57oQ2uno8LURs8TVj31lNzT1VWyPXY9SecX+sL+AwaY85Ry/frGh9+7vz19unFRnwH6vhG7Nlmaft02ebIsvuGGom3WffkHv/2tLNmwIVW/7EIa2J04ccIM7tEa6t963rT0scdKr2fKFFnw+c8bVz1n0/dWPS70vaNffx380EvS9GvONdfIv0ydagYT6es0C7APPZ/S86//3LxZlpdpj54L6PupPv66uVk0WNWHBs773n5bjr7/vmzYuVN+8Yee192Od1KP08uGDTNPt7e1yYjGRnNcPL57tzy7Z485x3vxjTcK51bFkCaMGJHLQHr3lm9OmSITWlvNcfHDzZtlw4svmstN6EhrHYwQf3SvXt3jKS9CNG1xuWuibdq1S44e/3MutDHJsw2rcr/+F0KoQoh0epRBj6AqHkLpdDY7GsGETvkRHPkQywRMJt0uc6eSkrs8/4iAPwL6C4/e2KDUQ6fX2F+Z4ss1fKSPHD95Sva8faii9dj1VtqeWluPTl3W6UX64fLKobdzIzB0WohOHTl1ynwANf1F7kPIjiTT//7YpUNkWP5C2lofddGHjk46kL+IeLQW+stw0nr02lh2+PRevZvT0aNmWo6G5nqthVzgnbveUvz6aX81aLCZ7ljqoVNxdb2lHi7Xoz8ImGsOnjp9vcRLBw6UloGNhWlk+guvmQqsU8f1/7v/bKaHJjlH+9nUkFtPsYfW88x6nTklZUi+PdH1xL/c6s1BNHw+4xFZ3RBtT36fSZqep4seP3VM/vfAwciPy8ntsRdxt9uLL6U+ek2U+CO6nPZL11Psi7o+r/ugXlel2Hb0+eaBF5tfhHv4xDacW09pH53yo3ecPLPHetKfe/atP/5RXns3d6wVa7fW3N65stDuWDCp15d5PSHEjy7W3HixOTaTtmPbqOuxx37ycr2kpbGxcL2VYo66nv3595Bijrrv6LGauJ18w/VX/f87fOaUqNPb7SVDL86tp/BcQuqpx5btV8/Cnq6OTtceru1JOMBsG3V0wP78KOBi9dJ9UD/DTtfqzBVqe1491LNf8axZa67rKVUvbY/9PC22nK4n+nmatJyu59XDB+Wifn3k6PHc6NK4g15jZ8Tg5Pdn+x221t+fk947XX5e0J6eAuw/6b//9O3TS/pe0FuOneg5m4n9uXa/H3K8h3283/Dp3KVHTn9X8WA6pza23N05dZnXD8UucJi0t/McAgg4FRjc0E/eP64XKc92Z06njWbjCAQqUAt35wyUnm4jkEmAGwtk4mJhBJwKDOh3gXyk/wXyzpHzf808px1n4wh4KjDsktxUXe9CNG3w2q4nZfGy3HzU9qlXyl3zZ8qFA05fr4QQzdO9kmYHJUCIFlS56aznAoRonheQ5gcjQIgWTKnpaB0IEKLVQRHpQlACXodo5SpFiFZOiH9HwL0AIZr7GtACBNIKEKKllWI5BNwKEKK59WfrCGQRIETLosWyCLgXIERzXwNagEDQAoRoQZefznsmQIjmWcFobrAChGjBlp6OeyhAiOZh0Why0AKEaEGXn84j4F6AEM19DWgBAmkFCNHSSrEcAm4FCNHc+rN1BLIIEKJl0WJZBNwLEKK5rwEtQCBoAUK0oMtP5z0TIETzrGA0N1gBQrRgS0/HPRQgRPOwaDQ5aAFCtKDLT+cRcC9AiOa+BrQAgbQChGhppVgOAbcChGhu/dk6AlkECNGyaLEsAu4FCNHc14AWIBC0ACFa0OWn854JEKJ5VjCaG6wAIVqwpafjHgoQonlYNJoctAAhWtDlp/MIuBcgRHNfA1qAQFoBQrS0UiyHgFsBQjS3/mwdgSwChGhZtFgWAfcChGjua0ALEAhagBAt6PLTec8ECNE8KxjNDVaAEC3Y0tNxDwUI0TwsGk0OWoAQLejy03kE3AsQormvAS1AIK0AIVpaKZZDwK0AIZpbf7aOQBYBQrQsWiyLgHsBQjT3NaAFCAQtQIgWdPnpvGcChGieFYzmBitAiBZs6em4hwKEaB4WjSYHLUCIFnT56TwC7gUI0dzXgBYgkFaAEC2tFMsh4FaAEM2tP1tHIIsAIVoWLZZFwL0AIZr7GtACBIIWIEQLuvx03jMBQjTPCkZzgxUgRAu29HTcQwFCNA+LRpODFiBEC7r8dB4B9wKEaO5rQAsQSCtAiJZWiuUQcCtAiObWn60jkEWAEC2LFssi4F6AEM19DWgBAkELEKIFXX4675kAIZpnBaO5wQoQogVbejruoQAhmodFo8lBCxCiBV1+Oo+AewFCNPc1oAUIpBUgREsrxXIIuBUgRHPrz9YRyCJAiJZFi2URcC9AiOa+BrQAgaAFCNGCLj+d90yAEM2zgtHcYAUI0YItPR33UIAQzcOi0eSgBQjRgi4/nUfAvQAhmvsa0AIE0goQoqWVYjkE3AoQorn1Z+sIZBEgRMuixbIIuBcgRHNfA1qAQNAChGhBl5/OeyZAiOZZwWhusAKEaMGWno57KECI5mHRaHLQAoRoQZefziPgXoAQzX0NaAECaQUI0dJKsRwCbgUI0dz6s3UEsggQomXRYlkE3AsQormvAS1AIGgBQrSgy0/nPRMgRPOsYDQ3WAFCtGBLT8c9FCBE87BoNDloAUK0oMtP5xFwL0CI5r4GtACBtAKEaGmlWA4BtwK9e4tcOnCAvPnucbcNYesIIFBWgBCtLBELIFBTAoRoNVUOGoNAeAKEaOHVnB77K0CI5m/taHlYAoRoYdWb3votQIjmd/1ofXgCdR2ihVdOeowAAggggAACCCCAAAIIIIAAAgggcD4EenV3d3efjw2xDQQQQAABBBBAAAEEEEAAAQQQQAABBHwVIETztXK0GwEEEEAAAQQQQAABBBBAAAEEEEDgvAkQop03ajaEAAIIIIAAAggggAACCCCAAAIIIOCrgPch2tquJ2XxsgeNf/vUK+Wu+TPlwgH9fK0H7UbAe4EPjp+UO+99UNY/vsX05e4FM+WmaVcX7df3V3bK6jVdhX8vt7z3QHQAgRoSOPzeEZmz8D7ZvvMV06of379QJowbU7aF9jjXBfncLcvFAghUReD323bJLbcvNetqGztSViydK4MaG0quO/oZe+uMaXLH7I6qtIWVIIBAaYGsx2v0nHZo8yWyctk8GTViGMwIIOBY4OV9r8u9D/xMlnxrVuEz1+sQTd+clq/sLHyJ0C8K+uALguM9jc0HLRA9Du0J+rzZHYkn5noivuKhX8jXv3K9eVPSN6nZC5bLkkWzUp3IBw1N5xGoUMAGYVeOv8wE3Xr8/duSVfIfi2aV/OIeDcr58arCIvByBFIKxI9PPeHesnVHyRCb78UpcVkMgSoLZD1e4+e08b+r3DxWhwACKQSiPzTHf7jyOkTTLwcfHd5SGOXCG06KvYFFEDiHAvpms+i7q2T+bV8pnIRn+RIfP6k/h01l1QgELxD/ZS3t8Wc/exWw3El88MgAIFAlAQ3N9u4/UPihuFzord+Jf75uEyNFq+TPahDIIpD1eI2H4uWO7yxtYVkEEKhMoK5GoiV92ecNp7IdhFcjUKlA0jGY5tdyu91yI9cqbR+vRwCB0wJJPzyVC72j/57l2MYdAQQqE4gfm+U+L6NTw+yW007XrqylvBoBBLIer/Z4bh02xATfjz6xpUdojigCCLgTqMsQ7e+mTy5M+yJEc7dzsWUEVCDpTSbLiXa5E3iUEUCgegJJI1VKHYPxX9azHNvVazVrQiBMgfjsi3IhWtJsjUVLVnGdpTB3H3p9ngWyHq/aPH3N7pf3y1PPbBeuiXaeC8bmECghUJchmr2Wiz2BT3M9F/YSBBA4NwKVjETTLw8H3nqHqSfnpjSsFYEzBLKORIvfBMSukOuisXMhcO4Fso5siZ/Ep52ufe57whYQqH+BrMdr/Ecq/Xwm9K7//YQe+iFQVyGaTey5JpofOx+tDEPgbK+JRoAWxv5BL2tL4GyviWZ7wUi02qonralvgbO5xlL0Gmo2RIvO4KhvMXqHgDuBrMfr2Yxcc9c7toxAWAJ1F6Jxd86wdmB664dAqbtz2uknHdMnF24IwhROP+pKK+tPoNzdOZOO16gCIVr97RP0qHYFyt3tL3536/jf3HyrdmtLy+pPoNzxqp+fnes2yYqlc83d6eN/MxKt/vYJeuSvQN2FaFqK6IVTmVLi785Jy+tHwJ6Yr398i+nU3QtmFgKz+El59NbBUQGO5frZH+hJbQvEj8HohccJ0Wq7drQuPAE9sb7l9qWm421jRxZOwPXveGimz0WX5xpL4e0v9NitQKnjNR6aaUujl0zgeHVbO7aOgAoknafeOmOauUt2r+7u7m6YEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC4ACEaewcCCCCAAAIIIIAAAggggAACCCCAAAJlBAjR2EUQQAABBBBAAAEEEEAAAQQQQAABBBAgRGMfQAABBBBAAAEEEEAAAQQQQAABBBBAoDIBRqJV5serEUAAAQQQQAABBBBAAAEEEEAAAQQCECBEC6DIdBEBBBBAAAEEEEAAAQQQQAABBBBAoDIBQrTK/Hg1AggggAACCCCAAAIIIIAAAggggEAAAoRoARSZLiKAAAIIIIAAAggggAACCCCAAAIIVCZAiFaZH69GAAEEEEAAAQQQQAABBBBAAAEEEAhAgBAtgCLTRQQQQAABBBBAAAEEEEAAAQQQQACBygQI0Srz49UIIIAAAggggAACCCCAAAIIIIAAAgEIEKIFUGS6iAACCCCAAAIIIIAAAggggAACCCBQmQAhWmV+vBoBBBBAAAEEEEAAAQQQQAABBBBAIAABQrQAikwXEUAAAQQQQAABBBBAAAEEEEAAAQQqEyBEq8yPVyOAAAIIIIAAAggggAACCCCAAAIIBCBAiBZAkekiAggggAACCCCAAAIIIIAAAggggEBlAoRolfnxagQQQAABBBBA4LwLHH7viMxZeJ90TJ8sN027uuLtr+16UjrXbZIVS+fKoMaG1Ot7ed/rMnvBclmyaJZMGDcm9etYEAEEEEAAAQQQ8FGAEM3HqtFmBBBAAAEEEKhJARsqvfHmoR7tu3XGNLljdkfV2uwqRPv+yk55ZtuuQtgWD9E+OH5S7rz3QdPPu+bPlAsH9JOzDeiqhsWKEEAAAQQQQACBKgkQolUJktUggAACCCCAAAI2VLrt5i8WRojZwKt12JBCsFSpFCFapYK8HgEEEEAAAQQQyC5AiJbdjFcggAACCCCAAAKJAkkhmi74+2275Jbbl8qP719YlWmPrkK0eKfTTOdkJBoHCwIIIIAAAgjUiwAhWr1Ukn4ggAACCCCAgHOBYiFa/HmdFnngrXfkax3Xye3f+YHo9M/olE8butkOtU+9sscotmiItnf/AVm9psssOrT5Elm5bJ6MGjHM/G2X277zlR428TDPBl3zZnfIoiWrTHv0EZ+GGg/EkkI02zedzvnoE1tk8bLc9E77aBs7UpZ8a5Ys+u4q+cy4MWdMc9VtPPDQL3v0w3lhaQACCCCAAAIIIPDh5SoI0dgNEEAAAQQQQACBKglkCdE0+IqHY9qMeIiUdJ2xaDgWDcTi1yzT5f7rZ4/KnJtvNNcn00fSqDjdpoZd0fYk9SVriFbqmmhJI9RsX1uGDK7qNeSqVF5WgwACCCCAAAKBCxCiBb4D0H0EEEAAAQQQqJ5AqemcOsLLjhKLjtay4Za2otg0zfjzaZdL6lnSa4tNuYw/X80QLcmq2tNeq1dZ1oQAAggggAACCDASjX0AAQQQQAABBBComkBSMGSfm3btxMLoqmIhmoZI0bDNNiw+QqtYiJY0kss+t/7xLT36GZ2qWSxEi7enmiGaNibuUMylagViRQgggAACCCCAQAUCjESrAI+XIoAAAggggAACUQEbmNlritl/u3vBzMLdOpPCI7tcsRAt/prjJ07InIX3Scf0yT3WGw/R7Miu6DRNG8BFr0fmKkSLjjwbPGigzF6wXKJ3NmXvQgABBBBAAAEEakmAEK2WqkFbEEAAAQQQQMBrgWLTOeOdOh8j0fQ6aHfem7uov17k304braUQLRr6fXR4i3Su2yQrls6VQY0NXu8HNB4BBBBAAAEE6lOAEK0+60qvEEAAAQQQQMCBQKUhWtprnRVbLnq3zMvHjDQhWvwi/VlCtHjYV+3pnFoie1MD/e/4iD0HJWSTCCCAAAIIIIBAUQFCNHYOBBBAAAEEEECgSgKVhmg2VHrgoV8WbkJQ6u6c0SmZScvFQ6/o9dHi10SLblPbUewuntHRYtHQbsK4MUYxHryVu1mADfUOvvNeoc9VKgerQQABBBBAAAEEqipAiFZVTlaGAAIIIIAAAiELVCNEiwZY1jJ6TTN9zgZPjQ0XyVPP/nOamwAAAVFJREFUbC+QR4Mx+6SGWqvXdJk/hzZfIksWzZLlKzslfk00DdGaBg2U7bv2FJa1dxO16zqbkWg2GFy8LDe1tG3syB5TNpNuhhDyPkTfEUAAAQQQQKB2BQjRarc2tAwBBBBAAAEEEKh7gaTRbHXfaTqIAAIIIIAAAl4KEKJ5WTYajQACCCCAAAII1IdAsZss1Efv6AUCCCCAAAII1JMAIVo9VZO+IIAAAggggAACHgmknf7qUZdoKgIIIIAAAgjUsQAhWh0Xl64hgAACCCCAAAIIIIAAAggggAACCFRHgBCtOo6sBQEEEEAAAQQQQAABBBBAAAEEEECgjgUI0eq4uHQNAQQQQAABBBBAAAEEEEAAAQQQQKA6AoRo1XFkLQgggAACCCCAAAIIIIAAAggggAACdSxAiFbHxaVrCCCAAAIIIIAAAggggAACCCCAAALVEfh/bo4nGvr6hZcAAAAASUVORK5CYII=",
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Some plots allow you to choose the target class to look at\n",
"atom.rf.plot_probabilities(rows=\"train\", target=0)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA68AAAKDCAYAAAD1gTwQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuO0lEQVR4nOzddVhU6fs/8PeAdKdgoKAriN0iInZgYmGDrmvX2i12rLmsnegHuwMFUVRUFNdWbAkbRUJEcub3x/6c77IMKnMGZgbfr+uaS+fEfe45DHHPfZ7niCQSiQREREREREREKkxD2QkQERERERERfQ+LVyIiIiIiIlJ5LF6JiIiIiIhI5bF4JSIiIiIiIpXH4pWIiIiIiIhUHotXIiIiIiIiUnksXomIiIiIiEjlsXglIiIiIiIilcfilYiIiIiIiFQei1ciIiIiIiJSeSxeiYiIiIiISOWxeCUiIiIiIiKVx+KViIiIiIiIVB6LVyIiIiIiIlJ5LF6JiIiIiIhI5bF4JSIiIiIiIpXH4pWIiIiIiIhUHotXIiIiIiIiUnksXomIiIiIiNRU48aNIRKJZD52796N6OjoPNfr6ur+8HHEYjFq1aoFkUiE/fv3F+ArylsxpRyViIiIiIiIBFuzZg2Sk5NzLFu5ciUOHDiA5s2bw8jICOHh4TnWSyQStG7dGk2bNv3h46xfvx6vXr1SSM7yYvFKRERERESkppydnXMti4iIQMuWLWFpaQkAqF+/fo71586dQ3JyMnr16vVDx/jw4QOmT5+OpUuXYsCAAcKTlhMvGyYiIiIiIioiLl++jKioKPTu3TvPbXbu3AljY2O0b9/+h2JOmTIFTZo0QZMmTRSVplzYeSUiIiIiIioidu7cCQMDA3Ts2FHm+szMTBw4cACenp4/NOY1IiICO3fuxP379xWdar6x80pERERERFQEZGVlYe/evejQoQMMDAxkbnPy5El8/Pjxhy4ZFovFGD58OMaNG4eyZcsqONv8Y+eViIiIiIhIVYg6y14uOfjdXU+fPo33799/szANCAhA8eLF0axZs+/G27RpE96+fYvJkyd/d9vCwM4rERERERFREbBz505YWFigVatWMtenpKTg2LFj8PLygqam5jdjpaSkYOrUqZg+fToyMjKQmJgondU4NTU11wzHhUEkkUgkhX5UIiIiIiIiyk2zi+zl2Qe+uduXL19gbW2NPn36YO3atTK32bFjB/r164crV66gXr1634wXHR0Ne3v7PNcXL14cb9++/WYMReNlw0RERERERGru6NGjSElJ+eYlwzt37kS5cuW+W7gCgI2NDUJDQ3Mse/v2LXr27AlfX1+0aNFCcM75xeKViIiIiIhIVWjIN7Jz586dsLOzQ8OGDWWuf//+PUJCQvIcvxoTE4Ny5cph5syZmDlzJnR1ddG4ceMc20RHRwMAKlWqhAYNGsiVpxAc80pERERERKTGEhIScOrUKfTo0QMikUjmNnv37kVWVlaenVmJRILs7GyIxeKCTFUQjnklIiIiIiJSFTrdZS9P31u4eaggdl6JiIiIiIhI5XHMKxERERERkaqQc8zrz4BnhoiIiIiIiFQeO69ERERERESqQkP2hEvEzisRERERERGpAXZeiYiIiIiIVAU7r3li55WIiIiIiIhUHjuvREREREREqoKzDeeJZ4aIiIiIiIhUHotXIiIiIiIiUnm8bJiIiIiIiEhVcMKmPLHzSkRERERERCqPnVciIiIiIiJVwc5rnth5JSIiIiIiIpXHzisREREREZGq4K1y8sQzQ0RERERERCqPnVciIiIiIiJVwTGveWLnlYiIiIhIhUgkEnz+/BkfP35UdipEKoWdVyIiIiIiBXv9+jWuXr2KlJQUfPr0CSkpKTn+n9e/Xx8SiQQA8Ntvv2HNmjUoVox/tv80OOY1T/wuICIiIiJSoMzMTLi4uCA2NhYAUKxYMRgZGcHQ0DDXv3Z2djKXGxkZ4eXLl5g8eTI+fPiAnTt3QldXV8mvjEi5WLwSERERESnQ/v37ERsbi/DwcNSoUQPa2toQieQbx+jo6Iju3bvDw8MDhw8fhrGxsYKzJZXDMa95Ekm+XpNARERERESCSCQS1KtXD8bGxggJCVFIzLCwMLRv3x7lypXDyZMnYW1trZC4pKJKDpS9/NWmws1DBfGCaiIiIiIiBQkPD8e1a9fw+++/Kyymm5sbzp8/j1evXsHNzQ0xMTEKi00qSEMk+0EsXomIiIiIFGXlypWoUKEC2rRpo9C41apVw6VLl5CZmQlXV1fcv39fofGJ1AGLVyIiIiIiBYiJicGBAwcwevRoaBTAjLHlypXDpUuXYG5uDjc3N1y5ckXhxyAVoKEh+0EsXomIiIiIFMHPzw/Gxsbw9vYusGPY2tri/PnzcHZ2RrNmzRAUFFRgxyJSNSxeiYiIiIgE+vTpEzZt2oRBgwbBwMCgQI9lZmaG4OBgNGnSBO3bt8eePXsK9HhUyDjmNU8sXomIiIiIBNq2bRtSUlIwYsSIQjmevr4+Dh06BC8vL/Ts2RNr1qwplOMSKRPv80pEREREJIBYLMaqVavQtWtXlC5dutCOq6WlBX9/f1haWmL48OF4//49Zs6cKfc9ZUlFsMuaJxavREREREQCHD9+HM+ePUNAQEChH1tDQwPLly+HlZUVpk2bhg8fPmDVqlUFMmEUkbKxeCUiIiIiEmDlypVwcXFBvXr1lHJ8kUiEqVOnwsLCAkOHDkV8fDy2bdsGbW1tpeRDAvGDhzyxeCUiIqJCl56ejszMTBgaGio7FSJBbt26hdDQUJWYNGnw4MEwNzdH7969kZCQgP379xf45FFEhYllPRERERWqrKwstG7dGmXKlMHhw4eVnQ6RICtXrkTp0qXRuXNnZacCAOjWrRsCAwMRFhaGFi1a4OPHj8pOifKLsw3nicUrERERFarZs2fjwoULqFGjBjw9PTF48GB8/vxZ2WkR5dvbt2+xa9cujBw5EsWKqc4Fjc2bN8fZs2fx+PFjuLm5YceOHUhISFB2WkSCsXglIiKiQhMcHIz58+dj3rx5OH36NNavX48dO3agVq1auHnzprLTI8qXtWvXQktLCwMHDlR2KrnUrVsXYWFhMDMzQ79+/WBtbY1WrVph3bp1ePv2rbLTo2/R0JD9IBavREREVDhev36NPn36oGXLlpg0aRJEIhEGDRqEGzduQF9fH/Xq1cOyZcsgFosLPJe0tDQsX74cdnZ2mDFjRqEck4qWtLQ0rF27Fj4+PjAzM1N2OjJVrFgRFy9exMuXL7Fq1SpkZ2djxIgRKFGiBBo2bIjly5cjKipK2WkS/TAWr0RERFTgsrKy0LNnT2hpaWHHjh05buPh5OSE8PBwjB49GuPHj0fr1q3x5s2bAstj48aN+OWXXzBx4kRUrlwZ8+fPR+fOnfHp06cCOSYVTTt37sSHDx8wevRoZafyXSVLlsSwYcMQEhKCd+/eYcuWLTA3N8fUqVPh4OCAmjVrYt68eYiMjIREIlF2usQxr3li8UpEREQFztfXF5cuXcLu3bthZWWVa72Ojg7++OMPBAcH4969e6hSpQqOHj2qsOOLxWLs2bMHzs7OGDRoEBo2bIjIyEgEBgbi6NGjOHv2LFxcXPDs2TOFHZOKLolEgpUrV6Jdu3b45ZdflJ1OvlhYWMDHxwdHjx7F+/fvsXfvXjg6OmLx4sWoVKkSnJycMGXKFFy7do2FLKkckYTvSiIiIipAQUFBaNOmDRYsWIDJkyd/d/sPHz7g119/xdGjRzF06FAsXboU+vr6ch1bIpHg5MmTmDZtGm7dugUPDw/Mnz8f1atXz7HdgwcP0KFDB8THx2Pv3r1o3ry5XMejn8OZM2fQvHlznDlzBk2bNlV2OgqRlpaGM2fO4ODBgzhy5Aji4+NRunRpeHp6olWrVrC2toapqSnMzMxgYmKiUhNUFTlVxshefndlYWahkli8EhERUYF59eoVqlevjtq1a+PEiRM5Lhf+FolEgvXr12Ps2LEoW7Ysdu3ahWrVquXr2GFhYZg6dSouXrwINzc3LFiwAA0bNsxz+4SEBPTo0QNnzpzB8uXLMXLkSIhEvFSPcmvXrh1evHiBW7duFcn3SFZWFi5evIiDBw/i4MGDePXqVa5tjIyMpMWsqalpjv//919TU1MUL14cjo6OSng1aojFa55YvBIREVGByMrKQtOmTfH8+XPcvHlT5uXC3xMZGYlevXrhwYMHWLRoEUaPHv3dAvjmzZuYNm0aTp48iRo1amDBggVo1arVDxUZWVlZmDRpEpYvX44BAwZgzZo10NHRyXfeP6ukpCQYGRn98IcU6ujx48dwdHTEli1b0L9/f2WnU+DEYjFevHiBhIQEJCQkIDExMc9//7vsy5cv0jh16tRBRESEEl+JGmHxmif2+4mIiKhAzJo1C5cvX8a5c+fkKlwBwNnZGVevXsWUKVMwduxYBAUFYdu2bbCxscm17ePHjzFjxgzs3bsXFSpUwJ49e9C1a9d8FVLFihXDsmXLUK1aNQwaNAgPHjzAwYMHZR6Pcrpy5QqaNWsGAwMDtG7dGm3btkXLli1VdiZeea1atQrW1tbo2bOnslMpFBoaGihTpgzKlCmT733T09OlRS1n9M6HIvzhj1DsvBIREZHCBQUFoXXr1li4cOEPjXP90Zje3t4Qi8XYunUr2rZtCwB48eIF5syZg61bt8LW1ha+vr7w9vYWPCbv6tWr8PT0hIaGBg4fPozatWsr4mUUSU+fPoWLiwsqVKiARo0aITAwEHfu3IGGhgYaNGgADw8PtG3bFlWqVFHry2wTEhJQqlQpTJgwAb6+vspOh4qqamNlL7+9vHDzUEEsXomIiEihvo5zrVOnDo4fP67QS0jj4uIwYMAAnDhxAsOHD4e2tjbWrFkDIyMjTJs2DUOGDIGurq7Cjvf69Wt4enrizp072Lx5M3r16qWw2EXF+/fv4eLigmLFiuHy5cswNzcHALx8+RKBgYEIDAxESEgIPn/+jJIlS0oL2WbNmsHQ0FDJ2efPkiVLMGPGDMTGxqJ48eLKToeKqhrjZC+/uaxw81BBLF6JiIhIYf49zvXWrVuwtLRU+DEkEgnWrFmDcePGQUdHB+PHj8eYMWNgZGSk8GMB/8zCOmjQIOzYsQMTJ07EggULoKmpWSDHUjepqalo2rQpoqOjER4eDnt7e5nbpaenIywsDCdOnEBgYCAeP34MbW1tNGrUCB4eHvDw8ECFChVUuiubmZkJBwcHtGjRAlu2bFF2OlSUsXjNE4tXIiIiUpipU6diyZIlOHfu3Ddn9lWEuLg4aGtrw9TUtECPA/xTMK9YsQITJkxAq1atsHPnzkI5rirLzs5Gly5dcPr0aZw/fz5fl1U/ffoUJ0+exIkTJ3Du3Dmkp6ejXLly8PDwQOvWrVGtWjWUKFFCpYrZPXv2oEePHrh161a+Z74mypda42Uvv760cPNQQSxeiYiISCFOnTqFNm3aYNGiRZg0aZKy0ykQQUFB8PLygo2NDY4ePYoKFSooOyWlkEgkGDlyJNauXYujR49Kxx/L4/PnzwgNDUVgYCBOnDiB2NhYAIChoSEcHR3h5OQk/dfJyQm//PKLQi8N/1H169eHgYEBzpw5U+jHpp8Mi9c8sXglIiIiwV6+fIkaNWoUyDhXVfP48WN07NgRb968we7du9G6dWtlp1To/vjjD0ycOBHr16/HoEGDFBZXIpHg2bNnePDgAR4+fIhHjx7h4cOHePjwIeLj4wEAIpEIZcuWzVXUOjo6onjx4gXSrb1y5QpcXFxw9OhRtG/fXuHxiXKoM1H28mtLCjcPFcTilYiIiATJyspCkyZNEBUVVWDjXFVNUlISevfujZMnT2LRokUYP368Sl3iWpB2796Nnj17Ytq0aZg3b16hHffDhw/SYvbfRe3z58+RnZ0NADAxMYGTkxNq1aqFsWPHoly5cgo5tpeXF27cuIFHjx4V6Q9mSEWweM0T7/NKRESkJuLj4zFo0CD06tULXbp0UXY6UjNmzEB4eDjOnz//UxSuwD9F0pEjRzB9+nRMnDgR+vr6GD58uLLTKnDnz5+Ht7c3+vbti7lz5xbqsS0tLWFpaQlXV9ccyzMyMvDs2bMcRe3Bgwexfv16+Pj4YMaMGXLdo/Sr2NhYHDhwACtXrmThSoVD4+f4IEwe7LwSERGpgZSUFDRv3hzXr19HVlYWFi5ciEmTJim923fy5El4eHhg8eLFmDgxj25BETdq1CisW7cOYWFhqFevnrLTKTCRkZFwdXVFrVq1EBgYCG1tbWWnlKcvX75g3bp1WLRoERISEvDrr79i2rRpKFWqVL5jTZw4ERs3bsSLFy/U7tY+pKbq5TFnwNXFhZuHCmLxSkREpOIyMjLQvn17XL58GaGhoTh27BjmzJmDX3/9FWvWrFFaEfHy5UtUr14d9erVw7Fjx37arlRGRgbc3d3x8uVL3LhxA1ZWVspOSeFev34NFxcXmJiYICwsDCYmJspO6Yd8/vwZf/31F5YsWYLPnz9j8ODBmDJlCmxsbH5o/5SUFJQqVQqDBg3CkiW8ZJMKictk2cvDFxVuHiro5/wtQ0REPxWJRILExERlpyGX7Oxs9OvXD+fOncORI0dQu3ZtzJ49G/7+/ti+fTvatGmDhISEQs8rKysLPXr0gJ6eHvz9/X/awhUAtLW1sW/fPqSlpaF3797S8ZdFxadPn9C2bVtkZ2cjMDBQbQpXADAwMMCkSZMQFRWF6dOnY/v27XBwcMCECRPw/v377+7v7++PlJQUjBgxohCyJaLv+Xl/0xAR0U9j2bJlMDMzQ82aNTF9+nRcvnxZLQoMiUSCESNGYN++fdi1axeaNm0qXdevXz+cPn0aN2/eRIMGDfD8+fNCzW3GjBm4cuUKdu/e/dOMc/2WUqVKYffu3Thz5gxmz56t7HQUJjMzE926dcPz588RGBgo12W3qsDY2BjTp09HVFQUxo8fj/Xr18Pe3h5Tp07Fx48fZe4jFouxatUqdOnSBXZ2doWcMf3UNDRkP4jFKxERFW1JSUlYsGAB2rZtC2dnZ6xbtw6urq6wtrZG7969ERAQIL0Fh6qZNWsW1q1bh/Xr16Nz58651ru7u+PKlSvIyspC/fr1ER4eXuA5paenY/HixVi0aBEWLFiQa/Kcn1mzZs0wd+5czJ07FydOnFB2OoJJJBIMGTIEZ86cwcGDB1G1alVlpySYqakp5syZg6ioKIwcORKrVq2Cvb09fH19c12dERgYiCdPnmDMmDFKyZWIcuOYVyIiKtJ8fX2xePFiPHv2DCVKlEB2djYiIiIQGBiIwMBA3LhxAxoaGqhXrx48PDzQtm1bVK9eXekTIf35558YPXo0Fi1ahEmT8pi84/+Lj4+Hp6cnIiIi4O/vDy8vL4XnI5FIsHfvXkyePBkvXrzAyJEjsWzZsp/6cmFZxGIxOnbsiEuXLuH69euwt7dXdkpymz17Nnx9fbF9+3b07dtX2ekUiLi4OCxZsgSrV6+Grq4uxo8fj1GjRsHIyAjNmjXD58+fceXKFWWnST8bt2myl4fNL9w8VBCLVyIiKrLi4+Nhb2+PQYMGYenSpTK3ef36NU6dOoXAwEAEBwfj06dPsLW1hYeHBzw8PNC8eXMYGxsXat4BAQHo06cPxo8fjyVLlvxQIZ2eno6BAwfif//7H+bNm4epU6cqrAC/dOkSxo0bh6tXr6Jdu3ZYsmQJKlasqJDYRVFCQgJq1aoFMzMzXLp0Cbq6ugV+zCtXruDq1auoWbMmatasCQMDA0Hxtm7digEDBmDevHmYNi2PP6SLkDdv3mDhwoVYv349jIyM4OPjg2XLlmHXrl3o0aOHstOjnw2L1zyxeCUioiJr8uTJ+OuvvxAVFfVDM8BmZGTg0qVLCAwMxIkTJ/DgwQNoaWnBzc0NHh4e6NKlC8qWLVugOQcGBqJjx47o06cPtmzZkq8CVCKRYM6cOfD19YW3tzc2bNggaCbiZ8+eYdKkSThw4ABq1KiBpUuX5hh3S3m7efMmXFxc0K9fP2zYsKFAj7V+/XqMGDECYrEYYrEYGhoacHZ2Rp06daSPqlWr/vB7ITg4GG3btkX//v2xfv16pV+FUJhevnyJ+fPnY/PmzbCxscGzZ8+gpaWl7LToZ+M+Q/by84V7b2VVxOKViIiKpLdv38LBwQFjx47FvHnz5IoRFRWFkydPIjAwEGfOnEF2djbGjBmD6dOnF0g39tKlS2jRogVatGiBAwcOoFixYnLFCQgIwIABA9CgQQMcOHAA5ubm+dr/48ePmDdvHv766y9YW1tjwYIF6NOnDy8RzqctW7bg119/xZYtW9C/f3+Fx8/KysLYsWPh5+eHkSNHYsmSJXj06BGuXbuGiIgIXLt2DXfv3kV2dja0tbVRvXr1HAWtk5NTrq/prVu34ObmhkaNGuHIkSNyvwfV3YsXL5CVlaXWl32TGmPxmicWr0REVCSNGTMG27ZtQ1RUFMzMzATH+/z5M1asWIGFCxfC0NAQCxYsgI+PDzQ1NRWQLXDnzh24u7ujWrVqOHnyJPT09ATFCwsLg6enJywsLHDixAmUL1/+u/ukp6djzZo1mDt3LjIzMzF58mT8/vvv0NfXF5TLz2zgwIEICAhAeHg4qlevrrC4CQkJ8PLyQmhoKP766y8MHjxY5nZfvnzBrVu3cO3aNWlR+/jxYwCAkZERatWqJS1m7ezs4OnpiRIlSuDcuXMwNDRUWL5ElA9NZspeHjqncPNQQSxeqUgSi8VYsGABtm7ditjYWNjZ2WHw4MHYsmULIiMj8909WLduHRYsWIAnT55AR0engLImIkV58eIFypcvjxkzZmD69OkKjf3y5UtMnjwZAQEBqFmzJlatWoWGDRsKivn8+XO4urrCxsYG586dU9h9NJ8+fYq2bdsiPj4ehw8fzjNPiUSCAwcOYNKkSYiOjsZvv/0GX19f2NjYKCSPn9mXL1/g6uqKpKQkXL9+HaampoJjPn78GO3bt8f79+9x4MABNGnSJF/7JyYm4vr16zkK2pcvXwIAypYti/DwcH7tiZSJxWueeP0PFUlr1qzBzJkz0blzZ2zZsgUrVqzA4sWLMWnSJLkue/Px8UFGRgbWr19fANkSkaLNmzcPxsbGGD16tMJjlypVCv/73/9w+fJlaGpqws3NDT179kRsbKxc8d6+fYsWLVrA0NAQp06dUljhCgDly5dHeHg4KleujGbNmmHnzp25trly5QoaNmyIbt26wcnJCXfu3MG6detYvCiInp4e9u/fj48fP6Jfv34Qi8WC4p05cwb16tWDhoYGIiIi8l24Av/cLqZZs2aYPHkyDhw4gBcvXuDNmzcIDAzElStX+LUnUjYNkewHsXilomnr1q1o0aIF/vjjD/Tt2xfPnz9HVlYWevbsKVc8XV1deHt7Y/ny5eDFCkSq7dmzZ9iyZQsmT54MIyOjAjuOi4sLrly5gm3btuHcuXNwcnKCr68vUlNTfzhGYmIiWrdujbS0NJw+fRrFixdXeJ7m5uYIDg5Gjx490Lt3b8yZMwcSiQRRUVHw8vKCi4sLUlJScPr0aZw4cQKVKlVSeA4/OwcHB+zYsQPHjh3DkiVL5I6zZs0atGrVCvXq1UN4ePgPXQr+o2xsbNCmTZsCeQ8SESkKi1cqctLS0nD79m00atRIumzr1q3o0KGDoNsVdO/eHTExMQgNDVVEmkRUQObMmQMrKysMHTq0wI+loaEBb29vPH78GKNHj8bChQvh5OSE3bt3f/eDrtTUVLRv3x6xsbEICgoq0FmMtbW1sW3bNsydOxezZs1Cw4YN4eTkhIsXL2LLli24ceMGmjdvXmDHJ6Bdu3aYNm0apk2bhrNnz+Zr38zMTAwfPhzDhw/HiBEjcPz4cYVcfkxEKkpDQ/aDWLxS0fLrr79CT08P2dnZmD59OkQiEWxtbXHnzh2Zf5i9evUKurq6GDBgQI7lISEh0NLSwu+//y5dVqtWLZibm+PIkSMF/jqISD4PHjzA//73P0ybNq1QJxkyMjLCwoUL8eDBA9SuXRs9e/aEm5sbrl+/LnP7zMxMeHl54caNGzhx4gQqV65c4DmKRCJMnz4dO3fuxMuXLzFt2jQ8fvwY/fv3V9ikU/Rts2fPRpMmTdCjRw+8evXqh/ZJSEhAmzZtsGHDBmzYsAErV678aWcAJiLihE1UpJw9exZ79+7F+vXrsWrVKpibm+PZs2fw9fXFnTt3UKVKlVz7jBgxAhs2bMCTJ09QpkwZPHz4EC4uLnBzc8Phw4dzjJFt0aIFEhIS8PfffxfmyyKiH+Tl5YUrV67g8ePHSp1c7cyZMxgzZgzu37+P/v37Y/78+dJxhGKxGD4+Pti1axeOHTuG1q1bKy1PKnzv379HzZo1Ubp0aZw7d+6b91599OgR2rdvj/j4eBw4cACNGzcuvESJSHla5TExU1AeEzn9RFi8UpEzbdo0rFq1CsnJydDQ0MCMGTMwb948fPr0Sea0/69evUK5cuUwYMAAzJ07F/Xq1YORkREuXrwIAwODHNsOHjwYO3bsyNeYttjYWOlELvXq1cO9e/fw+fNnmJiYoHz58tLOjIODA8RiMaKjowEAderUwcOHD6V5Ozs7IyIiAgBQpkwZFCtWDM+ePQMA1KxZE8+fP0diYiL09fVRtWpVXLlyBQBQunRp6Orq4smTJwCA6tWrIzY2Fh8/foSuri5q1aqFS5cuAQBKliwJIyMjPHz4EABQtWpVvHnzBu/fv4eWlhbq1auHy5cvQywWw8bGBubm5oiMjAQAVKpUCR8+fMC7d++gqakpHQ+YlZUFKysr2NjY4O7duwAAJycnJCcn4/Xr1wCAhg0b4tq1a0hPT4eFhQVKlSqF27dvAwAqVKiA1NRU6UyYLi4uuHXrFr58+QIzMzPY29vjxo0bAP6ZnCYzMxMxMTHS833//n2kpKTA2NgYFSpUkH7w8PXefVFRUQCA2rVr4/Hjx0hOToahoSEqVaqEq1evSs+3lpYWnj59Kj3fUVFRSEhIgJ6eHqpXr47w8HAA/0zmo6+vL70VRbVq1fDy5UvEx8dDR0cHderUwcWLFwEAJUqUgLGxsfR8V6lSBW/fvsX79+9RrFgx1K9fH+Hh4cjOzkbx4sVhaWmJ+/fvAwCcnZ3x8eNHvH37FhoaGmjQoAGuXr2KzMxMWFlZSa84+Hq+P336JO30uLq64vr160hLS4O5uTns7Oxw69YtAMAvv/yCtLQ0vHjxAgBQv3593LlzB6mpqTA1NYWDg4P0fJcrVw5ZWVnS8123bl1ERkYiJSUFRkZGcHJywrVr1wD8M4OphoYGnj9/DuCfKxmePn2KpKQkGBgYoHLlytLzbWdnB21tben5rlGjBmJiYvDx40fo6emhRo0auHz5svQ9a2hoiEePHuHp06fo378/5s6di8aNG0NbWxt169bFpUuXIJFIYGtrC1NTUzx48AAAULlyZcTFxSEuLk76nv16vq2trWFtbY179+4BACpWrIjExES8efMGIpEIrq6uiIiIQEZGBiwtLVGiRAnp+XZ0dERKSgpiYmJw7NgxbNu2Denp6ejXrx8GDRqETZs2SSeVGzJkCDIyMvgz4if7GREZGYmOHTvC09MTmzdvlvkz4tq1a9IZn+fMmYOSJUvyZ4TAnxFf37OvX7/Ghw8flP4z4uv5btCgAW7evIkvX77A3NwcZcqUwc2bN6Xv2Z/lZ4TQWduLFBaveWLxSkVO+/btERcXJ/0lN2zYMGzcuBGZmZl57jNy5Ehs3LgR1atXx4sXLxAREYGSJUvm2m7y5MlYvHgxPn/+zPseEqmYjh07IjIyEpGRkdDS0lJ2OlIfP37E7NmzsXr1alhYWCAuLg5+fn4YMWKEslMjJfrrr78wcuRI7N69G15eXtLlEokEq1evxpgxY9CyZUvs2rVLoTNQE5EaaDNX9vKTMwo3DxXEMa9U5Ny+fRtVq1bN1z7jx49Heno67ty5g6NHj8osXAFIJ2ARiThdOZEqiYiIwNGjR+Hr66tShSvwz2y/q1atwp07d9CgQQMsWbKEhSth+PDh6NmzJ3799Vdppy8zMxPDhg3DyJEjMWrUKBw7doyFKxHRv3DEPxUpiYmJePHiRY6xrRYWFsjKysKnT5/yvG3G/PnzAQBZWVkwNzfPM35CQgL09fWhp6en2MSJSJAZM2bA2dkZPXr0UHYqeXJ2dsahQ4eUnQapCJFIhA0bNuD27dvo3LkzgoKC0L9/f4SFhWHTpk349ddflZ0iESkLZxbOE88MFSlfx5P8u/Pq5OQE4P/GLf3XH3/8gU2bNuGvv/5CsWLFpIWsLFFRUahYsaICMyYioS5cuIDg4GDMmTOHs+aSWjE0NMSBAwfw8uVLlC9fHrdv30ZISAgLVyKiPLB4pSLl6wQe/y5eXVxcAEDmDMGHDx/G5MmTMXfuXAwfPhyDBg3C9u3b8yx0b9y4gQYNGhRA5kQkD4lEgunTp6NGjRrw9PRUdjpE+ebk5ISAgAA0adIEEREROe5RTkQ/KQ2R7AexeKWi5c6dOyhZsmSOS38dHBxQuXJlhISE5Nj2+vXr6N27N3r37o1p06YBACZOnAgNDQ2Z3dfr16/j48eP6NixY8G+CCL6YSEhIQgLC8PcuXNz3NaKSJ106NABQUFBcHBwUHYqREQqjb/pqUi5c+eOzMmaBgwYgGPHjuHLly8AgJcvX6J9+/aoUaMGNm7cKN2uRIkSGDBggMzu6759+2BnZ4emTZsW7Isgoh/ytevq4uICDw8PZadDREREBYy3yqGfQlJSEhwcHLBkyRK5xhKlp6ejbNmymDx5MkaPHl0AGRJRfh09ehQdO3bEmTNn+KESEREVHR0XyV5+ZHLh5qGC2Hmln4KJiQkmTpyIP/74A2KxON/7b926FVpaWhgyZEgBZEdfzZw5E7Vr18aWLVuQlpam7HRIhYnFYsyYMQNNmjRh4UpERPSTYOeViFTCixcvUL58eTg4OODRo0ewtLTEkCFDMHToUNja2io7PVIxe/fuhZeXFy5evAhXV1dlp0NERKQ4notlLz80qXDzUEHsvBKRSliwYAGMjIwQERGBR48eoUePHli+fDnKlCkDb29v3LhxQ9kpFqpr165h3rx5CA0NRXp6urLTUSlZWVmYOXMm2rRpw8KViIjoJ8LilYiULjo6Gps3b8bEiRNhZGSEX375BX/++SdevnyJhQsX4vz586hVqxbc3d1x6NAhZGdnKzvlAvP582eMHTsW9evXx/z589G0aVNYWFigXbt28PPzw+PHj/GzXzCzc+dOPHr0CHPnzlV2KkRERIrHW+XkicUrESnd/PnzYWpqiuHDh+dYbmpqinHjxuHp06fYv38/xGIxOnfujPLly2PFihVISkpSUsYFIzg4GJUrV8a6deuwePFiJCcn48aNG5gxYwZSU1Mxbtw4ODo6wsHBAYMHD8bBgweL3Dn4nszMTPj6+sLT0xO1atVSdjpERERUiDjmlYiU6vnz56hQoQKWLFmCsWPHfnf7v//+G6tWrcLu3buhp6eHAQMGYOTIkShXrlwhZFsw4uPjMW7cOPj7+6Np06bYsGGDzNeTkpKCc+fOISgoCMHBwXj8+DE0NTVRr149tGrVCq1atULt2rWhqamphFdRODZs2IAhQ4bg9u3bqFKlirLTISIiUrxuS2Uv3ze+cPNQQSxeiUipBgwYgJMnT+LZs2fQ19f/4f1ev36NtWvXYt26dYiPj0eHDh0wZswYuLu7QyRSj0trJBIJ9u7di1GjRiEjIwPLli1D//79fzj/qKgoBAcHIygoCGfOnEFycjLMzMzQvHlzaTFbqlSpAn4VhSctLQ2//PIL3NzcsHPnTmWnQ0REVDBYvOaJxSsRKc2TJ09QsWJFLFu2TO7753758gU7d+7EypUrce/ePVSrVg1Lly5F8+bNFZytYr18+RLDhg3DsWPH0KVLF/j5+QmaVTkzMxMREREICgpCUFAQrl27BolEgipVqqBr167o1q0bKlasqMBXUPj+/PNP/P7773jw4AEqVKig7HSIiIgKhtcy2cv3jCvcPFQQi1ciUpp+/frhzJkzePr0KfT09ATFkkgkOHv2LObOnYtLly7B398fvXr1UlCmiiMWi7F+/XpMmjQJhoaGWL16NTw9PRV+nPj4eISEhODIkSM4duwYUlJSUKlSJXTr1g3dunWDs7Ozwo9ZkD5//oxy5crBw8MDW7ZsUXY6REREBYfFa544YRMRKcXDhw8REBCAqVOnCi5cAUAkEqFZs2YICQlBnz590Lt3b/j5+SkgU8V5+PAh3N3dMWzYMPTo0QORkZEFUrgCgIWFBby8vLBz507ExcXh8OHDqF69OpYtW4ZKlSrB2dkZs2bNwr1799Ri9uLVq1fj48ePmDlzprJTISIiKlicbThP7LwSkVL06tULYWFhePr0KXR0dBQaWyKRYOLEiVi6dClmzJiB2bNnK3UcbGZmJpYsWYI5c+bAzs4OGzduROPGjZWSS1paGoKDg7F//34cOXIEycnJcHJyknZkK1eurHJjht+9ewdnZ2f06NEDq1evVnY6REREBavnctnLd31/YsuijsUrERW6yMhIVK5cGWvWrMGQIUMK7Dh//PEHJk6ciCFDhuCvv/5Syiy8165dw6+//orIyEiMHz8es2bNUkinWRHS09Nx+vRp7Nu3D0eOHEFSUhIcHR2lY2SrVq2q9EL29u3b6NChAzIyMnD9+nWUKFFCqfkQEREVuN4rZS8PGFOYWagkXjZMRIVu9uzZKF26NAYMGFCgx5kwYQK2bNmCDRs2oGfPnkhPTy/Q4/3b58+fMW7cONSvXx9aWlq4du0aFi1apDKFKwDo6OigXbt28Pf3R1xcHE6cOAEXFxesXr0a1atXh6OjI6ZNm4aYmBil5Hf48GG4urrC0tIS165dY+FKRET0k2PxSkSF6u7du9i7dy9mzJgBbW3tAj9e//79cfDgQRw9ehRt27bFp0+fCvR4EokER44cQZUqVbBmzRosXLgQV69eRY0aNQr0uEJpa2vDw8MDW7duxbt373Dy5Em4ublh7dq1qFy5MrZu3VpoY2MlEgkWLFgAT09PeHh4ICwsrEjd8oeIiOibOOY1TyxeiahQ+fr6wt7eHt7e3oV2zI4dO0pvH9O0aVO8f/++QI5z584dNG/eHJ06dcIvv/yCu3fvYuLEiShWrFiBHK+gaGtro3Xr1ti8eTOio6PRvXt3DBgwAJ07dy6wc/fVly9f0Lt3b0ybNg2zZ8/Gnj178nX/XyIiIiq6WLwSUaG5desWDh48iJkzZ0JLS6tQj+3u7o5z584hNjYWbm5uiI2NVVjsuLg4DB48GDVq1MCrV69w4sQJnDp1CuXLl1fYMZTF2NgYmzdvxsGDB3Hx4kVUqVIFJ06cKJBjvX79Gu7u7jh8+DD27duHmTNnKn3MLRERUaHT0JD9IBavRFR4fH19Ub58efTp00cpx69RowYuXbqEjIwMNGjQAJGRkYLipaen448//sAvv/yCffv2YcWKFbh79y48PDyKXNHl6emJu3fvolatWmjXrh2GDh2Kz58/Kyz+33//jTp16uDNmze4ePEiunbtqrDYREREVDSweCWiQnH9+nUcOXIEM2fOVOpltOXLl8elS5dgbm4ONzc3XLlyJd8xJBIJDh06BGdnZ0yZMgXe3t548uQJRo0aVegd5cJkY2OD48ePY+3atdi+fTuqV6+Oq1evCo67Z88euLm5oXTp0oiIiEDNmjUVkC0REZGa4pjXPLF4JaJCMWvWLDg6OqJnz57KTgW2trY4f/48KlasiGbNmiEoKOiH97116xaaNm2Kzp07w9HREXfv3sWff/4JCwuLAsxYdYhEIgwZMgQ3b96Eubk5XF1d4evri8zMzHzHEovFmDlzJnr06IGuXbvi3LlzsLW1LYCsiYiIqChg8UpEBe7q1as4ceIEZs2apTKTF5mZmSE4OBhNmjRBu3btsGvXrm9u/+7dO/z222+oWbMm3r59i8DAQAQGBqJixYqFlLFqqVChAi5duoQZM2Zg3rx5cHV1xaNHj354/8+fP6Nbt26YN28eFi1ahO3bt0NXV7cAMyYiIlIT7LzmicUrERU4X19fVKxYEd27d1d2Kjno6+vj0KFD6NWrF3r37o2//vor1zZpaWlYvHgxfvnlFxw8eBB//vkn7ty5gzZt2ighY9VSrFgxzJo1C5cvX0ZiYiJq1KiBtWvXfveWOrGxsWjYsCGCg4Nx+PBhTJo0qciNESYiIiLFU40WCBEVWZcvX8apU6ewZ88eaGpqKjudXLS0tLB161ZYWVlh5MiReP/+PXx9fQEABw8exIQJE/DixQsMHz4cM2fOhLm5uXITVkF169bFzZs3MWHCBAwbNgzHjh3D5s2bZV4CHB4eDk9PT+jp6eHy5cuoUqWKEjImIiJSYZrsL+ZFJCmsu84T0U+pRYsWePv2LW7fvg0NFZ7mXSKRYMmSJZg8eTK8vb0RFRWFCxcuoG3btli6dCmcnJyUnaJaCAwMxIABA5CVlYUNGzagc+fO0nXbt2/Hb7/9hnr16uHAgQOwsrJSYqZEREQqatBa2cs3DC3cPFSQ6v4lSURq78KFCwgJCcHs2bNVunAF/pmIaNKkSdi0aRN27NiBDx8+4NSpUzh+/DgL13zw8PDA3bt30ahRI3Tp0gU+Pj5ITEzEpEmT4O3tjb59+yIkJISFKxERUV445jVP7LwSUYFp0qQJEhMTcf36dZUvXv8tNjYWJUqUUJnJpdSRRCKBv78/Ro0ahaysLKSnp2P58uUYNWoUx7cSERF9y5B1spevG1K4eagg/mVGRAUiNDQU586dw+HDh9WqcAUAOzs7Zaeg9kQiEXx8fODu7o6ZM2eiT58+aNWqlbLTIiIiUn3ssuaJnVciUjiJRAJ3d3d8/vwZf//9NzttRERERD9q2HrZy9cMLtw8VBA7r0SkcGfOnEFYWBiOHz/OwpWIiIgoP9TsirXCxOKViBRKIpFg5syZqFu3Ljw8PJSdDhEREREVktu3b+PSpUuIjIzEhw8fIBKJYGlpiYoVK6JBgwaoXr26oPgsXomKgIyMDGhpaalElzM4OBjh4eE4deqUSuRDRERERAUnLi4Oa9aswfbt2xETEwOJRAJtbW2YmZlBIpEgMTERGRkZEIlEsLOzg7e3N4YOHYrixYvn+1jsSROpuYiICFhZWaF48eLo3r071q5di4cPH0IZw9m/dl1dXFzQsmXLQj8+ERERkdpTo1vlTJo0CQ4ODtiwYQPatWuHw4cP4+XLl0hLS8ObN2/w9u1bpKWl4eXLlzh8+DDatWuHjRs3oly5cpgyZUq+j8cJm4jUWFRUFOrXrw8HBwc0bdoUoaGhuHbtGrKysmBjY4PGjRujSZMmaNKkCcqXL1/gndATJ06gXbt2OH36NJo3b16gxyIiIiIqkkZtkr38z4GFm8cPcHFxwaRJk9CxY8cf/jtTIpHgyJEjWLJkCS5fvpyv47F4JVJTCQkJcHV1RUZGBsLDw2FlZQUASElJwcWLF6W3qvn7778hFotRsmRJaSHbpEkT2NvbKzQfiUSC2rVrw8DAAOfPn+clw0RERETyGLNZ9vKVvxZuHiqIY16J1FBGRgY6d+6Md+/e5ShcAcDQ0BCtW7dG69atAQDJyckICwtDaGgoQkNDERAQAIlEgjJlyuQoZkuXLi2NkZmZiaSkJCQnJ+f491vL3r9/jxs3biA0NJSFKxEREdFP6MKFC6hYsWKOv03/7f3793jw4AEaNWokV3x2XonUjEQigbe3N/bs2YOQkBC4ubnla/+EhARcuHBBWszeuXMHAFCiRAlkZ2cjOTkZX758yXP/YsWKwcTERPowNjaW/lunTh2MGjVK0OsjIiIi+qmN3Sp7+fL+hZuHHDQ1NbFjxw706tVL5vo9e/agV69eyM7Olis+O69EambOnDnYsWMHdu7cme/CFQDMzMzQsWNHdOzYEQDw4cMHnD9/Hjdu3ICurm6OYlRWgaqrq8vOKhERERHl8r2+aHp6OjQ1NeWOz+KVSI34+/vD19cX8+fPR8+ePRUS09LSEl26dEGXLl0UEo+IiIiIBFDRmYXzEhsbi+joaOnzhw8f4sKFC7m2S0xMxPr161GmTBm5j8XLhonURGhoKFq1aoV+/fph48aN7H4SERERFUXjt8levtSnMLP4YbNnz8bs2bO/+7epRCKBpqYm1q9fjwEDBsh1LHZeidRAZGQkPD090bhxY6xdu5aFKxEREVFRpaGh7AzypXv37qhcuTIkEgm6d++OUaNG5RraJhKJYGBggOrVq6N48eJyH4vFK5GKe/fuHdq2bYvSpUtj37590NLSUnZKREREREQAgIoVK6JixYoAgK1bt6JRo0YKvyXjVyxeiVRYamoq2rdvj/T0dJw/fx4mJibKTomIiIiICpKajXn9N29v7wKNz+KVSEVlZ2ejd+/eiIyMxIULF2BnZ6fslIiIiIiI8vQjY1lFIhE2b94sV3wWr0Qqavz48Th69CiOHj2KmjVrKjsdIiIiIioMatx5PXv2bK65WbKzs/HmzRtkZ2fDysoKBgYGcsdn8Uqkgvz8/LBy5UqsXr0abdu2VXY6RERERETf9e9b5vxbZmYm1q9fj5UrV+L06dNyx1evqayIfgJHjx7FmDFjMG7cOAwbNkzZ6RARERFRYdLQkP1QY1paWhgxYgRatmyJESNGyB1Hvc8CURFz/fp19OzZE506dcKSJUuUnQ4RERERkcJUq1YNFy5ckHt/XjZMpCJiYmLQrl07VKlSBTt27ICGmn/CRkRERERyUOMxr99z+vRp6Ovry70/i1ciFZCYmIi2bdtCT08PR48eFfRNTURERESkDHPmzJG5PDExERcuXMCNGzcwefJkueOzeCVSsoyMDHTt2hWvX7/G5cuXYW1treyUiIiIiEhZ1Ljz6uvrK3O5mZkZypUrh3Xr1uG3336TOz6LV6ICJJFI8OnTJxgZGeWaNvzr+iFDhuDChQs4ffo0nJyclJAlERERkfJ87+8lUh9isbhA47N4JSpAnz59gomJCTDnA6BrnHsDcTbwQAvosgGNIxoAEZky4xhrC88lOUN4DKFWNtUUHKOYAoYCq8oHmvoCfwJfeCkRnIMqvC8AoGFJ4V+U0cU/Ck9EW0vQ7m8NZHyf5zcFBbzHzb+kCA/y4ZPwGKH3hMewNhG2f5oC3uTmRsJj1HIQHuPSQ+ExKpUWHkPo1zVN9u+6fLkVJTxGcqrwGC/jhce4Fytsf3ND4TkoIsataLl3/YRMmOA4kpKSYGws/Oeo2uO8J3li8UqkTBqaQOe/lJ0FEREREZHCHD9+HIGBgdL7vpYtWxYeHh5o166doLgsXomIiIiIiFSFqlwiJofExER4enriwoUL0NTUhK2tLQAgJCQE69evh5ubGw4fPgxTU1O54rMnTURERERERIKNHj0aYWFhWLx4MRISEhATE4OYmBgkJCRg0aJFuHjxIkaPHi13fHZeiYiIiIiIVIUaj3k9fPgwhg0bhvHjx+dYbmBggAkTJiA2Nhbbt2+XO776nhkiIiIiIiJSGVpaWnB0dMxzvZOTE7S05J8ckcUrERERERGRqtAQyX6ogS5dumDfvn3Izs7OtS4rKwt79+5Ft27d5I7Py4aJiIiIiIhIsD59+mDEiBFo0KABBg0ahPLlywMAnjx5gg0bNiAjIwO9e/fGjRs3cuxXs2bNH4rP4pWIiIiIiEhVqEmXVRZ3d3fp/69duwaR6J/XIpFIZG4jkUggEolkdmplYfFKRERERERKZ2JiUujH/HdRRcJt2bJFWrAWBBavREREREREqkKNZxv28fEp0Pjqe2aIiIiIiIhIZTRt2hRnzpzJc31oaCiaNm0qd3wWr0RERERERCTYuXPn8O7duzzXx8XF4fz583LH52XDREREREREqkKNJ2wC8M0xr0+fPoWRkZHcsVm8EhERERERkVz8/f3h7+8vfT5v3jxs3Lgx13aJiYm4c+cOPDw85D4Wi1ciIiIiIiJVoWad19TUVLx//176/NOnT9D4z6RTIpEIBgYGGDJkCGbOnCn3sVi8EhERERERkVyGDh2KoUOHAgDs7e2xatUqdOjQoUCOxeKViIiIiIhIVajxrXKioqIKND6LVyIiIiIiIhIsNjb2h7azs7OTKz6LVyIiIiIiIlWhZmNe/61s2bLfnG34q+zsbLnis3glIiIiIiIiwbZs2ZKreM3OzkZ0dDS2b98Oa2trDB8+XO74LF6JiIiIiIhUhRqPefXx8clz3aRJk1CvXj0kJSXJHV99zwwVCefOnYNIJMK5c+cKJL6vry9EIhE+fPigsJiNGzdG48aNFRaPiIiIiKioMzAwQP/+/bFixQq5Y7DzSkREREREpCrUeMzr94jFYrx9+1bu/Vm8EhERERERUYFJTk7GhQsX8Mcff6BGjRpyx2HxSkREREREpCrUuPOqoaGR52zDEokEdnZ2WLNmjfzx5d6T6BtiYmIwbNgwODo6Qk9PDxYWFujWrRuio6N/aP+rV6/Cw8MDZmZmMDAwQNWqVbFq1aoc25w9exZubm4wMDCAqakpOnbsiAcPHsiMl5iYCB8fH5iamsLExAT9+/dHampqjm2ysrIwd+5clCtXDjo6OihbtiymTp2K9PR0uc4BEREREdHPZObMmbkes2bNwsqVK3H8+HE8ffoU1atXlzs+O69UIK5du4bLly+jR48eKFWqFKKjo7F27Vo0btwYkZGR0NfXz3Pf06dPo127drC1tcXo0aNhY2ODBw8e4Pjx4xg9ejQAICQkBG3atIGDgwN8fX3x5csX+Pn5wdXVFTdu3EDZsmVzxOzevTvs7e2xcOFC3LhxA5s2bYK1tTUWL14s3WbgwIHw9/dH165dMW7cOFy9ehULFy7EgwcPcOjQoQI5T0REREREOajxbMO+vr4FGp/FKxWItm3bomvXrjmWtW/fHi4uLjhw4AD69u0rc7/s7GwMHjwYtra2uHXrFkxNTaXrJBKJ9P8TJkyAubk5wsPDYW5uDgDo1KkTatSogVmzZsHf3z9H3Bo1amDz5s3S5/Hx8di8ebO0eL19+zb8/f0xcOBAbNy4EQAwbNgwWFtbY+nSpQgNDUWTJk2++7rT09NzdGqTk5O/uw8RERERUVGTkpKCFy9eAABKly4NQ0NDwTHVt6wnlaanpyf9f2ZmJuLj41G+fHmYmprixo0bee538+ZNREVFYcyYMTkKVwDS6+ffvHmDW7duwcfHR1q4AkDVqlXRokULBAYG5oo7ZMiQHM/d3NwQHx8vLS6/7jN27Ngc240bNw4AcOLEie+9ZADAwoULYWJiIn2ULl36h/YjIiIiIgLwz5hXWQ81ce3aNTRp0gRmZmaoXLkyKleuDDMzMzRt2hR///23oNgsXqlAfPnyBTNnzkTp0qWho6MDS0tLWFlZITEx8Zs3Jn727BkAoHLlynluExMTAwBwdHTMta5ixYr48OEDPn/+nGO5nZ1djudmZmYAgISEBGlMDQ0NlC9fPsd2NjY2MDU1lR7ze6ZMmYKkpCTp4+unTURERERERd3Vq1fRqFEj3LhxAwMHDsSKFSuwYsUKDBw4EDdu3ECjRo0QEREhd3xeNkwFYuTIkdi6dSvGjBkDFxcXmJiYQCQSoUePHhCLxYWej6ampszl/74UGUCes6P9KB0dHejo6AiKQUREREQ/MTXqsv7XtGnTULJkSVy8eBE2NjY51vn6+sLV1RXTpk3D6dOn5YrP4pUKxP79++Ht7Y1ly5ZJl6WlpSExMfGb+5UrVw4AcO/ePTRv3lzmNmXKlAEAPHr0KNe6hw8fwtLSEgYGBvnKt0yZMhCLxXjy5AkqVqwoXf7u3TskJiZKj0lERERERLJdvXoVM2fOzFW4AkDx4sUxaNAgzJ07V+74vGyYCoSmpmaurqafnx+ys7O/uV/NmjVhb2+PlStX5ip0v8aztbVF9erV4e/vn2Obe/fuITg4GB4eHvnO9+s+K1euzLF8+fLlAP6ZgIqIiIiIqMBpaMh+qAENDQ1kZWXluT47OxsaAl4LO69UINq1a4cdO3bAxMQEzs7OCA8PR0hICCwsLL65n4aGBtauXYv27dujevXq6N+/P2xtbfHw4UPcv38fQUFBAIA//vgDbdq0gYuLC3799VfprXJMTEzkmqK7WrVq8Pb2xoYNG5CYmAh3d3dERETA398fnTp1+qGZhomIiIiIfmYNGjTA6tWr0atXr1xXLsbGxmLNmjVwdXWVOz6LVyoQq1atgqamJgICApCWlgZXV1eEhISgVatW3923VatWCA0NxezZs7Fs2TKIxWKUK1cOv/32m3Sb5s2b49SpU5g1axZmzpwJLS0tuLu7Y/HixbC3t5cr502bNsHBwQHbtm3DoUOHYGNjgylTpmDWrFlyxSMiIiIiyjc1HvO6YMECNGrUCE5OTvD09ESFChUA/DPc78iRIyhWrBgWLlwod3yR5L/XdhKRwiQnJ8PExASY8wHQNZY7jrG2AnLJEB5DqJVNZU+clR/FFHDVjKr8TtAX+PHhhZfCf3yrwvsCABqWFP5FGV38o/BEtLUE7f7WQP7vc2kKCniPm39JER7kwyfhMULvCY9hbSJs/zQFvMnNjYTHqOUgPMalh8JjVFLALdyEfl3TMoXncCtKeIzkVOExXsYLj3EvVtj+5sLvnamQGLei5d41GZkwwXHhOchBJUuh/52XvbyPe+HmIafIyEjppEypqf98n+nr66Nly5aYN28enJ2d5Y7NzisREREREZGqUJVP2eXk7OyMQ4cOQSwW4/379wAAKysrQWNdv2LxSkRERERERAqloaGB4sWLKzQmi1ciIiIiIiJVoSYzCysDzwwRERERERGpPHZeiYiIiIiIVIWaj3ktSOy8EhERERERkcpj8UpEREREREQqj5cNExERERERqQo1mrDpwoULcu3XqFEjufZj8UpERERERET51rhxY4hEPz5GVyKRQCQSITs7W67jsXglIiIiIiJSFWo0YVNoaGihHo/FKxEREREREeWbu7t7oR5PfS6oJiIiIiIiKuo0RLIfaubNmze4ffs2Pn/+rLCYLF6JiIiIiIhIIY4cOQInJyeUKlUKNWvWxNWrVwEAHz58QI0aNXD48GG5Y7N4JSIiIiIipUtKSoJEIinUh0rS0JD9UAPHjh1D586dYWlpiVmzZuU4x5aWlihZsiS2bt0qd3z1OAtERERERESk0ubMmYNGjRrh4sWLGD58eK71Li4uuHnzptzxWbwSERERERGpCjUe83rv3j107949z/XFixdHXFyc3PFZvBIREREREZFg+vr635yg6fnz57CwsJA7PotXIiIiIiIiVaHGndcmTZrA398fWVlZuda9ffsWGzduRMuWLeWOz+KViIiIiIiIBJs/fz5evnyJOnXqYP369RCJRAgKCsL06dNRpUoVSCQSzJo1S+74LF6JiIiIiIhUhRrPNuzo6IiLFy/CwsICM2bMgEQiwR9//IEFCxagSpUqCAsLQ9myZeWOX0xxqRIREREREdHPrFKlSggJCUFCQgKePn0KsVgMBwcHWFlZCY7N4pWIiIiIiEhVqMn41u8xMzNDnTp1FBqTxStRIUjqlQpjI/m/3ZJNjAXnoK0pbP+4VMEpwE43W3CM2DSBLwRAllhwCBRTwNU7dikJgvZ3MDUTnIOtgeAQCvkd6xBwSngQVyfhMXS1BO1ubSX8e1UjU/j3yUOJoeAYNnbCYxj+Zis4RrGMTGEBXn8UnIMiLtcTWxgJjpHcSvgfgaYawt9faFFN2P6Jec9E+sPa1hQeo5Sl8BiXHgqPUUzg77XiJsJzKCX/7K9SQn4ZJCcDxYV35ajwbd++Xa79+vXrJ9d+LF6JiIiIiIhUhZqMbwUAHx+fXMtEon8+yJBIJDKXAyxeiYiIiIiIqBBFRUXleJ6YmAhvb2+YmJhg5MiRcHR0BAA8fPgQfn5++PTpE/z9/eU+HotXIiIiIiIiVaFGY17LlCmT47mvry+srKwQHByco9NapUoVdOnSBS1btsSKFSuwdetWuY6nPj1pIiIiIiIiUlmHDx+Gp6dnjsL1Kw0NDXTu3BlHjhyROz47r0RERERERKpCjTqv/yWRSPDwYd4TmUVGRuYaC5sf7LwSERERERGRYJ06dcLatWuxfPlypKb+360qUlNTsWzZMqxfvx4dO3aUOz47r0RERERERKpCjWYb/q9Vq1YhKioK48ePx5QpU2Br+88t0968eYPMzEy4urpi5cqVcsdn8UpERERERESCmZiY4Pz58zhy5AgCAwMRGxsLAGjdujU8PDzQvn17meNhfxSLVyIiIiIiUjoTExOZy4WMkVRLajzm9auOHTsKujw4LyxeiYiIiIiISGE+f/6M8+fPIyYmBgBQtmxZNGrUCAYGBoLisnglIiIiIiJSFWreefXz88P06dORkpKSo2tuZGSE+fPnY8SIEXLHVt/RwERERERERKQytm/fjtGjR6Ny5crYuXMnbt26hVu3bmHXrl2oUqUKRo8ejR07dsgdn51XIiIiIiIiVaHGsw0vX74cjRo1wpkzZ6CpqSldXrVqVXTt2hXNmjXDsmXL0LdvX7niq++ZISIiIiIiIpXx6NEjdOvWLUfh+pWmpia6deuGR48eyR2fnVciIiIiIiJVocZjXk1MTBAdHZ3n+ujoaBgbG8sdn51XIiIiIiIiEqxt27bw8/PD7t27c63bs2cP/vrrL7Rv317u+Oy8EhERERERkWCLFi1CeHg4evfujXHjxuGXX34BADx58gRv376Fk5MTFi1aJHd8dl6JiIiIiIhUhYaG7IcasLKywo0bN7B8+XJUqVIF7969w7t371ClShWsWLEC169fh6Wlpdzx2XklIiIiIiIihdDV1cXo0aMxevRohcdm8UpERERERKQq1HjCpoLG4pWIiIiIiIgU4uLFi9iyZQueP3+OhIQESCSSHOtFIhFu374tV2z1uHia6DtEIhF8fX2VnQYRERERkTAaItkPNbB8+XK4u7tjz549SE5Ohrm5OSwsLHI8zM3N5Y7PzisREREREREJ9scff8DV1RXHjh2DiYmJwuOzeKUi4cuXLyhWjG9nIiIiIlJzajKzsCypqano3bt3gRSuAItXKiJ0dXWVnQIRERER0U+tSZMmuHv3boHFV9+yngAAvr6+EIlEePz4Mfr06QMTExNYWVlhxowZkEgkePHiBTp27AhjY2PY2Nhg2bJl0n0zMjIwc+ZM1KpVCyYmJjAwMICbmxtCQ0NzHSc+Ph59+/aFsbExTE1N4e3tjdu3b0MkEmHbtm3S7Xx8fGBoaIhXr16hU6dOMDQ0hJWVFcaPH4/s7OwcMcViMVauXIlKlSpBV1cXxYsXx+DBg5GQkJBju7///hutWrWCpaUl9PT0YG9vjwEDBuTY5r9jXn18fFC2bNk8z9d/9x0xYgT27dsHZ2dn6OnpwcXFRfqNt379epQvXx66urpo3LgxoqOjv/UlISIiIiKSnxqPefXz88OZM2ewdOlSfPz4UeHxWbwWEV5eXhCLxVi0aBHq1auHefPmYeXKlWjRogVKliyJxYsXo3z58hg/fjwuXLgAAEhOTsamTZvQuHFjLF68GL6+vnj//j1atWqFW7duSWOLxWK0b98eu3btgre3N+bPn483b97A29tbZi7Z2dlo1aoVLCwssHTpUri7u2PZsmXYsGFDju0GDx6MCRMmwNXVFatWrUL//v0REBCAVq1aITMzEwAQFxeHli1bIjo6GpMnT4afnx969+6NK1euKPT8hYWFYdy4cfD29oavry8ePHiAdu3aYfXq1fjzzz8xbNgwTJgwAeHh4bkKZyIiIiIiAkqXLo3Bgwdj8uTJsLKygoGBAYyNjXM8hFxSzMuGi4i6deti/fr1AIBBgwahbNmyGDduHBYuXIhJkyYBAHr27IkSJUpgy5YtaNSoEczMzBAdHQ1tbW1pnN9++w1OTk7w8/PD5s2bAQCHDx9GeHg4Vq5cKb3Z8NChQ9GiRQuZuaSlpcHLywszZswAAAwZMgQ1a9bE5s2bMXToUAD/TKG9adMmBAQEoFevXtJ9mzRpgtatW2Pfvn3o1asXLl++jISEBAQHB6N27drS7ebNm6eoUwcAePToER4+fCjt1pqZmWHw4MGYN28eHj9+DCMjIwD/FOYLFy5EdHS0zM5ueno60tPTpc+Tk5MVmicRERERFXFq0mWVZebMmZg/fz5KliyJ2rVrK3zsK4vXImLgwIHS/2tqaqJ27dp4+fIlfv31V+lyU1NTODo64vnz59LtNDU1AfzTXU1MTIRYLEbt2rVx48YN6X6nTp2ClpYWfvvtN+kyDQ0NDB8+HGfPnpWZz5AhQ3I8d3Nzw44dO6TP9+3bBxMTE7Ro0QIfPnyQLq9VqxYMDQ0RGhqKXr16wdTUFABw/PhxVKtWDVpaWvk9NT+kWbNmOYrRevXqAQC6dOkiLVz/vfz58+cyi9eFCxdi9uzZBZIjEREREZEqW7duHdq2bYvDhw9DowAmnuJlw0WEnZ1djucmJibQ1dWFpaVlruX/HlPq7++PqlWrQldXFxYWFrCyssKJEyeQlJQk3SYmJga2trbQ19fPEat8+fIyc9HV1YWVlVWOZWZmZjmO++TJEyQlJcHa2hpWVlY5HikpKYiLiwMAuLu7o0uXLpg9ezYsLS3RsWNHbN26NUd3UxFknT/gn0sfZC3/77jcr6ZMmYKkpCTp48WLFwrNk4iIiIiKOA0N2Q81kJGRgbZt2xZI4Qqw81pkfO2gfm8ZAEgkEgDA//73P/j4+KBTp06YMGECrK2toampiYULF+LZs2cKzeW/xGIxrK2tERAQIHP91+JXJBJh//79uHLlCo4dO4agoCAMGDAAy5Ytw5UrV2BoaChz//9OyvTVfyeN+l7O3zuH/6WjowMdHR2Z64iIiIiIirJ27dohLCwMgwcPLpD4LF5/Yvv374eDgwMOHjyYo9ibNWtWju3KlCmD0NBQpKam5ui+Pn36VO5jlytXDiEhIXB1dYWent53t69fvz7q16+P+fPnY+fOnejduzd2796d43LpfzMzM0NiYmKu5TExMXLnTERERERU4NR4zOusWbPg5eWFYcOG4ddff4WdnZ3MZpC5ublc8dWj/0wF4usb6d9dxKtXryI8PDzHdl9n/924caN0mVgsxurVq+U+dvfu3ZGdnY25c+fmWpeVlSUtPBMSEnJ1OatXrw4A37x0uFy5ckhKSsKdO3eky968eYNDhw7JnTMREREREeXN0dERt27dwrp161C3bl3Y2NjkGiL43+GF+cHO60+sXbt2OHjwIDw9PdG2bVtERUVh3bp1cHZ2RkpKinS7Tp06oW7duhg3bhyePn0KJycnHD16VHrvprwu0f0Wd3d3DB48GAsXLsStW7fQsmVLaGlp4cmTJ9i3bx9WrVqFrl27wt/fH2vWrIGnpyfKlSuHT58+YePGjTA2NoaHh0ee8Xv06IFJkybB09MTo0aNQmpqKtauXYsKFSrkmIyKiIiIiEilqMn4VllmzpwpV23wo1i8/sR8fHzw9u1brF+/HkFBQXB2dsb//vc/7Nu3D+fOnZNup6mpiRMnTmD06NHw9/eHhoYGPD09MWvWLLi6ukJXV1eu469btw61atXC+vXrMXXqVBQrVgxly5ZFnz594OrqCuCfIjciIgK7d+/Gu3fvYGJigrp16yIgIAD29vZ5xrawsMChQ4cwduxYTJw4Efb29li4cCGePHnC4pWIiIiIqAD4+voWaHyRJK+ZZ4i+4/Dhw/D09MTFixelxSbllJycDBMTEyQ9jYWxkbH8cUzk3/cr7e/Po/VNcamCU4CdruwJs/IjNk3gCwGQJRYcAsUU8KGoXYrsWat/VJjYTHAOtgaCQyhkaI5DwCnhQVydhMfQFXY7LrFjScEpaGQK/z55+En494mNAt4bhtrf3+Z7imVkCgvw+qPwJBTQBRGXkf8yua+SFTDRvqmG8PeX4HOa+Fl4Dsbfny/ju0pZfn+b77n0UHiMYgK/X4sr4D6apSyExxDwyyA5ORkmxfP+HvnpypXn72QvdyheuHmoIPXtSVOh+vLlS47n2dnZ8PPzg7GxMWrWrKmkrIiIiIiI6GfBy4bph4wcORJfvnyBi4sL0tPTcfDgQVy+fBkLFiz4odmCiYiIiIjoB6jxbMMFjcUr/ZCmTZti2bJlOH78ONLS0lC+fHn4+flhxIgRyk6NiIiIiIh+Aixe6Yf06tULvXr1UnYaRERERERFmxrPNlzQeGaIiIiIiIhI5bHzSkREREREpCqKwJjXyMhIPH/+HAkJCTJni+7Xr59ccVm8EhERERERkWDPnj1Dnz59EBERkectjkQiEYtXIiIiIiIitafGndfBgwfj7t27WLlyJdzc3GBmJvye9P/G4pWIiIiIiIgEu3TpEqZOnYqRI0cWSHwWr0RERERERKpCjWcbtrS0hImJSYHFV98zQ0RERERERCpjyJAh+N///ofs7OwCic/OKxEREREREQlWoUIFZGdno1q1ahgwYABKly4NTU3NXNt17txZrvgsXomIiIiIiFSFGk/Y5OXlJf3/+PHjZW4jEonk7syyeCUiIiIiIqVLSkqCsbGxstMgAUJDQws0PotXIiIiIiIiVaHGnVd3d/cCjc/ilYiIiIiIiBQqMjISMTExAIAyZcrA2dlZcEwWr0RERERERKpCjW+VAwBHjhzB2LFjER0dnWO5vb09li9fjg4dOsgdW73PDBEREREREamEwMBAdOnSBQCwYMECHDp0CIcOHcKCBQsgkUjQuXNnnDp1Su747LwSERERERGpCjUe8zp37lxUrVoVYWFhMDAwkC7v0KEDRowYgYYNG2L27Nlo3bq1XPHZeSUiIiIiIiLB7ty5A29v7xyF61cGBgbw8fHBnTt35I7PzisREREREZGqUOMxr7q6uvj48WOe6z9+/AhdXV2546vvmSEiIiIiIiKV0bRpU6xatQrh4eG51l29ehV//vknmjdvLnd8kUQikQhJkIjylpycDBMTE7yISxR00+2UTOG5FBP4UZW1vgLGX8S+Fx4jK1t4GpbFBcew1BMcAvpaAs9pcqrwJFLThccwlP8TVCltLeExPn4SHqOYprD9FXE+k78Ij2FnKTxG7AfhMcRi4TG0BV4kJnR/ADAU/g2fKOB3wFepWYJDIFUBv0+s9YXtnyH8xzhiFfDtrq+At0YpI+ExPgj8lk9TwPvCWEd4jDgBv5JSPiXDrbwpkpKSBP29VGSkpMlerojftwUsKioKLi4ueP/+PerWrQtHR0cAwKNHjxAREQFra2uEh4ejbNmycsVn55WIiIiIiIgEs7e3x507dzBq1CgkJCRgz5492LNnDxISEjB69Gjcvn1b7sIV4JhXIiIiIiIi1aHGsw0DgLW1NVasWIEVK1YoPDY7r0RERERERKTy2HklIiIiIiJSFWo823BB45khIiIiIiIilcfOKxERERERkapQ8zGvBYmdVyIiIiIiIlJ5LF6JiIiIiEjpTExMIBKJcj1+Ohoi2Q81MGfOHNy7dy/P9ffv38ecOXPkjs/ilYiIiIiIiATz9fXFnTt38lx/7949zJ49W+74HPNKRERERESkKorwbMMfP36Etra23PuzeCUiIiIiIiK5XLhwAefOnZM+P3jwIJ4+fZpru8TEROzZswdVqlSR+1gsXomIiIiIiFSFmoxv/So0NFR6KbBIJMLBgwdx8OBBmds6OzvDz89P7mOxeCUiIiIiIiK5TJw4ESNGjIBEIoG1tTXWrVuHLl265NhGJBJBX18furq6go7F4pWIiIiIiIjkoqenBz09PQBAVFQUrK2tpc8VreiOBiYiIiIiIqJCIxaLERISkuf6Y8eOITo6Wu747LwSERERERGpCLFE9nJ1GAo7fvx4JCcno3379jLXr169Gqampti9e7dc8dl5JSIiIiIiIsHCw8PRokWLPNc3a9YMYWFhcsdn55WIiIiIiEhFqHPnNSEhAUZGRnmuNzQ0RHx8vNzx2XklIiIiIiIiwezs7HDp0qU814eFhaFUqVJyx2fxSkREREREpCLEEtkPddCzZ0/s2rULf/75J8RisXR5dnY2Vq1ahT179qBXr15yx+dlw0RERERERCTYlClTcPHiRYwZMwbz58+Ho6MjAODRo0d4//49GjdujGnTpskdn53Xn9C1a9fQoEEDGBgYQCQSoVOnThCJ1OAiejlER0dDJBJh27Zt393Wx8cHZcuWLfCciIiIiIiKIh0dHQQHB2Pz5s2oW7cuPnz4gA8fPqBu3brYsmULQkJCoKOjI3d8dl5/MpmZmejWrRt0dXWxYsUK6Ovr49q1a8pOi4iIiIiIoD6XCOdFQ0MD/fv3R//+/RUem8XrT+bZs2eIiYnBxo0bMXDgQADA06dPlZxVwSlTpgy+fPkCLS0tZadCREREREQCsHj9ycTFxQEATE1NlZtIIRGJRNDV1VV2GkREREREP0T8/U1U2tu3b7F582bcuHEDSUlJOSZuAv75+/zMmTNyxeaY15+Ij48P3N3dAQDdunWDSCRC48aNZW67detWNG3aFNbW1tDR0YGzszPWrl2bY5t27drBwcFB5v4uLi6oXbt2vuIBQNmyZdGuXTtcvHgRdevWha6uLhwcHLB9+/Zc2z5//hzdunWDubk59PX1Ub9+fZw4cSLHNnmNeT18+DAqV64MXV1dVK5cGYcOHZL5Onbv3o1atWrByMgIxsbGqFKlClatWiVzWyIiIiKin9mdO3fg7OyMefPm4dmzZwgNDcX79+/x5MkTnDt3Di9evIBEIv910SxefyKDBw/G1KlTAQCjRo3Cjh078pzta+3atShTpgymTp2KZcuWoXTp0hg2bBhWr14t3cbLywtRUVG5xszGxMTgypUr6NGjR77iffX06VN07doVLVq0wLJly2BmZgYfHx/cv39fus27d+/QoEEDBAUFYdiwYZg/fz7S0tLQoUOHPAvRr4KDg9GlSxeIRCIsXLgQnTp1Qv/+/fH333/n2O706dPo2bMnzMzMsHjxYixatAiNGzf+5r2riIiIiIiEUOdb5UyePBmGhoZ49OgRQkJCIJFIsGrVKrx48QJ79uxBQkICFi1aJHd8Xjb8E3FxcUF6ejoWLFgANzc3dO3aFQBkFmPnz5+Hnp6e9PmIESPQunVrLF++HMOHDwcAdOzYETo6OtizZw/q1Kkj3Xbv3r0QiUTo3r17vuJ99ejRI1y4cAFubm4AgO7du6N06dLYunUrli5dCgBYtGgR3r17h7CwMDRs2BAA8Ntvv6Fq1aoYO3YsOnbsCA0N2Z/NTJo0CcWLF8fFixdhYmICAHB3d0fLli1RpkwZ6XYnTpyAsbExgoKCoKmp+b3TCwBIT09Henq69HlycvIP7UdEREREpO4uXbqEiRMnws7ODh8/fgQA6WXD3bp1w8WLFzFhwgScP39ervjsvJJM/y40k5KS8OHDB7i7u+P58+dISkoCABgbG6NNmzbYu3dvjvb/nj17UL9+fdjZ2eUr3lfOzs7SwhUArKys4OjoiOfPn0uXBQYGom7dutLCFQAMDQ0xaNAgREdHIzIyUubrevPmDW7dugVvb29p4QoALVq0gLOzc45tTU1N8fnzZ5w+ffrbJ+tfFi5cCBMTE+mjdOnSP7wvEREREZE6d17FYjGKFy8O4J+/pTU1NaVFLABUqVIF169flzs+i1eS6dKlS2jevDkMDAxgamoKKysr6SXH/y42vby88OLFC4SHhwP4Zzbj69evw8vLS654AHIUvV+ZmZkhISFB+jwmJkZ60+N/q1ixonS9LF+X//LLL7nW/TfesGHDUKFCBbRp0walSpXCgAEDcOrUKZlxv5oyZQqSkpKkjxcvXnxzeyIiIiKiosLe3h5RUVEA/rlljr29PUJCQqTrL1++LGjiWBavlMuzZ8/QrFkzfPjwAcuXL8eJEydw+vRp/P777wCQY8aw9u3bQ19fH3v37gXwzyXDGhoa6Natm1zxAOR5ia6Qwd3ysLa2xq1bt3D06FF06NABoaGhaNOmDby9vfPcR0dHB8bGxjkeREREREQ/Sp07ry1btsS+ffukz4cOHYpNmzahefPmaNasGfz9/dGrVy+543PMK+Vy7NgxpKen4+jRozm6oKGhobm2NTAwQLt27bBv3z4sX74ce/bsgZubG0qUKCFXvB9VpkwZPHr0KNfyhw8fStfntR8APHnyJNc6WfG0tbXRvn17tG/fHmKxGMOGDcP69esxY8YMlC9fXu78iYiIiIiKmmnTpqFnz57IzMyElpYWxowZg8+fP+PAgQPQ1NTEjBkzpFdfyoOdV8rla+fz353OpKQkbN26Veb2Xl5eeP36NTZt2oTbt2/numQ4v/F+hIeHByIiIqSXKwPA58+fsWHDBpQtWzbX+NWvbG1tUb16dfj7++e4XPn06dO5xsnGx8fneK6hoYGqVasCQI5JmYiIiIiIFEWdO69mZmaoVasWtLS0APxzT9fp06fj5s2b+Pvvv+Hr6wttbW2547PzSrm0bNlS2nEcPHgwUlJSsHHjRlhbW+PNmze5tvfw8ICRkRHGjx8PTU1NdOnSRVC8HzF58mTs2rULbdq0wahRo2Bubg5/f39ERUXhwIEDec40DPwzqVLbtm3RsGFDDBgwAB8/foSfnx8qVaqElJQU6XYDBw7Ex48f0bRpU5QqVQoxMTHw8/ND9erVpWNriYiIiIgot7i4OERHRwMAypYtC2tra8Ex2XmlXBwdHbF//36IRCKMHz8e69atw6BBgzB69GiZ2+vq6qJDhw749OkTmjRpkuuNmd94P6J48eK4fPkyWrRoAT8/P0yZMgXa2to4duwYPD09v7lv69atsW/fPmRnZ2PKlCk4ePAgtm7ditq1a+fYrk+fPtDV1cWaNWswbNgw+Pv7w8vLCydPnvxmcUxEREREJC917rwCwJkzZ1C7dm3Y2trCxcUFLi4usLW1Re3atXNM3iQPkaSwZ8Eh+okkJyfDxMQEL+ISBU3elJIpPJdiAutta32R8CRi3wuPkZUtPA3L4oJjWOp9f5vv0dcSeE6TU4UnkaqAS+ANdYXH0NYSHuPjJ+Exiv3YPZ3zpIjzmfxFeAw7S+ExYj8Ij/GfCfnkoi3wIjGh+wOAofBv+EQFTOCXmiU4BFIV8PvEWl/Y/hnCf4wjVgHf7voKeGuUMhIe44PAb/k0BbwvjHWEx4gT8Csp5VMy3Mqb5rn+ZytX8npPKOJvj4J26NAhdOvWDcWLF0e/fv1QoUIFAP/MLbNjxw7ExcVh796932025YWXDRMREREREakIdeqy/tf06dNRuXJlhIWFwcgo56c7U6dORcOGDTF9+nS5i1de+0hERERERESCPX/+HP37989VuAKAsbExfv31V+l9YOXBzisREREREZGKUOfOq5OTE+Li4vJc/+7dO+mlxPJg55WIiIiIiIgEW7JkCdatW4cjR47kWnfo0CGsX78eS5culTs+O69EREREREQqQp07r35+frCyskLnzp1RokQJlC9fHgDw9OlTvH79GhUqVMCff/6JP//8U7qPSCSSWezKwuKViIiIiIiIBLtz5w5EIhHs7OwAQHqf12LFisHOzg5paWm4e/dujn1Eoh+/+wKLVyIiIiIiIhWhzp3Xr8VqQeGYVyIiIiIiIlJ57LwSERERERGpCHXuvH6VmZmJV69eISEhARJJ7hdUs2ZNueKyeCUiIiIiIiLBEhMTMX78eAQEBCAjIyPXeolEApFIhOzsbLnis3glIiIiIiJSEWIZncp//PjERsri4+ODY8eOoUePHqhXrx5MTEwUGp/FKxEREREREQkWHByMUaNGYcWKFQUSn8UrERERERGRihArOwEBLCwspPd2LQicbZiIiIiIiJQuKSkJEokk14PUx6BBg7B7926IxQVTgrPzSkREREREpCLUebbhGTNmID09HbVr10bfvn1RqlQpaGpq5tquc+fOcsVn8UpERERERESCvXr1CmfPnsWtW7dw69YtmdtwtmEiIiIiIiJSqgEDBuDGjRuYMmUKZxsmIiIiIiIqytT5suGLFy9i0qRJmD17doHE54RNREREREREJJiNjQ3Mzc0LLD6LVyIiIiIiIhUhlsh+qINx48Zh06ZNSElJKZD4vGyYiIiIiIiIBEtLS4OWlhbKly+P7t27o3Tp0rlmGxaJRPj999/lii+S8OZJRAUmOTkZJiYmSEpKgrGxsfyBMrIUl5S80jIEh4iFnuAYdvgiOIbYSHgeGndjBMeAuaGw/ZOFnwvBOQAQFzcVHOPxR8Eh4PT4sfAgjiWE7f82UXgOimAs/D2OYrlvbZBviniPaiv/c/YP1laCYyQL/xEKbQV8Saz1hccoJvC6PY0vwk/GrRRtwTHMdQWHgKmO8BjGIvlmXf3q6Wfhb4yyCphT5/wL+UuKz5+S0bGKmfC/l4qIyHjZ59LZQlTImeSfhsb3f0BwtmEiIiIiIiJSqqioqAKNz+KViIiIiIhIRajL+FZZypQpU6DxOWETERERERERqTx2XomIiIiIiFSEOnVe7e3toaGhgYcPH0JLSwv29vYQib49NlckEuHZs2dyHY/FKxEREREREeWbu7s7RCKRdKKmr88LCotXIiIiIiIiFaFOnddt27Z987miccwrERERERERqTwWr0RERERERCpCLJH9UEXh4eGFui+LVyIiIiIiUjoTExOIRKIcD1JtTZs2RZMmTbB3716kpqZ+d/uUlBTs3LkTjRo1QrNmzfJ9PI55JSIiIiIiUhGq2mWV5fHjx5gzZw769u0LLS0t1KtXDzVr1oS9vT3MzMwgkUiQkJCAqKgo/P3334iIiEBWVhb69euHgICAfB+PxSsRERERERHlW+nSpbFx40YsXLgQO3bswJEjR7BmzRp8+fIlx3Z6enqoXbs25s2bh759+8LKykqu47F4JSIiIiIiUhHq1Hn9ytLSEr///jt+//13ZGVlITY2FvHx8QAACwsL2NnZoVgx4aUni1ciIiIiIiJSiGLFisHBwQEODg6Kj63wiERERERERCQXdey8FhbONkxEREREREQqj51XIiIiIiIiFSFWdgIqjJ1XIiIiIiIiUnnsvBIREREREakIjnnNGzuvREREREREpFBv3rzB7du38fnzZ4XFZPFKRERERESkIsQS2Q91ceTIETg5OaFUqVKoWbMmrl69CgD48OEDatSogcOHD8sdm8UrERERERERCXbs2DF07twZlpaWmDVrFiSS/6u6LS0tUbJkSWzdulXu+CxeiYiIiIiIVIQ6d17nzJmDRo0a4eLFixg+fHiu9S4uLrh586bc8Vm8Ksi5c+cgEolw7ty5Aom/bds2iEQiREdHS5c1btwYjRs3liuej48PypYtq5DcCsK7d+/QtWtXWFhYQCQSYeXKlYV6/OjoaIhEIixdurRQj0tEREREpK7u3buH7t2757m+ePHiiIuLkzs+ZxsmAEBqaiqWLFkiqCBWpN9//x1BQUGYNWsWbGxsULt2bWWnRERERERU4NSlyyqLvr7+Nydoev78OSwsLOSOz+JVjQUHB8u978aNGyEW/98tkFNTUzF79mwAUIni9ezZs+jYsSPGjx+v7FSIiIiIiOgHNGnSBP7+/hgzZkyudW/fvsXGjRvRrl07ueOzeFVj2tracu+rpaWlwEwULy4uDqampspOg4iIiIioUKlz53X+/PmoX78+6tSpg27dukEkEiEoKAhnz57F+vXrIZFIMGvWLLnjc8zrd8TExGDYsGFwdHSEnp4eLCws0K1btxxjT7/l6tWr8PDwgJmZGQwMDFC1alWsWrVKuv7OnTvw8fGBg4MDdHV1YWNjgwEDBiA+Pv67sf97ie/Xcbd79+7F/PnzUapUKejq6qJZs2Z4+vRpjn3/PeY1OjoaVlZWAIDZs2dDJBJBJBLB19cXW7duhUgkkjmwesGCBdDU1MSrV69+6FwA/1wq0K1bN5ibm0NfXx/169fHiRMnpOu/ju2VSCRYvXq1NJcftXXrVjRt2hTW1tbQ0dGBs7Mz1q5dm2u7v//+G61atYKlpSX09PRgb2+PAQMGyIy5YcMGlCtXDjo6OqhTpw6uXbv2w/kQEREREf0sHB0dcfHiRVhYWGDGjBmQSCT4448/sGDBAlSpUgVhYWGC5t1h5/U7rl27hsuXL6NHjx4oVaoUoqOjsXbtWjRu3BiRkZHQ19fPc9/Tp0+jXbt2sLW1xejRo2FjY4MHDx7g+PHjGD16tHSb58+fo3///rCxscH9+/exYcMG3L9/H1euXMlX4fbVokWLoKGhgfHjxyMpKQlLlixB7969pfdY+i8rKyusXbsWQ4cOhaenJzp37gwAqFq1Kuzt7TF8+HAEBASgRo0aOfYLCAhA48aNUbJkyR/K6927d2jQoAFSU1MxatQoWFhYwN/fHx06dMD+/fvh6emJRo0aYceOHejbty9atGiBfv365eu1r127FpUqVUKHDh1QrFgxHDt2DMOGDYNYLJbOeBYXF4eWLVvCysoKkydPhqmpKaKjo3Hw4MFc8Xbu3IlPnz5h8ODBEIlEWLJkCTp37oznz5+rfPeaiIiIiKiwVapUCSEhIUhISMDTp08hFovh4OAgbZYJweL1O9q2bYuuXbvmWNa+fXu4uLjgwIED6Nu3r8z9srOzMXjwYNja2uLWrVs5LoH99/2Ohg0bhnHjxuXYt379+ujZsycuXrwINze3fOeclpaGW7duSS8rNjMzw+jRo3Hv3j1Urlw51/YGBgbo2rUrhg4diqpVq6JPnz451nfq1Am7du3CkiVLoKHxT7P+5s2biIyMxIQJE344r0WLFuHdu3cICwtDw4YNAQC//fYbqlatirFjx6Jjx45wcHCAg4MD+vbtiwoVKuTK5XvOnz8PPT096fMRI0agdevWWL58ubR4vXz5MhISEhAcHJxjIqh58+blihcbG4snT57AzMwMwD+fJnXs2BFBQUEyr9dPT09Henq69HlycnK+8iciIiKin5s6Xzb8b2ZmZqhTp45CY7J4/Y5/F0KZmZlITk5G+fLlYWpqihs3buRZvN68eRNRUVFYsWJFrrGb/+6m/jt+WloaUlJSUL9+fQDAjRs35Cpe+/fvn2M87NcYz58/l1m8fk+/fv2wa9cuhIaGolmzZgD+6brq6emhS5cuPxwnMDAQdevWlRauAGBoaIhBgwZhypQpiIyMlCu/f/v3+UxKSkJmZibc3d0RFBSEpKQkmJiYSL8ex48fR7Vq1b7ZQfXy8pIWrkDOcynLwoULpRNfERERERH9TLZv3/5D2+X36sqvWLx+x5cvX7Bw4UJs3boVr169ytE1TUpKynO/Z8+eAcB3i7GPHz9i9uzZ2L17d657Hn0r/rfY2dnleP61+EpISJArXosWLWBra4uAgAA0a9YMYrEYu3btQseOHWFkZPTDcWJiYlCvXr1cyytWrChdL7R4vXTpEmbNmoXw8HCkpqbmWPe1eHV3d0eXLl0we/ZsrFixAo0bN0anTp3Qq1cv6Ojo5Ngnv+dyypQpGDt2rPR5cnIySpcuLeg1EREREdHPQ507rz4+Pnmu+3cDj8VrARk5ciS2bt2KMWPGwMXFBSYmJhCJROjRo0eOW83Iq3v37rh8+TImTJiA6tWrw9DQEGKxGK1bt5Y7vqampszl/y688xuvV69e2LhxI9asWYNLly7h9evX+b6kt6A9e/YMzZo1g5OTE5YvX47SpUtDW1sbgYGBWLFihfR8ikQi7N+/H1euXMGxY8cQFBSEAQMGYNmyZbhy5QoMDQ2lMfN7LnV0dHIVwEREREREP4OoqKhcy7KzsxEdHY01a9YgNjYW/v7+csdn8fod+/fvh7e3N5YtWyZdlpaWhsTExG/uV65cOQDAvXv30Lx5c5nbJCQk4MyZM5g9ezZmzpwpXf7kyRPhiefT9yaG6tevH5YtW4Zjx47h5MmTsLKyQqtWrfJ1jDJlyuDRo0e5lj98+FC6Xohjx44hPT0dR48ezdExDQ0Nlbl9/fr1Ub9+fcyfPx87d+5E7969sXv3bgwcOFBQHkRERERE8lLnzmtef887ODigadOmaNu2Lf766y+sXr1arvi8Vc53aGpq5uqy+fn5ITs7+5v71axZE/b29li5cmWuQvdrvK9dvf/GX7lypbCk5fB11uS8ivKqVauiatWq2LRpEw4cOIAePXqgWLH8ffbh4eGBiIgIhIeHS5d9/vwZGzZsQNmyZeHs7Cx3/oDs85mUlIStW7fm2C4hISHXOa9evToA5JhsiYiIiIiIFKddu3bYs2eP3Puz8/od7dq1w44dO2BiYgJnZ2eEh4cjJCQEFhYW39xPQ0MDa9euRfv27VG9enX0798ftra2ePjwIe7fv4+goCAYGxujUaNGWLJkCTIzM1GyZEkEBwfLbLcXND09PTg7O2PPnj2oUKECzM3NUbly5RxjUPv164fx48cDgFyXDE+ePBm7du1CmzZtMGrUKJibm8Pf3x9RUVE4cOCAdCZjebVs2RLa2tpo3749Bg8ejJSUFGzcuBHW1tZ48+aNdDt/f3+sWbMGnp6eKFeuHD59+oSNGzfC2NgYHh4egnIgIiIiIhJCnTuv3/Ps2TNBzSIWr9+xatUqaGpqIiAgAGlpaXB1dUVISMgPXTLbqlUrhIaGYvbs2Vi2bBnEYjHKlSuH3377TbrNzp07MXLkSKxevRoSiQQtW7bEyZMnUaJEiYJ8WTJt2rQJI0eOxO+//46MjAzMmjUrR/Hau3dvTJo0CeXKlUPdunXzHb948eK4fPkyJk2aBD8/P6SlpaFq1ao4duwY2rZtKzh/R0dH7N+/H9OnT8f48eNhY2ODoUOHwsrKCgMGDJBu5+7ujoiICOzevRvv3r2DiYkJ6tati4CAANjb2wvOg4iIiIjoZ3ThwgWZyxMTE3HhwgX8+eef6NSpk9zxRRJ5Z/Ghn86HDx9ga2uLmTNnYsaMGcpORy0kJyfDxMQESUlJMDY2lj9QRpbikpJXWobgELHQ+/5G32GHL4JjiI2E56FxN0ZwDJgbfn+bb0kWfi4E5wBAXNxUcIzHHwWHgNPjx8KDOAr84PBtovAcFMFY+HscxWRPWJcviniPaiv/c/YP1laCYyQL/xEKbQV8Saz1hccoJnDQmcYX4SfjVor29zf6DnNdwSFgqoA5Go1F3x6K9j1PPwt/Y5Q1ERwC51/IX1J8/pSMjlXMZK77GUuVo09lv+YO5b89R40q0NDQkDmXjkQigaamJrp16wY/P7/vXsWaF+X/RiC1sW3bNmRnZ+d5b1siIiIiIvp5yZooVSQSwczMDGXKlBHWzAGLV/oBZ8+eRWRkJObPn49OnTqhbNmyOdZ/+fLlu/ekNTc3h7a2/J+Svn379pvr9fT0YGKigI8NiYiIiIiUSJ3HvLq7uxdofBav9F1z5szB5cuX4erqCj8/v1zr9+zZg/79+38zRmhoKBo3bix3Dra2tt9c7+3tjW3btskdn4iIiIiIVBuLV/quc+fOfXN9q1atcPr06W9uU61aNUE5fC++Mia4IiIiIiJSNHXqvNrb28sc4/otIpEIz549k+t4LF5JMFtb2+92RoVq3rx5gcYnIiIiIqL8cXd3z3fxKgSLVyIiIiIiIhUhVnYC+VDYw/YETnZOREREREREVPDYeSUiIiIiIlIR6jTmNS+ZmZl4+PAhkpKSIBbn7iU3atRIrrgsXomIiIiIiEgwsViMKVOmYM2aNUhNTc1zu+zsbLni87JhIiIiIiIiFSGWyH6ogwULFuCPP/5Anz59sH37dkgkEixatAjr1q1D1apVUa1aNQQFBckdn8UrERERERERCbZt2zZ0794da9euRevWrQEAtWrVwm+//YarV69CJBLh7Nmzcsdn8UpERERERKQi1Lnz+vLlSzRt2hQAoKOjAwBIS0sDAGhra6NPnz7YsWOH3PFZvBIRERERkdIlJSVBIpHkeJB6sbCwQEpKCgDA0NAQxsbGeP78eY5tEhIS5I7PCZuIiIiIiIhUhDjPol1UqHnIo0aNGrh27Zr0eZMmTbBy5UrUqFEDYrEYf/75J6pVqyZ3fHZeiYiIiIiISLBBgwYhPT0d6enpAID58+cjMTERjRo1gru7O5KTk7Fs2TK547PzSkREREREpCLUZXyrLB06dECHDh2kz52dnfHs2TOcO3cOmpqaaNCgAczNzeWOz+KViIiIiIiIBJNIJBCJcl7ebGJigo4dOyokPi8bJiIiIiIiUhHqPNtwyZIlMXr0aFy+fLlA4rN4JSIiIiIiIsHc3d2xZcsWuLm5wc7ODuPHj0dERITC4rN4JSIiIiIiUhHq3HndtWsX4uLisHv3btStWxdr166Fi4sLypUrh6lTp+LWrVuC4rN4JSIiIiIiIoXQ09NDt27dsH//fsTFxeF///sfqlSpghUrVqBWrVpwcnKSO7ZIwrv/EhWY5ORkmJiYIOhBIgyMjOWO4/rplfBkyloL2z8tU3AKGUb6gmNoS8SCY3zIEP65namu4BBIyRCYQ2qK8CT0dQSHeJyqJThGRrbgEKj8JkZ4kKplhe2fkSU8h7fy37z9K3FpS+F5KIDGg5fCg5SyELZ/cqoCchB+Pl+nCP9zq8THD4JjKOQ9qiHwXpPWJsJzKKYpOMTbbOE/u2ziFfA1SUkTtr+dAr7ftYWfCyHvi+TkZJhYmCMpKQnGxvL/vVRUbLkr+2+dAVXUt++YkpKCbdu2Ydq0aUhJSUF2tny/+DnbMBERERERkYpQl0uEvyc1NRVHjx7F3r17cerUKaSnp6NcuXIYNWqU3DFZvBIREREREZFgaWlpOHHiBPbs2YPAwECkpqaibNmyGDVqFLy8vFCjRg1B8Vm8EhERERERqQh17rxaWVkhNTUVJUqUwKBBg+Dl5YV69eopLD6LVyIiIiIiIhLMx8cHXl5eaNiwYYHEZ/FKRERERESkItS58+rn51eg8dV3yioiIiIiIiL6abDzSkREREREpCLUufNa0Nh5JSIiIiIiIpXHzisRERERESmdiYlJjucSyc/ZghQrOwEVxs4rERERERERqTwWr0RERERERCpCLJH9UGVBQUFo06YNnJyc4OrqilWrVhXIcXjZMBEREREREcnl/Pnz8PDwgEQigaWlJZ49e4YrV67g1atXWLJkiUKPxc4rERERERGRilC3zuuCBQtQvHhx3LlzB3FxcYiLi0OTJk2wevVqfPnyRaHHYvFKREREREREcrl37x6GDRuGypUrAwDMzMywYMECfPnyBffv31fosXjZMBERERERkYpQ5S6rLG/fvoW9vX2OZQ4ODgCAT58+KfRY7LwSERERERGRXCQSCUQiUY5lX58r+nZH7LwSERERERGpCHXrvALA9u3bceXKFenztLQ0iEQi/PXXXzh8+HCObUUikdyzEbN4JSIiIiIiIrkFBwcjODg41/L/Fq4Ai1ciIiIiIqIiQd06r2KxuNCOxTGvREREREREVCgSEhLk3pfFKxERERERkYpQt/u8/oj09HTs27cPnTp1gq2trdxxeNkwERERERERKZREIsGZM2cQEBCAQ4cOITk5GVZWVujVq5fcMVm8Esng4+OD/fv3IyUlRdmpEBEREdFPRN27rNevX0dAQAB2796Nt2/fQiQSoUePHhgxYgTq16+f67Y6+cHilYiIiIiIiOT2/PlzBAQEICAgAE+ePEHJkiXRu3dv1K1bF15eXujSpQtcXFwEH4fFKxERERERkYpQt86ri4sLIiIiYGlpia5du2LTpk1o2LAhAODZs2cKPRaLVyIiIiIiIpLL1atXYW9vj+XLl6Nt27YoVqzgSkzONkxFRkxMDIYNGwZHR0fo6enBwsIC3bp1Q3R0dI7tMjMzMXv2bPzyyy/Q1dWFhYUFGjZsiNOnT+eK+erVK3Tq1AmGhoawsrLC+PHjkZ2dXUiviIiIiIh+Nuo22/Bff/0FW1tbeHp6wsbGBoMHD0ZoaCgkEsUnzc4rFRnXrl3D5cuX0aNHD5QqVQrR0dFYu3YtGjdujMjISOjr6wMAfH19sXDhQgwcOBB169ZFcnIy/v77b9y4cQMtWrSQxsvOzkarVq1Qr149LF26FCEhIVi2bBnKlSuHoUOHKutlEhERERGpjGHDhmHYsGGIiopCQEAAdu7ciY0bN8LGxgZNmjSBSCQSNEnTv7F4pSKjbdu26Nq1a45l7du3h4uLCw4cOIC+ffsCAE6cOAEPDw9s2LDhm/HS0tLg5eWFGTNmAACGDBmCmjVrYvPmzXkWr+np6UhPT5c+T05OFvKSiIiIiOgno8pd1m+xt7fH9OnTMX36dOmMw3v27IFEIsGwYcNw8uRJdOjQAc2bN4eurq5cx+Blw1Rk6OnpSf+fmZmJ+Ph4lC9fHqamprhx44Z0nampKe7fv48nT558N+aQIUNyPHdzc8Pz58/z3H7hwoUwMTGRPkqXLi3HKyEiIiIiUl+1atXC8uXL8eLFCwQHB6NVq1bYs2cPOnToAEtLS7njsnilIuPLly+YOXMmSpcuDR0dHVhaWsLKygqJiYlISkqSbjdnzhwkJiaiQoUKqFKlCiZMmIA7d+7kiqerqwsrK6scy8zMzJCQkJBnDlOmTEFSUpL08eLFC8W9QCIiIiIiNaKhoYHmzZtj27ZtePfuHXbt2oVmzZrJH0+BuREp1ciRIzF//nx0794de/fuRXBwME6fPg0LCwuIxWLpdo0aNcKzZ8+wZcsWVK5cGZs2bULNmjWxadOmHPE0NTXznYOOjg6MjY1zPIiIiIiIfpS6Tdj0o3R1deHl5YUjR47IHYNjXqnI2L9/P7y9vbFs2TLpsrS0NCQmJuba1tzcHP3790f//v2RkpKCRo0awdfXFwMHDizEjImIiIiI1NvBgwfztb1IJIKnp6dcx2LxSkWGpqZmrim5/fz8ct3aJj4+HhYWFtLnhoaGKF++PC/xJSIiIiKlE39/E5XStWtXiESiHH+Hf51dWNbtckQikdy3nmTxSkVGu3btsGPHDpiYmMDZ2Rnh4eEICQnJUagCgLOzMxo3boxatWrB3Nwcf//9N/bv348RI0YoKXMiIiIiIvUUGhqa43liYiI8PT2xdOlS1KpVS6HHYvFKRcaqVaugqamJgIAApKWlwdXVFSEhIWjVqlWO7UaNGoWjR48iODgY6enpKFOmDObNm4cJEyYoKXMiIiIion+o2/hWd3f3HM/j4+MBANWrV8+1TiiRRFYvl4gUIjk5GSYmJgh6kAgDI/knb3L99Ep4MmWthe2flik4hQwjfcExtCXCL6b5kCF8rjpT+W5PlkNKhsAcUlOEJ6GvIzjE41QtwTEy5Lt6KIfKb2KEB6laVtj+GVnCc3ib94zmP0pcWv7bECiSxoOXwoOUsvj+Nt+SnKqAHISfz9cpwv/cKvHxg+AYCnmPaoiE7W9tIjyHYvmfVPG/3mYL/9llE6+Ar0lKmrD97RTw/a4t/FwIeV8kJyfDxMI81/KftUyZGib7b50Fbuox1258fDysrKwQEhKCpk2bKjQ2O69EREREREQqQt06r4VJPcp3IiIiIiIi+qmx80pERERERKQiikrn9euMw4rE4pWIiIiIiIjk0qFDhxzPMzP/mSdl2rRpsLTMPSZbJBLhyJEjch2LxSsREREREZGKULfO6507d3J1WcuUKYM3b97gzZs3ubYX0pFl8UpERERERERyiY6OLrRjsXglIiIiIiJSEerWeS1MLF6JiIiIiIhI4R4+fIh9+/bhzZs3cHR0RP/+/WFsbCx3PBavREREREREKkLdOq9//fUX/vzzT1y+fDnHBE3Hjh1Dt27dkJGRIV3m5+eHK1euyJzI6UfwPq9EREREREQkl6NHj6JcuXI5CtKsrCwMHDgQmpqa2Lp1K+7evYtFixYhJiYG8+fPl/tYLF6JiIiIiIhUhFgi+6GqIiMjUb9+/RzLQkND8f79e/z+++/w9vZGpUqVMHHiRHTv3h2BgYFyH4vFKxEREREREcklPj4epUuXzrHszJkzEIlE8PT0zLHc1dUVsbGxch+LxSsRERERESldUlISJBKJ9PGzUrfOa/HixfH27dscy8LCwqCvr49q1arlWK6trQ1tbW25j8XilYiIiIiIiORSu3Zt+Pv749OnTwCA+/fvIyIiAq1atUKxYjnnB3748CFKlSol97E42zAREREREZGKEKtZ13nWrFmoU6cOfvnlF1SqVAnXr1+HSCTClClTcm176NAhNG3aVO5jsfNKREREREREcqlSpQrOnj2LWrVq4fXr16hfvz4CAwNRq1atHNudO3cO+vr66Natm9zHYueViIiIiIhIRajy+Na8NGjQACdOnPjmNo0bN8bdu3cFHYedVyIiIiIiIlJ57LwSERERERGpCHXsvBYWdl6JiIiIiIhI5bHzSkREREREpCKylZ2ACmPxSlQIShoCRkby759lW1JwDh++CNvfppjwH6Xarz4IjvG3tqXgGLXFCYJjpFiaCY5hqiHwnH5MEZwDjPUFh7AzFp6Grlj4++sOygiOkfFW2LVahlqagnMoZSP8PZ6RJjgEYj8Jj1G+vPz38vvq7Wdh+5tb6AnOwVwsFhyjRJrw79e0EsLfG7oaCrgeMTVd0O5iA13BKWiIRIJjGGf+v/buP77m+v//+P1s7LedGZsxZn6ErOS3/JjfxYhUo5TahHgrJXyU3n6lIj9S3h9vRbxNfeiHSe/yq1KTYvnxISGaDxlRfs1+GBu21/eP3jtfp+3YmXPYa9yul8u5XJzn6/l6nsd57rnZY4/X63ncMBdhrv9fIFfXVznXf+7oshvSpTQXvlmzMl1/fdwSSF4BAAAAwCS459Ux7nkFAAAAAJgelVcAAAAAMAkqr45ReQUAAAAAmB7JKwAAAADA9LhsGAAAAABMgsuGHaPyCgAAAAAwPSqvAAAAAGASVF4dI3kFAAAAUOqsVqvdc8Mgi4M9klcAAAAAMAkqr45xzysAAAAAwPSovAIAAACASVB5dYzKKwAAAADA9Ki8AgAAAIBJUHl1jMorAAAAAMD0qLwCAAAAgElQeXWMyisAAAAAwPSovAIAAACASVB5dYzKKwAAAADA9Ki8AgAAAIBJUHl1jMorAAAAAMD0SF5xU5g8ebIsFotOnz5d2qEAAAAA1yzfKPoBklcAAAAAQBnAPa8AAAAAYBL5pR2AiVF5BQAAAACYHskrbirp6emKj49XUFCQrFarBg4cqPPnz0uSDh8+LIvFooSEhELnWSwWTZ482a7t2LFjevLJJ1WlShV5e3srKipK//rXv27AuwAAAMCtinteHeOyYdxU+vXrp1q1amnatGnasWOHFi5cqNDQUE2fPr1E45w4cUJ33323LBaLnnnmGYWEhGjt2rUaNGiQMjMzNXLkyOvzBgAAAAAUieQVN5UmTZpo0aJFtudnzpzRokWLSpy8/v3vf1deXp52796tSpUqSZKGDRum/v37a/LkyRo6dKh8fX0LnZebm6vc3Fzb88zMzGt8JwAAALgVUWV1jMuGcVMZNmyY3fPo6GidOXOmREmkYRhasWKFevXqJcMwdPr0adujW7duysjI0I4dO4o8d9q0abJarbZHjRo1XHo/AAAAAP5E5RU3lYiICLvnFStWlCSdPXvW6TFOnTql9PR0LViwQAsWLCiyz8mTJ4tsHzdunEaNGmV7npmZSQILAAAAp1F5dYzkFTcVT0/PItsNw5DFYinyWF5ent3z/Pw/NygfMGCA4uLiijynUaNGRbZ7e3vL29vb2XABAAAAOInkFbeMgipsenq6XXtqaqrd85CQEFWoUEF5eXnq2rXrjQoPAAAAoPJ6FdzziltGYGCgKleurI0bN9q1z5s3z+65p6enHnroIa1YsUJ79uwpNM6pU6eua5wAAAAACqPyilvK4MGD9frrr2vw4MFq3ry5Nm7cqJSUlEL9Xn/9dSUlJalVq1YaMmSIGjZsqLS0NO3YsUPr169XWlpaKUQPAACAmx2VV8dIXnFLmThxok6dOqXExER9/PHHiomJ0dq1axUaGmrXr0qVKtq6daumTJmiTz75RPPmzVOlSpUUFRVV4o/dAQAAAOA6i2EY5PbAdZKZmSmr1ao9R9NVITDwmsepFuB6LKcvuHZ+mJHjehBp51weYrtXZZfHaJ7v/O7TjpyrXNHlMQKUV3ynqznihkvYI0OL71OMHDfcgeKT7+JcSPopo+gN20rioothBJR3OQRVr+D6GK6+D0k6kuX6GHWDXB/jj2zXzg/2cT2GYG83/Krkhp9/OUGuLw4fDze8l/O5xfe5inx/178oHg42YSyJ85dcnws/ww3fbP/ZKPKalXP9Z58uu+F9pF/7N2tmVqas9SILtd+qaUqnj4r+eiQ97IavdRlH5RUAAAAATILLhh1jwyYAAAAAgOlReQUAAAAAk6Dy6hiVVwAAAACA6VF5BQAAAACToPLqGJVXAAAAAIDpUXkFAAAAAJOg8uoYlVcAAAAAgOlReQUAAAAAk6Dy6hiVVwAAAACA6VF5BQAAAACToPLqGJVXAAAAAIDpUXkFAAAAAJPIL+0ATIzKKwAAAIBSl5GRIcMwbA/gr6i8AgAAAIBJcM+rY1ReAQAAAACmR+UVAAAAAEyCyqtjVF4BAAAAAKZH5RUAAAAATCKfzaocovIKAAAAADA9Kq8AAAAAYBLc8+oYlVcAAAAAgOlReQVugD2nDfnlXvuf0TJzLS7H0KCSa+f/dMbH5RgaBbs8hJrnX3B5jKT0IJfHCMlweQj5lfd06fzg6mGuB3HZ9SGCfFxfn18ddv1vqR4W1/9U3aWma3H8ke16DAGnz7o8hgJc/34NTktzPY4cb5eHqBsc4NoAl9xQwjBc+16VJLn6PiT5HPrD5THy67j+c8PDxbJQZq7LISgo0/UfwuUqBboeyMb9ro/RrLZr55/OdDmEnDAXf0mQ5BNc4dpPLkep8UpUXh2j8goAAAAAMD0qrwAAAABgElReHaPyCgAAAAAwPSqvAAAAAGASVF4do/IKAAAAADA9Kq8AAAAAYBJUXh2j8goAAAAAMD0qrwAAAABgElReHSN5BQAAAFDqrFarW8YxDLK/mxWXDQMAAAAATI/KKwAAAACYBJcNO0blFQAAAABgelReAQAAAMAkqLw6RuUVAAAAAGB6VF4BAAAAwCSovDpG5RUAAAAAYHpUXgEAAADAJPJLOwATo/IKAAAAADA9Kq8AAAAAYBLc8+oYlVcAAAAAgOlReQUAAAAAk6Dy6hiVV0kzZ85U7dq15enpqcaNG5d2OA4lJCTIYrFo+/btpRrHtm3b1KZNG/n7+8tisejHH38s1XgAAAAA3PxKnLzu3r1bsbGxqlmzpnx8fBQeHq577rlH//3f/3094rvuvvzyS40dO1Zt27bV4sWLNXXqVId9IyMjZbFYinzcdtttbotp3rx5SkhIcNt47nTp0iX17dtXaWlpevPNN/X++++rZs2abn+d48ePa/LkySTGAAAAuKXkG0U/UMLLhjdv3qxOnTopIiJCQ4YMUVhYmI4ePaoffvhBc+bM0YgRI65XnNfNN998Iw8PDy1atEheXl5X7fvWW2/p3Llzdm2pqakaP3687r33XrfFNG/ePFWuXFnx8fFuG9NdDh48qNTUVL377rsaPHjwdXud48eP6+WXX1ZkZKSpq+EAAAAAbowSJa+vvfaarFartm3bpqCgILtjJ0+edGdcN8zJkyfl6+tbbOIqSX369CnU9uqrr0qSHnvsMXeHVmqys7Pl7+9f5LGCr/Nfv/5lRU5Ojry8vOThwRXzAAAAMB+qrI6V6Df4gwcPKioqqsjEJTQ01Pbvw4cPy2KxFHnpq8Vi0eTJk23PJ0+eLIvFopSUFA0YMEBWq1UhISGaMGGCDMPQ0aNHdf/99yswMFBhYWF64403nIr18uXLeuWVV1SnTh15e3srMjJSL730knJzc+1iWbx4sbKzs22X/5b0ct1ly5apVq1aatOmjVtiioyM1N69e/Xtt9/aYurYsaPdOLm5uRo1apRCQkLk7++vBx54QKdOnSr0emvXrlV0dLT8/f1VoUIF9ezZU3v37rXrEx8fr4CAAB08eFA9evRQhQoVHCbi8fHx6tChgySpb9++hWLbv3+/YmNjFRwcLB8fHzVv3lyfffaZ3RhpaWkaM2aM7rzzTgUEBCgwMFAxMTHatWuXrc+GDRvUokULSdLAgQMLfW0iIyOLrEp37NjRLp4NGzbIYrHoww8/1Pjx4xUeHi4/Pz9lZmZKkrZs2aLu3bvLarXKz89PHTp00KZNm+zGzMrK0siRIxUZGSlvb2+Fhobqnnvu0Y4dO4qcIwAAAADXR4kqrzVr1lRycrL27NmjO+64w62BPPzww7r99tv1+uuva/Xq1Xr11VcVHBys+fPnq3Pnzpo+fbqWLl2qMWPGqEWLFmrfvv1Vxxs8eLCWLFmi2NhYjR49Wlu2bNG0adO0b98+rVy5UpL0/vvva8GCBdq6dasWLlwoSU4loQV27typffv26e9//7tT/Z2J6a233tKIESMUEBBgG7dKlSp244wYMUIVK1bUpEmTdPjwYb311lt65pln9NFHH9n6vP/++4qLi1O3bt00ffp0nT9/Xm+//bbatWunnTt3KjIy0tb38uXL6tatm9q1a6dZs2bJz8+vyPiHDh2q8PBwTZ06Vc8++6xatGhhi23v3r1q27atwsPD9eKLL8rf318ff/yx+vTpoxUrVuiBBx6QJB06dEiffvqp+vbtq1q1aunEiROaP3++OnTooJ9//lnVqlXT7bffrilTpmjixIl66qmnFB0dLalkX5srvfLKK/Ly8tKYMWOUm5srLy8vffPNN4qJiVGzZs00adIkeXh4aPHixercubO+++47tWzZUpI0bNgwJSYm6plnnlHDhg115swZff/999q3b5+aNm16TfEAAAAAjlB5daxEyeuYMWMUExOjxo0bq2XLloqOjlaXLl3UqVMnlS9f3qVAWrZsqfnz50uSnnrqKUVGRmr06NGaNm2aXnjhBUlS//79Va1aNf3rX/+6avK6a9cuLVmyRIMHD9a7774rSRo+fLhCQ0M1a9YsJSUlqVOnThowYIDWr1+vHTt2aMCAASWOeenSpZKcu2TY2Zj69Omj8ePHq3Llyg5jqlSpkr788ktZLBZJUn5+vv7xj38oIyNDVqtV586d07PPPqvBgwdrwYIFtvPi4uJUv359TZ061a49NzdXffv21bRp0676Hlq3bq3c3FxNnTpV0dHRio2NtR177rnnFBERoW3btsnb29v2/tq1a6cXXnjBlrzeeeedSklJsbts9/HHH1eDBg20aNEiTZgwQVWqVFFMTIwmTpyo1q1bX9PX5ko5OTnavn27fH19JUmGYWjYsGHq1KmT1q5da5vHoUOHKioqSuPHj9eXX34pSVq9erWGDBliV/EfO3asw9fKzc21q6QXVHkBAAAAuKZElw3fc889Sk5OVu/evbVr1y7NmDFD3bp1U3h4eKHLQ0vqys1/PD091bx5cxmGoUGDBtnag4KCVL9+fR06dOiqY61Zs0aSNGrUKLv20aNHS/ozIXFVfn6+PvzwQzVp0kS33357sf3dGdNTTz1lS7gkKTo6Wnl5eUpNTZUkffXVV0pPT1f//v11+vRp28PT01OtWrVSUlJSoTH/9re/Of36f5WWlqZvvvlG/fr1U1ZWlu31zpw5o27duunAgQM6duyYJMnb29uWuObl5enMmTMKCAhQ/fr1r9uluHFxcbbEVZJ+/PFHHThwQI8++qjOnDljizc7O1tdunTRxo0blZ+fL+nPNbdlyxYdP37cqdeaNm2arFar7VGjRo3r8p4AAABwc2K3YcdKVHmVpBYtWuiTTz7RxYsXtWvXLq1cuVJvvvmmYmNj9eOPP6phw4bXFEhERITdc6vVKh8fH1WuXLlQ+5kzZ646Vmpqqjw8PFS3bl279rCwMAUFBdmSPFd8++23OnbsmJ5//nmn+rszpr/OVcWKFSVJZ8+elSQdOHBAktS5c+cizw8MDLR7Xq5cOVWvXt3p1/+r//u//5NhGJowYYImTJhQZJ+TJ08qPDxc+fn5mjNnjubNm6dff/1VeXl5tj6VKlW65hiuplatWnbPC+YnLi7O4TkZGRmqWLGiZsyYobi4ONWoUUPNmjVTjx499MQTT6h27dpFnjdu3Di7P1BkZmaSwAIAAABuUOLktYCXl5datGihFi1aqF69eho4cKCWL1+uSZMm2VUFr3RlovJXnp6eTrVJf1726QxHcbjD0qVL5eHhof79+5foPHfEVNy8FFQN33//fYWFhRXqV66c/Zf9ymrotSh4vTFjxqhbt25F9ilI2qdOnaoJEyboySef1CuvvKLg4GB5eHho5MiRtnGKc7X1VdTcXFl1vTLemTNnOvwYnoCAAElSv379FB0drZUrV+rLL7/UzJkzNX36dH3yySeKiYkpdJ63t7ftsmkAAACgpKiyOnbNyeuVmjdvLkn6/fffJf3/SmB6erpdP3dUPJ1Rs2ZN5efn68CBA3aX9J44cULp6emqWbOmS+Pn5uZqxYoV6tixo6pVq+b2mFxNcOvUqSPpzx2gu3bt6tJYziioQpYvX77Y10tMTFSnTp20aNEiu/b09HS7KvvV5qBixYqF1pb05/pyVBG9UsH8BAYGOjU/VatW1fDhwzV8+HCdPHlSTZs21WuvvVZk8goAAADg+ihRuS0pKanIqmfB/Zz169eX9GdSULlyZW3cuNGu37x58641zhLp0aOHpD937r3S7NmzJUk9e/Z0afw1a9YoPT29RJ/tWpKY/P39i0zOnNWtWzcFBgZq6tSpunTpUqHjRX2sjitCQ0PVsWNHzZ8/3/YHDEev5+npWWgNLV++3HZPbIGCz5ktah7q1KmjH374QRcvXrS1rVq1SkePHnUq3mbNmqlOnTqaNWuWzp075zDevLw8ZWRk2B0LDQ1VtWrV7DZlAgAAANyFe14dK1HldcSIETp//rweeOABNWjQQBcvXtTmzZv10UcfKTIyUgMHDrT1HTx4sF5//XUNHjxYzZs318aNG5WSkuL2N1CUu+66S3FxcVqwYIHS09PVoUMHbd26VUuWLFGfPn3UqVMnl8ZfunSpvL299dBDD12XmJo1a6a3335br776qurWravQ0FCH968WJTAwUG+//bYef/xxNW3aVI888ohCQkJ05MgRrV69Wm3bttXcuXNL9J6L889//lPt2rXTnXfeqSFDhqh27do6ceKEkpOT9dtvv9k+x/W+++7TlClTNHDgQLVp00a7d+/W0qVLC1VM69Spo6CgIL3zzjuqUKGC/P391apVK9WqVUuDBw9WYmKiunfvrn79+ungwYP6n//5H1tFtTgeHh5auHChYmJiFBUVpYEDByo8PFzHjh1TUlKSAgMD9fnnnysrK0vVq1dXbGys7rrrLgUEBGj9+vXatm2b0583DAAAAMA9SpS8zpo1S8uXL9eaNWu0YMECXbx4URERERo+fLjGjx+voKAgW9+JEyfq1KlTSkxM1Mcff6yYmBitXbtWoaGh7n4PRVq4cKFq166thIQErVy5UmFhYRo3bpwmTZrk0riZmZlavXq1evbsKavVel1imjhxolJTUzVjxgxlZWWpQ4cOJUpeJenRRx9VtWrV9Prrr2vmzJnKzc1VeHi4oqOj7f7I4C4NGzbU9u3b9fLLLyshIUFnzpxRaGiomjRpookTJ9r6vfTSS8rOztayZcv00UcfqWnTplq9erVefPFFu/HKly+vJUuWaNy4cRo2bJguX76sxYsXq1atWurWrZveeOMNzZ49WyNHjlTz5s21atUq287NzujYsaOSk5P1yiuvaO7cuTp37pzCwsLUqlUrDR06VJLk5+en4cOH68svv9Qnn3yi/Px81a1bV/PmzXNpd2YAAADAEaqsjlkMZ3c/AlBimZmZslqt+nDnWflVCCz+BAdqBbq+0VcDFzdz/vnqm3w7pZFvjuuDuOEnelK6j8tjhPi6/jXxc+3jsRXs+ttwiyAf1+fiq8PObdh2NR5u2KOvS81r37xOkv7Idn19hmWcdXkMBbhhcRxPc30MPzdsYBcc4Nr57vgtsFzRGyWWiI+L3/CSdOiEy0Pk1ym8kWNJeWRdcOn8dC/f4jsVI8gNn6N+sdK1/79cwGvjXpfHULPi9+u4qszzLoeQE+b6Jz745DvemLU4mZmZsoa471Mnynp64z37cpHtuaPcsl1RmcYMAAAAAIBJUHl1zLU/MQMAAAAAyhSLxeLwUbABa0JCgsM+3bt3d/q1fvvtNwUEBMhisej06dMuxU3lFQAAAABM4kZUXpOTkwu1PfHEE/L391fVqlUl/flpKH/td+DAAT3xxBMl+sjI0aNHKyAgQNnZ2a4FLZJXAAAAALil3H333XbPDx8+rAMHDmjGjBm2tpCQEIWEhNj1W7dunTw9PfXwww879TrffPON1q9fr5deekljxoxxOW6SVwAAAAC4hS1btkwWi0X9+/e/ar8PPvhAnTt3VlhY8Zu/Xbp0Sc8884xefvllBQS4uPnef3DPKwAAAACYRL6Dx/X0wQcfqH379qpevbrDPtu3b1dKSooeffRRp8acM2eOPD093foRk1ReAQAAAOAW9dNPP2nPnj2aP3/+VfstW7ZMPj4+evDBB4sd8/jx45oyZYo+/fRTeXq64ePG/oPkFQAAAABMwhhT8hQtIyPDtkvw1dSuXVteXl52bUuXLlX58uUVGxvr8Lz8/Hx9+OGH6tmzpwIDi/+M5DFjxuiee+5R586diw++BEheAQAAAKAMW758uYYMGVJsv3379qlBgwa254Zh6MMPP1RMTIyCg4MdnpeUlKTff/9djz32WLGvkZycrMTERG3ZskXp6emSpPPnz0uSMjMz5efnJz8/v2LHKQr3vAIAAABAGTZ48GAZhlHs48rEVZK+//57HTlypNj7WJctW6agoCD16NGj2Fh++eUXXbp0SU2bNlXFihVVsWJFPf3005KkOnXq6Mknn7zm90nlFQAAAABuQcuWLVNAQIB69+7tsE9ubq4++eQTPfjgg/L29i52zO7duyspKcmubd26dZo+fbo+/fRT3XbbbdccL8krAAAAANxiLl++rMTERPXp00e+vr4O+61Zs0bp6ekOq7PvvfeennzySX399dfq0KGDwsLCCn2UzuHDhyVJbdu2VeXKla85Zi4bBgAAAIBbzBdffKHTp087dclw1apV1alTpyKP5+fnKy8vT4ZhXI8w7ZC8AgAAACh1GRkZTt23WdwDzunZs6cMw1BMTMxV+y1fvlzHjx+Xh0fRqWN8fLwMw1DHjh0djlHQx5Wqq0TyCgAAAAAoA0heAQAAAACmR/IKAAAAADA9klcAAAAAgOmRvAIAAAAATI/kFQAAAABgeiSvAAAAAADTI3kFAAAAAJiexeCTfIHrJjMzU1arVRkZGQoMDCyyT25urqZNm6Zx48bJ29v7Bkd482E+3Yv5dC/m072YT/diPt2L+XSeM78vARLJK3BdGYahrKwsVahQQRaLpcg+/MB2L+bTvZhP92I+3Yv5dC/m072YT+c58/sSIEnlSjsA4GZmsVj4DwsAAOAq+H0JzuKeVwAAAACA6ZG8AgAAAABMj+QVKGXe3t6aNGkSmzm4CfPpXsynezGf7sV8uhfz6V7MJ+B+bNgEAAAAADA9Kq8AAAAAANMjeQUAAAAAmB7JKwAAAADA9EhegVKSm5urF154QdWqVZOvr69atWqlr776qrTDKpM2bNggi8VS5OOHH34o7fBM7dy5c5o0aZK6d++u4OBgWSwWJSQkFNl337596t69uwICAhQcHKzHH39cp06durEBm5yz8xkfH1/kem3QoMGND9rEtm3bpmeeeUZRUVHy9/dXRESE+vXrp5SUlEJ9WZ/Fc3Y+WZ/O2bt3r/r27avatWvLz89PlStXVvv27fX5558X6sv6BNyjXGkHANyq4uPjlZiYqJEjR+q2225TQkKCevTooaSkJLVr1660wyuTnn32WbVo0cKurW7duqUUTdlw+vRpTZkyRREREbrrrru0YcOGIvv99ttvat++vaxWq6ZOnapz585p1qxZ2r17t7Zu3SovL68bG7hJOTuf0p87kS5cuNCuzWq1XucIy5bp06dr06ZN6tu3rxo1aqQ//vhDc+fOVdOmTfXDDz/ojjvukMT6dJaz8ymxPp2RmpqqrKwsxcXFqVq1ajp//rxWrFih3r17a/78+XrqqacksT4BtzIA3HBbtmwxJBkzZ860tV24cMGoU6eO0bp161KMrGxKSkoyJBnLly8v7VDKnJycHOP33383DMMwtm3bZkgyFi9eXKjf3/72N8PX19dITU21tX311VeGJGP+/Pk3KlzTc3Y+4+LiDH9//xscXdmzadMmIzc3164tJSXF8Pb2Nh577DFbG+vTOc7OJ+vz2l2+fNm46667jPr169vaWJ+A+3DZMFAKEhMT5enpafurrCT5+Pho0KBBSk5O1tGjR0sxurItKytLly9fLu0wygxvb2+FhYUV22/FihW67777FBERYWvr2rWr6tWrp48//vh6hlimODufBfLy8pSZmXkdIyrb2rRpU6gqddtttykqKkr79u2ztbE+nePsfBZgfZacp6enatSoofT0dFsb6xNwH5JXoBTs3LlT9erVU2BgoF17y5YtJUk//vhjKURV9g0cOFCBgYHy8fFRp06dtH379tIO6aZw7NgxnTx5Us2bNy90rGXLltq5c2cpRFX2nT9/XoGBgbJarQoODtbTTz+tc+fOlXZYpmcYhk6cOKHKlStLYn266q/zWYD16bzs7GydPn1aBw8e1Jtvvqm1a9eqS5cuklifgLtxzytQCn7//XdVrVq1UHtB2/Hjx290SGWal5eXHnroIfXo0UOVK1fWzz//rFmzZik6OlqbN29WkyZNSjvEMu3333+XJIdrNi0tTbm5ufL29r7RoZVZVatW1dixY9W0aVPl5+dr3bp1mjdvnnbt2qUNGzaoXDn+e3Zk6dKlOnbsmKZMmSKJ9emqv86nxPosqdGjR2v+/PmSJA8PDz344IOaO3euJNYn4G789AFKwYULF4r8j8rHx8d2HM5r06aN2rRpY3veu3dvxcbGqlGjRho3bpzWrVtXitGVfQXrsbg1yy9fzps2bZrd80ceeUT16tXT3//+dyUmJuqRRx4ppcjMbf/+/Xr66afVunVrxcXFSWJ9uqKo+ZRYnyU1cuRIxcbG6vjx4/r444+Vl5enixcvSmJ9Au7GZcNAKfD19VVubm6h9pycHNtxuKZu3bq6//77lZSUpLy8vNIOp0wrWI+s2evr+eefl4eHh9avX1/aoZjSH3/8oZ49e8pqtdr2DZBYn9fK0Xw6wvp0rEGDBurataueeOIJrVq1SufOnVOvXr1kGAbrE3AzklegFFStWtV2KdGVCtqqVat2o0O6KdWoUUMXL15UdnZ2aYdSphVc7uZozQYHB1M1cANfX19VqlRJaWlppR2K6WRkZCgmJkbp6elat26d3c9I1mfJXW0+HWF9Oi82Nlbbtm1TSkoK6xNwM5JXoBQ0btxYKSkphXZx3LJli+04XHfo0CH5+PgoICCgtEMp08LDwxUSElLkBlhbt25lvbpJVlaWTp8+rZCQkNIOxVRycnLUq1cvpaSkaNWqVWrYsKHdcdZnyRQ3n46wPp1XcKlwRkYG6xNwM5JXoBTExsYqLy9PCxYssLXl5uZq8eLFatWqlWrUqFGK0ZU9p06dKtS2a9cuffbZZ7r33nvl4cGPOlc99NBDWrVqld3HOH399ddKSUlR3759SzGysicnJ0dZWVmF2l955RUZhqHu3buXQlTmlJeXp4cffljJyclavny5WrduXWQ/1qdznJlP1qfzTp48Wajt0qVLeu+99+Tr62v7wwDrE3Afi2EYRmkHAdyK+vXrp5UrV+r5559X3bp1tWTJEm3dulVff/212rdvX9rhlSmdO3eWr6+v2rRpo9DQUP38889asGCBypcvr+TkZN1+++2lHaKpzZ07V+np6Tp+/LjefvttPfjgg7YdmkeMGCGr1aqjR4+qSZMmCgoK0nPPPadz585p5syZql69urZt28Zlb1cobj7Pnj2rJk2aqH///mrQoIEk6YsvvtCaNWvUvXt3rV69mj+4/MfIkSM1Z84c9erVS/369St0fMCAAZLE+nSSM/N5+PBh1qeTHnjgAWVmZqp9+/YKDw/XH3/8oaVLl2r//v164403NGrUKEmsT8CtDACl4sKFC8aYMWOMsLAww9vb22jRooWxbt260g6rTJozZ47RsmVLIzg42ChXrpxRtWpVY8CAAcaBAwdKO7QyoWbNmoakIh+//vqrrd+ePXuMe++91/Dz8zOCgoKMxx57zPjjjz9KL3CTKm4+z549awwYMMCoW7eu4efnZ3h7extRUVHG1KlTjYsXL5Z2+KbSoUMHh3P5119hWJ/Fc2Y+WZ/O++CDD4yuXbsaVapUMcqVK2dUrFjR6Nq1q/Hvf/+7UF/WJ+AeVF4BAAAAAKbHdR8AAAAAANMjeQUAAAAAmB7JKwAAAADA9EheAQAAAACmR/IKAAAAADA9klcAAAAAgOmRvAIAAAAATI/kFQAAAABgeiSvAAAAAADTI3kFAAAAAJgeySsAAAAAwPRIXgEAAAAApkfyCgAAAAAwPZJXAAAAAIDpkbwCAAAAAEyP5BUAAAAAYHokrwAAAAAA0yN5BQAAAACYHskrAAAAAMD0SF4BAAAAAKZH8goAgBMiIyNlsViUkJBQ2qEAAHBLInkFAMDk4uPjSZwBALc8klcAAAAAgOmRvAIAAAAATI/kFQCAazR58mRZLBZNnjxZp06d0tNPP60aNWrIy8tLNWrU0IgRI5Senl7kucuXL1fXrl1VqVIllS9fXpUqVVLDhg01ZMgQ/fTTT5Kkw4cPy2KxaMmSJZKkgQMHymKx2B6TJ0+2jbd161aNHTtWLVu2VFhYmLy8vFSlShX16tVL69evLzKGhIQEWSwWxcfHKzs7W+PGjVPdunXl7e2tsLAwxcXF6dixYw7f/7Fjx/Rf//VfuvPOO1WhQgX5+/urXr16io+P1+bNmwv1v3Dhgt544w3dfffdCgoKko+Pj+rXr6+xY8fqzJkz1zxPAIBbQ7nSDgAAgLLu6NGjatq0qS5duqS2bdsqJydHmzZt0ty5c7VlyxZt2rRJ5cuXt/WfMmWKJk2apHLlyqlNmzYKDw9XRkaGjhw5okWLFikqKkqNGjVSQECA4uLi9P333+vgwYNq27at6tataxuncePGtn+/9NJLSkpKUlRUlJo1ayZ/f38dPHhQq1at0qpVq/TWW2/pueeeKzL+jIwMtWnTRkeOHFF0dLTuuOMOJScn67333tO3336rXbt2yWq12p3z9ddfKzY2Vunp6QoNDVWXLl3k5eWlw4cPa9myZZKkNm3a2PofP35c3bt31+7duxUcHKwWLVqoQoUK2rFjh2bOnKnly5drw4YNqlmzZonnCQBwizAAAECxatasaUgyFi9ebGubNGmSIcmQZMTHxxs5OTm2Y0eOHDHCw8MNScayZcts7Tk5OYavr68REBBg7N+/v9DrHD582Ni3b59dW1xcXKHX/qs1a9YYx48fL9S+efNmIzAw0Chfvrzx22+/2R1bvHixLf5u3boZGRkZtmNpaWlG48aNDUnG1KlT7c47cuSIYbVaDUnGiy++aOTm5todP3HihPHdd9/Znufn5xtt27Y1JBmDBg0yMjMzbccuXbpkjB492pBkdOrUyaV5AgDc3LhsGAAAF1WvXl3//Oc/5e3tbWsruGxYkt1lu5mZmbpw4YJq166t+vXrFxqrZs2aatCgQYljiImJUdWqVQu1t27dWk8//bQuXbqkf//730We6+/vr8WLFyswMNDWVrFiRb344ouF4pek2bNnKyMjQ7169dK0adPk5eVldzw0NFTt2rWzPf/iiy+0adMmNW7cWO+8844qVKhgO1auXDnNmDFDd9xxh5KSkrRnzx5J12+eAABlF5cNAwDgoi5dusjPz69Q++233y5JdveNhoSEKDIyUj/99JNGjx6tQYMGqWHDhm6J48yZM1q9erX27Nmjs2fP6tKlS5KkAwcOSJJ++eWXIs9r3rx5kYlvUfFL0rp16yRJTz31lFNxrV69WpL00EMPqVy5wr96eHh4qH379tqzZ482b96sO+6447rOEwCgbCJ5BQDARREREUW2F1Qyc3Jy7Nrfe+89xcbGavbs2Zo9e7aCg4PVqlUr3XPPPXr88cdVuXLlEsfw7rvv6vnnn1d2drbDPpmZmW6JPzU1VZKcrnweOnRIkjRhwgRNmDDhqn1PnTpl+/f1mCcAQNlF8goAgIs8PEp2F050dLQOHz6s1atX69tvv9XmzZv1xRdfaO3atZo0aZJWrlypLl26OD3e//7v/2ro0KHy9PTU9OnT1atXL0VERMjPz08Wi0ULFizQ0KFDZRiGW+Ivqfz8fElSu3btVKdOnav2jYqKsv3b3fMEACjbSF4BACgFvr6+io2NVWxsrKQ/K47jx4/XggUL9OSTT9qqm85Yvny5DMPQiBEjNHbs2ELHCy4bdpeIiAj98ssv2r9/v93ux47UqFFDknT//fdrzJgxJXotd84TAKBsY8MmAABMICQkRDNmzJAkHTlyRGfPnrUdK9gQ6fLly0Wem5aWJkl2HzNTICcnRytWrHBrrN27d5f056XKzoiJiZH0/5NsV1xtngAANzeSVwAAbqDU1FQtXLiwyPtPP//8c0l/7vR75c6/1atXlyTt3bu3yDELNlZasmSJsrKybO05OTkaPny4fv31V7fFL0mjRo1ShQoV9Nlnn2n8+PG2jaEKnDx5Ut9//73t+f33368WLVpo69atGjhwoN19rQXOnj2rd955x5agX8s8AQBublw2DADADXT27FkNGTJEw4cPV+PGjVWrVi1Jf17au3PnTlksFs2cOVOenp62c/r06aOXX35Z//jHP7Rnzx7VqFFDHh4e6t27t3r37q2BAwdqzpw52rlzp2rVqqXo6Gh5enrqu+++04ULF/Tcc89pzpw5bnsPERERSkxMVGxsrF577TUtXLhQrVu3Vvny5ZWamqqdO3fq0UcftX1cjoeHhz799FP17NlTS5YsUWJiou666y5FRETo4sWLOnTokHbv3q28vDzFx8erXLly1zRPAICbG5VXAABuoDp16uitt97Sfffdp/T0dK1Zs0arV69Wdna2nnjiCW3btk2DBg2yO6dRo0ZasWKFWrdurS1btighIUGLFi3Sjh07JElBQUHavn27hg8frqCgIK1du1bJycm69957tWPHDjVu3Njt7+Pee+/Vnj179NxzzykoKEjr1q3T2rVrlZ6erscff1zDhg2z61+tWjX98MMPeuedd9SyZUv98ssvSkxMtFVohw0bpi+++EI+Pj7XPE8AgJubxXD15hMAAAAAAK4zKq8AAAAAANMjeQUAAAAAmB7JKwAAAADA9EheAQAAAACmR/IKAAAAADA9klcAAAAAgOmRvAIAAAAATI/kFQAAAABgeiSvAAAAAADTI3kFAAAAAJgeySsAAAAAwPRIXgEAAAAApkfyCgAAAAAwvf8HMPomsJ6aqg0AAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"atom.lda.plot_shap_heatmap(target=2, show=7)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}