{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example: Imbalanced datasets\n", "------------------------------\n", "\n", "This example shows how ATOM can help you handle imbalanced datasets. We will evaluate the performance of three different Random Forest models: one trained directly on the imbalanced dataset, one trained on an oversampled dataset and the last one trained on an undersampled dataset." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load the data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Import packages\n", "from atom import ATOMClassifier\n", "from sklearn.datasets import make_classification" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Create a mock imbalanced dataset\n", "X, y = make_classification(\n", " n_samples=5000,\n", " n_features=30,\n", " n_informative=20,\n", " weights=(0.95,),\n", " random_state=1,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run the pipeline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<< ================== ATOM ================== >>\n", "\n", "Configuration ==================== >>\n", "Algorithm task: Binary classification.\n", "\n", "Dataset stats ==================== >>\n", "Shape: (5000, 31)\n", "Train set size: 4000\n", "Test set size: 1000\n", "-------------------------------------\n", "Memory: 1.24 MB\n", "Scaled: False\n", "Outlier values: 570 (0.5%)\n", "\n" ] } ], "source": [ "# Initialize atom\n", "atom = ATOMClassifier(X, y, test_size=0.2, verbose=2, random_state=1)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
x0x1x2x3x4x5x6x7x8x9...x21x22x23x24x25x26x27x28x29target
0-0.535760-2.4260451.2568360.374501-3.241958-1.239468-0.208750-6.0159953.6986690.112512...0.044302-1.93572710.8703530.286755-2.4165070.556990-1.5226353.7192011.4491350
1-3.311935-3.149920-0.801252-2.644414-0.704889-3.3122560.7145152.9923455.0569103.036775...2.2243590.451273-1.822108-1.4358010.036132-1.3645831.2156635.2321611.4087980
23.8211991.328129-1.000720-13.1516970.2542531.263636-1.0884514.924264-1.225646-6.974824...3.5412221.686667-13.763703-1.3212561.6776870.774966-5.0676894.663386-1.7141860
35.9311263.3388300.5459062.296355-3.9410883.527252-0.1587703.138381-0.927460-1.642079...-3.6344427.853176-8.4575980.000490-2.612756-1.1382060.4971504.351289-0.3217480
4-2.829472-1.227185-0.7518923.056106-1.988920-2.219184-0.0758825.790102-2.7866712.023458...4.0579541.178564-15.0281871.627140-1.093587-0.4226551.7770116.660638-2.5537230
\n", "

5 rows × 31 columns

\n", "
" ], "text/plain": [ " x0 x1 x2 x3 x4 x5 x6 \\\n", "0 -0.535760 -2.426045 1.256836 0.374501 -3.241958 -1.239468 -0.208750 \n", "1 -3.311935 -3.149920 -0.801252 -2.644414 -0.704889 -3.312256 0.714515 \n", "2 3.821199 1.328129 -1.000720 -13.151697 0.254253 1.263636 -1.088451 \n", "3 5.931126 3.338830 0.545906 2.296355 -3.941088 3.527252 -0.158770 \n", "4 -2.829472 -1.227185 -0.751892 3.056106 -1.988920 -2.219184 -0.075882 \n", "\n", " x7 x8 x9 ... x21 x22 x23 x24 \\\n", "0 -6.015995 3.698669 0.112512 ... 0.044302 -1.935727 10.870353 0.286755 \n", "1 2.992345 5.056910 3.036775 ... 2.224359 0.451273 -1.822108 -1.435801 \n", "2 4.924264 -1.225646 -6.974824 ... 3.541222 1.686667 -13.763703 -1.321256 \n", "3 3.138381 -0.927460 -1.642079 ... -3.634442 7.853176 -8.457598 0.000490 \n", "4 5.790102 -2.786671 2.023458 ... 4.057954 1.178564 -15.028187 1.627140 \n", "\n", " x25 x26 x27 x28 x29 target \n", "0 -2.416507 0.556990 -1.522635 3.719201 1.449135 0 \n", "1 0.036132 -1.364583 1.215663 5.232161 1.408798 0 \n", "2 1.677687 0.774966 -5.067689 4.663386 -1.714186 0 \n", "3 -2.612756 -1.138206 0.497150 4.351289 -0.321748 0 \n", "4 -1.093587 -0.422655 1.777011 6.660638 -2.553723 0 \n", "\n", "[5 rows x 31 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Let's have a look at the data. Note that, since the input wasn't\n", "# a dataframe, atom has given default names to the columns.\n", "atom.head()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fitting FeatureSelector...\n", "Performing feature selection ...\n", " --> rfe selected 12 features from the dataset.\n", " --> Dropping feature x1 (rank 8).\n", " --> Dropping feature x2 (rank 11).\n", " --> Dropping feature x4 (rank 3).\n", " --> Dropping feature x6 (rank 16).\n", " --> Dropping feature x7 (rank 14).\n", " --> Dropping feature x10 (rank 19).\n", " --> Dropping feature x12 (rank 13).\n", " --> Dropping feature x13 (rank 12).\n", " --> Dropping feature x14 (rank 9).\n", " --> Dropping feature x16 (rank 10).\n", " --> Dropping feature x18 (rank 17).\n", " --> Dropping feature x19 (rank 2).\n", " --> Dropping feature x20 (rank 4).\n", " --> Dropping feature x22 (rank 7).\n", " --> Dropping feature x23 (rank 5).\n", " --> Dropping feature x24 (rank 18).\n", " --> Dropping feature x25 (rank 6).\n", " --> Dropping feature x26 (rank 15).\n" ] } ], "source": [ "# Let's start reducing the number of features\n", "atom.feature_selection(\"rfe\", solver=\"rf\", n_features=12)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Training ========================= >>\n", "Models: RF\n", "Metric: ba\n", "\n", "\n", "Results for RandomForest:\n", "Fit ---------------------------------------------\n", "Train evaluation --> ba: 1.0\n", "Test evaluation --> ba: 0.5556\n", "Time elapsed: 1.233s\n", "-------------------------------------------------\n", "Time: 1.233s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 1.236s\n", "-------------------------------------\n", "RandomForest --> ba: 0.5556 ~\n" ] } ], "source": [ "# Fit a model directly on the imbalanced data\n", "atom.run(\"RF\", metric=\"ba\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Branch(main)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# The transformer and the models have been added to the branch\n", "atom.branch" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Oversampling" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Successfully created new branch: oversample.\n" ] } ], "source": [ "# Create a new branch for oversampling\n", "atom.branch = \"oversample\"" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Oversampling with SMOTE...\n", " --> Adding 3570 samples to class 1.\n" ] } ], "source": [ "# Perform oversampling of the minority class\n", "atom.balance(strategy=\"smote\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datasettraintest
047313785946
13839378554
\n", "
" ], "text/plain": [ " dataset train test\n", "0 4731 3785 946\n", "1 3839 3785 54" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "atom.classes # Check the balanced training set!" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Training ========================= >>\n", "Models: RF_os\n", "Metric: ba\n", "\n", "\n", "Results for RandomForest:\n", "Fit ---------------------------------------------\n", "Train evaluation --> ba: 1.0\n", "Test evaluation --> ba: 0.7672\n", "Time elapsed: 2.219s\n", "-------------------------------------------------\n", "Time: 2.219s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 2.221s\n", "-------------------------------------\n", "RandomForest --> ba: 0.7672 ~\n" ] } ], "source": [ "# Train another model on the new branch. Add a tag after \n", "# the model's acronym to distinguish it from the first model\n", "atom.run(\"rf_os\") # os for oversample" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Undersampling" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Successfully created new branch: undersample.\n" ] } ], "source": [ "# Create the undersampling branch\n", "# Split from master to not adopt the oversmapling transformer\n", "atom.branch = \"undersample_from_main\"" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datasettraintest
047313785946
126921554
\n", "
" ], "text/plain": [ " dataset train test\n", "0 4731 3785 946\n", "1 269 215 54" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "atom.classes # In this branch, the data is still imbalanced" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Undersampling with NearMiss...\n", " --> Removing 3570 samples from class 0.\n" ] } ], "source": [ "# Perform undersampling of the majority class\n", "atom.balance(strategy=\"NearMiss\")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Training ========================= >>\n", "Models: RF_us\n", "Metric: ba\n", "\n", "\n", "Results for RandomForest:\n", "Fit ---------------------------------------------\n", "Train evaluation --> ba: 1.0\n", "Test evaluation --> ba: 0.6706\n", "Time elapsed: 0.232s\n", "-------------------------------------------------\n", "Time: 0.232s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 0.234s\n", "-------------------------------------\n", "RandomForest --> ba: 0.6706 ~\n" ] } ], "source": [ "atom.run(\"rf_us\")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Branch(undersample)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Check that the branch only contains the desired transformers \n", "atom.branch" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABEEAAAGGCAYAAACUtJ9/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzwElEQVR4nO3dd3wUdf7H8fdu6qYnJCT0Hrp0DwQLRVE41EMU1LMXbOihh8qhiIee5516Hp6iPzlET7kTRRQPUcGKHhZK6EV6Jz1A6iY7vz/CDrt0yG5mN/t6Ph48nN2d8gnOhpnPfD+fr80wDEMAAAAAAAB1nN3qAAAAAAAAAGoDSRAAAAAAABASSIIAAAAAAICQQBIEAAAAAACEBJIgAAAAAAAgJJAEAQAAAAAAIYEkCAAAAAAACAkkQQAAAAAAQEggCQIAAAAAAEICSRAAAAAAABASSIIAAAAAAICQQBIEAAAAAACEBJIgAAAAAAAgJJAEAQAAAAAAIYEkCAAAAAAACAkkQQAAAAAAQEggCQIAAAAAAEICSRAAAAAAABASSIIAAAAAAICQQBIEAAAAAACEBJIgAAAAAAAgJJAEAQAAAAAAIYEkCAAAAAAACAkkQQAAAAAAQEgItzoAAAAA1Fyly6k1e3/QjoINqnI5rQ4HASoqPEZt0rqqVeo5stlsVoeDGqioLNPibZ+ooGS/1aGgjogKj1HflsOUEJ1idSh+ZTMMw7A6CAAAAJy9HQUb9M6SZ5VXvNfqUBAkWtbrrOt7PqJERz2rQ8FZ+uqX9zRvzXSrw0Ad063xRbq+5yNWh+FXlMMAAAAEse356zX1u0dIgOCMbMlbpVcW/V4HywqsDgVnaWfBRqtDQB1UWVX3RxJSDgMAABCkSisO6a2fnpKzqlyS1CylvQZljlJsVKLFkSFQ5R7ao0/WzlBhabbySvZp5tK/6M7z/kRpTBDKP1wGY5Nd913wnGw2nm/j7Ows2Kg5K1+RJCXHpFscjf+RBAEAAAhSn69/W0VleZKklvU66c7znlZ4WKTFUSGQNU1uq1apnTXlm9+pqCxPv+RkKWv3N+rW+CKrQ8MZcvcCSXTUU7OU9hZHg2C2/8AOczklpr6FkdQO0oUAAABB6GB5oRZv+0SSFBEWpet6PEwCBKcl0ZGqEd0eMF8v2DBTtAkMLuWVpSquOCApNJ7cw7/yPZrrhsL5RBIEAAAgCC3ZsUCVh2eBOa/FUCXFpFkcEYJJ+/RealGvoyQp++BObclbZXFEOBMFJdnmckoI3LTCvzxnGAqF84kkCAAAQBBasXuRudyn+VALI0Gw8jxvVuz+zsJIcKa8n9zX/fIF+FeonU8kQQAAAIJMcXmRdhX+IklqmNBSqXENLY4IwahDxq8UZqtuEbgxe6nF0eBMhNqTe/iX+3yKiYhXdESsxdH4H0kQAACAILO9YIO53Dqtq3WBIKhFR8SoSXKmJCm3eI8OlRdaGxBOW37JPnM5FHo4wH+qXFUqKsuVFDrnEkkQAACAILPvwDZzuUlyG+sCQdBrknTk/Nl3YLuFkeBM5DMSBD5SWJojl+GSFDrnEkkQAACAIJNXvNdcTotrZGEkCHapcY3NZc/zCoHN3RjVJruSHDRFxtnzKq2KJQkCAACAAHSwvMBcToiuZ2EkCHaJjiPnj+d5hcDmHgmS6EhVmD3c4mgQzEJtelyJJAgAAEDQKXMWm8uOiDgLI0Gwc3g0QSyrLLEwEpyuMmeJSioOSJJSQmAmD/hXKDbZJQkCAAAQZNz125IUZg+zMBIEO7vtyPnjclVZGAlOV0FptrkcKk/u4T+MBAEAAAAQMmyyWR0CzlAoPrmH/3ieT8mO0BhZRBIEAAAAAIJEKD65h//kH26yGxOZoOiIGIujqR0kQQAAAAAgSDASBL5S5apUUWmupNA6l0iCAAAAAECQYCQIfKWwNFeGqntMJYdQk12SIAAAAAAQJAoOly/YZFeSI9XiaBDMQnVUEUkQAAAAAAgS7pEgiY5UhdnDLY4GwSxURxWRBAEAAACAIFDmLFFJxQFJUkoIlS/APxgJAgAAAAAIWAUh+uQe/sFIEAAAAABAwMr3enKfYWEkqAvyGQkCAAAAAAhUoVq+AP9wn0+xkQmKCndYHE3tIQkCAAAAAEEg//DMMFJolS/A9ypdThWV5kkKvXOJJAgAAAAABAFGgsBXikpzZcglKfTOJZIgAAAAABAE3D0c7Da7Eh2pFkeDYBaqTVElkiAAAAAAEBTcI0ESo1MVZg+zOBoEs1AeVUQSBAAAAAACXJmzWCXOg5JC78k9fI+RIAAAAACAgFXg0RQ11J7cw/dC+XwiCQIAAAAAAS6Un9zD97zPp/oWRlL7SIIAAAAAQIAL5R4O8D33+RQbmaCocIfF0dQukiAAAAAAEOAYCQJfqXQ5VVSaKyk0zyWSIAAAAAAQ4DyTICmxoXfjCt8pLM2RIUNSaI4qIgkCAAAAAAHOXb5gt9mVGJ1qcTQIZt6lVRkWRmINkiAAAADwu5tvvlk2m838k5iYqH79+unLL788o/1cdNFF+u1vf+unKIHA5R4JkuhIU5g9zKf79vx+hoWFqVmzZrr99tuVnZ196o19YNq0abLZbLVyrG3btnn9LnL/iYuLq5Xjn8qkSZO0bNkyvx4jv/jI/9dQLIcJtzoAAAAAHLHvwHZlJDSzOgy/OOecc/Taa69JkgoKCvTKK69o6NChWrlypdq0aWNxdIA1Tuc7X+osVqnzkCT/lS+4v59VVVXKysrSH/7wB23ZsuWME5XBYsqUKerVq5f5OizMt4mls/Xkk0+qcePG6t69u9+O4T0SJLRmhpFIggAAAASUV79/VJ0anKfLOtyk2MgEq8Pxqfj4ePXu3dt83b9/fyUmJmrBggV1NglSWloqhyO0Zl7Amfnb1/epb4vLdUm76xQdEXvcdQpK/P/k3vP72bdvXxUXF+uRRx7R7t271ahRI78c00rt27f3+n1UEy6XS5WVlYqMjPTJ/vwt1JvsUg4DAAAQQAzDpR+2faJnF9yuH7Z9IpdRZXVIfhMVFaXIyEg5nU5J0ty5c3XRRRcpJSVF9erV05AhQ7Rp06aT7uO7777TkCFDVL9+fSUmJuqCCy7QkiVLvNa5+eab1a9fP3300Udq27at4uPjNWTIEO3du9drvU2bNumqq65ScnKy4uLi1KdPH33//ffm51u3btWIESOUlJSkuLg4XXnlldq1a5f5+ddffy2bzaaFCxfqkksuUUxMjJ599tma/jWhjnO5XPp28wd6duEdWrbzSxmGccw6VkyP27lzZ0kyz/Hp06erd+/eSkxMVEZGhkaOHKn9+/d7bdO8eXM99thjeuqpp5Senq60tDSNGTPG/I67Pffcc8rIyFBCQoLuuOMOlZWVHXP8n376SRdccIEcDofS0tJ0zz33qLi42Px8xowZstlsysrKUp8+feRwONSvXz/t2LFDu3bt0uDBgxUXF6cePXpo9erVZ/Szf/rpp+rRo4eio6PVqFEjTZgwQVVVR34XT5o0SY0bN9bChQvVpUsXRUVF6X//+58kaerUqWrfvr2ioqLUqlUrc/Sb27fffqvzzjtP8fHxSkpKUq9evbRw4UJJMkuC7rjjDrNMxx8KSkmCAAAAIMCUOA/q/ayXNOWbsdpRsMHqcHymsrJSlZWVys3N1YQJE+R0OnXZZZdJkrZv366RI0fqvffe01tvvaWwsDCdf/75Xjc+R9uxY4cGDRqkt99+W++9955atWqlCy+8UDt37vRab9OmTZo8ebKeeeYZTZs2TUuXLtV9991nfr5v3z717dtX69ev1z/+8Q/NmTNHQ4cONW8Ac3Nzdf7552vXrl2aPn263nnnHe3YsUNDhw6Vy+XyOtatt96qCy+8UPPmzdMVV1zhq7861HEHyws0c+lfNfW7h7W3aKvXZ95P7munfGHnzp2y2Wxq2rSp+Xr06NH66KOPNHXqVO3atUuXXHLJMUmbN998UytWrNCbb76pRx55RFOnTtWrr75qfj5r1iyNGzdON9xwg9577z05nU796U9/8trHvn37NHDgQIWFhWnWrFl6+umnNXPmTN12223HxHnzzTfrzjvv1Lvvvqvdu3fr5ptv1nXXXaehQ4fq/ffflyRdd911x2znHr3h/uP+ObKysvTrX/9aLVu21Jw5czR27Fg999xzmjBhgtf2RUVFuvvuuzV27FjNnz9frVu31jPPPKOxY8dq1KhRmjdvnm644Qbde++9mj17tiTpwIEDGjZsmDIzMzVnzhz95z//0fDhw5Wfny9JWrx4sSRp/PjxWrx4sfna19znU2xkoqLCo/1yjEBGOQwAAEAA21X4i176ZqzObTZYQzrcrNioRKtDOmvff/+9IiIizNeRkZGaMWOGMjMzJUljxowxP6uqqtKAAQOUmpqq+fPna8SIEcfdp+fNjcvl0oABA/Tdd9/p3Xff1e9//3vzs/z8fP38889q0qSJpOqn248++qhcLpfsdrteeOEFlZeXa9GiRUpJSZEkXXzxxeb2L774olwulxYsWKD4+HhJUs+ePdWyZUvNnTtXV155pbnujTfeeMwNE3C6tuStPlwiM0yXtL9BjojYWhsJUllZafYEeeaZZ3TrrbeqQYMGkqQnnnjCXK+qqko9evRQs2bNtHTpUvXs2dP8LCEhQe+++67sdrsuvfRSffPNN/rwww/N7/ezzz6r4cOH669//askafDgwerRo4fXyKznn39e0dHR+uSTT8xyssTERF177bWaOHGiOnToYK47YcIEXX311ZKk3bt365577tFzzz2n+++/X5JkGIaGDBmiLVu2qGXLluZ2gwcP9vrZJ0+erMcee0xPP/202rdvr1mzZslms+myyy5TVVWVnnzyST388MPm74dDhw5p6tSpGjRokKTqBMdTTz2lp556yvzdM2jQIOXm5mry5Mm66qqrtHHjRh04cEAvvfSS+Xvk0ksvNWNwl+e0bNnSZ6U6R6t0OXWgNE9SaE6PKzESBAAAoFat3vM/fbJ2xgn/VLqcx2xjyNCP2z/Vnxferv9tnXfc4fLBoEuXLvr555/1888/a+HChbr55pt122236ccff5RUXW5y9dVXKz09XeHh4YqJiVFJSclJS2JycnJ0++23q1GjRgoPD1dERIQ2bdp0zDaZmZlmAkSq7gdQWVlpzn7xzTffaOjQoeYNztG++OILDR48WA6Hw3xynJ6ernbt2mnp0qVe67pHtgBny2W4tGjLR/rLwju0ZMdC5RXvMz/zV/mCO0kZHR1tlr28/PLL5ucrVqzQpZdeqnr16ik8PFzNmlU3cz36u9a/f3/Z7UduM9u3b6/du3dLqk6yrFixQpdffrnXNsOGDfN6vWTJEg0ZMsSrn87w4cNls9mOKXcbMGCAudyqVStJ1bNIHf3enj17vLZ7+eWXzd9HP//8sznKZMmSJeax3K6++mqVlpZ6ldVERkZq4MCB5uvFixerpKREV111ldcIk/79+2vVqlWqqKhQq1atFBcXp+uvv17//e9/dfDgQdW2wtIcGar+NyQUS2EkRoIAAADUms25qzTjp8lnvX2p85A+WPEPRYYF5/DluLg4ryfGAwcO1E8//aRnnnlGs2fPNm+MXnjhBTVv3lxRUVEaPHjwcfsFuN10001as2aNnnzySWVmZiomJka33HLLMdskJSV5vXY3MHSvl5eXp/PPP/+Ex8nNzdWMGTM0Y8aMYz7r1q2b1+v69YNztoUfts3Xit3fWh1GyDHkOuFnB8sL9J9lz5vfebvNrsToVL/E0aVLF02bNk0VFRX6/PPP9cc//lGPPvqo/va3v6moqEiXXnqpWrdurddee02NGjWSYRjq27fvaX3X3Ovk5uaqqqpKaWlpXusc/Xrv3r1evyskKSIiQikpKcf08klMPDI6zv29Pt57R8eZmZl5zDHcxz76O5yenm5+5paamuqVKMnNzZUkr9Emnvbs2aPmzZvrs88+0xNPPGEmWi6//HK99NJLysjIOO52vmZFf5lAQxIEAACglqza8/2pVzqFMFu4oiNiVVF14sRAMMnMzNSqVau0adMmrV69Wt98840uuOACSZLT6VRhYeEJty0tLdVnn32mN954QzfeeKP5flFR0RnHUa9evWNurjylpKTo6quv1sMPP3zcbT35q5mhv1VUldWZ86ouCbdHymVUJ0oSo1MVZvfPVK6eScrzzjtPOTk5evnll/Xggw9q7dq12rdvn3788UezR8iWLVvO+BipqakKCwtTTk6O1/tHv27QoIE5SsvN6XQqPz/fLM/xl+Md290A1vPYR3/P3aPIFixYcEwiyHPb8847TwsWLFBxcbHmz5+vBx54wKtviL/lF/t/pqFARxIEAACglmzIri6bsNvsuq33HxVmP/ZS7K2fnlaJ8/hDpNukddNvzrlbs5a/qANleX6NtbasX79eTZo0UWlpqSR5TTE5e/bsY5qOeiovL5fL5fLa5ocffjimKerp6N+/v1599VUVFBQoOTn5mM8HDBiguXPnqkuXLl59TeqSyLBoOU4wRSv8p+gk3+WOGX00uP1v9cJX90qSUmJrZ7SAJE2cOFHTp0/Xiy++aI6S8vyuzZo164z3GR4eri5dumju3Lm66aabzPc//vhjr/V69eqlGTNmqKysTNHR1aNg5syZI8Mwjjt6w5d69eqlDz/8UJMmTTITHe+//74cDoc6dep0wu169+4th8Oh/fv3m31CTiY2NlYjRozQ4sWLNX/+fPP9iIgIlZeX1/wHOYH8kiOlVSm11GQ30JAEAQAAqAX5xfuVc6h6ppGmye3UNr3Hcdc73iiCREeqLu90p85p2C9oRxlI0sGDB/XDDz9Iqm4i+O6772rlypV6/PHH1a5dOzVo0EAPPfSQJk6cqG3btunPf/6zEhISTri/pKQkdevWTU8++aRiY2NVVFSkiRMnntWT4rFjx2rGjBm68MILNX78eKWlpWnJkiVq0aKFRo4cqQcffFD/+te/NGjQIN1zzz3KyMjQnj17tHDhQl133XVevQGCVe/ml+nyzndaHUbIGffh0GNKYurFNtCVne9S+4xztafoyIiL2ixfSE9P1y233KJp06bpgQceUExMjEaPHq0xY8Zo2bJleuONN85qv+PGjdO1116rcePGadCgQfr3v/99zCisBx98UFOnTtXQoUM1duxY7d27Vw8//LCuueYar6ao/jBhwgT16NFDI0eO1K233qo1a9Zo4sSJ+t3vfnfCnkGSlJycrMcff1x33XWXNm/erD59+sjpdGrt2rVau3atpk+frnnz5umNN97QlVdeqSZNmmjbtm16++23zcauktS2bVvNnj1bXbt2VVRUlM+TPgUloT09rkRjVAAAgFrhHgUiSW3rHz8BcrQwW7gGtLlGDw98XV0anR/UCRBJWrlypfr06aM+ffroqquuUlZWlt555x2NGDFC0dHRev/991VcXKwrr7xSr7/+umbOnGnOoHAi77zzjurVq6eRI0fqT3/6k1588cUT1uSfTHp6uhYtWqQWLVpo9OjR+s1vfqO5c+eazVTT0tK0ePFiNW3aVPfdd58GDx6sxx57THa7XW3atDmrvw/gaBFhUbq0/Y36/YBX1T7jXElHT49buzet48aNU0lJid5//33NnDlT69at07BhwzRv3ryzLt8YNWqUnn32Wb311lsaMWKE7Ha7xo8f77VORkaGvvjiC1VUVGjEiBEaP368Ro0apX/+85+++LFOqkuXLvr444+1adMmXXHFFXr++ef10EMP6amnnjrltuPHj9eUKVP0wQcfaNiwYbrhhhv00UcfmSNpWrduLcMw9Oijj+qSSy7RxIkTdcMNN5gz5UjSlClTlJOTowEDBqhXr14+//ny6QkimxGs7cUBAACCyIwfJ2v13v9Jku6/8EU1TW573PWe+GSkiisOKLN+d13Z+W7Vj298zDr/+PYhbctfK0n6yxX/ld3mnx4BqPu25a3VPxY9JEm6oNVvGAliAfdIkE4NztPlne885sZ00eYP9dGq1yRJo7o/pJ5NT11qAZzI5E9/q6KyPMVFJWnSZf+2OhxLUA4DAADgZ1WuSm3KyZIkxUQmqHFS6xOum+SorxFd71enBucF/cgPAKeWGtdQV3QerXbpxy97sHIkCOqWyqoKHSjLlxTa5xJJEAAAAD/bUbBeZZUlkqTMtG4nHbkx5oLnFR4WecLPAdQtD/V/+aTfeaY0ha8UlubKUHUhSCifS/QEAQAA8LP1+0+/HwgJECC0nOo77x4JYreFKSG63knXBU7Ge1RRaM4MI5EEAQAA8DuvpqgnmBUGAI6noCRbkpTkSFOYnf4/OHuMKqpGEgQAAMCPDpUXanfhJklSg4QWSog+8RSLAOCptOKQSp2HJIV2Dwf4Bv1lqpEEAQAA8KON2cvNGuzTnRoXACSpoDTbXE4J4fIF+AYjQaqRBAEAAPAjSmEAnC2e3MOXvM4nR+gm1UiCAAAA+InLcGlj9jJJUkRYlFqkdLA4IgDBhCf38CV3EiQuKkmR4dEWR2MdkiAAAAB+srdoqw6WF0iSWqd2YeYXAGckv3ifucxIENREZVWFDpTlSeJcIgkCAADgJ5TCAKiJ/JIjPUHqxWRYGAmCXUFpjrkc6qOKSIIAAAD4yYbDpTASTVEBnDl3OYzdFqYEBzNL4exRWnUESRAAAAA/KK8s1ba8NZKklJgMpcY2tDgiAMHG3cMh2ZEmuy3M4mgQzGiyewRJEAAAAD/YlLNCVUalJKlt/e6y2WwWRwQgmJRWHFJZZbEkblpRc4wEOYIkCAAAgB94lcKk97QwEgDBKJ+bVvgQ59MRJEEAAAD8YOPhpqh2W5hap55jcTQAgk0B5QvwoQKPJrvJMfUtjMR6JEEAAAB8LLd4j3KL90iSmqe0V3RErMURAQg2PLmHL7nPp/ioZEWERVkcjbVIggAAAPjYhv2UwgCoGUaCwFcqqyp0oCxPEqNAJJIgAAAAPucuhZGYGhfA2cn3KF9gJAhqoqA0x1zmXCIJAgAA4FOVLqc25a6QJMVGJqphYkuLIwIQjNwjQey2MCU4UiyOBsGMUUXeSIIAAAD40La8dSqvLJVUPQrEbuNyC8CZc/dwSHakyW4LszgaBLP8kn3mMkkQkiAAAAA+5VUKk04pDIAzV1JxUGWVxZKklNgMi6NBsKO0yhtJEAAAAB/a4JEEyazf3cJIAAQryhfgSwVeMw2RVCMJAgAA4CMHywq0u2izJKlRYivFRyVZGxCAoMT0uPClfK+kWpqFkQQGkiAAAAA+sjGbqXEB1FyBR/kCI0FQU+6RIPFRyYoIi7I4GuuRBAEAAPCRDV5T49ZOKYxh1MphUEcZ4gQKRN4jQepbGAmCnbOqQgfK8iUxqsiNJAgAAIAPuAyXmQSJCneoWUp7vx0rzB5hLle6nH47Duo+z/Mn3OO8grXoCQJfKSxlVNHRSIIAAAD4wJ6izSquOCBJap3a1a83lDERceZyyeFjAmejpOKgueyIjDvJmqhN7pEgYbZwJUSnWBwNghn9ZY5FEgQAAMAHNuz3nBrXv6UwiY565rLnUz7gTHn2nkiMrneSNVFbDMMwR4IkxaTJbguzOCIEM0YVHYskCAAAgA+s9+oH0sOvx0qNbWgu7z+4w6/HQt2W7XH+pMY1sjASuJU6D6msskQST+5Rc/keiU7Op2okQQAAAGqozFms7fnrJEmpsY1UL7aBX4/XMLGVubw9f71fj4W6bXtB9fljt9mVEd/M4mgg8eQevsX5dCySIAAAADW0KWeFXEaVpNqZFaZJchuz58jG7GUymCIGZ6GwNMccSdQoqY0iw6MtjggSPRzgW/leSZA0CyMJHCRBAAAAashratx0/5bCSFJEWJRap3WRJBWV5Wlr3hq/HxN1T9aub8zl9um9LIwEnjz7tPDkHjWVX7xPkhQflayIsCiLowkMJEEAAABqwDAMsx9ImC1crVLPqZXjdm/c31xetPnDWjkm6o4qV6W+3/pf83W3xhdZFwy85JfsM5cZCYKacFaV62B5gSTOJU8kQQAAAGogt3i3WXPdol5HRYU7auW4nRv2U3xUsiRp1d7vtTl3Za0cF3XDt5s/NM/btvV7Ko2mqAGDchj4SkFJjrmcEpthYSSBhSQIAABADXhPjev/Uhi3iLBIXdzuOvP1O0v+otziPbV2fASvjdnL9OnaNyVJNtl0afsbLI4IntzJqTBbuOKjUyyOBsGMpqjHF251AAAAAMGsNqfGPVrv5pcpa9e32pK3SgfK8vTiV/erV9NBio1KrNU4EDxyD+3Rsl1fymW4JEkXtP6NmiRnWhwV3AzDMEeCRIRF6suN71ocEYLZ7sLN5nJKTH0LIwksJEEAAADOUmVVhVmGEh+VrAYJLWr1+HZbmG489w+a+t0j2n9wh8oqi7Voy0e1GgOCV6cG52lIh1utDgMeypzFKq8srV6uLNGn696yOCLUFYwEOYJyGAAAgLO0NX+NnFXlkqpHgdhstlqPIS4qSfdd8ILObTZYdhuXdji1qHCHLm1/o2489w8Ks4dZHQ48REU4lOzgiT18KyYyQU2T21kdRsCwGUwsDwAAcFY+Xj1N32yaLUm6vucjls+wUVxepN1Fm1XpcloaBwJXVHiMmiS1UWR4tNWh4ASKKw5oR/56GeI2Db5gU/OU9oqJjLc6kIBBOQwAAMBZ2ni4H4hNNmWmdbM4Gik2KlGZ9btbHQaAGoiNTFD7jHOtDgOosxgzCQAAcBaKSvO098A2SVLjpDY0IwUAIAiQBAEAADgLG7OXmcu1PSsMAAA4OyRBAAAAzsKG7CXmctt0SlAAAAgGJEEAAADOkMuo0sbs5ZKk6PBYNU1ub3FEAADgdJAEAQAAOEO7CjepxHlQktQmrSvTjAIAECRIggAAAJyh9fsphQEAIBiRBAEAADhDnk1RM2mKCgBA0CAJAgAAcAZKKg5qe/56SVL9uCZKiUm3OCIAAHC6SIIAAACcgV9ysmTIJUlqW59SGAAAgglJEAAAgDPgWQrTNr2nhZEAAIAzRRIEAADgNBmGoQ3ZSyVJ4fYItazXyeKIAADAmSAJAgAAcJqyD+1UYWmOJKllvU6KDI+2OCIAAHAmSIIAAACcpg37l5rLzAoDAEDwIQkCAABwmtylMJLUjn4gAAAEHZIgAAAAp8FZVa7NuaskSYnR9ZQe39TiiAAAwJkiCQIAAHAatuSuVqWrQpLUtn4P2Ww2iyMCAABniiQIAADAafAshWFqXAAAghNJEAAAgNPgToLYZFebtK7WBgMAAM4KSRAAAIBTKCzJ0f6DOyRJTZMzFRMZb3FEAADgbJAEAQAAOAXPUhimxgUAIHiRBAEAADgF76lxSYIAABCsSIIAAACcRJWrSr/kZEmSHBFxapKcaW1AAADgrJEEAQAAOImdBRtU6jwkSWqT1k12W5jFEQEAgLNFEgQAAOAkKIUBAKDuIAkCAABwEt5NUbtbGAkAAKgpkiAAAAAnUFxxQDsLNkqS0uObKcmRZnFEAACgJkiCAAAAnMAv2ctlyJBEKQwAAHUBSRAAAIAT8CyFaVufJAgAAMGOJAgAAMBxGIahDdnLJEkRYVFqUa+TxREBAICaIgkCAABwHPsObNOBsjxJUst6nRURFmlxRAAAoKZIggAAABwHU+MCAFD3kAQBAAA4DncpjEQ/EAAA6gqSIAAAAEcpryzTlrxVkqQkR32lxTW2OCIAAOALJEEAAACOsiV3papclZKqS2FsNpvFEQEAAF8gCQIAAHAUSmEAAKibSIIAAAAcZUP2EkmS3WZX67Su1gYDAAB8hiQIAACAh/zi/co5tFuS1CylvRwRsRZHBAAAfCXc6gAAAAACiefUuMFUCmMYhjYWFGhNXp6criqrw0GAio2IUPf66WoYF2d1KKihSpdL/9uzR3uLD1kdCuqI2IgIDWjSVDEREVaH4lckQQAAADx4JkEy63e3MJLTt/fQIT314w9alp1tdSgIAjZJQ1q01IM9etT5m5267OMtm/WXn3+2OgzUMatz8/TouedaHYZfUQ4DAABwWJWrUr/kLJckxUQmqHFSa4sjOrWdBw/q9gWfkwDBaTMkzdu6RWO++lIlTqfV4eAsLd/Pdx6+l1dWanUIfsdIEAAAgMO2569XeWX1BWDb+t1lt4VZHNHJlVdV6dFF3yq/rEyS1DA2VqPatVNSVJTFkSEQGYa069BBzVy/XsVOp9bm5enZn3/Sk+f1tTo0nAXPMphJffrIzlTeOEtbioo0Y80aSVKD2LrfB4skCAAAwGHBVgozc906bSkqkiS1SEjU1EGDlEgCBKdwQeMmumvhAhU7nfp8+3YNadFSv2rQwOqwcIb2FhdLklIdDg1u3sLiaBDMPt261VxuEFv3+wVRDgMAAHBYMDVFLXY69c76dZKkMJtNk/v2JQGC09I6KUkP9jhyfk9btdLCaHA2yiorlXd4BFhGCDy5h3+5E2pSaIwEIQkCAAAg6VB5oXYXbpIkNUxoqYToFIsjOrnPtm1T8eF+DkNatFSrpCRrA0JQubR5C7VKTJIkrc7L04b8fGsDwhnZX1JiLofCTSv8iyQIAABACNqYvVyGDElSZnrgl8Is2L7dXB6RmWlhJAhGdptNV2W2MV97nk8IfJ79QELhphX+5XU+hcD02SRBAAAAFHylMKtycyRJTeLjlZmcbHFECEb9mzQxm2n+sHevxdHgTHg/ua/7N63wL/f5FBsRofgQmDabJAgAAAh5LsOljdnLJEmRYdFqkdLB4ohObk1enqqM6lErvTIyLI4GwSopKtpMoG0uKtShigqLI8Lp2nsotMoX4D9VLpdZXtUgNla2EJhliCQIAAAIeXuLtupgeYEkqVXqOQoPi7Q4opPbVFBgLndIqWdhJAh27VOO9L7ZXFRoXSA4I/tCrIcD/CevrEyVLpek0DmXSIIAAICQ51UKkx7YpTCStOvQQXO5eUKChZEg2DVPSDSXdx08dJI1EUg8ezikh8iNK/wjFPvLkAQBAAAhL5j6gUhSXmmZuZwWE2NhJAh29T3On9zSUgsjwZlw93BIdTgUFRZmcTQIZp6lVRkh0l+GJAgAAAhp5ZWl2pa3VpJULyZDqbENLY7o1A45j/RuSIgM7NIdBLZ4j/PHPeUyAltZZaXyyqoToRkh8uQe/hNq0+NKJEEAAECI25SzQlVGpSQpM71HUDSFq3QZ5nK4ncs5nD3P88fpqrIwEpyufSWhd9MK/9lDOQwAAEBoCbZSmKMFfsoGgYzzJ/gwMwx8yWskSBzlMAAAAHWeOwlit4WpdWoXi6MBgJPzvGltGCI9HOA/7pmG4iIiQqa8kiQIAAAIWbmH9iiveK8kqXlKB0VH0GQUQGBjelz4SpXLZZ5PoXQukQQBAAAhK9imxgUArylN40LnxhW+l1taqiqjusdUgxAaVUQSBAAAhCzPJEi7IOwHAiD0eJbDpMeQBMHZ8zyXQmmmIZIgAAAgJFW6nNqcu1KSFBeVpAaJLS2OCABOzX3jmupwKDIszOJoEMxCcXpciSQIAAAIUdvy1qm8slSSlJnWXXYbl0UAAltZZaXyy8okhdZNK/wjVEur+NceAACEpA3ZS8xl+oEACAb7SkLzyT38w3skCD1BAAAA6jTPfiCZ9btbGAkAnJ69h0LzphX+QTkMAABAiDhQlq89RVskSY0SWys+KsnagADgNITqTSv8wz09blxEhOIjIy2OpvaQBAEAACFnY/Yyc5lSGADBwquHA0kQ1ECVy2UmQULtXCIJAgAAQo5nKUxbpsYFECS8RoKEUCNL+F5OaamqDENS6JVWkQQBAAAhxWW4zJEgUeEONU9pb3FEAHB63EkQm6T0GJIgOHueCbUMRoIAAADUXbsLN6m44oAkqXVqV4XZwy2OCABOj7sxaqrDociwMIujQTDzLK1qGGKjikiCAACAkOJVCkM/EABBoqyyUgXlZZJCr3wBvheq0+NKJEEAAECI2eDZFJV+IACCxD5mhoEPeU+3HFrnE0kQAAAQMkqdxdqev06SlBrbSPViMyyOCABOD01R4Uv76AkCAABQ923KyZLLqJIkta3f3eJoAOD07WUkCHzI3RMkPiJC8ZGRFkdTu0iCAACAkOFVCpPe08JIAODMeDayzAixHg7wrUqXS/tLSiSF5rlEEgQAAIQEwzDMpqhh9nC1Sj3H4ogA4PQxEgS+kltaqirDkBSapVUkQQAAQEjIObRbBSX7JUktUjoqKjza4ogA4PS5kyA2SekxMdYGg6AW6gk1kiAAACAkeE+NSykMgODins0j1eFQZFiYxdEgmHmWVpEEAQAAqKO8kiABPDVuQVmZ1SH4xc033yybzWb+SUxMVL9+/fTll1+e0X4uuugi/fa3v/VTlEDtO53vfGllpQrKq9dr4IceDp7fz7CwMDVr1ky33367srOzfX6s45k2bZpsNlutHGvbtm1ev4vcf+LiAqM3xqRJk7Rs2bJTr1gD3iNBAuPnrk3hVgcAAADgb86qCm3OXSlJSohOUYOE5tYGdBK3ff6Zhrduo5Ft2yqijj3tPeecc/Taa69JkgoKCvTKK69o6NChWrlypdq0aWNxdIA1rp03T7d37qzftG6tMPvxn1Hvq4XyBff3s6qqSllZWfrDH/6gLVu2nHGiMlhMmTJFvXr1Ml+HBcjv2yeffFKNGzdW9+7+m8HMPapICs2RICRBAABAnbc1b42cVeWSpMz6PWrtiePZKK2s1MsrsvTfrVv0YI+eOjcjw+qQfCY+Pl69e/c2X/fv31+JiYlasGBBnU2ClJaWyuFwWB0GAthBZ4WeX7pEczdv1u979tQ5aWnHrONVvuCnRpae38++ffuquLhYjzzyiHbv3q1GjRr55ZhWat++vdfvo5pwuVyqrKxUZJBMNUs5DAAAQB3nXQrjv6drvrT9wAE98NWXmvDdd9rv8RS4LomKilJkZKScTqckae7cubrooouUkpKievXqaciQIdq0adNJ9/Hdd99pyJAhql+/vhITE3XBBRdoyZIlXuvcfPPN6tevnz766CO1bdtW8fHxGjJkiPbu3eu13qZNm3TVVVcpOTlZcXFx6tOnj77//nvz861bt2rEiBFKSkpSXFycrrzySu3atcv8/Ouvv5bNZtPChQt1ySWXKCYmRs8++2xN/5oQIn4pLNDohQs0+YfFyi8t9frMivKFzp07S5J5jk+fPl29e/dWYmKiMjIyNHLkSO3fv99rm+bNm+uxxx7TU089pfT0dKWlpWnMmDHmd9ztueeeU0ZGhhISEnTHHXeo7DglQT/99JMuuOACORwOpaWl6Z577lGxx9/DjBkzZLPZlJWVpT59+sjhcKhfv37asWOHdu3apcGDBysuLk49evTQ6tWrz+hn//TTT9WjRw9FR0erUaNGmjBhgqqqqszPJ02apMaNG2vhwoXq0qWLoqKi9L///U+SNHXqVLVv315RUVFq1aqVOfrN7dtvv9V5552n+Ph4JSUlqVevXlq4cKEkmQn6O+64wyzT8Qf3+RQfGam4IEnc+BJJEAAAUOdtPJwEscmmzCBJgrh9uXOHRs37r95au0ZOj4vwYFVZWanKykrl5uZqwoQJcjqduuyyyyRJ27dv18iRI/Xee+/prbfeUlhYmM4//3yvG5+j7dixQ4MGDdLbb7+t9957T61atdKFF16onTt3eq23adMmTZ48Wc8884ymTZumpUuX6r777jM/37dvn/r27av169frH//4h+bMmaOhQ4eaN4C5ubk6//zztWvXLk2fPl3vvPOOduzYoaFDh8rlcnkd69Zbb9WFF16oefPm6YorrvDVXx1CxCdbt2rkvP/qvY0bVHn43LKifGHnzp2y2Wxq2rSp+Xr06NH66KOPNHXqVO3atUuXXHKJjMNTrbq9+eabWrFihd5880098sgjmjp1ql599VXz81mzZmncuHG64YYb9N5778npdOpPf/qT1z727dungQMHKiwsTLNmzdLTTz+tmTNn6rbbbjsmzptvvll33nmn3n33Xe3evVs333yzrrvuOg0dOlTvv/++JOm66647Zjv36A33H/fPkZWVpV//+tdq2bKl5syZo7Fjx+q5557ThAkTvLYvKirS3XffrbFjx2r+/Plq3bq1nnnmGY0dO1ajRo3SvHnzdMMNN+jee+/V7NmzJUkHDhzQsGHDlJmZqTlz5ug///mPhg8frvz8fEnS4sWLJUnjx4/X4sWLzde+VOlyKbukRFJojgKRKIcBAAB1XFFprvYe2CZJapzURrGRCZbGszYvT5sKC074eeVRN9SSVFZVpakrVmjeluoSmWD1/fffKyIiwnwdGRmpGTNmKDMzU5I0ZswY87OqqioNGDBAqampmj9/vkaMGHHcfXre3LhcLg0YMEDfffed3n33Xf3+9783P8vPz9fPP/+sJk2aSKp+uv3oo4/K5XLJbrfrhRdeUHl5uRYtWqSUlBRJ0sUXX2xu/+KLL8rlcmnBggWKj4+XJPXs2VMtW7bU3LlzdeWVV5rr3njjjcfcMAFn4pDTqReWLjVLZGprStPKykqzJ8gzzzyjW2+9VQ0aNJAkPfHEE+Z6VVVV6tGjh5o1a6alS5eqZ88jv5cSEhL07rvvym6369JLL9U333yjDz/80Px+P/vssxo+fLj++te/SpIGDx6sHj16eI3Mev755xUdHa1PPvnELCdLTEzUtddeq4kTJ6pDhw7muhMmTNDVV18tSdq9e7fuuecePffcc7r//vslSYZhaMiQIdqyZYtatmxpbjd48GCvn33y5Ml67LHH9PTTT6t9+/aaNWuWbDabLrvsMlVVVenJJ5/Uww8/bP5+OHTokKZOnapBgwZJqk5wPPXUU3rqqafM3z2DBg1Sbm6uJk+erKuuukobN27UgQMH9NJLL5m/Ry699FIzBnd5TsuWLX1WqnO0nNJSVR1O+JAEAQAAqIM2ZB/pst823dpZYZbt368xX30p11FPTk/XjoMH9buvv1JCkA5f7tKli6ZNmyap+inqrFmzdNttt6lly5b61a9+pa1bt+rhhx/Wt99+6zUrxclKYnJycjR+/HjNnz9fe/fuNZ/mHr1NZmammQCRqvsBVFZWKjs7WxkZGfrmm280dOhQ8wbnaF988YUGDx4sh8OhyspKSVJ6erratWunpUuXeiVB3CNbgs1Hmzfrix07rA4j5Jzs98GmwkLdtXChEg9/522S0mNi/BLH0UnKLl266OWXXzZfr1ixQo888oh+/vlnc+SCVP1d80yC9O/fX3aPBq/t27fX3LlzJVUnWVasWGEmKNyGDRvmNSPKkiVLNGTIEK9+OsOHD5fNZtOSJUu8kiADBgwwl1u1aiWpehapo9/bs2ePVxLk5Zdf1rnnnmu+dvc9WbJkiW688UavUpSrr75ajz76qFavXq0LLrhAUnUSd+DAgeY6ixcvVklJia666irzd4T772Pq1KmqqKhQq1atFBcXp+uvv1533nmnLrzwQjMZUltCvR+IRBIEAADUcRsDZGpcl2HoxWXLzjoB4ilw27qeXFxcnNfN0sCBA/XTTz/pmWee0ezZs3X55ZdLkl544QU1b95cUVFRGjx48HH7BbjddNNNWrNmjZ588kllZmYqJiZGt9xyyzHbJCUleb12NzB0r5eXl6fzzz//hMfJzc3VjBkzNGPGjGM+69atm9fr+vXrn3A/gay0slKlHjdvCBzu/y+pDoffZo1yJykrKir0+eef649//KMeffRR/e1vf1NRUZEuvfRStW7dWq+99poaNWokwzDUt2/f0/quudfJzc1VVVWV0o5q/nr0671793r9rpCkiIgIpaSkHNPLJzEx0etYJ3rv6DgzMzOPOYb72Ed/h9PT083P3FJTU70SJbm5uZLklWjxtGfPHjVv3lyfffaZnnjiCTOpc/nll+ull15SRi01wfYurQq96XElkiAAAKAOcxlV5kiQ6PBYNU1uZ1ks87du1S+Hy2BaJSbpmraZx13vpeXLdeioJoJuTeMT9FCPHvrn6tVamZvjt1hrU2ZmplatWqVNmzZp9erV+uabb8wnrU6nU4WFhSfctrS0VJ999pneeOMN3Xjjjeb7RUVFZxxHvXr1jrm58pSSkqKrr75aDz/88HG39RTIsw+djCM8XHEeIwFQO3KOaoLqqU1SksZ06677v6qeprZhnP9uWj2TlOedd55ycnL08ssv68EHH9TatWu1b98+/fjjj2aPkC1btpzxMVJTUxUWFqacHO/fX0e/btCggddoMKn690F+fr5ZnuMvxzu2uwGs57GP/p67R5EtWLDgmESQ57bnnXeeFixYoOLiYs2fP18PPPCAV98Qf6uN6ZYDHUkQAABQZ+0s+EWlzuqhv23qd1WY3T9PUE+lrLJSr61cYb7+Xffu6nmCp35TV6w45j1HeLhu6dhJo9q2VURYmP55hjMdBLL169erSZMmKj18I+g5xeTs2bOPaTrqqby8XC6Xy2ubH3744ZimqKejf//+evXVV1VQUKDk5ORjPh8wYIDmzp2rLl26eJUM1CVXtGqlB7pbWzIWivr+59/HjBCLi4jQneeco9+0bqOdBw+a79fmTevEiRM1ffp0vfjii+YoKc/v2qxZs854n+Hh4erSpYvmzp2rm266yXz/448/9lqvV69emjFjhsrKyhQdHS1JmjNnjgzDOO7oDV/q1auXPvzwQ02aNMlMdLz//vtyOBzq1KnTCbfr3bu3HA6H9u/fb/YJOZnY2FiNGDFCixcv1vz58833IyIiVF5eXvMf5ARqq79MICMJAgAA6qwNAVIK8+/1682nvX0bNjxhAuR4BjZtqvu7dVd9P/UBqE0HDx7UDz/8IKm6ieC7776rlStX6vHHH1e7du3UoEEDPfTQQ5o4caK2bdumP//5z0pIOHEj26SkJHXr1k1PPvmkYmNjVVRUpIkTJ57Vk+KxY8dqxowZuvDCCzV+/HilpaVpyZIlatGihUaOHKkHH3xQ//rXvzRo0CDdc889ysjI0J49e7Rw4UJdd911Xr0BgJoY2qKl7unaVSmHb/49ezhk1OJNa3p6um655RZNmzZNDzzwgGJiYjR69GiNGTNGy5Yt0xtvvHFW+x03bpyuvfZajRs3ToMGDdK///3vY0ZhPfjgg5o6daqGDh2qsWPHau/evXr44Yd1zTXXePUD8YcJEyaoR48eGjlypG699VatWbNGEydO1O9+97sT9gySpOTkZD3++OO66667tHnzZvXp00dOp1Nr167V2rVrNX36dM2bN09vvPGGrrzySjVp0kTbtm3T22+/bTZ2laS2bdtq9uzZ6tq1q6Kionye9LHqfAokTJELAADqrI2eTVEtSoLklZbqX+vWSpLCbDbd17XbKbao1iwhQX/vP0BP9e1XJxIgkrRy5Ur16dNHffr00VVXXaWsrCy98847GjFihKKjo/X++++ruLhYV155pV5//XXNnDnzlE0D33nnHdWrV08jR47Un/70J7344osnrMk/mfT0dC1atEgtWrTQ6NGj9Zvf/EZz5841m6mmpaVp8eLFatq0qe677z4NHjxYjz32mOx2u9q0aXNWfx+ApzZJyXpt0MV6rHdvMwEiHf3kvnZ7OIwbN04lJSV6//33NXPmTK1bt07Dhg3TvHnzzrp8Y9SoUXr22Wf11ltvacSIEbLb7Ro/frzXOhkZGfriiy9UUVGhESNGaPz48Ro1apT++c9/+uLHOqkuXbro448/1qZNm3TFFVfo+eef10MPPaSnnnrqlNuOHz9eU6ZM0QcffKBhw4bphhtu0EcffWSOpGndurUMw9Cjjz6qSy65RBMnTtQNN9xgzpQjSVOmTFFOTo4GDBigXr16+fznc59P8ZGRigvSJts1ZTOOntgZAACgDiipOKgnPhklQy7Vj2uihwf9nyVx/Pmnn/TR5uqZSoa3bqNxp7ioHT73Iw1v00YjM9uesAHi6AULzJ4g340cpTA7z7Vwdlbm5Gj0wgWSpFFt21IOY4FLZ8/WHed01pWtWh/3u/zS8uWauX6dJGlK/wHqVUsNNFH3VLpcumjWu6oyDGUmJ+vNS4NzJquaohwGAADUSb/kZMlQdT8Jq6bG3VxYqI+3bJYkxYSH67bOnU+5zT8vGaxkj6fAAOq2fw8detLvvGf5gj8bo6LuyykpUdXhMRCh2g9EohwGAADUUYFQCvOPrOVmw8MbO3T0GuJ+IiRAgNByqu+8ezYPu82m+g5HbYSEOsqztKphiE6PK5EEAQAAdZBhGFqfvUSSFG6PUMt6J+7o7y8/7t2rHw43+8uIidHItm1rPQYAwc9945rmcJywRA44HV79ZeIYCQIAAFBn7D+4Q0WluZKklqmdFRleu6MrqlwuvbR8ufn6ri5dFB1OFTKAM1PidKrw8HSpoVy+AN9gZphqJEEAAECdY3UpzCdbt2pzUaEkqX1Kii5u1rzWYwAQ/PaVHHlyH8o3rfANK2caCiQkQQAAQJ3jLoWRaj8JUuJ06v9WrTRf39etm+w2W63GAKBu2HuIm1b4jncSJHSTaiRBAABAneKsKteW3NWSpERHqtLjm9bq8WeuX6fc0lJJ0gWNGqt7/fRaPT6AuoObVviS+3xKiIxUbESExdFYhyQIAACoU7bkrlalq0JS9SgQWy2OwsgpKdE769ZJksJsNt3btWutHRtA3UMSBL5S6XIpp6REEucSSRAAAFCnbMheai7XdinM/61aqbKqKknS8DZt1DQhoVaPD6Bu8Wxk2SCOchicvZySElUdnrI91EurSIIAAIA6xd0PxCa72qR1rbXjbioo0LwtWyRJcRERurVT7U/LC6Bu2Xd4JIjdZlN9h8PiaBDMGFV0BEkQAABQZxSW5Cj74E5JUtOUtoqJjK+V4xqGoZeylss4/Pqmjh2VFFW70/ICqHvcN65pDociwsIsjgbBzCsJEkcSBAAAoE6wqhTmh7179dO+fZKqp7G8OrNtrR0bQN1U4nSqsLxcEk/uUXN7PEqrQn26ZZIgAACgzvCeGrd7rRyz0uXSS8uXm6/v6dJFUTyxBVBD3uULod3DATXHdMtHkAQBAAB1QpWrSr9kZ0mSHBFxapKcWSvH/e+WLdp6oEiS1LFePQ1q2qxWjgugbqN8Ab5ET5AjSIIAAIA6YWfBBpVVVl/kZdbvLrvN/6Mxip1Ovb5qpfl6TLfutTolL4C6y2tmmBC/aUXN7Tt8PiVGRik2IsLiaKxFEgQAANQJVpTCvL1urfLLyiRJ/Zs0UZe0tFo5LoC6j3IY+Eqly6Xs0lJJjCqSSIIAAIA6YkP2MnO5NpqiZpeU6N/r10uSwu123d2lq9+PCSB07KN8AT6SXVIil1E9fxnnEkkQAABQBxRXHNCugo2SpIyE5kp0pPr9mK+tXKHyqipJ0lVt2qhJfO1MxwsgNLhHgthtNtWPibE4GgQzz1FFoT4zjEQSBAAA1AG/ZC+XoeqnXLVRCrMhP1/zt26VJMVHROiWjp38fkwAocU9m0d9h0Phdm7bcPboL+ONbxMAAAh667OXmsv+LoUxDEMvLV9+OOUi3dKpkxKjovx6TAChpdjpVFFFuSQpg34gqCH6y3gjCQIAAIKaYRjaeLgfSERYlFrU8++ojO/37NHS7P2SpEZxcbqqTe1MxQsgdNAPBL7kHlUkcT5JJEEAAECQ23dgmw6U5UmSWqV2VkRYpN+OVely6R9Zy83Xd3fpqsgw/0/FCyC0eD25ZzYP1BA9QbyRBAEAAEGtNkth5m7erO0HDkiSOqemakCTJn49HoDQRA8H+NK+w+dTYmSUYiMiLI7GeiRBAABAUNvolQTp6bfjFDudmrZqpfn6/m7dZbPZ/Ha802WcehXghDh/ApN3+QI9HHD2Kl0uZZeWSmJUkRtJEAAAELTKK8u0JW+1JCnZUV9pcY38dqy31q5RQXl1o8KBTZuqU6r/p+E9kXD7keRLpctlWRwIfp7nT4Sd0q5A4Vm+0JCRIKiB/SUlchnV6U5GFVUjCQIAAILW5tyVqnJVSpLapvfw28iMfcXF+s+GDZKkCLtd93Tp6pfjnK64iCN9Tw5UVFgYCYLdQY/zh2HygcNdDhNmsyktJsbiaBDM9h7yLK1iVJFEEgQAAASxjbXUD+TVFStUUVUlSRqRmamGcdZeSNZzRJvLOSUlFkaCYJftcf6kOhwWRgJP7pEgaTExCrdzy4azt5eZho7BNwoAAAStDYeTIHabXa3TuvrlGOvy8vTZ9m2SpITISN3c0b9T8J6OxnHx5vK2w41agbOx7UCRudw4nqfEgaDY6TRHeHHTipoiCXIskiAAACAo5RXvU86h3ZKkZint5Yjw/cWdYRiasvzIlLi3deqshEj/TcF7ulonJ5vLa/PzLIwEwW5dfr653CoxybpAYOKmFb7kNdMQjVElkQQBAABBakMtlMIs2r1bWTnZkqTGcXH6TevWfjnOmepYr57CDvc/+XnfPoujQbAqLC/TxoICSdUJkLgASPCB6XHhW/s8kmoZMZxPEkkQAAAQpPzdD6TS5dLLWUdGgdzbtZsiwgJj9ozYiAh1Tk2TJO08eNC8kQXOxFc7d5qzRvRu0MDiaOC2r5jpceE77pFFSVFRiqH5sSSSIAAAIAhVuSr1S06WJCk2MkGNknw/QmPOpl+04+BBSVLXtDRd2Lixz49RExc3a2Yuv79xo4WRIBi5DEOzN/5ivvY8n2CtvYcoh4FvOKuqlFNaKolzyRNJEAAAEHS25a9TeWX1hV1m/e6y23x7SXOwokL/XLXafD2mW3e/Tb97tgY3b25OafrJ1i3aXFhobUAIKp9u26rNRYWSpE716qltSoq1AcFETxD4SnZpqTnaK4NzyUQSBAAABB1/l8K8uWaNiirKJUmXNGumDvXq+fwYNRUbEaHr27WXJFUZhh7//nsVlZdbHBWCwabCQr2w9Mh36PbO51gYDY7m7gkSZrMpLSbG4mgQzPYe8uwvQ2mVW7jVAQAAAJypDdnLzOXM+t19uu+9hw5p1sYNkqRIu113denq0/370nXt22vhju3aUlSkrQeKdOtnn2pUu3ZKioqyOjQEIMOQdh06qJnr16vY6ZRUneT7Ff1AAsqewyNBYsLD9dXOHRZHg2CWlZNjLjOq6AiSIAAAIKgcLC/UrsLqXgYNE1oqIdq3w/inrlghp8slSRrZtl1AXzhGhYXpz+dfoLsXLlBeWZn2FBd7PeEHTqZDvXp6pNe5VocBD8VOpw5WVEiSDjqdmvi//1kcEeqKQP63rLZRDgMAAILKLx6jQNqm+7YUZk1urhbs2C6pupP+jR06+HT//tAkPl6vX3yJutevb3UoCBI2SUNbtNRL/QcwW0SAiQoLUzz/T+Bj0WFhah+AZZ1WYSQIAAAIKp6lML7sB2IYhqYsPzIl7m2dOisuMtJn+/enBnFx+seAgdpYUKA1eXlyuqqsDgkBKjYiQt3rp6thHP0BAlG43a7/u+QS/bxvn9nQEqgJm2zqkZ6ulOhoq0MJGCRBAABA0HAZLm08nASJDItW83q+G6nx9a6dWplbXT/dND5BV7b2/bS7/mSz2dQ2JYVZPoAg1zwhUc0TEq0OA6izKIcBAABBY2/RFh0sL5AktUo9R+F23wwbd1ZV6eWsLPP1fV27KtzOZRIAAHUN/7oDAICg4VkK0y69p8/2O/uXX7T78FSC3evXV79GjXy2bwAAEDhIggAAgKCxIfvIzCe+6gdSVF6u6WtWm6/HdOsum83mk30DAIDAQhIEAAAEhTJnibbmrZEk1YvJUGpcQ5/s9801a8wpKS9t3lzt6KkBAECdRRIEAAAEhc25K+Uyqmc9aeujUphdBw/qvV82SpIiw8J01zldfLJfAAAQmEiCAACAoOCPUpipK1ao0uWSJF3btp3SY2N9sl8AABCYSIIAAICgsGH/EkmS3RamVqnn1Hh/K3Ny9OXOHZKk5Kho3dDBd9PtAgCAwEQSBAAABLzcQ3uUV7JPktSiXkdFR8TUaH+GYeil5Udmmrm9c2fFRvhmul0AABC4SIIAAICA5+tSmC927tDqvDxJUouERF3eqlWN9wkAAAIfSRAAABDwvJMg3Wu0r4qqKk3NyjJf39etq8LtXBIBABAK+BcfAAAEtEqXU5tyVkiS4qKS1CCxZY329/7GjdpTXCxJ6pmerj4NfDPVLgAACHwkQQAAQEDblrdWFVVlkqpLYey2s798KSov14w1qyVJNkljunWXzWbzRZgAACAIkAQBAAABzZelMNNXr9JBp1OSNKRFS2UmJ9dofwAAILiQBAEAAAFtw/4jSZA2NUiC7Dx4QLN/+UWSFB0WpjvPqfk0uwAAILiQBAEAAAHrQFm+9hzYIklqnNRG8VFJZ72vl7OyVGUYkqTr2rdX/ZiaTbMLAACCD0kQAAAQsDZmLzOXa1IKk5WdrW927ZIk1YuO1vXt2tc4NgAAEHxIggAAgIDl2Q8ks36Ps9qHyzA0ZfmRZMqd55yjmIiIGscGAACCD0kQAAAQkFyGyxwJEhXuUPOUsxu9sWD7dq3Lz5cktUxM1NAWNZtiFwAABC+SIAAAICDtLtyk4ooDkqQ2aV0VZg8/432UV1Xp1RVZ5usx3bopzM7lDwAAoYqrAAAAEJB8UQoza8MG7SspkST9KqOBejdo6JPYAABAcCIJAgAAApJnEqTtWSRBCsrK9ObaNZIku82m+7p181lsAAAgOJEEAQAAAafUWazt+eskSWlxjVQvNuOM9/HP1atU7HRKkn7dsqVaJyX5MkQAABCESIIAAICAsyknSy7DJensRoFsO1CkDzdtkiQ5wsN1R+dzfBofAAAITiRBAABAwKlpP5BXsrJUZRiSpOvbt1eqw+Gz2AAAQPAiCQIAAAKKYRjasL86CRJmD1er1DMbxbFs/34t2r1bkpTqcOi6dmc3tS4AAKh7SIIAAICAknNotwpKsyVJLet1UlR49Glv6zIMTVm+zHw9+pxz5Ag/86l1AQBA3UQSBAAABJSalMJ8tm2bNhQUSJLaJCXpsuYtfBobAAAIbiRBAABAQNmQvcRcPpOmqGWVlXp15Qrz9X3duivMzqUOAAA4gisDAAAQMJxVFdqcu0qSlBCdogYJzU972/9s2KDskhJJ0nkNG+rcjDOfVhcAANRtJEEAAEDA2Jq3Rs6qcknVpTA2m+20tssvLdW/1q6RJNltNt3XtZvfYgQAAMGLJAgAAAgY3qUw3U97u2mrV6mkslKSdHmrVmqRmOjz2AAAQPAjCQIAAALGhuzqmV1ssinzNJMgW4uK9NHmzZKkmPBw3dGps9/iAwAAwY0kCAAACAhFpbnad2CbJKlxcqZiIxNOa7t/ZC2XyzAkSTd06KAUh8NfIQIAgCBHEgQAAAQEz6lxT7cU5qd9+/S/PXskSfVjYjSqbTu/xAYAAOoGkiAAACAguEthJKld/Z6nXL/K5dI/lh/ZZvQ55yg6PNwvsQEAgLqBJAgAALCcy6jSxsNJkOjwWDVJbnvKbT7dtk2/FBZKktomJ+vS5i38GSIAAKgDSIIAAADL7Sz4RaXOQ5KkNvW7KswedtL1Sysr9erKFebrMd26y36a0+kCAIDQxZhRAAgyLpdLq3bv1s78fKtDQR0QGxWlns2aKd7iZqLe/UB6nHL9mevXKbe0VJLUr1Ej9UhP91tsABCoVu/apW15eVaHgToiITpa57VurfCwkz+ICHYhkwR57733NHHiRB08ePCMtistLdXBgwcVHx8vB93mEYBqeo7Gx8dr8uTJGjFihB+ig699vnq1xsycqY3791sdCuoQR2SkfjdokCZdcYUiLeqpcSZJkNzSUr2zbp0kKcxm071du/ozNAAISLN+/lkjX33V6jBQxzxy2WX6cx2/LwiZJMjEiRO1fv36s94+nyeuCHA1OUcff/xxkiBBYNq33+rOt96ScXgqUMBXSisq9Mwnn+inrVv13wceUHRERK0ev6TioHbkb5Ak1Y9vouSY+idd//VVK1VaWSlJuqJ1azVPSPR7jAAQaP67YsWpVwLO0Ordu60Owe9CJgniHgFit9vVoEGD095u7969crlcZ7wdUFtqco66tz3TEVKofd9u2KDRHgmQfm3a6OIOHRRmp7UTamZ7Xp7e/N//VFFZqS/WrdO9b7+tf95yS63G8EtOlgy5JJ16FMimwkL9d8sWSVJsRIRu79TZ7/EBQCDalptrLj95xRVcE+Csbc3N1T8XLZIkNU1JsTga/wuZJIhbgwYNtGvXrtNev3Hjxtq9e/cZbwfUlpqco+5tEdgqKit124wZch1OgPzu4ov1wsiRstEEEj5yS9++uviFF1RcXq7p332na3/1Kw3q0KHWju9ZCnOqqXH/sXy5+V24qUNHJUdH+zU2AAhU7l4gqXFxmnj55RZHg2D27k8/mUmQ5qmpFkfjf6QLASDAzfj+e23KzpYk9W3dWs9dcw0JEPhUn9at9fdrrzVfT/jgg1oruzIMw0yChNsj1TK10wnX/WHvHv24b68kKSMmRte0PfU0ugBQF1VUVmp3QYGk0LhphX95jioKhfOJJAgABDDDMPTSF1+Yr/82ahTDXeEXt/Ttq3MaN5Yk/bR1q37eurVWjrv/4A4VlVZffLVM7aSIsKjjrlflcuml5cvN13d16aqoOt69HgBOZGd+vjkqrnm9ehZHg2DnOcNQKJxPXEkDQABbtWuX2aDqvNat1atFC4sjQl1lt9t1/6BB5ut3fvihVo57uqUw87Zu0ZaiIklS+5QUXdysmd9jA4BAFWpP7uFfWz3OpxZpaRZGUjtIggBAAPtk1Spz+dpzz7UwEoSCET16KPzw6ArPc8+fPJMgmfW7H3edEqdT/7dypfn6/m7dZackDEAI83xy34IkCGrInVSLiYxUalycxdH4H0kQAAhgizZuNJcv6djRwkgQChJjYtS7ZUtJ0qbsbO07PPLCX5xV5dqSu7r62I5Upcc3Pe5676xfp7yyMknShY0bq2v9k0+hCwB1HSNB4CuGYWj74aRa89TUkOg7RxIEAAJY1s6dkqTkmBi1SU+3OBqEAncSRJKyduzw67E2565SpatCUvXUuMe78MouKdE769ZJksJsNt3TpatfYwKAYEASBL6y/8ABlTmdkkKjH4hEEgQAAlZxebn2FBZKkjo0bBgSmXlYr0PDhubyL4dnJfIXz1KYtvV7HHed/1u5UuVVVZKkq9q0UdOEBL/GBADBwLMcplmI3LjCP0IxoUYSBAAClDsBIklNucBBLWmakmIuu6df9Bd3EsQmu9qkdT3m840FBfpk6xZJUlxEhG7pdOLpcwEglLhvXNPi4xUbdfxZtYDTQRIEABAwCoqLzeV6sbEWRoJQUs+jIVpBSYnfjlNQkq3sg9XlXk1T2iomMt7rc8Mw9NLyZTIOv765YyclRUX7LR4ACBYVlZXaffhBSajctMJ/Qm16XIkkCAAErIrDJQCSFBUebmEkCCWe51pFZaXfjnOqUpjFe/doyf79kqQGsbG6OjPTb7EAQDDZmZ8vw6hOEYfKTSv8h5EgAICARD8Q1JbaOtdOlgSpdLn00vLl5ut7unRV5OGpewEg1IXiTSv8x2skSIicTyRBAABArapyVemX7CxJUkxEvJokt/H6/OMtm7XtwAFJUsd69TSw6fGnzgWAUBSK5QvwH3dSLSYyUqkeJbF1GUkQAABQq3YUrFdZZXXPm8z63WS3HRnlUex06vWVq8zX93frzkgoAPDASBD4imEY2n44qdY8NTVk/r0lCQIAAGqVZylM5lGlMG+vW6uC8jJJUv8mTXROWlqtxgYAgW4rSRD4yP4DB1TmdEoKrVFFJEEAAECt2pC9zFxuW7+7uby/uFgz16+XJIXb7bqnS9faDg0AAp7nSJBmIXTjCt/bmpNjLrcIoYcOJEEAAECtKS4v0q6CjZKkjITmSnQceYr56soV5qxII9q0UeP4+OPuAwBCmbsnSP2EBMVGRVkcDYJZqPaXIQkCAABqzcac5TJUPbWj56wwG/Lz9em2bZKk+MhI3dyxkxXhAUBAK3c6taewUFJo3bTCP0K1vwxJEAAAUGu8S2GqkyCGYWjK8iPv39KxkxJ5ugkAx9iZny/DqE4kh9JNK/wjFKfHlUiCAACAWmIYhjYebooaERalFvU6SpK+27Nby7KzJUmN4uI0ok2bE+4DAEJZqJYvwD+8RoKE0PlEEgQAANSKvQe26UBZviSpVeo5igiLVKXLpX8szzLXubdrV0WEhZ1gDwAQ2kK1fAH+4T6fYqOiVC8uzuJoag9JEAAAUCs8p8Z1l8J8uGmTdhw8IEk6JzVNFzVuYklsABAMSILAV1wul7YfHlnUvF492Ww2iyOqPSRBAABArdiwf4m53LZ+Dx2qqNA/V68y37u/W7eQuggDgDNFOQx8Zf+BAyqvrJQUegk1kiAAAMDvyivLtDV/jSQpOSZdaXGN9NbatSosL5ckDWraVB1D7CIMAM6U50iQZiRBUAOhPKqIJAgAAPC7zbkrVeWqfuLUtn4P7Ssp0bsb1kuSIux23d2lq4XRAUBwcI8EqZ+QoBhm0UINhPKoIpIgAADA7zZ69QPprldXZKnC5ZIkXZPZVg1DqCEbAJyNcqdTewoLJYXeTSt8j5EgAAAAfrR+f3USxG6zqzKsiT7fvl2SlBgZpZs6drQyNAAICjvy82UYhqTQu2mF73mNBAmx84kkCAAA8Ku84n3KLd4tSWqW0l7/t2qD+dltnTspPjLSqtAAIGh4PblnJAhqaGtOjrncgiQIAACA73hOjRsZ1VpZhy+8msTH68pWra0KCwCCimcSpEVamoWRoC5wjwSJi4pSSmysxdHULpIgAADArzbsP5IE+XpfuLl8b9euiggLsyIkAAg6odzIEr7lcrm0/fD51Dw1NeSmpycJAgAA/KbKValNuVmSpPCwWG0pdkiSuqbV1wWNGlsYGQAEl1BuZAnf2ldUpIrK6hnbQvFcIgkCAAD8Zlv+OpVXlkqScp0ZkqqfNt3frVvIPXkCgJrwHAnSjJEgqIFQH1VEEgQAAPiNZz+Q7Mp0SdLgZs3VPgQvugCgJtwjQdITEuSgoTRqINRHFZEECUE333yzbDabbDabwsLC1KxZM91+++3Kzs62OjRJ0qZNm2Sz2fT111+f0XaTJk3SsmXL/BMU4GPlTqfVIUjy/n3g+ee5557zyf4LCws1adIkbdmyxSf7OxMrV67UsGHDlJ6erpiYGLVu3Vo33XSTdu3adUb7ad68uR577DGfxjZjxgx98MEHPt1noPLsB1JY1VCRdrtGd+liYUQAEFhO55qg3OnUnsJCSf65abX6/mDatGm1Njpw27Ztx732iYuLq5Xjn0pt3NOE+kiQ8FOvgrronHPO0WuvvaaqqiplZWXpD3/4g7Zs2aIvv/zS6tDO2pNPPqnGjRure/fuVocCnNLbP/ygL9et01+vvloNk5MtjcX9+8BTs2bNfLLvwsJCPfnkk+rXr59atmzpk32ejh07duiCCy5Qnz599NprrykuLk7r1q3TzJkztX37djVubG0vihkzZqhx48YaPny4pXH428HyQu0u2iRJOuRKllMO3dC2nRqEWBd6ADiZLpMm6W+jRumyzp1PuM6O/Hxz2V83rXXx/uBkpkyZol69epmvwwKkUXdt3NOE+kgQkiAhKj4+Xr1795Yk9e3bV8XFxXrkkUe0e/duNWrUyOLogNAw88cfNTcrS09ecYXGDByoiHBrfiV7/j4IdKWlpXI4HKdc7+2331ZMTIzmzp2riIgISdKgQYM0ZswYGYbh7zBr1en+nVjhl+wjT7IKqxoqOSpKN3XsaGFEABB4ftm/X0NefFFXduumv40addyb0tq4aQ21+4P27dv77PrH5XKpsrJSkUFSphTqSRDKYSBJ6nw48+w5THz69Onq3bu3EhMTlZGRoZEjR2r//v3m53/4wx907rnnmq/Xrl0rm82mW2+91Xxv1qxZio2NVeXh7sPH8/nnn6t9+/ZyOBwaOHCgtm3bdsw6zz77rLp27aq4uDg1adJEo0eP1sGDB83P3cPn7rjjDnNImyQdPHhQd999t1q1aiWHw6F27drp+eefr3M3QQheh8rL9dCsWer25JP6ev16q8Pxkpubq9tuu01paWlyOBwaMGCA1qxZ47XOQw89pPbt2ysmJkatWrXS+PHjVVFRIal6uGmLFi0kSRdffLFsNpuaN28uqXqo59GjMY5XCmez2fTSSy9p9OjRSklJ0ZAhQyRJW7du1YgRI5SUlKS4uDhdeeWVXr+/9uzZo+TkZDMB4slzuG1VVZUmT56sFi1aKCoqSh07dtSHH354yr+bqVOnqn379oqKilKrVq2OGUkjVT9hateunaKiotS4cWPde++9kqSLLrpI33zzjd555x3z95X7Z963b5+uvfZa8+f69a9/rc2bN5v7dA/hfffdd3XNNdcoPj5ed9999ynjtcr6/UvM5UJXQ93WubNij/P/BAAgfbh8udo/9pgmf/yxyo4qkbHipvXo+4NT3RtIR0pIn3rqKaWnpystLU1jxoyR86if57nnnlNGRoYSEhJ0xx13qKys7Jjj//TTT7rgggvkcDiUlpame+65R8XFxebnM2bMkM1mU1ZWlvr06SOHw6F+/fppx44d2rVrlwYPHqy4uDj16NFDq1evPqOf/dNPP1WPHj0UHR2tRo0aacKECaqqqjI/d1/HLFy4UF26dFFUVJT+97//STr1NcK3336r8847T/Hx8UpKSlKvXr20cOFCSSe+p/E1dzlMXFSUUkJwdCZJEEiSdu7cKZvNpqZNm3q9N3r0aH300UeaOnWqdu3apUsuucRMIPTt21fLly9XSUmJJOn7779XdHS0vvvuO3Mf33//vX71q18p/ARPuHfs2KErrrhCrVq10gcffKBBgwZ5JVHc9u3bp3HjxmnevHn6y1/+ou+++07XX3+9+fnixYslSePHj9fixYvN18XFxYqIiNDzzz+vTz/9VPfee68mT56sv/3tbzX8GwN8a82ePer/17/q2tde0+6Cglo/fmVlpfmnqqpK5eXlGjhwoL7//nv9/e9/1+zZsxUWFqZBgwZ5XYAUFhbqj3/8o+bPn68JEyboX//6l37/+99Lkho0aGD2vZgyZYoWL16sOXPmnHFsTz/9tCoqKvSf//xHjz/+uHJzc3X++edr165dmj59ut555x3t2LFDQ4cOlcvlkiR17dpVa9eu1SOPPKKNGzeecN/33HOPnnvuOT3wwAP673//q4EDB+qqq67STz/9dMJtnnnmGY0dO1ajRo3SvHnzdMMNN+jee+/V7NmzzXUmTpyosWPHatiwYfr444/13HPP6dChQ5KkV155Rd26ddPgwYPN31fdu3eXYRgaNmyYvv/+e73yyit66623tH37dg0cOFDl5eVeMfzud79T06ZN9eGHH+rOO+8847/T2uAyXFq9rzoJUmWEKym2la5o1driqAAgsJU5nZr44YfqNHGi5q1YYb5vRQ+Ho+8PTnVv4Pbmm29qxYoVevPNN/XII49o6tSpevXVV83PZ82apXHjxumGG27Qe++9J6fTqT/96U9e+9i3b58GDhyosLAwzZo1S08//bRmzpyp22677Zg4b775Zt1555169913tXv3bt1888267rrrNHToUL3//vuSpOuuu+6Y7dyjN9x/3D9HVlaWfv3rX6tly5aaM2eOxo4dq+eee04TJkzw2r6oqEh33323xo4dq/nz56t169anvEY4cOCAhg0bpszMTM2ZM0f/+c9/NHz4cOUfLnc60T2NL7lcLm0/fD41T00NzZnajBDRqFEjQ5LRqFGjWtkukN10001G3759DafTaZSVlRk//PCD0bx5c+O222474TaVlZXG9u3bDUnGzz//bBiGYeTn5xs2m8344osvzP2OHj3asNvtxv79+w3DMIwePXoYjz/++An3++CDDxoZGRlGeXm513uSjK+++uqEsXz77beGzWYzsrOzzfclGa+//voJj+VyuQyn02lMnjzZ6Nix4wnXCzY1OUfr4vkdLKZ9+62hW2897p+4u+82/jp/vvHVunXme79/912/xHHTTTcZkrz+hIWFGa+//rrhcDiMHTt2mOsWFxcb9evXN/72t78dd19Op9N46623jPj4eKOqqsowDMPYunWrIclYsGCB17pPPPHEMefdL7/8csx3X5LRt29fr/UmTJhgNGjQwDhw4ID53q5du4zIyEhjzpw5ZizDhw83f6b69esbt99+u7Fu3Tpzm40bNxo2m8147733vPY/dOhQ44orrjBfN2vWzJgwYYJhGIZRVFRkxMTEGH/961+9trn33nuNLl26GIZhGHl5eUZUVJTx2GOPHffvyTAM48ILLzSuv/56r/f++9//ev2ONQzD2LFjhxEREWG88sorhmEc+fs8eltfWrdnjxF+521G5pOjjd/+68/GvA1fndWfWSvfMx6ac6nx0JxLjVvev934dtdOv8UMAMHMftttJ7wmuHzKFGNLdrZx7Wuvme+t27PH5zGc6f3B8e4NDKP638wOHTqY1wGGYRi//vWvjQEDBpivu3fvbgwfPtxrf927dzc8b01///vfG6mpqUZJSYn53n/+8x/DZrMZa9asMQzDMN544w1DkjFr1ixznVdeecWQZDz33HPme5988okhydi8ebNhGEf+LT36z+TJkw3DMIwRI0YYnTp1Mlwul7mPP//5z4bD4TDy8vIMw6i+jjn6+uZ0rhF+/vlnQ5LXNczRTnVPU1O78vPNc+nXf/+7344TyEKmJ8ju3bu9/hvqvv/+e69h4l26dNHLL7/stc6KFSv0yCOP6Oeffzazk1L1kPWePXsqOTlZHTp00KJFizRgwAB99913+vvf/67vvvtOixYt0uDBg7VixQo9/fTTJ4xjyZIluvTSS73q54YNG6YXXnjBa71vvvlGjz32mFauXKkDBw6Y72/evFlpaWkn/Vlfe+01TZkyRZs3bzafpkZFRZ10m1BRmp4u/epX2hsdrcaHn96jdhQf9WTf06Hyco177z01q6UnPV26dNG0adPM1+7ZYXr37q0GDRqY5WyRkZHq3bu3li49MtvHBx98oKefflrr1683R4VJUnZ2tjIyMnwS32WXXeb1+osvvtDgwYPlcDjM2NLT09WuXTstXbpUV155pcLDwzV79mwtW7ZMc+fO1ddff6033nhDM2fO1Ndff61evXrpyy+/VGRkpIYOHepVsjdgwIATjhZbvHixSkpKdNVVV3lt079/f02dOlUVFRX68ccfVV5erhtvvPGMfs4lS5aoadOm6tmzp/lekyZN1Lt3b/38889eZS9H/534krPKqTsuKVRMWLGk7fpy7dc13mdOcYqu/duLNd4PANRFrpOUac/NytLna9Yo1WPmEn9dH5zq/uBU9wZu/fv3l91+pOCgffv2mjt3rqTqkacrVqzQ/fff73XsYcOGec2IsmTJEg0ZMsSr59Xw4cNls9m0ZMkSdejQwXx/wIAB5nKrVq0kVZeeHv3enj17vJq0v/zyy16l/e6+J0uWLNGNN97oNULi6quv1qOPPqrVq1frggsukFR9XTRw4EBzndO5RmjVqpXi4uJ0/fXX684779SFF16o+Ph41SbP0qoWIdgPRKIxashy3/RUVFTo888/1x//+Ec9+uij5oV/UVGRLr30UrVu3VqvvfaaGjVqJMMw1LdvX6+avX79+um7777T/v37tXXrVvXt21d9+/bVd999p6SkJLlcLvXp0+eEcezfv1+/+tWvvN47OqmxdetWDRkyRIMGDdK//vUvpaena+fOnbr66quPWz/oadasWbrrrrs0btw4DRo0SMnJyfrggw/05z//+Uz/yuqkgy1aSImJckmWlGDg5Grr/0lcXJzXxYtU3Q/kq6++Om5PjQsvvFBS9T/2V199tW666SY99dRTqlevnn788Ufdf//9p/xunon69esfE9uMGTM0Y8aMY9bt1q2b1+vu3bub3dVXrVqlfv366emnn9aHH36o3NxclZeXKyYm5pj92O12uVwur4s497ElnXCmmz179ijv8BDTBg0anN4PeNjevXuP+Vml6gTP3r17vd473nq+UlpZrij7iZN0Z8pl2PXTmkPKLvDdOQEAoaTM6dT+ww8B0xMS5PBT882T3R+c7r2BJCUlJXm9joyMNNfJzc1VVVXVMdf7R7/eu3fvMdcmERERSklJOebfxMTERK9jnei9o+PMzMw85hjuYx/972x6err5mVvqUaUkp3ON0Lx5c3322Wd64oknzKTO5ZdfrpdeeslnD49OJdSnx5VIgoQsz5ue8847Tzk5OXr55Zf14IMPqkmTJvrhhx+0b98+/fjjj2Yd4JYtW47ZT9++ffXOO+/om2++UceOHZWUlKR+/frp73//u5KTk9W5c2clJCScMI709HTl5OR4vXf0688//1xVVVV67733zF9inj0JTmbOnDnq37+//vKXv5jvffzxx6e1bSiI37pV+c2byx4dfcY3bKiZ4vJyFXqMnDjaJR076qbzztP1r79ei1EdkZKSor59++rFF1885jP3E4u5c+eqefPmmj59uvnZ6TYei4qKMhuouhWcIOlzdK1qSkqKrr76aj388MPHrFvvJP+Yd+7cWYMGDdLatWvN/TgcDn377bfHXf/oBIh7G0lasGDBMRd5UnXiwx3D3r171aZNmxPGc7xts7Ozj3l///79at3au5eGP+t3E6Li9OHyhmrXxFC4XQq3n/2UgYZs2pMXrYgquxolB+YMNgBgtZM99EhPSNCfhg/XbYcT//58cn+y+4O1a9ee1r3BqaSmpiosLOyU1//H+zfR6XQqPz/f79esxzu2uwGs57GPd30infwaQar+u12wYIGKi4s1f/58PfDAA8f0FvOnUJ8ZRgqhJEijRo3q7PROvjBx4kRNnz5dL774op5//nmVlpZKkleZyqxZs47Zrl+/fjp06JD+8Y9/qF+/fuZ7t9xyiyIjI833TqRnz56aOXOmKioqzGMdnaQoLS1VeHi419zdx4slIiLimOaBpaWlXj+Dy+UyGyRBcuzfLy1bpgaNGnnNrAH/++eiRbr9OCMZmqak6G+jRuk33bvr+02baj+wwwYMGKDHH39crVu3Pu4/5FL19+vokSJHfzfd37+jv5uNGzdWXl6e8vLyzKSBuzP66cQ2d+5cdenS5bgjVaTqcpyjn+IYhqEtW7aY7/fv31+lpaUqLy9X3759T+vYvXv3lsPh0P79+zVo0KATrhMdHa23335bTz755HHXiYyMPObvpFevXpo0aZKWLl2qHj16SKou4fzhhx+O29DNn7btrtS23dLNffvqjVuObVYNAPCdsNtvP6YkJsxu15iBAzXp8svNUSBS7d60et4fnH/++ZJOfW9wKuHh4erSpYvmzp2rm266yXz/6Ov/Xr16acaMGSorK1N0dLSk6oebhmEcd/SGL/Xq1UsffvihJk2aZCY63n//fTkcDnXq1OmE253ONYKn2NhYjRgxQosXL9b8+fPN9493T+NLJEFCKAmCk0tPT9ctt9yiadOm6YknnlDv3r0VExOj0aNHa8yYMVq2bJneeOONY7Zr0aKFGjZsqEWLFumuu+4y30tPT9fixYs1ZsyYkx73/vvv18svv6zhw4fr3nvvVVZW1jFJiosuukglJSW66667NHLkSH3xxRf6/PPPj9lX27ZtNXv2bHXt2lVRUVHq2bOnBgwYoLFjx+rFF19Uu3bt9Nprr3n1LQACRWR4uMYNHqw/DB2qmADoWXPTTTdp6tSpuuiii/Tggw+qWbNmys7O1qJFi3Tuuefqt7/9rQYMGKC///3veuyxx3ThhRdq1qxZWn/UNL8ZGRlKTEzU22+/rXr16ik2NladO3fW4MGDFRkZqdtuu0333nuvVq5cedzyluN58MEH9a9//UuDBg3SPffco4yMDO3Zs0cLFy7Uddddp4EDB2ry5MlatWqVrrvuOrVr106FhYV68803lZWVpXfffVeS1K5dO915550aPny4HnnkEXXt2lWHDh3SihUrdOjQIT377LPHHDs5OVmPP/647rrrLm3evFl9+vSR0+nU2rVrtXbtWk2fPl3Jycl69NFHNXnyZJWVlWnQoEEqLCzUJ598Yv4edf+++vzzz5WSkqK2bdvqsssuU8+ePXXVVVfpmWeeUXR0tCZNmqSGDRvqlltuqdn/UABA0LggM1P/uP56dT48lfyPHiMuavOm1fP+4IEHHjite4PTMW7cOF177bVmufq///3vY0pcHnzwQU2dOlVDhw7V2LFjtXfvXj388MO65pprvPqB+MOECRPUo0cPjRw5UrfeeqvWrFmjiRMn6ne/+5052uN4TucaYd68eXrjjTd05ZVXqkmTJtq2bZvefvttXX311eZ+jndP40uUwzBFLjyMGzdOJSUlmjZtmjIyMjRz5kytW7dOw4YN07x58044RMv9BNVz1Mfx3jueZs2a6cMPP9Qvv/yi3/zmN/rss8+8GjRK1VNdvvrqq/rss890xRVXaM2aNXrzzTeP2deUKVOUk5OjAQMGqFevXpKku+++W3fffbcmT56s3/72t2revLkeeeSR0/9LAWrBZZ07a/Uf/6inhg8PiASIJEVHR+urr75S3759NX78eF1yySV66KGHlJubqy5dukiSLr/8ck2aNEmvv/66RowYoYqKimOaGtvtdv3f//2flixZovPPP1/Dhg2TVN3Twp00ueKKK7Rw4UK9fpqlP2lpaVq8eLGaNm2q++67T4MHD9Zjjz0mu91ulp9cf/31at68uf7yl79o8ODBuv3225WXl6dPPvlE11xzjbmvqVOnaty4cfq///s/XXbZZbrjjju0aNGik44MGT9+vKZMmaIPPvhAw4YN0w033KCPPvrIfEomSU888YSee+45ffDBB/r1r3+tBx980Kvx2bhx49ShQwddddVV6tWrl5YuXSqbzaaPP/5YvXv31l133aXf/va3aty4sRYuXEgzZwAIAQ0SE/XOHXfo64cfNhMgkrU3re77g/fff/+07w1OZdSoUXr22Wf11ltvacSIEbLb7Ro/frzXOhkZGfriiy9UUVGhESNGaPz48Ro1apT++c9/+uLHOqkuXbro448/1qZNm3TFFVfo+eef10MPPaSnnnrqlNue6hqhdevWMgxDjz76qC655BJNnDhRN9xwg/7617+a+zjePY0vuUeCxEdHKzk21uf7DwY2wzhJO+I6pHHjxmY5zJkM+z/b7YDaUpNzlPPbOv9ctEiTP/5Yf7/2Wl3etetxezx898svOv9wE9/fDx6sv3rcvAP+sn7vXrV/7DFJh8thbqUcBgD8KWr0aN03YICeuPxyJTiO7Z/0h9mz9cwnn0iSPh07VoNPUpIBnIzL5VL0XXfJWVWlzo0ba+UJynbrOsphAMACA9q107XnnhswIz8AAIA1lj/xhDo0bHjCz71GgoRoDwf4xt6iIjmrqiSFbimMRBIEACzR4qip4AAAQGg6WQJE8m5k2fQkPSmAU6EpajV6ggAAAABAgHLfuGYkJsrhMTsLcKZoilqNJAgAAAAABKAyp1N7i4okhfZNK3yDkSDVSIIAAAAAQADaTj8Q+NBWkiCSSIIAAAAAQEDyfHLfIoRvWuEbnE/VSIIAAAAAQACifAG+5O4JkuBwKCkmxuJorEMSBAAAAAACEI0s4StVLpd2HD6fmterJ5vNZnFE1iEJAgAAAAABiJEg8JW9hYVyVlVJ4lwiCQIAAAAAAcgzCdKUkSCoAUYVHUESBAAAAAACkPvGtUFioqIjIiyOBsGMUUVHkAQBAAAAgABTWlGhfUVFkrhpRc2RBDmCJAgAAAAABJgd+fnmcqjftKLmKIc5giQIAAAAAAQYryf3IX7TippjJMgRJEEAAAAAIMBw0wpfco8ESXA4lBQTY3E01iIJAgAAAAABZisjQeAjVS6XdhxOgjSvV082m83iiKxFEgQAAAAAAoznSJAWaWkWRoJgt6ewUM6qKkmMKpJIggAAAABAwPFsZNk0JcXCSBDsvBJqJEFIggAAAABAoHHfuDZMSlJURITF0SCY0V/GG0kQAAAAAAggpRUV2n/ggCRuWlFzTI/rjSQIAAAAAASQ7dy0wocYCeKNJAgAAAAABBBuWuFLnE/eSIIAAAAAQAChfAG+5D6fEh0OJcXEWByN9UiCAAAAk2EYVocAACGPJ/fwlSqXSzvy8yVxLrmRBAGAABVms5nL7rndAX+rdLnM5XA7lwkAYAWSIPCVPYWFqjx8Hcmoompc3QBAgEpwOMzlwpISCyNBKPE81zzPQQBA7fEsh2makmJhJAh2JNSORRIEAAJURmKiuby7sNC6QBBSdhcUmMue5yAAoPa4b1wbJiUpKiLC4mgQzEiCHIskCAAEqJTYWCUefhK/cd8+i6NBqNjgca615GIJAGpdSXm59h84IImbVtTcVs8kCOUwkkiCAEDAstls6ty4sSRpR36+sg9fEAH+tHT7dnPZff4BAGrPdo9SmBYkQVBDjAQ5FkkQAAhgfVq1Mpe/Wr/ewkgQCpyVlfp240ZJUr24OLVJT7c4IgAIPUyPC1/yOp9IgkgiCQIAAW1wx47m8vtLllgYCULBF+vWqai0VJJ0SceOsnnMUAQAqB08uYcvuc+npJgYJcXEWBxNYCAJAgAB7ILMTKXFx0uSPsrK0h6PppWAr039+mtz+ZqePa0LBABCGEkQ+EplVZV2Hr52ZFTRESRBACCARYSH6/bzz5ckOauqNGnuXIsjQl31w+bNmpuVJUlqlJysoeecY21AABCiKIeBr+wpLFRlVZUkEmqeSIIAQID73cUXKz46WpL0+rffas6yZRZHhLom79Ah3fjPf5qvxw8ZoojwcAsjAoDQ5R4JYrPZ1CQlxeJoEMwYVXR8XOEAQICrn5CgPw0frjEzZ0qSRr76qiYMHarBnTopzE4uG2fPMAztyM/XhA8+0C/790uSejZvrtEXXmhxZAAQutwjQZJjYrRy1y6Lo0Ew++Zws3OJUUWebIZhGFYHURsaN26s3bt3y263q0GDBqe93d69e+Vyuc54O6C21OQcdW/bqFEj7eIf2YBmGIZunDZNb//wg9WhoA5rkJio//3hDzwtAgCLlJSXK/aee6wOA3XQh/fdpyu6dbM6jIAQMiNB4g83FnS5XNq9e/cZb3+22wG1pSbnqPv7gcBls9n0xq23qkFSkp7/7DO5QiN/jVrUq0UL/Wf0aBIgAGAhu92uyPBwVVRWWh0K6pAwu11dmzSxOoyAETIjQd5//309/vjjOnjw4BltV1paqoMHDyo+Pl4Oh8NP0QFnr6bnaHx8vCZPnqwRI0b4ITr4w+bsbH2wbJl25udbHQrqgNioKF2YmalLOnaUnfIqALDcV+vX66Ply3ngAZ+wSbqsc2dd2rmz1aEEjJBJggAAAAAAgNDGIx8AAAAAABASSIIAAAAAAICQQBIEAAAAAACEBJIgAAAAAAAgJJAEAQAAAAAAIYEkCAAAAAAACAkkQQAAAAAAQEggCQIAAAAAAEICSRAAAAAAABASSIIAAAAAAICQQBIEAAAAAACEBJIgAAAAAAAgJJAEAQAAAAAAIYEkCAAAAAAACAkkQQAAAAAAQEggCQIAAAAAAEICSRAAAAAAABASSIIAAAAAAICQQBIEAAAAAACEBJIgAAAAAAAgJJAEAQAAAAAAIYEkCAAAAAAACAkkQQAAAAAAQEggCQIAAAAAAELC/wNYquw3U1yS0gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Visualize the complete pipeline\n", "atom.plot_pipeline()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Analyze the results" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 accuracyapbaf1jaccardmccprecisionrecallauc
RF0.9520000.6562000.5556000.2000000.1111000.3252001.0000000.1111000.910700
RF_os0.9560000.6215000.7672000.5769000.4054000.5542000.6000000.5556000.925100
RF_us0.5090000.3687000.6706000.1578000.0857000.1545000.0870000.8519000.825800
\n" ], "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "atom.evaluate()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plotly.com" }, "data": [ { "hovertemplate": "(%{x}, %{y})RF - test", "legendgroup": "RF", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF" }, "line": { "color": "rgb(0, 98, 98)", "dash": "solid", "width": 2 }, "marker": { "color": "rgb(0, 98, 98)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines", "name": "test", "showlegend": true, "type": "scatter", "x": [ 1, 0.9814814814814815, 0.9629629629629629, 0.9259259259259259, 0.9074074074074074, 0.8518518518518519, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8148148148148148, 0.8148148148148148, 0.7777777777777778, 0.7777777777777778, 0.7407407407407407, 0.7407407407407407, 0.7222222222222222, 0.7037037037037037, 0.6851851851851852, 0.6481481481481481, 0.5925925925925926, 0.5555555555555556, 0.5370370370370371, 0.5370370370370371, 0.5, 0.46296296296296297, 0.46296296296296297, 0.4444444444444444, 0.4074074074074074, 0.3888888888888889, 0.37037037037037035, 0.35185185185185186, 0.35185185185185186, 0.3148148148148148, 0.2962962962962963, 0.2777777777777778, 0.25925925925925924, 0.2222222222222222, 0.16666666666666666, 0.12962962962962962, 0.1111111111111111, 0.07407407407407407, 0.05555555555555555, 0.037037037037037035, 0.018518518518518517, 0 ], "xaxis": "x", "y": [ 0.054, 0.07076101468624833, 0.09252669039145907, 0.10989010989010989, 0.1320754716981132, 0.1503267973856209, 0.1717557251908397, 0.1939655172413793, 0.21951219512195122, 0.24725274725274726, 0.26785714285714285, 0.3103448275862069, 0.3308270676691729, 0.36666666666666664, 0.38181818181818183, 0.40384615384615385, 0.43010752688172044, 0.4878048780487805, 0.4936708860759494, 0.5, 0.5285714285714286, 0.5303030303030303, 0.5423728813559322, 0.625, 0.6590909090909091, 0.7435897435897436, 0.75, 0.7352941176470589, 0.7575757575757576, 0.8, 0.7857142857142857, 0.84, 0.9090909090909091, 0.9047619047619048, 0.95, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "yaxis": "y" }, { "hovertemplate": "(%{x}, %{y})RF_os - test", "legendgroup": "RF_os", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF_os" }, "line": { "color": "rgb(56, 166, 165)", "dash": "solid", "width": 2 }, "marker": { "color": "rgb(56, 166, 165)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines", "name": "test", "showlegend": true, "type": "scatter", "x": [ 1, 1, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9444444444444444, 0.9259259259259259, 0.9074074074074074, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8518518518518519, 0.8148148148148148, 0.8148148148148148, 0.7962962962962963, 0.7777777777777778, 0.7777777777777778, 0.7777777777777778, 0.7407407407407407, 0.7407407407407407, 0.7222222222222222, 0.6851851851851852, 0.6851851851851852, 0.6851851851851852, 0.6851851851851852, 0.6666666666666666, 0.6481481481481481, 0.6481481481481481, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6111111111111112, 0.5925925925925926, 0.5740740740740741, 0.5555555555555556, 0.5555555555555556, 0.5185185185185185, 0.5, 0.48148148148148145, 0.48148148148148145, 0.46296296296296297, 0.4444444444444444, 0.4444444444444444, 0.4444444444444444, 0.4074074074074074, 0.4074074074074074, 0.3888888888888889, 0.37037037037037035, 0.35185185185185186, 0.3333333333333333, 0.3333333333333333, 0.3148148148148148, 0.2962962962962963, 0.2777777777777778, 0.2777777777777778, 0.25925925925925924, 0.24074074074074073, 0.2037037037037037, 0.18518518518518517, 0.14814814814814814, 0.1111111111111111, 0.09259259259259259, 0.037037037037037035, 0 ], "xaxis": "x", "y": [ 0.054, 0.05856832971800434, 0.06370192307692307, 0.07123655913978495, 0.07737226277372262, 0.08660130718954248, 0.09532374100719425, 0.10379241516966067, 0.11279826464208242, 0.12560386473429952, 0.13829787234042554, 0.15028901734104047, 0.1625, 0.16887417218543047, 0.18050541516245489, 0.1891891891891892, 0.2, 0.21076233183856502, 0.22705314009661837, 0.23979591836734693, 0.2554347826086957, 0.26136363636363635, 0.2634730538922156, 0.275, 0.2792207792207792, 0.2857142857142857, 0.3, 0.32061068702290074, 0.3252032520325203, 0.3305785123966942, 0.33620689655172414, 0.3425925925925926, 0.3523809523809524, 0.3627450980392157, 0.37, 0.3673469387755102, 0.3684210526315789, 0.3977272727272727, 0.4, 0.40476190476190477, 0.43037974683544306, 0.4594594594594595, 0.4722222222222222, 0.4857142857142857, 0.5, 0.5074626865671642, 0.5483870967741935, 0.5689655172413793, 0.5614035087719298, 0.5740740740740741, 0.6, 0.6122448979591837, 0.6222222222222222, 0.6585365853658537, 0.65, 0.6666666666666666, 0.6578947368421053, 0.6486486486486487, 0.7058823529411765, 0.7272727272727273, 0.7333333333333333, 0.7586206896551724, 0.75, 0.8, 0.8260869565217391, 0.8181818181818182, 0.9, 0.8947368421052632, 0.9411764705882353, 0.9375, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "yaxis": "y" }, { "hovertemplate": "(%{x}, %{y})RF_us - test", "legendgroup": "RF_us", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF_us" }, "line": { "color": "rgb(115, 175, 72)", "dash": "solid", "width": 2 }, "marker": { "color": "rgb(115, 175, 72)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines", "name": "test", "showlegend": true, "type": "scatter", "x": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9444444444444444, 0.9444444444444444, 0.9444444444444444, 0.9444444444444444, 0.9259259259259259, 0.9074074074074074, 0.8888888888888888, 0.8888888888888888, 0.8888888888888888, 0.8888888888888888, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8333333333333334, 0.8333333333333334, 0.8148148148148148, 0.7962962962962963, 0.7777777777777778, 0.7407407407407407, 0.7407407407407407, 0.7407407407407407, 0.7407407407407407, 0.7037037037037037, 0.6851851851851852, 0.6851851851851852, 0.6666666666666666, 0.6481481481481481, 0.6111111111111112, 0.5740740740740741, 0.5370370370370371, 0.5185185185185185, 0.5, 0.48148148148148145, 0.4444444444444444, 0.3888888888888889, 0.3888888888888889, 0.37037037037037035, 0.37037037037037035, 0.37037037037037035, 0.2962962962962963, 0.2037037037037037, 0.16666666666666666, 0.12962962962962962, 0.12962962962962962, 0.1111111111111111, 0.1111111111111111, 0.1111111111111111, 0.09259259259259259, 0.07407407407407407, 0.05555555555555555, 0.018518518518518517, 0 ], "xaxis": "x", "y": [ 0.054, 0.05421686746987952, 0.05454545454545454, 0.054933875890132246, 0.055441478439425054, 0.05572755417956656, 0.056016597510373446, 0.05619146722164412, 0.05672268907563025, 0.057203389830508475, 0.057692307692307696, 0.05806451612903226, 0.058315334773218146, 0.05888767720828789, 0.05934065934065934, 0.05947136563876652, 0.060066740823136816, 0.06002265005662514, 0.06077981651376147, 0.06113033448673587, 0.06177156177156177, 0.0624263839811543, 0.06302021403091558, 0.06257521058965103, 0.06295399515738499, 0.06349206349206349, 0.0647571606475716, 0.06540880503144654, 0.06649616368286446, 0.06718346253229975, 0.06842105263157895, 0.06914893617021277, 0.07017543859649122, 0.07133058984910837, 0.07112970711297072, 0.07172995780590717, 0.07275320970042796, 0.07380607814761216, 0.07396449704142012, 0.07324364723467862, 0.07261724659606657, 0.07465007776049767, 0.07643312101910828, 0.07766990291262135, 0.07755775577557755, 0.07859531772575251, 0.07993197278911565, 0.08145580589254767, 0.08274647887323944, 0.0852994555353902, 0.08687615526802218, 0.08695652173913043, 0.08984375, 0.09236947791164658, 0.0968421052631579, 0.10065645514223195, 0.10430839002267574, 0.10747663551401869, 0.11057692307692307, 0.116751269035533, 0.12073490813648294, 0.1232876712328767, 0.1278409090909091, 0.13538461538461538, 0.14052287581699346, 0.14334470989761092, 0.14336917562724014, 0.1520912547528517, 0.1646090534979424, 0.17391304347826086, 0.18181818181818182, 0.19072164948453607, 0.20218579234972678, 0.20930232558139536, 0.22151898734177214, 0.23404255319148937, 0.2421875, 0.26126126126126126, 0.2828282828282828, 0.2967032967032967, 0.3333333333333333, 0.35294117647058826, 0.3387096774193548, 0.3684210526315789, 0.4166666666666667, 0.47619047619047616, 0.5128205128205128, 0.5, 0.5, 0.5294117647058824, 0.5384615384615384, 0.6363636363636364, 0.75, 0.8571428571428571, 1, 1, 1, 1, 1, 1 ], "yaxis": "y" } ], "layout": { "font": { "size": 12 }, "height": 600, "hoverlabel": { "font": { "size": 16 } }, "legend": { "bgcolor": "rgba(255, 255, 255, 0.5)", "font": { "size": 16 }, "groupclick": "toggleitem", "traceorder": "grouped", "x": 0.01, "xanchor": "left", "y": 0.01, "yanchor": "bottom" }, "margin": { "b": 50, "l": 50, "pad": 0, "r": 0, "t": 35 }, "shapes": [ { "line": { "color": "black", "width": 1 }, "opacity": 0.5, "type": "line", "x0": 0, "x1": 1, "xref": "x", "y0": 0.054, "y1": 0.054, "yref": "y" } ], "showlegend": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "font": { "size": 24 }, "pad": { "b": 15, "t": 15 }, "x": 0.5, "xanchor": "center", "xref": "paper", "y": 1, "yanchor": "top" }, "width": 900, "xaxis": { "anchor": "y", "automargin": true, "autorange": true, "domain": [ 0, 1 ], "range": [ -0.000591016548463357, 1.0005910165484633 ], "title": { "font": { "size": 16 }, "text": "Recall" }, "type": "linear" }, "yaxis": { "anchor": "x", "automargin": true, "autorange": true, "domain": [ 0, 1 ], "range": [ 0.0014444444444444426, 1.0525555555555555 ], "title": { "font": { "size": 16 }, "text": "Precision" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABNEAAAJYCAYAAABMw3BUAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3QeYFeX5/vF792zvCyxLkSIdBBUbBI09sUcTC4kldlETWzSWmMQklljiT41JBHuJiWLUJMQaeyxYQRFBqhRhqdv7nt3/f86yqLCwM3umz3evi4sF3nnf5/k8QzS3c85JaWtraxNfCCCAAAIIIIAAAggggAACCCCAAAIIILBNgRRCNO4OBBBAAAEEEEAAAQQQQAABBBBAAAEEti9AiMYdggACCCCAAAIIIIAAAggggAACCCCAQBcChGjcIggggAACCCCAAAIIIIAAAggggAACCBCicQ8ggAACCCCAAAIIIIAAAggggAACCCCQnABPoiXnx9UIIIAAAggggAACCCCAAAIIIIAAAhEQIESLwJBpEQEEEEAAAQQQQAABBBBAAAEEEEAgOQFCtOT8uBoBBBBAAAEEEEAAAQQQQAABBBBAIAIChGgRGDItIoAAAggggAACCCCAAAIIIIAAAggkJ0CIlpwfVyOAAAIIIIAAAggggAACCCCAAAIIRECAEC0CQ6ZFBBBAAAEEEEAAAQQQQAABBBBAAIHkBAjRkvPjagQQQAABBBBAAAEEEEAAAQQQQACBCAgQokVgyLSIAAIIIIAAAggggAACCCCAAAIIIJCcACFacn5cjQACCCCAAAIIIIAAAggggAACCCAQAQFCtAgMmRYRQAABBBBAAAEEEEAAAQQQQAABBJITIERLzo+rEUAAAQQQQAABBBBAAAEEEEAAAQQiIECIFoEh0yICCCCAAAIIIIAAAggggAACCCCAQHIChGjJ+XE1AggggAACCCCAAAIIIIAAAggggEAEBAjRIjBkWkQAAQQQQAABBBBAAAEEEEAAAQQQSE6AEC05P65GAAEEEEAAAQQQQAABBBBAAAEEEIiAACFaBIZMiwgggAACCCCAAAIIIIAAAggggAACyQkQoiXnx9UIIIAAAggggAACCCCAAAIIIIAAAhEQIESLwJBpEQEEEEAAAQQQQAABBBBAAAEEEEAgOQFCtOT8uBoBBBBAAAEEEEAAAQQQQAABBBBAIAIChGgRGDItIoAAAggggAACCCCAAAIIIIAAAggkJ0CIlpwfVyOAAAIIIIAAAggggAACCCCAAAIIRECAEC0CQ6ZFBBBAAAEEEEAAAQQQQAABBBBAAIHkBAjRkvPjagQQQAABBBBAAAEEEEAAAQQQQACBCAgQokVgyLSIAAIIIIAAAggggAACCCCAAAIIIJCcACFacn5cjQACCCCAAAIIIIAAAggggAACCCAQAQFCtAgMmRYRQAABBBBAAAEEEEAAAQQQQAABBJITIERLzo+rEUAAAQQQQAABBBBAAAEEEEAAAQQiIECIFoEh0yICCCCAAAIIIIAAAggggAACCCCAQHIChGjJ+XE1AggggAACCCCAAAIIIIAAAggggEAEBAjRIjBkWkQAAQQQQAABBBBAAAEEEEAAAQQQSE4gVCFadX2LquuakxPhagQQcFQgPZaiwrwMra9sdPQcNkcAgeQFcrLSlBFLUUUt/2xNXpMdEHBWoDA3Xc0traprjDt7ELsjgEDSAiVFWaqoblRzvC3pvdgAAQScF+jXM3vzIYRozntzAgIIfE2AEI3bAYHgCBCiBWdWVIoAIRr3AALBESBEC86sqBQBQ4AQjfsAAQQ8EyBE84yegxGwLECIZpmMCxDwTIAQzTN6DkbAsgAhmmUyLkDAUwFCNE/5ORyBaAsQokV7/nQfLAFCtGDNi2qjLUCIFu35032wBAjRgjUvqkWAEI17AAEEPBMgRPOMnoMRsCxAiGaZjAsQ8EyAEM0zeg5GwLIAIZplMi5AwFMBQjRP+TkcgWgLEKJFe/50HywBQrRgzYtqoy1AiBbt+dN9sAQI0YI1L6pFgBCNewABBDwTIETzjJ6DEbAsQIhmmYwLEPBMgBDNM3oORsCyACGaZTIuQMBTAUI0T/k5HIFoCxCiRXv+dB8sAUK0YM2LaqMtQIgW7fnTfbAECNGCNS+qRYAQjXsAAQQ8EyBE84yegxGwLECIZpmMCxDwTIAQzTN6DkbAsgAhmmUyLkDAUwFCNE/5ORyBaAsQokV7/nQfLAFCtGDNi2qjLUCIFu35032wBAjRgjUvqkWAEI17AAEEPBMgRPOMnoMRsCxAiGaZjAsQ8EyAEM0zeg5GwLIAIZplMi5AwFMBQjRP+TkcgWgLEKJFe/50HywBQrRgzYtqoy1AiBbt+dN9sAQI0YI1L6pFgBCNewABBDwTIETzjJ6DEbAsQIhmmYwLEPBMgBDNM3oORsCyACGaZTIuQMBTAUI0T/k5HIFoCxCiRXv+dB8sAUK0YM2LaqMtQIgW7fnTfbAECNGCNS+qRYAQjXsAAQQ8EyBE84yegxGwLECIZpmMCxDwTIAQzTN6DkbAsgAhmmUyLkDAUwFCNE/5ORyBaAsQokV7/nQfLAFCtGDNi2qjLUCIFu35032wBAjRgjUvqkWAEI17AAEEPBMgRPOMnoMRsCxAiGaZjAsQ8EyAEM0zeg5GwLIAIZplMi5AwFMBQjRP+TkcgWgLEKJFe/50HywBQrRgzYtqoy1AiBbt+dN9sAQI0YI1L6pFgBCNewABBDwTIETzjJ6DEbAsQIhmmYwLEPBMgBDNM3oORsCyACGaZTIuQMBTAUI0T/k5HIFoCxCiRXv+dB8sAUK0YM2LaqMtQIgW7fnTfbAECNGCNS+qRYAQjXsAAQQ8EyBE84yegxGwLECIZpmMCxDwTIAQzTN6DkbAsgAhmmUyLkDAU4FAh2iLl63SLX95TL//xdkqLsz/BmR1fYuq65o9xeVwBBDYvgAhGncIAsERIEQLzqyoFAFCNO4BBIIjQIgWnFlRKQKGQCBDtPLKap135W2aM2+Jxo0eortuvIQQjfsZgQAKEKIFcGiUHFkBQrTIjp7GAyhAiBbAoVFyZAUI0SI7ehoPqEAgQ7QOa55EC+hdR9kIbBIgRONWQCA4AoRowZkVlSJAiMY9gEBwBAjRgjMrKkXAEAhliPbako81a+V8NbW0MWUEFEstVFpqERI+FIilSFmZaaptaPFhdeEtaUBWbmCa223QYGWmpQem3jAXSogW5unSW9gECNHCNlH6CbMAIVqYp0tvYRQIZYg25cmrlB+bHcZ50VM3BJY376wVLbt040ouQSCcAjNfejkwjfUtLNL13/+BTpz4rcDUHNZCY6kpSkmRWuL8B6qwzpi+wiOQFktRW1ub4q3h6YlOEAirQEZaqlrirWrlH69hHTF9hUwgMz11c0cpbcY/bQP0ta2Xc17x3O3aWPNRgDqhVCcEslJrlRmr0/L6MVpRv5MTR7BnkgLG/yE3voL1vzxJNu3l5dlZidNTlyzzsgrTZze2NOvD5e217tx/gH5/7GRN2HGo6etZaK9AZkZMxr8z1DTE7d2Y3RBAwHaB3KxYIvBubCZFsx2XDRGwWaAoL0M1dU1q4a+rzbJsh4AzAj0LMjZvHJoQzeiIT+d05oYJ0q5vL39cM5c9romDJmvSwMlBKj0ytfKeaO6O+tgXn04c+OR3v+/uwUmc9tHyL3TFk3/XZ6u/TOxy2Nhd9Osjv6+BPXolsSuXdkeAl3N2R41rEPBGgJdzeuPOqQh0R4CXc3ZHjWsQ8E4glC/nJETz7oby08mEaH6aRue1EKK5O6MghmiGkPGQ9FMfva/fP/9vra6sUHospjMm7adLvnO48rPan67jy3kBQjTnjTkBAbsECNHskmQfBJwXIERz3pgTELBTIJAhWnlltc678jbNmbdks8WZPzpcP5tywuZf8ySanbdJMPciRPP/3AjR3J1RUEO0DiXj5Z1TX39Zf371v6ptalRxTo4u/c4ROmXiPkqLxdzFjOBphGgRHDotB1aAEC2wo6PwCAoQokVw6LQcaIFAhmhmxAnRzCiFew0hmv/nS4jm7oyCHqJ1aG2ordHvn/2XHv9gplrb2jSspLd+deQPdPDose6CRuw0QrSIDZx2Ay1AiBbo8VF8xAQI0SI2cNoNvAAhWuBHSAPbEiBE8/+9QYjm7ozCEqJ1qC1cU6Yrn3pMM5cuSvzW3sNG6NrvHa+Rffq6CxuR0wjRIjJo2gyFACFaKMZIExERIESLyKBpMzQChGihGSWNbClAiOb/e4IQzd0ZhS1E69B7Zf5c/e4/T2nh2jVKTUnR5D0m6srDvqdeefnuAof8NEK0kA+Y9kIlQIgWqnHSTMgFCNFCPmDaC50AIVroRkpDHQKEaP6/FwjR3J1RWEM0QzHe2qq/znxTt774jDbU1So3I1M/PfC7mrLvgcpMS3cXOqSnEaKFdLC0FUoBQrRQjpWmQipAiBbSwdJWaAUI0UI7WhojRPP/PUCI5u6MwhyidUjWNDbqjpee1b1vvq6meIv6FxXrqsOO1jG77q6UlBR3wUN2GiFayAZKO6EWIEQL9XhpLmQChGghGyjthF6AEC30I45ug4Ro/p89IZq7M4pCiNYhuqqiXNf+52n9+5OPEr81rv8A3fD9ydpt4GB30UN0GiFaiIZJK6EXIEQL/YhpMEQChGghGiatREKAEC0SY45mk4Ro/p87IZq7M4pSiNYh+/GKZbry6cf1ycrlid86ctx4/erI72uH4h7u4ofgNEK0EAyRFiIjQIgWmVHTaAgECNFCMERaiJQAIVqkxh2tZgnR/D9vQjR3ZxTFEK1D+N8ff6gbnv2XVpRvVEYsTWfts58uOvhw5WVmujuEAJ9GiBbg4VF65AQI0SI3choOsAAhWoCHR+mRFCBEi+TYo9E0IZr/50yI5u6MohyiGdLNLS2653+v6o+vPK/qxkb1zMnVZYccqZMm7K1Yaqq7wwjgaYRoARwaJUdWgBAtsqOn8QAKEKIFcGiUHGkBQrRIjz/czROi+X++hGjuzijqIVqHdnltrW5+YYYeffctxdvaNKJ3qX591LE6YOQYdwcSsNMI0QI2MMqNtAAhWqTHT/MBEyBEC9jAKDfyAoRokb8FwgtAiOb/2RKiuTsjQrRvei9Zt0bX/PtJvfL5Z4k/2HvYCF37veM1sk9fdwcTkNMI0QIyKMpEQBIhGrcBAsERIEQLzqyoFAFDgBCN+yC0AoRo/h8tIZq7MyJE69z7nSULdeVTj2nR2jWKpaToR3tN0hWHfU89cnLdHZDPTyNE8/mAKA+BrwkQonE7IBAcAUK04MyKShEgROMeCLUAIZr/x0uI5u6MCNG27d3a1qbH339HNz0/Q+tqqpWfmakLDjxUZ+97QOKDCPiSCNG4CxAIjgAhWnBmRaUIEKJxDyAQLAGeRAvWvKjWggAhmgUsj5YSorkLT4jWtXddU6PufPkF3f2/V9XQ0qwdinvo6sOP1vd22b3ri0O+ghAt5AOmvVAJEKKFapw0E3IBQrSQD5j2QidAiBa6kdJQhwAhmv/vBUI0d2dEiGbee01Vpa575mk9PesDtUkaP2CQfnf08dpt4GDzm4RsJSFayAZKO6EWIEQL9XhpLmQChGghGyjthF6AEC30I45ug4Ro/p89IZq7MyJEs+49d9VKXfHk3zVrxbLExUfvsrt+cfjRiSfUovZFiBa1idNvkAUI0YI8PWqPmgAhWtQmTr9BFyBEC/oEqX+bAoRo/r85CNHcnREhWve9n5szW9c9+y99sWGdMmNpOmvfA3TxQYcqJyOz+5sG7EpCtIANjHIjLUCIFunx03zABAjRAjYwyo28ACFa5G+B8AIQovl/toRo7s6IEC0575Z4XA+8/bpue+k5VdbXq1duni4/9KjEp3mmpqQkt3kAriZEC8CQKBGBTQKEaNwKCARHgBAtOLOiUgQMAUI07oPQChCi+X+0hGjuzogQzR7vyro6/eHFZ/Twu2/KCNZGlPbRtd87XvsMH2nPAT7dhRDNp4OhLAQ6ESBE47ZAIDgChGjBmRWVIkCIxj0QagFCNP+PlxDN3RkRotnrvXT9Wv12xlP677xPExsfOHKMbj7uRPUtLLL3IJ/sRojmk0FQBgImBAjRTCCxBAGfCBCi+WQQlIGASQGeRDMJxbLgCRCi+X9mhGjuzogQzRnvmUsW6oK/P6RVlRW6+5QzdcS48c4c5PGuhGgeD4DjEbAgQIhmAYulCHgsQIjm8QA4HgGLAoRoFsFYHhwBQjT/z4oQzd0ZEaI5533OI/fqmTmzNe3kM3XkzoRozkmzMwIImBEgRDOjxBoE/CFAiOaPOVAFAmYFCNHMSrEucAKEaP4fGSGauzMiRHPOmxDNOVt2RgAB6wKEaNbNuAIBrwQI0byS51wEuidAiNY9N64KgAAhmv+HRIjm7ozsCNHqWlpU3dyo6qYmVTU3qaqpKfHr4YXFGlXU092GfHQaIZqPhkEpCCAgQjRuAgSCI0CIFpxZUSkChgAhGvdBaAUI0fw/WkI0d2fUWYi2vqE+EYbVNDepsqmxPSBrbFLl5qCsMRGUVTU1qqKpcZsFZ6TGdO2e39awwmJ3m/LJaYRoPhkEZSCAQEKAEI0bAYHgCBCiBWdWVIoAIRr3QKgFCNH8P15CNHdn1BGilWTlJAKzptZ4twrokZmlooxMZaWlJ66vaWrU8tpqZael6bq99tXgvMJu7RvkiwjRgjw9akcgfAKEaOGbKR2FV4AQLbyzpbNwCvAkWjjnSleSCNH8fxsQork7o44QbctTc9LSVJhhBGNZKsjMUFF6poqyslSYnqnCjEwVZWaqIKP9+9xNwdmWe9wy+13NXLtK+ekZun6v/dQ/N8/d5jw+jRDN4wFwPAIIfEOAEI0bAoHgCBCiBWdWVIqAIUCIxn0QWgFCNP+PlhDN3Rn984tFKsrIUHFmtvIz0hMhWc+sbNuKuOGjd/Th+rJE2Pb7CfupNDvXtr39vhEhmt8nRH0IREuAEC1a86bbYAsQogV7flQfPQFCtOjNPDIdE6L5f9SEaP6fkZUKW1pbdf1Hb+uTjesS4dxNE/ZXcWaWlS0Cu5YQLbCjo3AEQilAiBbKsdJUSAUI0UI6WNoKrQAhWmhHS2OEaP6/BwjR/D8jqxUa77P2uw/e1ryK9eqTk6cbJuynwvQMq9sEbj0hWuBGRsEIhFqAEC3U46W5kAkQooVsoLQTegFCtNCPOLoNEqL5f/aEaP6fUXcqbGyN65fvvqEl1RXaITdPv59wgIz3XQvzFyFamKdLbwgET4AQLXgzo+LoChCiRXf2dB5MAUK0YM6Nqk0IEKKZQPJ4CSGaxwNw8Pi6lhZd/d7rWl5TpSH5RfrdXt9Wdiy8QRohmoM3E1sjgIBlAUI0y2RcgIBnAoRontFzMALdEiBE6xYbFwVBgBDN/1MiRPP/jJKpsKa5WVe/95pW1tZoeGGxfrfnt5WRGktmS99eS4jm29FQGAKRFCBEi+TYaTqgAoRoAR0cZUdWgBAtsqMPf+OEaP6fMSGa/2eUbIWVzU36xbuvq6yuRjv3KNHVu01SWmpqstv67npCNN+NhIIQiLQAIVqkx0/zARMgRAvYwCg38gKEaJG/BcILQIjm/9kSovl/RnZUWN7YkAjS1jbUaXyvUl01/luKpaTYsbVv9iBE880oKAQBBCQRonEbIBAcAUK04MyKShEwBAjRuA9CK0CI5v/REqL5f0Z2Vbi+oV6/eO91bWio16TS/rpk5z2VGqIgjRDNrjuFfRBAwA4BQjQ7FNkDAXcECNHcceYUBOwSIESzS5J9fCdAiOa7kWxVECGa/2dkZ4VrGmr1i5mvq6KpUfv2HaCLxu1h5/ae7kWI5ik/hyOAwBYChGjcEggER4AQLTizolIEDAFCNO6D0AoQovl/tIRo/p+R3RWurqvRle++JuNDBw4bMERnjd7F7iM82Y8QzRN2DkUAgW0IEKJxayAQHAFCtODMikoRIETjHgi1ACGa/8dLiOb/GTlR4bKaKl393uuqb2nRsTuO1InDxzhxjKt7EqK5ys1hCCDQhQAhGrcIAsERIEQLzqyoFAFCNO6BUAsQovl/vIRo/p+RUxUurqrQr9//nxriLfrxiHE6evAwp45yZd+zH7lXz86ZrbtPOVNHjBvfrTOXb1yvsqpKra2q1BrjR3WVyior1NwS110nn9GtPe28KCcrTRmxFFXUNtu5LXshgIADAoRoDqCyJQIOCRCiOQTLtgg4JMDLOR2CZVvvBQjRvJ9BVxUQonUlFO4/X1CxUdd88KaaWuM6c9QuOnzgkMA2vL0QbXn5hkQwZgRia6urtLqyIhGSrdsUkhnBWVVDw3Z7v+LQo3ThgYd46kOI5ik/hyNgSYAQzRIXixHwVIAQzVN+DkfAsgAhmmUyLgiKACGa/ydFiOb/GTld4Wfl6/W7D95Sc1urLhy7h/brN8DpIx3ZvyNE22WHgSrMzk48UWYEZZX19abO65mTq94FhSrNL1DvQuPnQqXHYmqKt+hPr/43scfrl/1Kw3qXmtrPiUWEaE6osicCzggQojnjyq4IOCFAiOaEKnsi4JwAIZpztuzssQAhmscDMHE8IZoJpAgs+WTDOl036221trbqkl321N6lOwSu644QbcvCe+cXqE9BoYyfO0Ky0sKixK9LN/1+v6Li7fZ77X+e0tQ3XtGuAwbpmQt+7pkNIZpn9ByMgGUBQjTLZFyAgGcChGie0XMwAt0SIETrFhsXBUGAEM3/UyJE8/+M3Krw/XWrdeOsmYnjrhw/UXuW9HXsaOMTQtNTY+qVlW3bGc9/+rHK6+sSgVmJEZDlFyR+tuOroblJB/zhehkvC73u6ON1+t772bGt5T0I0SyTcQECngkQonlGz8EIWBYgRLNMxgUIeCpAiOYpP4c7KUCI5qSuPXsTotnjGJZd3ln7pf4w+71EO7/efR/t0rPEUmvGhxSsq69XeWOD1jfWa0NDvdbX12nDpu83Ntarprn9TfFPGDJKk4eNtrS/l4tnLlmkY6ferqy0dL15xTXqW1jkejmEaK6TcyAC3RYgROs2HRci4LoAIZrr5ByIQFIChGhJ8XGxnwUI0fw8nfbaCNH8PyO3K3xj9QrdMecDZaTGdM0ee2tUUc9ECdVNTdrQZARkje3BWEOd1jfUywjGjLDM+FEfj5suN2ghmtHYz6b/VY9/MFPfHj5Sj519gele7VpIiGaXJPsg4LwAIZrzxpyAgF0ChGh2SbIPAu4IEKK548wpHggQonmAbvFIQjSLYBFZ/vKXy/SXuR8pMzWm4sysREBmfPBAV189s7JVkpmtHlnZMr7vlZ2tXpk5iZdtGr/XIzNLjy+ap+lL5gfuSTSj96r6en37lt9pfU21bp98io7ffUJXJLb+OSGarZxshoCjAoRojvKyOQK2ChCi2crJZgg4LkCI5jgxB3glQIjmlbz5cwnRzFtFbeWzy5fovvkfb27bCMB6ZeeoR0aWehs/dwRlme2BmfHDzFeQQzSjvxkff6RzH71f+VlZeueK36o4N9dM27asIUSzhZFNEHBFgBDNFWYOQcAWAUI0WxjZBAHXBAjRXKPmILcFCNHcFrd+HiGadbMoXfFFTaVy09JVkpVjW9tBD9EMiB/ff5denj9XR+2ym6aedIZtNl1tRIjWlRB/joB/BAjR/DMLKkGgKwFCtK6E+HME/CVAiOaveVCNjQKEaDZiOrQVIZpDsGy7TYHHF8/X9MXzdMLQ0Zo8dFQgpdZVV2nSTb9RXVOTHjr9XB08eqwrfRCiucLMIQjYIkCIZgsjmyDgigAhmivMHIKAbQKEaLZRspHfBAjR/DaRreshRPP/jMJWYRhCNGMmj8x8U1c+9Zh65eXr7St+o9zMTMdHRYjmODEHIGCbACGabZRshIDjAoRojhNzAAK2ChCi2crJZn4SIETz0zQ6r4UQzf8zCluFYQnRjLkceectmrVimU6asLduPvZHjo+KEM1xYg5AwDYBQjTbKNkIAccFCNEcJ+YABGwVIESzlZPN/CRAiOanaRCi+X8a0agwTCHakvVrdeCt16s5HteT516siUOGOTpEQjRHedkcAVsFCNFs5WQzBBwVIERzlJfNEbBdgBDNdlI29IsAIZpfJrHtOngSzf8zCluFYQrRjNnc+coLuvH5GdqhuIdeu+yXyk7PcGxkhGiO0bIxArYLEKLZTsqGCDgmQIjmGC0bI+CIACGaI6xs6gcBQjQ/TGH7NRCi+X9GYaswbCFavLVVB992gxasKdO5+x6kXx35fcdGRojmGC0bI2C7ACGa7aRsiIBjAoRojtGyMQKOCBCiOcLKpn4QIETzwxQI0fw/hWhVGLYQzZjep1+u0GF/vDkxyOcuvFxj+w9wZKiEaI6wsikCjggQojnCyqYIOCJAiOYIK5si4JgAIZpjtGzstQAhmtcT6Pp8nkTr2ogV9gqEMUQzhK79z9Oa+sbLGlHaR/+9+CqlxWL2wkkiRLOdlA0RcEygKDddjS2tqm+MO3YGGyOAgD0ChGj2OLILAm4JEKK5Jc05rgsQorlObvlAQjTLZFyQpEBYQ7T65ibt/4frtLJ8oy7/7hG66ODDkpTa+nJCNNtJ2RABxwQI0RyjZWMEbBcgRLOdlA0RcFSAEM1RXjb3UoAQzUt9c2cToplzYpV9AmEN0QyhmUsW6diptys9FtMrl16tIb162wfHk2i2WrIZAk4LEKI5Lcz+CNgnQIhmnyU7IeCGACGaG8qc4YkAIZon7JYOJUSzxMViGwTCHKIZPD+b/lc9/sFMjR8wSDN+eplSUlJsUGvfgifRbKNkIwQcFyBEc5yYAxCwTYAQzTZKNkLAFQFCNFeYOcQLAUI0L9StnUmIZs2L1ckLhD1Eq6qv17dv+Z3W11Tr2qOP1xl775c82qYdCNFso2QjBBwXIERznJgDELBNgBDNNko2QsAVAUI0V5g5xAsBQjQv1K2dSYhmzYvVyQuEPUQzhP7zySxN+et9ysnI0Bs//7X6FhYlD8eTaLYYsgkCbgkQorklzTkIJC9AiJa8ITsg4KYAIZqb2pzlqgAhmqvc3TqMEK1bbFyUhEB0GxcWAAAgAElEQVQUQjSD58f336WX58/Vt4eP1GNnX5CE2FeX8iSaLYxsgoArAoRorjBzCAK2CBCi2cLIJgi4JkCI5ho1B7ktQIjmtrj18wjRrJtxRXICUQnR1lVXadJNv1FdU5PumHyKjtt9QnJwPImWtB8bIOCmACGam9qchUByAoRoyflxNQJuCxCiuS3Oea4JEKK5Rt3tgwjRuk3Hhd0UiEqIZvA8MvNNXfnUY8rPytI7V/xWxbm53VRrv4wn0ZLi42IEXBUgRHOVm8MQSEqAEC0pPi5GwHUBQjTXyTnQLQFCNLeku38OIVr37biyewJRCtEMoSPvvEWzVizTUbvspqknndE9tE1XEaIlxcfFCLgqQIjmKjeHIZCUACFaUnxcjIDrAoRorpNzoFsChGhuSXf/HEK07ttxZfcEohaiLVm/Vgfeer2a43E9dPq5Onj02O7B8SRat924EAEvBAjRvFDnTAS6J0CI1j03rkLAKwFCNK/kOddxAUI0x4mTPoAQLWlCNrAoELUQzeC585UXdOPzM9QrL19vX/Eb5WZmWlRrX86TaN1i4yIEPBEgRPOEnUMR6JYAIVq32LgIAc8ECNE8o+dgpwUI0ZwWTn5/QrTkDdnBmkAUQ7R4a6sOvu0GLVhTppP3mqSbjjvRGtqm1YRo3WLjIgQ8ESBE84SdQxHolgAhWrfYuAgBzwQI0Tyj52CnBQjRnBZOfn9CtOQN2cGaQBRDNEPo0y9X6LA/3qzWtjY9ee7FmjhkmDU4nkSz7MUFCHgpQIjmpT5nI2BNgBDNmherEfBagBDN6wlwvmMChGiO0dq2MSGabZRsZFIgqiGawXPtf57W1Dde1g7FPfS/n/9aGWlpJtXal/EkmiUuFiPgqQAhmqf8HI6AJQFCNEtcLEbAcwFCNM9HQAFOCRCiOSVr376EaPZZspM5gSiHaPXNTdr/D9dpZflGnbffwfrlEceYQ9u0ihDNEheLEfBUgBDNU34OR8CSACGaJS4WI+C5ACGa5yOgAKcECNGckrVvX0I0+yzZyZxAlEM0Q2jmkkU6durtSk1J0XMXXq6x/QeYg+NJNNNOLETADwKEaH6YAjUgYE6AEM2cE6sQ8IsAIZpfJkEdtgsQotlOavuGhGi2k7JhFwJRD9EMnkun/1WPfTBTEwYP1VPnX2L6nuFJNNNULETAcwFCNM9HQAEImBYgRDNNxUIEfCFAiOaLMVCEEwKEaE6o2rsnIZq9nuzWtQAhmlRVX69v3/xbra+t0ckT9tZNx/6oazieRDNlxCIE/CJAiOaXSVAHAl0LEKJ1bcQKBPwkQIjmp2lQi60ChGi2cjqyGSGaI6xsuh0BQrR2nNkrlunoP9+qltZW3XDMCTp10r5d3jc8idYlEQsQ8I0AIZpvRkEhCHQpQIjWJRELEPCVACGar8ZBMXYKEKLZqenMXoRozriy67YFCNG+snnyo/d04WMPJ94f7anzLtaeg4du99YhRONvFgLBESBEC86sqBQBQjTuAQSCJUCIFqx5Ua0FAUI0C1geLSVE8wg+wscSon1z+L+b8ZSm/e8VFWZn6/mLrtDAHr22eXcQokX4Lw6tB06AEC1wI6PgCAsQokV4+LQeSAFCtECOjaLNCBCimVHydg0hmrf+UTydEO2bU29tbdXke+7U24sXasdeJXrhoiuVm5nZ6a1BiBbFvzH0HFQBQrSgTo66oyhAiBbFqdNzkAUI0YI8PWrfrgAhmv9vEEI0/88obBUSom090eqGeh32x5u1dP067TditB4983ylpKRstZAQLWx/G+gnzAKEaGGeLr2FTYAQLWwTpZ+wCxCihX3CEe6PEM3/wydE8/+MwlahHSFaa1ubVtfVamVNlZbXVmt5daWW11apurFRxw0drUMG7KhYJyGUny2Xb1yv79x2o2oaG3T+fgfr6iOOIUTz88CoDYEuBAjRuEUQCI4AIVpwZkWlCBgChGjcB6EVIETz/2gJ0fw/o7BV+PiieZq+ZL5OGDJKk4eN7rK9sroarTCCMiMwq67SyppqfVFTud3rdsjN0zljxmun4m2/v1iXB3uw4K1FCxIv7Wxra9PUk8/QUTvv9o0qeBLNg6FwJALdFCBE6yYclyHggQAhmgfoHIlAEgKEaEngcam/BQjR/D0fozpCNP/PKGwVbitEW9NQqxXV1VpZW61l1ZWJsGxJdcU22++dnaMBuQUanF+gHfIL1TMzS02trfr30gX6ZOO6xHUTe/fTaSPHqSQ7JzCM9/7vVV0z40llxNL09PmXaNcBgzbXTogWmDFSKAIiROMmQCA4AoRowZkVlSJgCBCicR+EVoAQzf+jJUTz/4zCVmFHiLZDXr6GFxRrRU37U2ZNrfFOWy1Iz9DA/AINzivSgPx8DcwtSPw6K5a2TZp3167Wg59/orX1dYk1xw8ZqR8MGamM1FggOC/4+0N6atb76pGbp5cuuUqlBYWJugnRAjE+ikQgIUCIxo2AQHAECNGCMysqRYAQjXsg1AKEaP4fLyGa/2cUtgo7QrQt+zICrsEFhRqQk6+BBQUalFekHfMLlZee3m2CJ5d+rn8s/jwR0PXIzNKpI8dpnz47dHs/ty5sjsd19J9v1ccrl2tM3/76zwWXKTMtnRDNrQFwDgI2CBCi2YDIFgi4JECI5hI0xyBgkwBPotkEyTb+EyBE899MtqyIEM3/MwpbhUaw9dbqldoht0CDEmFZoQbk5as0O9eRVjc2Nuihz+fozbKVif1HF/XSOWN20cC8AkfOs2vTDTXVOuSOm7S6skJHjhuvaaecSYhmFy77IOCCACGaC8gcgYBNAoRoNkGyDQIuCRCiuQTNMe4LEKK5b271REI0q2KsD6rAwspy/Wnuh4n3WktNSdHB/QfppOFjk3rSzWmLBWtW67A7blZDS7OuOPQoXXn4EcqIpaiittnpo9kfAQSSFCBESxKQyxFwUYAQzUVsjkLABgFCNBsQ2cKfAoRo/pzL16siRPP/jKjQPoHWtja9/OUyPbpwrqqbm5Sblq4fDhujQwbsqFhKin0H2bjTi3M/0ekP3Z3Y8R/nXaDDxo4lRLPRl60QcEqAEM0pWfZFwH4BQjT7TdkRAScFCNGc1GVvTwUI0TzlN3U4IZopJhaFTKCupUV/W/iZXly5RPG2NvXPzdO5Y8ZrTHEvX3b6f/99Vrf+91nlZmTq9cuvVN+CEl/WSVEIIPCVACEadwMCwREgRAvOrKgUAUPANyHa+7Pn67SLb0xMZdzoIbrrxktUXJi/zSn937Tpuu/vz25zfXV9i6rreMlJlG9zQjT/T58Qzf8zokLnBFbW1mjaZ7P0Wfn6xCETSvvpzJE7q2dWtnOHdnPn0x6cpv9+Nkf9i4r14sVXqSgnp5s7cRkCCLghQIjmhjJnIGCPACGaPY7sgoBbAr4I0RYvW6Wrf3+Prr/qbA0d1E9PPfuGZn74mX778zOUnZWxlcWWf97ZekI0t24h/55DiObf2XRURojm/xlRofMC765ZpQcXzNHa+jqlp6TqmB2H6wdDRsr4xFC/fNU3N+mIP96sz9eUaY9BQ/TUeRcrlprql/KoAwEEthAgROOWQCA4AoRowZkVlSJgCPgiRDNCsC9WlOlnU05ITGXLUG3LURlPoRlfHeuNp9hunTb9G0+vEaJxgxOi+f8eIETz/4yo0B2B5rZW/XPpQj215HM1tcYTT6OdNnKcJpX2d6cAE6dsrK/SAbfcoPU1NfrRnt/SH44/ycRVLEEAAS8ECNG8UOdMBLonQIjWPTeuQsArAV+EaFuGYuWV1Trvytt06ZQTtOeuo7ayMUK2KZffqsMPnJAI0ozrBw/oox8cvu/mtYRoXt1S/jmXEM0/s9hWJYRo/p8RFborsKGhXg9+Pkdvr/kycfCowh46d6fdNCBv229v4FaFOVlp+mjZEh10682JI2845gSdOumrf+66VYdd5xhP1y1et1Zj++1g15bsg4BvBAjRfDMKCkGgSwFCtC6JWICArwR8E6J9PQTrKkSrb2jSNbfcr8rqWr353pxO30Mt3tqmeLzVV9gU467ASwv/plcW/E0HjjhRBw8/0d3DOc2UQEpKimKxFLW02Pl31Z+fcpgA8XFppgbGItcEPl2/Xrd++J6WVFUlzrx13wO0R2mpa+d3dlBqSopSU6QH3npLZz34QGLJC5dcqv1Hbf0fuzwtdIvD11ZV6fOyMs0vW615q1ZpwZoyzVu1WisryhMrT9t7H0378al+KplaEEhaIC01RcYnAre2Jb0VGyDgnUBE7t+0tBTF421qc6VfVw7x7p7hZARcEMhI/+otV1La2tz5q7tlX1afRNvyyTPj5aDTZ7z2jZdz1jXGVdvQ4gIhR/hV4M0vHtNbSx/T3jv+UPsM/qFfy4x0XWmpUl52uipq7fwQEP/+y0EKKVqk7/fuNH/fvI/1z6WLlJka002T9tfQgqLubGPLNVmZMRn/x7ymvkW//Oc/NO2NV1SYla2XL71Kg3p6/8miS9ev08K1ZVq0Zo3ml63SwrVrtHBNmSob6rvs/+hdd9O9Pz6ry3UsQCAoAnnZaWqOt6mxKR6UkqkTga0E2uTff6ezc1zFeZmqrmtSiyupN/9F187ZsVc0BUoKMzc37lmIZuU90TqeQjv+qP03v9Szs/dQ4+Wc0byhv941L+f0/z3Ayzn9PyMq9FbAeJLkptkz9cG6MuWlp+sP3zpQJVnefDKm8XLOjFhKIvRubW3V5Hvu1NuLF2rHXiV64aIrlZv51b9QOKXW2NKceAmmEZYtLFutRcb3a1bLCNAa41v/hzPj/yr0KyrWsN6lGlbSR8NL+2h471IN7d1HJXn5+mTlck2++05VNdTrgJFjdN+pZyszLd2p8tkXAdcEeDmna9QchEDSArycM2lCNkDAVQFfvJyzq0/n3PJJM+NJtLK1Gzd/emdnT6IRorl6H/nyMEI0X47lG0URovl/RlTovUBLa6uu+eBNza/YoNLsXN00YX/lZ2z9ydVOV/r1EM04q7qhXt+57UatKN+g/UaM1l/POE+pNn1iZ0VdnRasXa1Fm54mM0KzxWvXaGXFxsRL1Lb8So/FEmHesN59NLykVMNL+yaCs6ElvZWTsf1wb8Ga1Tpu6h3aUFujvQYP1aNnnd/lNU5bsz8CyQoQoiUryPUIuCdAiOaeNSchYIeAL0I0oxHjEzZPu/jGRE/jRg/5xksztwzJOp5Ge+blmZ2uT/zLfX2LquvsfImYHdzs4aYAIZqb2t07ixCte25cFT2B+nhcl7/zslbV1WrH/EJdt9e+yoqluQqxZYhmHL5k3Vod9sebVdPYoPP3O1hXH3GM6ZqMd5AwQjEjKFu0tizxXmVGUGYEZhvrajvdJz8rS8N790kEZMN7twdlxpNlA3v0UiyJAG/5xvU65i+3aU1Vpcb1H6DHz7lAhdnePPFnGpCFCGxHgBCN2wOB4AgQogVnVlSKgCHgmxDN7nEQotktGrz9CNH8PzNCNP/PiAr9I7CxsUGXz3xV5Y0NGtujl369+z6Kpbj33iadhWiGzluLFiRe2mmEYlNPPkNH7bzbN9Ca4i2JsM0Iyoz3KVu0xvi5LPGyzIaWzv9jV9/CokQ41vESzMQTZr1LVZJf4NhAvizfqGOn3pF4ss4I6v5x7kXq5YNPRXWsYTYOtQAhWqjHS3MhEyBEC9lAaSf0AoRooR9xdBskRPP/7AnR/D8jKvSXwJe1Nbry3VdV19Kib/fdQReP29O1ArcVohkF3Pvmq7rm308mavnFYUervK4m8ab+Rmi2bOP6bdY4rKR3+0swN/0YVtpHxu/lZma51tfXD1pXXaUTpt2hBWvXaEiv3po+5UIZgR5fCARNgBAtaBOj3igLEKJFefr0HkQBQrQgTo2aTQkQopli8nQRIZqn/BweUIFFleX65XtvqLmtVT/YcaROGj7GlU62F6IZBVz8+MN64sP3tqolLzMzEZQZL70cseklmENLShO/9uOX8X5sP7z7j5qzamUiQHtiyoXasVdvP5ZKTQhsU4AQjZsDgeAIEKIFZ1ZUioAhQIjGfRBaAUI0/4+WEM3/M6JCfwrM2rBW13/4loy32D9vp910cP9BjhfaVYhmFHDhYw+pMCtHQ0p6t7+5f0lv9Qngk1zVDQ06+d4/64PlS9UzJ1fTz71Io/r0c9yYAxCwS4AQzS5J9kHAeQFCNOeNOQEBOwUI0ezUZC9fCRCi+WocnRZDiOb/GVGhfwVe+nKZ7pr7kYx3Rbti/ETtWdLX0WLNhGiOFuDy5vXNTTr1gamJ93wryMpOfNjAzjsMdLkKjkOgewKEaN1z4yoEvBAgRPNCnTMR6L4AIVr37bjS5wKEaD4fkCRCNP/PiAr9LfDY4nl6YvH8xCdT/naPfTS6qKdjBUctRDMgm+Nxnf7gNL36+WfKTs/Qo2edrwk7DnPMmI0RsEuAEM0uSfZBwHkBQjTnjTkBATsFCNHs1GQvXwkQovlqHJ0WQ4jm/xlRof8Fbp/zvv63eqWyYzHdNPFA9c/Nc6ToKIZoBmRLPK6f/O1B/WfOLGXE0nTfqWfrwFE7OWLMpgjYJUCIZpck+yDgvAAhmvPGnICAnQKEaHZqspevBAjRfDUOQjT/j4MKAyoQb2vTDR+9rdkb1qo4M0s3TzxAPRz4dMuohmjGbdHW1qYLHntIT8/6IPHU359PPE1H7bxbQO8Yyo6CACFaFKZMj2ERIEQLyyTpIyoChGhRmXQE+yRE8//QeRLN/zOiwmAINLXG9av3/qdFVeXql5OrGyceoNy0dFuLj3KI1hGkXfX043pk5psJ11uPP0k/3PNbthqzGQJ2CRCi2SXJPgg4L0CI5rwxJyBgpwAhmp2a7OUrAUI0X42j02II0fw/IyoMjkBtS7OunPmqVtXValhBsa7fa1+lpaba1kDUQ7QOyJufn6E7Xnkh8cvfHHWszv72AbYZsxECdgkQotklyT4IOC9AiOa8MScgYKcAIZqdmuzlKwFCNF+NgxDN/+OgwhAIbGxs0GXvvKLKpkbtUdJHV+w6Uakpxud3Jv9FiPaV4T3/e1W/mfFk4jcuOehQXXbIkckDswMCNgoQotmIyVYIOCxAiOYwMNsjYLMAIZrNoGznHwFCNP/MYluV8CSa/2dEhcETWF5TrV+8+6rq43Ed1G+Qzh9rz3t3EaJ98154+J3/yXh5p/F1ysR9dOMPfhi8m4WKQytAiBba0dJYCAUI0UI4VFoKtQAhWqjHG+3mCNH8P39CNP/PiAqDKTCvYoOu+eBNxVtb9aNhY3TckJFJN0KItjXhUx+9rwsffzjxwQOT95iYeJ+0FJue/Et6YGwQaQFCtEiPn+YDJkCIFrCBUW7kBQjRIn8LhBeAEM3/syVE8/+MqDC4Au+vW60bZ81MNHDRuD20b98BSTVDiNY53wtzP9HZj9ybCCyPHDc+8cmdabFYUtZcjECyAoRoyQpyPQLuCRCiuWfNSQjYIUCIZocie/hSgBDNl2P5RlGEaP6fERUGW+DZ5Ut03/yPE038cve9Nb5n7243ZDZEW1VXo345ed0+J4gXvjJ/rs586B41xVt0wMgxuu/Us5Vp86ejBtGFmr0TIETzzp6TEbAqQIhmVYz1CHgrQIjmrT+nOyhAiOYgrk1bE6LZBMk2CGxH4JEFc/XPLxYoMzWm6ybspyH5hd3y2jJEa25r1bLqSi2pqtTiynItra7Qsuoq9c3N0+2TDurWGUG+6N2li3TSvX9RfXOT9ho8VI+edb5yMjKD3BK1B1iAEC3Aw6P0yAkQokVu5DQccAFCtIAPkPK3LUCI5v+7gxDN/zOiwnAI/GH2e3pn7ZfKS0/XTRMPUJ/sXEuNNbbGtbqhWl9UV+jTdRu0uKpCX9ZWK97WttU+A/IKIhmiGRCzVyzTj+65U1UNDbr7lDN1xLjxlpxZjIBdAoRodkmyDwLOCxCiOW/MCQjYKUCIZqcme/lKgBDNV+PotBhCNP/PiArDI3Dth29p9oa1Ks3O1U0T9ld+RkanzdW1tCRCsqXV5VpcWZEIzlbW1nS61thrcEGhhhYUKTuWnnjp6A55+bpj0sHhgbPYifH+aM/OmU2IZtGN5fYKEKLZ68luCDgpQIjmpC57I2C/ACGa/abs6BMBQjSfDGI7ZRCi+X9GVBgegYZ4i3753htaWl2pHfMLdd1e+6o53qpF1RVaWlWReEmm8dLMtQ21WzUdS03V4PwCDS8qUv+cAu2YX6TB+UZw9tUb6C+rqdLP3n5ZUX4SzYA755F79cyc2Zp28pk6cmeeRAvP36BgdUKIFqx5UW20BQjRoj1/ug+eACFa8GZGxSYFCNFMQnm4jBDNQ3yOjqRAZXOTfjHzNZXVbx2UdYAYwZgRkBk/hhQaPxcm3ketqw8WWF5TrUvefokn0QLwJNq81V/q8zWrtWhNmeaVrVJjS4uKcnJUnJ2rHnl5KsrOUXFuropyclVs/MjNTfxZflZWJP/eBLFpQrQgTo2aoypAiBbVydN3UAUI0YI6OeruUuDDL/+l15c8pDGl++vQERd2uZ4F7gsQorlvzokIrKmv1ZUzX1NVc5OKMjK1Y0FRIiQbWlCsQQWF23y/NEI0c/eOn17OOXfVSi1YU6YFZasSodnCtWu0ZP1ac41sY1XPTaFaj9x8FWZnt4dtm8K34uyc9jAuJ2/T77eHcdnpnb90OKlCuHi7AoRo3CAIBEeAEC04s6JSBAwBQjTug9AK1DaVa9q7Zyo1JV0/mfSQ0lP5L+h+GzYhmt8mQj1REVjXUKeMWJoKLYQbhGjm7g63Q7TGluZEULbQCMvWrNb8slWJsOyLDeu2WfDQkt4a3ruPhvYuVWYs7Rvr4q2t2lBbo/LaWpXX17b/XNf+c2O8xRxCJ6tKCwplhGzF///TW42gzXjarafx1FtO+68TT7xtehrOCN5K8gu6fRYXSoRo3AUIBEeAEC04s6JSBAjRuAdCL/D03Ou0dONHOmjYOdql76Gh7zdoDRKiBW1i1Btlga5CNN4Trf3ucCpEa2huan+qzAjM1q7W52XtP5aXb+j0tjTCMSMkM8KyEX36arjxfUn798l8raoobw/V6upUXrcpbKur1cZE2Lb1r41PKu3uV25G5ldPtBnBm/GEW06OJg4drqN32b2720biOkK0SIyZJkMiQIgWkkHSRmQEeBItMqOOZqML18/UjHk3q2fOQJ26++3RRPBx14RoPh4OpSGwhQAhmrlbItkQrd4Iy8pWbwrMjJdhtj9htqJ8Y6cF5GVmJoKy4aV9NKK0n4aV9NaI0j4a1LPEXMEurNr8ZJsRsiXCt/Yn2yrqatufeqszvq/Txk0h3Nrqqu1WddTOu2nqyWe4UHlwjyBEC+7sqDx6AoRo0Zs5HQdbgBAt2POj+i4EWttaNG3mmapvqdZJu96i0vyhmPlIgBDNR8OgFAS6ECBEM3eLmA3R6poaE0+SLVhrvBRzteatXqVF69Zo5TbCMuO9yIaVtj9RZoRkRmBmfN+nsMhcYQFbVdvYsDlwMwK2DbXVenfJIj08800RonU9TEK0ro1YgYBfBAjR/DIJ6kDAnAAhmjknVgVY4I2lD+uDlf/Uzn0P0cHDpgS4k/CVTogWvpnSUXgFCNHMzfacR+7VM3Nma9rJZ+rIncerprEx8cb+RlhmPGHW/gb/ZTJeFtnWyZb9Cos0onefRGBmhGXGE2Yje/dVYU6OuQJCvGrGxx/p3Efv15HjdtW0U84KcafJt0aIlrwhOyDglgAhmlvSnIOAPQKEaPY4souPBaoa1une96coPTVT5096WLGUdB9XG63SCNGiNW+6DbYAIZq5+XU8ida3sEhtbW0qq6rs9MLBPUvanyoz3q/MeK+yTYFZTkamuYMiuOqZObN0ziP38SSaidkToplAYgkCPhEgRPPJICgDAZMChGgmoVgWbIHpn/xKKyvn6tARF2hM6QHBbiZE1ROihWiYtBJ6ga5CtOU11brk7Ze0Q16+7ph0cOg9ttVgR4jW8eej+/TT0JL2l2AaT5UZ7182um//yPok0zghmnk9QjTzVqxEwGsBQjSvJ8D5CFgTIESz5sXqgArMW/u6nvv8DvUrGKUf7nJDQLsIX9mEaOGbKR2FV8BsiNaVQF56uvLSMpRr/Jz4PrP95/R05aZnJn4/P/Hr9jW5ae3fZ8fSutraF3/+4mdzEnUYb/A/pKTUFzWFpQhCNPOTJEQzb8VKBLwWIETzegKcj4A1AUI0a16sDqhAvK1Zd71zmpri9Tp9jztVnM1TAH4YJSGaH6ZADQiYE+gqRGuIt+jTjetV29ysmpYm1bY0q6rR+Lmp/fea27+vbm5WZVOjuUO3WFWQCNYylJ+RodxY2ubgzQjdjN9PBG+J0K09eOsI4jJTY906j4v8JcB7opmfByGaeStWIuC1ACGa1xPgfASsCRCiWfNidYAFXl18r2atela77XCU9t/x9AB3Ep7SCdHCM0s6Cb9AVyGaVYHG1vimcM0I3Rq/+t4I25qbVJMI3hrbf25pTvyeEcZVNjdZPSqxvjAjM/GEW+6mp+AST7ylZWhCaX+N7dGrW3tykbsChGjmvQnRzFuxEgGvBQjRvJ4A5yNgTYAQzZoXqwMssL5umR7+8BJlp+VrysT7lJoSjJcGBZi8y9IJ0bokYgECvhGwO0RLprH6eEsiUDOedjPCtWojdNv0fU1TRwDX/mfG7xtPwRlPxxmB3JZfJwwZpcnDRidTDte6JECIZh6aEM28FSsR8FqAEM3rCXA+AtYECNGsebE64AJ/m325yqoX6chRl2pEyd4B7yb45ROiBX+GdBAdAT+FaMmo17UYAVyT/vXFIj23YrEI0ZLRdPdaQjTz3oRo5q1YiYDXAoRoXk+A8xGwJkCIZs2L1QEX+GT1i3pp0VQNLNpZx437TcC7CX75hGjBnyEdREcgLCFax8QeXzxf0xfP0wlDR2vy0FHRGc/fUo0AACAASURBVGSAOyVEMz88QjTzVqxEwGsBQjSvJ8D5CFgTIESz5sXqgAs0tzZo6junq7m1UWftOU0FWSUB7yjY5ROiBXt+VB8tAUK0aM3bj90SopmfCiGaeStWIuC1ACGa1xPgfASsCRCiWfNidQgEXlz4F31a9pL2GnCc9hl8Ygg6Cm4LhGjBnR2VR0+AEC16M/dbx4Ro5idCiGbeipUIeC1AiOb1BDgfAWsChGjWvFgdAoHV1Qv099lXKie9SFMm3qsUpYagq2C2QIgWzLlRdTQFCNGiOXc/dU2IZn4ahGjmrViJgNcChGheT4DzEbAmQIhmzYvVIRG4/4OfqqJ+lY7Z6SoN6bFnSLoKXhuEaMGbGRVHV4AQLbqz90vnhGjmJ0GIZt6KlQh4LUCI5vUEOB8BawKEaNa8WB0SgY++fEavLbkvEaAZQRpf3ggQonnjzqkIdEeAEK07alxjpwAhmnlNQjTzVqxEwGsBQjSvJ8D5CFgTIESz5sXqkAg0tdTpLzNPV1tbi86ZcK9yM4pD0lmw2iBEC9a8qDbaAoRo0Z6/H7onRDM/BUI081asRMBrAUI0ryfA+QhYEyBEs+bF6hAJPDv/Ns1f9z/tPfhETRhwXIg6C04rhGjBmRWVIkCIxj3gtQAhmvkJEKKZt2IlAl4LEKJ5PQHOR8CaACGaNS9Wh0hgeeUc/eOTa1SQWaIz95qqFKWEqLtgtEKIFow5USUChgAhGveB1wKEaOYnQIhm3oqVCHgtQIjm9QQ4HwFrAoRo1rxYHTKBe9+boqrGdTpu3G80sGjnkHXn/3YI0fw/IypEoEOAEI17wWsBQjTzEyBEM2/FSgS8FiBE83oCnI+ANQFCNGterA6ZwHsrntKbX/xVI0r21pGjLg1Zd/5vJz0tRYU5GVpf1ej/YqkQgYgLEKJF/AbwQfuEaOaHQIhm3oqVCHgtQIjm9QQ4HwFrAoRo1rxYHTKB+pYqTX3ndCklVT+Z+JAy0nJC1qG/2yFE8/d8qA6BrwsQonE/eC1AiGZ+AoRo5q1YiYDXAoRoXk+A8xGwJkCIZs2L1SEU+PdnN2rRhve0346na/cdjgphh/5tiRDNv7OhMgS2FCBE457wWoAQzfwECNHMW7ESAa8FCNG8ngDnI2BNgBDNmherQyiwZOOH+ufc61WU3U9n7PGnEHbo35YI0fw7GypDgBCNe8BvAoRo5idCiGbeipUIeC1AiOb1BDgfAWsChGjWvFgdQoE2tWrazLNU11yhH+5yg/oVjAphl/5siRDNn3OhKgQ6E+BJNO4LrwUI0cxPgBDNvBUrEfBagBDN6wlwPgLWBAjRrHmxOqQCby97TDOXT9dOpQfqkBE/DWmX/muLEM1/M6EiBLYlQIjGveG1ACGa+QkQopm3YiUCXgsQonk9Ac5HwJoAIZo1L1aHVKC2qVzT3j1TqSnp+smkh5SemhXSTv3VFiGav+ZBNQhsT4AQjfvDawFCNPMTIEQzb8VKBLwWIETzegKcj4A1AUI0a16sDrHAU59eqy/KZ+mg4edqlz7fDXGn/mmNEM0/s6ASBLoSIETrSog/d1qAEM28MCGaeStWIuC1ACGa1xPgfASsCRCiWfNidYgFFqx/R/+Zd4tK84bopPF/CHGn/mmNEM0/s6ASBLoSIETrSog/d1qAEM28MCGaeStWIuC1ACGa1xPgfASsCRCiWfNidYgFWttaNG3mmapvqdaPd79NvXIGhbhbf7RGiOaPOVAFAmYECNHMKLHGSQFCNPO6hGjmrViJgNcChGheT4DzEbAmQIhmzYvVIRd4Y+nD+mDlP7VL30N10LBzQt6t9+0Ronk/AypAwKwAIZpZKdY5JUCIZl6WEM28FSsR8FqAEM3rCXA+AtYECNGsebE65ALl9V/qgQ8uUEYsW+d960HFUtJD3rG37RGieevP6QhYESBEs6LFWicECNHMqxKimbdiJQJeCxCieT0BzkfAmgAhmjUvVkdAYPonv9TKys90yIgLtFPpARHo2LsWCdG8s+dkBKwKEKJZFWO93QKEaOZFCdHMW7ESAa8FCNG8ngDnI2BNgBDNmherIyDw2drX9Pznf1T/wtGavPP1EejYuxYJ0byz52QErAoQolkVY73dAoRo5kUJ0cxbsRIBrwUI0byeAOcjYE2AEM2aF6sjIBBva9Zd75ympni9Tt/jThVn949A1960SIjmjTunItAdAUK07qhxjZ0ChGjmNQnRzFuxEgGvBQjRvJ4A5yNgTYAQzZoXqyMi8PKiu/Xx6ue1e/+jtd+QUyPStfttEqK5b86JCHRXgBCtu3JcZ5cAIZp5SUI081asRMBrAUI0ryfA+QhYEyBEs+bF6ogIrK9bpoc/vETZafmaMvE+paakRaRzd9skRHPXm9MQSEYgdCHaonmavmS+ThgySpOHjU6GxrVr1zfUKy89XVmxaP4ziRDN/K1GiGbeipUIeC1AiOb1BDgfAWsChGjWvFgdIYFHZ/1ca2oW64hRl2lkyaQIde5eq4Ro7llzEgLJCoQuRFs8X9MXz9MJQ0dr8tBRyfLYfn1Nc7MWVm7UwqpyLaoo16KqclU2Neq2SQdpYF6B7ecFYUNCNPNTIkQzb8VKBLwWIETzegKcj4A1AUI0a16sjpDAJ6tf0EuLpmlQ8a46duyvI9S5e60SorlnzUkIJCtAiJas4Lavr4+3aHFlRSIoW1ixUYurKrSuoa7TCwjR7teR43bVtFPOcm4gIdiZEC0EQ6SFyAgQokVm1DQaEgFCtJAMkjbsF2hubdDUd05Xc2ujztpzmgqySuw/JOI7EqJF/Aag/UAJhC5E8+jlnE2tcS2prtSSynItqNiopdUVWllbs9W9kJ6SqsEFhRpW0ENDC4sST82tra/THXt/Rzvk5gXq3rGrWJ5EMy9JiGbeipUIeC1AiOb1BDgfAWsChGjWvFgdMYEXFv5Zc8te1oSBx2vvQT+KWPfOt0uI5rwxJyBgl0DoQjQXXs4Zb2vTsprKxFNmxkszF1WWa2VttYzf//pXRmpMg/ILNKygWEMLizW0oEj9c/MVS0nZvOyit15KXMuTaDyJZubvNCGaGSXWIOAPAUI0f8yBKhAwK0CIZlaKdZEUWF31uf7+8VXKSS/SlIn3KkWpkXRwqmlCNKdk2RcB+wUI0bZvasRiK2uqEy/FXLTpvcyWVVWqua31GxcaT5gNSjxh9lVgtsMWgVlnJ9kVohnvq2Y8CfdFVYWWGD+qK5Wblqarxn9LxZlZ9t84Nu74zJxZOueR+zSitI8ePuM8DSjuaePu4dqKEC1c86SbcAsQooV7vnQXPgFCtPDNlI5sFrj/g5+qon6VjhnzCw3puYfNu0d7O0K0aM+f7oMlELoQLcmXc5bV1+qLqkrNr9iwKTgrl/FSzS2/hhlPluUXaUhhsYYUFGlIfmG3Bn/R2y8lQjorL+csq6vRF9VVWlxZrqU1lYnQzAjROvsqysjUVbt9KxHu+fVrZflGTb77Tn2xYZ0KsrL0pxNP10GjdvJruZ7WRYjmKT+HI2BJgBDNEheLEfBcgBDN8xFQgN8FPvxyhl5f8oCG9thTR+90ld/LDVR9hGiBGhfFRlwgyiGaETzNN97wv9L4lMyNWlhZrrqWlq3uCONlmCMKe2iwEZYlEZh1dqt1FaItra6U8WNJZYW+qK5IfN8Q37rG/PQMDSko1I4FRRpe0EP5GRl6ZvlivbtmVeLYn47dXQf0G+jbu72uqVEXP/6InpkzW8aLXc8/4Du64pCjFEvlSfGvD40Qzbe3MIUhsJUAIRo3BQLBEiBEC9a8qNYDgaaWOv155qlSW6vO/dYDyk4r8KCKcB5JiBbOudJVOAVCF6Jt4z3RapqbtbCqXIuryrWowgjNylXe2PCNoaYZL8nc9B5mxhNmRng2MK/gG+9hZvdd0BGi3TRxf7W0tmpJVftLMo0PJjBektnZV4/MrE1hnvEknPEUXJF6ZmV3uvaJJZ/rsUWfJf7ssAFDdfqocY72k6zPQ2+/oWtmPKnmeFy7D9pRD5x6jnrm5Se7bWiuJ0QLzShpJAIChGgRGDIthkqAEC1U46QZpwSemf9/+nzdm9p78EmaMOBYp46J3L6EaJEbOQ0HWCB0Idqml3PuVNxLu5X01YKKDVpaVaG1DXVbTckIyYyXZSaeLks8YVbk+iQ7QrRtHdw7O0eD8ws31dlea2F6hqU631+3Wrd/8kHiCTbD5fJdJyovPd3SHm4u/vTLFTr9obu1qqJcJXn5uvfHZ2uPwUPcLMG3ZxGi+XY0FIbAVgKEaNwUCARLgBAtWPOiWo8Elld8on/M+Y0KMkt01l7TPKoifMcSooVvpnQUXoGwhmhbTiwRmBUUJ17uaPwYVuB+YNbZXfT1EG2H3DwNymt/nzWjXuNHTlqaLTffippq3TDrba2tr5MRzF01fpIG+vgJr6r6ep3/twf06uefJZ6cu/LQ7yVe4hn1L0K0qN8B9B8kAUK0IE2LWhGQCNG4CxAwIdCmNt333rmqalyn48b9RgOLdjZxFUu6EiBE60qIP0fAPwJhC9GeXLpA76750peBWWdTf2P1CpVk52jH/EJlxewJzLZ1dxkvab159kzNLV+vzNSYLtp5D03o3c8/N2Mnldz56ou65fkZire16YCRY/SXE09XQXbnL131dSM2FUeIZhMk2yDgggAhmgvIHIGAjQKEaDZislW4Bd5d8aTe+uJRjSrZR4eP+lm4m3WpO0I0l6A5BgEbBMIWotlAEuotjDDqwfmf6NkVSxJ9HrfjSP1w+JjEm/n79eudJQt1ziP3aWNtjfoVFevh08/V6L79/Vquo3URojnKy+YI2CpAiGYrJ5sh4LgAIZrjxBwQFoH6lipNfed0KSVVP5n4kDLScsLSmmd9EKJ5Rs/BCFgWIESzTBaKC15ZtVxT536UeMJr1x699fPxExx/Ei4ZuLXVVTrr4Xv04bKlyoil6bpjjtdJE/ZOZstAXkuIFsixUXREBQjRIjp42g6sACFaYEdH4V4I/Gvu77V44/vaf8gZ2q3/kV6UEKozCdFCNU6aCbkAIVrIB7yd9uZXbtTNH72jyuYm9cvJ1dW7760+2bm+BYm3turG5/6lu15/WW2Sjtl1D/3h+BOVbfGDFnzboInCCNFMILEEAZ8IEKL5ZBCUgYBJAUI0k1AsQ8AQWLLhA/3zsxtUlN1PZ+zxJ1CSFCBESxKQyxFwUYAQzUVsHx61sbFBN3z0tpZWVyo7FtMV4ydpXI9ePqz0q5JemT838aED1Q0NGta7VA+cNkVDevX2dc12FUeIZpck+yDgvAAhmvPGnICAnQKEaHZqslckBKa9e6Zqm8p10q43qzR/WCR6dqpJQjSnZNkXAfsFCNHsNw3ajk2tcf3xkw/1ztovlZqSopOHj9XRg/39z8Evyzfqxw9M1fyyVYkn0W6ffIqO3Hl80Ogt10uIZpmMCxDwTIAQzTN6DkagWwKEaN1i46IoC8z47BYt3PCOjhpzmYb3nBRliqR7J0RLmpANEHBNgBDNNWrfH/T00gV6dOHcxEslJ5X214U776H0lFTf1t0Ub9Evn56uR997O1HjGZP20zVH/UBpsZhva062MEK0ZAW5HgH3BAjR3LPmJATsECBEs0ORPSIlMGPezVq4fqaOHH2ZRvQiREtm+IRoyehxLQLuChCiuevt99M+Wr9Gt378nhriLRqUV6Bf7b63ijOzfF3207Pe12VP/E0NLc3adcAg3fvjs9W3sMjXNXe3OEK07spxHQLuCxCiuW/OiQgkI0CIlowe10ZSgBDNvrETotlnyU4IOC1AiOa0cPD2X1lbo99/9LbK6mtVkJ6hq8Z/SyOKevi6kYVrynT6g9O0dMM6FWXnaOrJZ+jbw0f5uubuFEeI1h01rkHAGwFCNG/cORWB7goQonVXjusiK0CIZt/oCdHss2QnBJwWIERzWjiY+9e1tOiW2TP1ycZ1iqWk6Cc77a79+g3wdTN1TY26+PFH9Myc2Yn3drvowEP0s+8ekfg+LF+EaGGZJH1EQYAQLQpTpscwCRCihWma9OKKACGafcyEaPZZshMCTgsQojktHNz9W9va9PCCTzVj2aJEE4fssKPOHL1LIlTz89f9b7+uX/3ziUSJ+wwboWknn6WinBw/l2y6NkI001QsRMBzAUI0z0dAAQhYEiBEs8TFYgQkQjT77gJCNPss2QkBpwUI0ZwWDv7+r61aoTs//SDRyMjCHrpyt28lXubp56+PVyzTWQ/fo1WVFRpW0luPn3Oh+oTgfdII0fx811EbAt8UIETjjkAgWAKEaMGaF9X6QIAQzb4hEKLZZ8lOCDgtQIjmtHA49l9UVa4bPnpHlU2NmxsyPrmzZ3aOSrKy1CMrWyWZOe2/zs5Rj8ws9czMVl56umcA5bW1Om7q7Zq/ZnXigwamn3OBhpSUelaPHQcTotmhyB4IuCNAiOaOM6cgYJcAIZpdkuwTGQFCNPtGTYhmnyU7IeC0ACGa08Lh2b+8sUFTP5ulZdVVWtdQZ6qxzNSYemZlqVd2TiJU65WVnfi+V1b7r0uys5UVSzO1V3cWVdbX6cR7/6zZK5YlXtL5jykXaXTf/t3ZyhfXEKL5YgwUgYApAUI0U0wsQsA3AoRovhkFhQRFgBDNvkkRotlnyU4IOC1AiOa0cDj3b5NU0digDQ31Wm/8aKzTujrj+zqtb6xP/L7x58a6rr6yY7HEE2y9MrPVc4uQzfh17+xsZaTGutpmm39e39ykH99/l95evFC5mZl69Mzztefgod3ez8sLCdG81OdsBKwJEKJZ82I1Al4LEKJ5PQHOD5wAIZp9IyNEs8+SnRBwWoAQzWnh6O4fb2vTxkTA1h60baivTzzBZgRtHeFbdXOTKaDctHT1NF4imniKzXiCrf1Jtp5Zxq/bn3QzXl66ra/meFznPXq/nvv0Y2XE0vTg6VO034jRps720yJCND9Ng1oQ2L4AIRp3CALBEiBEC9a8qNYHAoRo9g2BEM0+S3ZCwGkBQjSnhdm/K4FVdTXa0NCQCNcSIVt9R8jW/nN9PN7VFok/N95/rf0lozmbXkKam3i6bVRxD5Vm56qtrU0XT39E//jwPcVSU3XnD0/V0bvubmpvvywiRPPLJKgDga4FCNG6NmIFAn4SIETz0zSoJRAChGj2jYkQzT5LdkLAaQFCNKeF2T9ZgbqWlvYn2Rrrta7eCNlqE0+3GU+5rauvV1l97XaPOGHIKE0e9tVTZzc+92/d+eqLiWtuPvZHOmnC3smW6Nr1hGiuUXMQAkkLEKIlTcgGCLgqQIjmKjeHhUGAEM2+KRKi2WfJTgg4LUCI5rQw+7shUNncpA3Gk2z1RtjW/gTb3I3rtbCyXFuGaEY9D7z1un75rycSpV1y0KG67JAj3Sgz6TMI0ZImZAMEXBMgRHONmoMQsEXANyHa+7Pn67SLb0w0NW70EN114yUqLszfZpP1DU265pb79czLMxNrrr38DP3g8H03r6+ub1F1XbMtSGyCwNcFCNHsux8I0eyzZCcEnBYgRHNamP29Enh88XxNXzxPJwwdrclDR21VxhMfvKtLnvhr4mWeJ+41KfFUWkpKilflmjqXEM0UE4sQ8IUAIZovxkARCJgW8EWItnjZKl39+3t0/VVna+igfnrq2Tc088PP9Nufn6HsrIytmukI0CbuPuYbwdnXFxKimb4HWGhRgBDNIth2lhOi2WfJTgg4LUCI5rQw+3sl0FWIZtT10rxPdeZDd6ultVWHjd1FU086Q2mx7n8SqNO9EqI5Lcz+CNgnQIhmnyU7IeCGgC9CNCM0+2JFmX425YREz1uGaltCbLm+MyhCNDdun2ieQYhm39wJ0eyzZCcEnBYgRHNamP29EjATohm1vbVogU59YKrqm5u07/BRuv+0c5SdvvV/7PWqj6+fS4jmhylQAwLmBAjRzDmxCgG/CPgiRPu/adMTHh0hWnlltc678jZdOuUE7bnr1o/VG+vv+/uzmw37lvbUtJsvTTzF1vFFiOaXWyx8dRCi2TdTQjT7LNkJAacFCNGcFmZ/rwQeXzRP05fM7/Q90bas6dMvV+j4aX9UVUO9dh0wSI+ffYHysrK8Kn2b5xKi+W4kFITANgUI0bg5EAiWgG9CtMED+mx+aeb2QrSOl3Ief9T+mwM248m06TNe+8b7qMVb22T84AsBuwUe/fAGzV39lk7c/UqN7fttu7eP1H7GW8rEUlPUEufvaqQGT7OBFEhNSVFqitTCP1sDOT+K3rbAA3M/1YOffao+Obk6c+w4fXfQ4O1yfV62Wt+99VaVVVVqp3799fwlP1PvggJfEaelpqi1rU38dfXVWCgGgU4F0mOpaom3in8b5gZBIBgCGWmpmwtNaTPeMdWDLytPonUWonUWutU1xlXX0OJBNxwZdoGnP71Jn697R8eM/blGlQTn4+79OJe0tBTlZaarorbJj+VREwIIfE0gKzMm4/+Y19Tzz1ZujHAJLK6q0K2z3tOK2upEY8OLinX+TrtpWGHRNhv9srxcR/3pVq0o36gBxT0046eXqn9xsW9g8rLT1BxvU2NT3Dc1UQgCCHQuUJSfoZq6Zv6jMjcIAgER6FWYaT5E2/JllF/v0cwnam7LxOp7ohl1bPnk2lU33KOfn//DzS/p5OWcAbkDA1gmL+e0b2i8nNM+S3ZCwGkBXs7ptDD7eylgPLX13y+/0N8WzlVNc/unux/Qb6BOGTFWhRlf/cvy12tcX1OtyXffqfllq9Q7v0BPTLlQw3r38bKNzWfzck5fjIEiEDAlwMs5TTGxCAHfCJh+OacRXL03e/43XjJpVxddfTrnli/XfH/2fF31+3s2vw9aZ5/mSYhm13TYZ0sBQjT77glCNPss2QkBpwUI0ZwWZn8/CNS1tOhvCz/TiyuXKN7WpuxYTMcPHaMjBw1VzHgPgi2+ahoaNPmeOzV7xTIVZGUngrSx/Qd43gohmucjoAAETAsQopmmYiECvhAwFaJ1vFzyhKP23/y+ZXZXbwRjp118Y2LbLZ9q6+w9z4zf+9XN93e63vhNQjS7J8R+HQKEaPbdC4Ro9lmyEwJOCxCiOS3M/n4SWFlbo2mfzdJn5esTZfXJydOUMbtq5x4lW5VpfFrnGQ/erTcWzk98WudDp5+rvYeN8LQdQjRP+TkcAUsChGiWuFiMgOcClkK0bX1apudddFIAIZofpxKOmgjR7JsjIZp9luyEgNMChGhOC7O/HwXeW7taD34+R2vqaxPl7d6rj84cvbNKs3O/UW5LPK5zH71fz336sdJSU3Xfqefo4NFjPWuJEM0zeg5GwLIAIZplMi5AwFMBUyFax5v5T9x9jGNPotmtQIhmtyj7dQgQotl3LxCi2WfJTgg4LUCI5rQw+/tVIN7aqhnLFuuJJfPVEG9RLDVVRw4cqhOGjlJWLG1z2cbnc13+5N/1t/feVkpKim47/mQdv8cET9oiRPOEnUMR6JYAIVq32LgIAc8ETIVoRnXGe6KVrd2o3/78DGVnZXhWsNmDCdHMSrHOqgAhmlWxba8nRLPPkp0QcFqAEM1pYfb3u0BlU6MeXjBHr61akSi1KCNTPx4xTvv1++Z7oN38/Azd8coLiTXXHX28Tt97P9dbI0RznZwDEei2ACFat+m4EAFPBEyHaFu++b8n1Vo4lBDNAhZLLQkQolni2u5iQjT7LNkJAacFCNGcFmb/oAgsrqrQ1LmztKS6IlHysMJinbfTeA3OK9zcwgNvva5f/uuJxK/P3/9gXX34Ma62R4jmKjeHIZCUACFaUnxcjIDrAqZCtI4PFpgzb8k2C9zywwBc72SLAwnRvJ5AeM8nRLNvtoRo9lmyEwJOCxCiOS3M/kESaJP0+qoVemTBHFU0Ncr43M4D+w3SySPHqiC9/RUb/5r9oX7y9wdlvMzzuN330u0nnJJ4macbX4RobihzBgL2CBCi2ePILgi4JWAqRHOrGDvPIUSzU5O9vi5AiGbf/UCIZp8lOyHgtAAhmtPC7B9EAeM90v6x5HPN+GKRWtpalZ2WpslDR+vwgUMVS0nRS/M+1dkP36umeIsOG7uL7jrpDKXHYo63SojmODEHIGCbACGabZRshIArAoRorjBzSJgECNHsmyYhmn2W7ISA0wKEaE4Ls3+QBdbV1+n+zz+R8WmexlefnDxNGbOrdu5Rove/WKwf3fNn1Tc3adLQ4Xr4jPOUvelpNad6JkRzSpZ9EbBfgBDNflN2RMBJAUshWmcv6/Tbyzg7sHgSzcnbJtp7E6LZN39CNPss2QkBpwUI0ZwWZv8wCHyycZ3umzdbK2trEu3s32+ADh0wVI01NZp8z52qqKvTrgMG6W9n/USF2TmOtUyI5hgtGyNguwAhmu2kbIiAowKmQzTjgwWmXH6rzj/1aP3g8H03F/XUs2/oLw/9S9NuvlRDB/VztFgrmxOiWdFirRUBQjQrWttfS4hmnyU7IeC0ACGa08LsHyaB51Ys0aMLPlV9PJ5oKzsW07C8Ir0860OtWLlCAwuL9cSUC1Va8NWHEdjZPyGanZrshYCzAoRozvqyOwJ2C5gK0eobmnTNLferT+8e+tmUE7aq4f+mTVfZ2o367c/PUHZW+5upev1FiOb1BMJ7PiGafbMlRLPPkp0QcFqAEM1pYfYPm0BNc7PeWL1CH61brU83rldzW+vmFmurqtVSU6NfHnCo9h80xPbWCdFsJ2VDBBwTIERzjJaNEXBEwFSI1vEyzkunnKA9dx21VSHvz56vW6dN1103XqLiwnxHCrW6KSGaVTHWmxUgRDMr1fU6QrSujViBgF8ECNH8MgnqCKJAU2tcczau04dry/T+2tXa2NSwuY2s1JjG9+qj3Xr3+X/svQeYZFWZ//+tnLs6p0k9OTnMkAYYEEEUDGAWRf8riD9//MRVSbqoa2RVRBlQV13WNa27uqLCLggiorAkgZE0hJmeUh/44wAAIABJREFUHDvnyvn/nFtdNZ2r+va9VTd87/P0U9VV55z7vp/3NODHc+7BKY0tqHW6FpxiKYkmDkQ4Fg7hcGQMR0NjOBIexdFwCD6HA+/oWIvXti2WDkbgRQIkoD4BSjT1GfMOJKAkAUo0JWlyLFMQoERTrsyUaMqx5EgkoDYBSjS1CXN8MxHYPdiPzz54D8I2K2pqayelvjwQxJbGFpza1Ir1tQ2ysBQk2mgsiSPhEI6FT4iyI+ExDMRjc45b73LjnSvW4IJFHXBZ1T9NVFaS7EQCBiFAiWaQQjIN0xAoS6JxO6dp5gMTLYMAJVoZkMpsQolWJig2IwENEKBE00ARGIKhCCTSKVzx0zvwxMF9aGpuxpu2noGj8Rgi6VQxT/EstZMaW3BKYytOb25DcI5TPQ+J1WShEI6GR9EVC+Hg6Bh6YpEZmTmtNizxB8Z/arHMH4DTZkMym8Ujxw/j8Z5jUj+f3YGLFi/H2zpWI+DUxiNbDDUJmAwJAKBE4zQgAX0RKEuiiZR4sIC+Csto1SNAiaYcW0o05VhyJBJQmwAlmtqEOb4ZCaQzGXziv36Oe158DjarFf/ywSuxYulS/K2vG8/390KIsYnXikAtTm5sxhJ/EMcjYzgcHpNWmXVFZ5Zloq9Y2bbY58fSQC2W+mskcdbi8c2Juzcewd0H9uBPxw4V271xcQfeuXxNyb5mrCNzJoGFEKBEWwg99iWByhMoW6KJ0Aor0u7781PFSDetX6GpZ6EVAuMz0So/mcxyR0o05SpNiaYcS45EAmoToERTmzDHNyuBXC6Hz/zuV/jlM09KCG5592X44BlnS+8H4zH8rb8Hzw30YOdgP8Sz1Wa7lvoCWOSrwdKaGmxobECrx4dGh3dBWEeSCdxzaA/+ePQQxHPUxHVW8yK8a+VarAioc7LoggJmZxLQIQFKNB0WjSGbmsC8JJqeSFGi6ala+oqVEk25elGiKceSI5GA2gQo0dQmzPHNTuDWB+/D9of+IGH4zEUX41MXvGkakucH+/Bcfw/6YhEs8wexNFCDxf4AOvyThVapgwXmyzqaTuPBYwdxz6G9GE0mpO4b6xrxzhVrcXJD83yHY3sSIIEJBCjROB1IQF8EKNH0VS9GqwEClGjKFYESTTmWHIkE1CZAiaY2YY5PAsB/Pv2EtCpNXFdsOxf/9Pb3wiLjlEylJVqhNqlcFn85fhj/fWAv+uL5LaTL/DV4x4q1OLtlEU/05CQmARkEKNFkQGMXEqgigVkl2vBoCB+78TZcesl5OP/sk6X3L+06MGuoWtvWyZVoVZxVBr81JZpyBaZEU44lRyIBtQlQoqlNmOOTQJ7A/7zwrPSctEw2i7dtPgXfv+wKWK3WeeFRS6IVgsjmcnii9zjuPtApPZdNXM0eLy7pWIU3LOqAOLiAFwmQQHkEKNHK48RWJKAVAlyJppVKMA7dEKBEU65UlGjKseRIJKA2AUo0tQlzfBI4QeB/9+ySTu5MZtK4YN1G/OhD/wcuu6NsRGpLtImBPD/Qi98d6MSukUHpY7/DgbcsWYm3LlslvedFAiQwNwFKNM4QEtAXAUo0fdWL0WqAACWackWgRFOOJUciAbUJUKKpTZjjk8BkAjsO7ccHf/wDRBIJnLZsBX710Y/D63SVhamSEq0Q0J6RIfzuYKd0EIK4xGq0CxYtk070bHB7yoqbjUjAjAQo0cxYdeasZwKUaHquHmOvCgFKNOWwU6Ipx5IjkYDaBCjR1CbM8UlgOoFd3cfxnju+g5FoFBvbF+PXH/0E6ny+kqiqIdEKQR0Nh3DXwU482n20GOfFS1fhw+s2lYybDUjAjAQo0cxYdeasZwKUaHquHmOvCgFKNOWwU6Ipx5IjkYDaBCjR1CbM8UlgZgIHB/rx3ju+g+7REXQ0NOKuj12LlprJp3FO7VlNiVaIpT8Wxa/378LDXUekE0S/s+0NLDEJkMAMBCjROC1IQF8EypZo2++4E8+8sBs/vPla1AUD2H+4C1d95lZ09w7irRecia98+kp43E7NZM+DBTRTCsMFQommXEkp0ZRjyZFIQG0ClGhqE+b4JDA7gd6xUbzrh7fh0OAA2oK1+M1Vn8LyxqZZO2hBoongxKED1z35Zyzx1+D2bRewxCRAApRonAMkoHsCZUm0WDyJL33rJzjz1A1411vOxdTf77r/URw62oPrrrpUM0Ao0TRTCsMFQommXEkp0ZRjyZFIQG0ClGhqE+b4JDA3geFIBB/4t3/GzuNHUev1Yl1Lu9TB53KhyR+QVqc1BgJo9AewsrkBQY8PNS4/ajzVex4ZJRpnNQmUJsCVaKUZsQUJaIlAWRJteDSEj914G66/6lKcvmVdcRXaNz77Uen3HS/sxq133FlcpaaFBCnRtFAFY8ZAiaZcXSnRlGPJkUhAbQKUaGoT5vgkUJpANJnAZT/6Pv52+EDpxuMtnDY7mmtqJLkmZFtToEZ6ba4Joilw4vemQBB+V3kHF5R7c0q0ckmxnZkJUKKZufrMXY8EZEm0qdKMEk2PpWfMcglQosklN70fJZpyLDkSCahNgBJNbcIcnwTKJzAajaIvHMJAaAz94TH0h8bQFxrDQCiE/nAIQ5EQesV3oRBSmUzZA7vtDjQHaqQVbdOEmxBwNXkBJ0RcOSeFUqKVjZ4NTUyAEs3ExWfquiRQlkQTmYlnonUsaZW2c4r3PX1Dxeegie2cTz37qqaei8aVaLqcj7oI+rFDv0Bn/xMYi/eVFa/L7oPPWYeAsx4eZy38zjr4nfXwSq918Dlr4XXWw2Wr3naLshJRoRElmgpQOSQJqESAEk0lsByWBFQgMPGZaOJkTyHWhHDrCwvRlhdu/WNCwIUwEA7lBVwkjPQ8hJvX4ZRWtxWkm3htqgmi2R9AY6BGek06bPjWy8/ymWgq1JhDGocAJZpxaslMzEGgbIlWeA7afX9+Cm0tDbjjluuxcll7cWvn1Ze/XRJsWrko0bRSCWPHEU+FEUkNI5wYQiQ5jHByCOHkYP731DAiCfHZMLK5dEkQDqtrglgTcq0Oflc9fI46eIV8c+U/c9sDsMBScjw9NKBE00OVGCMJ5AlQonEmkIB+CMg9WEAIN0mohcWKtgkr3MaFm1jxJom3MoWbx+/H5jPPQDwaxUjnvsnCTYg2seqtIOL8AbTWBGG32fQDmpGSgAIEKNEUgMghSKCCBMqWaBWMSZFbUaIpgpGDKEQglh7LS7aEkGzjwk0Sb0MIid8Tw4imhGzLlryjxWKTVq8JoSYEW0G2+cc/K6xw8zpqYbVo+z9EKdFKlpsNSEAzBCjRNFMKBkICJQnIlWglB57QQBx0cGIl22hxRZsk2kL5lW/DmTQWb9qIaDiMnU89XdbwAbcbTf6aE89uk1a4nfi9+Ey3QA2FW1lE2UjrBCjRtF4hxkcCkwlQonFGkICGCERTI9LKtWhyGKHEoCTexKsk3iQBJ2TbSNkRe+wBaXVbk28pVjeehRUNp8JmcZbdX+2GlGhqE+b4JKAcAUo05VhyJBJQm0AlJFo5ORSeidbu9ePvV70Gg5EweseEcBvDYDiMnrERSbgVVriJVXDlXjVuNza0LS63+bR2DpsVNqsNdqtVknH2wnu7DXbL+Gc2G2wWK6S2NhtcNjusk9pbpM8d430L721WS348aVyr9F7IwZOXdsiOlx2NS4ASzbi1ZWbGJDCrRCucyHnpJefh/LNPlk7nfGnX7CcBbVq/gqdzGnOOMCsNEiiuYEuKLaNDxRVuQrKJ78Rn0fT0/xAVAm1Vw1asbdqG5Q2nVF2oUaJpcHIxJBKYhQAlGqcGCeiHgNYk2hJ/DW7fdkFZAIVoEwckFISbtK10bDR/kML4tlLpmW7hUFnjaanRhRs24ZZ3XyatsuNFAgUClGicCySgLwJciaavejFaEpgXgVBiAOHEIPYP/g27+x/HWKK32F8ItZUNp2NN05lYXn8axDPZKn3ZbYDf7cBIJFXpW/N+JEAC8yTgcYqVGVaIxyXwIgES0DaBgMeOVCaLeLL0YyLUzKQSp3PGU0mksznpUIR0NoNMNiudSJrJZiQG4nfxef77wnvxOvHz/HeZTBap8TEK40nt0hmkc/k+qVQq/z4jfjLI5Mbvl8mM9z0Ry8R77OntkcSfz+nCV972bly2dZua6Dm2jgjU+p0IR8U81lHQDJUETEyAEs3ExWfq5iMwED2Mzr4nsGfgSQzHuooA7FYXltedgrXN2yoq1LgSzXxzkBnrlwBXoum3dozcfAT0vBLNqNUKxeP4yr2/w692/FVKcWvHStz+vr/DsoZGo6bMvMokwJVoZYJiMxLQCIGyJdpd9z+KH/z8f4qnchbi33+4C1d95lbwdE6NVJRhkECZBAYjR9DZnxdqQ7HjxV5ihdry+pOxpulsrGwQK9TcZY44/2aUaPNnxh4kUC0ClGjVIs/7ksD8CVCizZ9ZpXo8fXAfPvGrn+P4yDDcdgduuOhiXHXu62G1GOPk9UpxNNJ9KNGMVE3mYgYCZUm0WDyJL33rJ2htrsd1V106jcv2O+5ET98QvvLpK+Fxa+Oh5Tyd0wzTlzkqRWAwehR7Bv6Kzv7HMRQ9NkGoOdBRf4r0DDWx9VNpoUaJplQFOQ4JqE+AEk19xrwDCShFgBJNKZLqjCO2oN7ywO/xb48/jEwuhw1ti/Dd938I69sWqXNDjqppApRomi4PgyOBaQTKkmiFQwauv+pSnL5l3bRBdrywG7fecScPFuAEIwEDEBiJdUnPT+vsfxKD0SOThVrdFqxtOhsrGk6H0+ZZcLaUaAtGyAFIoGIEKNEqhpo3IoEFE6BEWzDCigzwStcxXP3Ln2JfX690iuf/e90FuOGNb4XDbq/I/XkTbRCgRNNGHRgFCZRLgBKtXFJsRwImJDAa78kLtb4nIJ6nVrisFgc6Jgg1l0yhRolmwknFlHVLgBJNt6Vj4CYkQImmn6KLwwn++ZE/4faH/iAdiLC8oQnfef+HcOqy5fpJgpEuiAAl2oLwsTMJVJxAWRJNRCW2bIprtu2cs31X8YzGb8jtnNUiz/salYAQap0DT2B37+OThJrIVxxKsLrpLKxu3Ib5CDVKNKPOFuYll0AkOYR4Kox4JoSYeE2Hpd83tJwHryMod1hF+lGiKYKRg5BARQhQolUEs6I3OTDQh4//8mfYeewIxNPR/u7Mc/D5t74TflflT09XNDEOVpIAJVpJRGxAApoiULZEm+0AgdkOHKh2lpRo1a4A729kAqOJPnT2P4bOvifRHzk4KdWOulOwpuksrGk4C067d04MlGhGniXmzS2VjedFmBBgkgQLTXgfRiw1Nv575MT7VBiZXHJWaJef+l00eBdXFSolWlXx8+YkMC8ClGjzwqWZxrlcDj998n/xjfvvQTSVRHOgRjrB83Vr1msmRgaiPAFKNOWZckQSUJNA2RJNBFE4YOC+Pz9VjGnT+hWaehZaITBKNDWnDccmgRMExhL90oEEe/qfRG94/yQ0y2q3YF3zOVjdcOaMQo0SjTNJywSSmdj4qrAwEqkwYumx4u+xZGiSHIulxe9hRFMjslPy2GvgcfjhttfAYrFJ4/SG9yGdTYASTTZWdiQBUxKgRNN32btGhvGpX/87nty/V0rkHZtPxU3vvBT1Xp++E2P0MxKgROPEIAF9EZiXRNNTapRoeqoWYzUKASHUhEwT2z57Q/uKaQkhsDS4CWubz5aEmsue/49ASjSjVF7beSTTUcQyeclV2CpZWCkmybCJ3wkZlhbCLIxcLjPvxKwWK9w2P9zjMkx6ld4H4HEE4Lb7pVeXPf9efOexB2Y9qOPnz34K4vTcD516Oxq9S+cdj5IduBJNSZociwTUJUCJpi7fSo3+m789jS/d+1uMxmKo83rx1be9F+865fRK3Z73qRABSrQKgeZtSEAhApRoCoHkMCRAApMJhBOD6BzIn/LZE8r/P6niEpJhSe0m6ZTP9S3b0FJTh4GxBPGRwJwEcsghkYqcEF7joktslUyI99KWyXFRlhG/i9Vj4rMIcsjOm+5EGSaElyTAhAyzBeBxnhBg4nd34Tt7YF7PBCwnKEq0ciixDQmQwFQClGjGmRMD4RA+d9evcd/LL0hJnbt6HW597wfRXltnnCRNngklmsknANPXHYF5SbQdL+zGFdfcLCX5kcveIh0yMNuz0qpNgivRql0B3p8EThAQD0vv7H9CWqHWPbZnklBbUX8SltefidUN2yRJwcvYBLK5LBKZ8eeESVKs8MywEPKrwvK/Sw/Vl96L54qFIFaTCZE230vIMJdNrP7y51d/iZVfQnrNKMPEyjAhyJSXYfONu9CeEk0uOfYjAXMToEQzXv0f2vUyrrvzPzAYCcPndOGzb34brth2LiwWcQwBLz0ToETTc/UYuxkJlC3RxAECd977iPT8s4efeB6HjvYUT+oUJ3f29A3hK5++Eh63UxMcKdE0UQYGQQLTCIgVansGn8TevqdwPLRr0vdihdq65nNR524lOZ0RSGSixYfoSzJsfFtkcZVYJiLJMfGcMbmX2PbocgSk7Y9uu6+4ZVJaGTa+hVI8V8zl8MEjtk3aa0oebiE3lkr1+9mzn8RQ9BifiVYp4LwPCRiEACWaQQo5JY2xWAxfuOc3+O2zz0jfnLK0A7e/70NY2dRszIRNkhUlmkkKzTQNQ6AsiVY4UOC9l5yH07esgxBqEyXaRMFWFwxoAg4lmibKwCBIYE4CiewwDg0/heePPoau0G7SMgmBmWVYAF5nEC5bXo5NlGHSyrDx5+iZBFExzYJEu+K076Hes6iq6fOZaFXFz5uTwLwIUKLNC5fuGj+xbw9u+M1/4sjwYDF2j8MpybQl9Q1Y3tiEZfWNWN7YjKUNDVhS16C7HM0UMCWamarNXI1AoCyJNjwawme//iN8+ur3Y+Wy9mkSTWzzvPWOOzV1SiclmhGmJ3MwOoGJBwtEksPSCrWDg88hlUkaPXXD5eewuYoPyc8/OD+/bVLIsBOrxswrw+QWnCvR5JJjPxIwNwFKNOPXP55K4tsP3ocHX30J+/v7Sia8vKEJHY1N6GholF6FYBNybU0LV/+XhKdyA0o0lQFzeBJQmIAiEk2sRHvq2Ve5nVPh4nA4EjA6AZ7OafQKM7+FEuAz0RZKkP1JwJwEKNHMV/fjw0M4MjSIQ4P9ODjYjyODgzgyNIAD/b0IJeY+wKktWIuOBrF6rQEdTc2SaFta3yitZqv1es0Hs8IZU6JVGDhvRwILJFCWRBP3EM8961jSine95dxJK9EKWz1bm+uLz0hbYEyKdOdKNEUwchASUJUAJZqqeDm4AQhQohmgiEyBBKpAgBKtCtA1fMvRaBSHhgZweFyuCdF2aDD/e8/YKLK52Q/uqXG7JZm2pEFItQYsa2jKC7aGBiyurYfdZtNw5voIjRJNH3VilCRQIFC2RBNbOj924224/qpLcbSrr/hMNCHXnnlht6a2corkKNE4yUlA+wQo0bRfI0ZYXQKUaNXlz7uTgF4JUKLptXLViXtvXy+ODg3kV7H19+PwuHDbV8Y20UW1dZJUW1pXj2WN44KtvgFLGxrR6NfGs7KrQ7X8u1Kilc+KLUlACwTKlmgi2MKqs/v+/FQx9rdecKamtnEWAqNE08L0YgwkMDcBSjTOEBKYmwAlGmcICZCAHAKUaHKosc9MBLpGhqVtoQcH8ttEDw8M4OjwIPb39yJcYpuo1+HEkoYGaSWbtHqtsREbWttx5orVhD2BACUapwMJ6IvAvCSanlKjRNNTtRirWQlQopm18sy7XAKUaOWSYjsSIIGJBCjROB8qQWA4EpFWrQnBJl4PDfRJz2I7MNCH/nBoxhDEQQYPX/+PlQhPN/egRNNNqRgoCUgEypJoha2cl15ynvRMND1clGh6qBJjNDsBSjSzzwDmX4oAJVopQvyeBEhgJgKUaJwX1SYgTg8Vz10Thx0c6O/Drp7j+O2zz0ingVKiTa4OJVq1ZyvvTwLzIzAviSaeh3b6lnXzu0OVWlOiVQk8b0sC8yBAiTYPWGxqSgKUaKYsO5MmgQUToERbMEIOoDCB3T1duGD717G2pQ1/uf7zCo+u7+Eo0fRdP0ZvPgJlSbTCs9DOPHUDV6KZb44wYxJQjQAlmmpoObBBCFCiGaSQTIMEKkyAEq3CwHm7kgQo0WZHRIlWcvqwAQloikBZEk1EfNf9jxZP5NRUBrMEw5VoeqgSYzQ7AUo0s88A5l+KACVaKUL8ngRIYCYClGicF1ojQIlGiaa1Ocl4SEAugbIlmngu2me//iN8+ur3Y+Wydrn3q1g/SrSKoeaNSEA2AUo02ejY0SQEKNFMUmimSQIKE6BEUxgoh1swAUo0SrQFTyIOQAIaIVCWRCscLPDSrgOzhr1p/Qr88OZrURcMaCI1SjRNlIFBkMCcBCjROEFIYG4ClGicISRAAnIIUKLJocY+ahKgRKNEU3N+cWwSqCSBsiRaJQNS6l6UaEqR5DgkoB4BSjT12HJkYxCgRDNGHZkFCVSaACVapYnzfqUIUKJRopWaI/yeBPRCoKRE2/HCblxxzc3FfG76zJW6OFyAEk0vU5BxmpkAJZqZq8/cyyFAiVYOJbYhARKYSoASjXNCawQo0SjRtDYnGQ8JyCUwp0QrCLSf3X4jTt+yDoVtnZdecp7mRRolmtwpwX4kUDkClGiVY8076ZMAJZo+68aoSaDaBCjRql0B3n8qAUo0SjT+VZCAUQjMKdG233GnlOd1V11azFeItVvvuFNTzz+bqRiUaEaZoszDyAQo0YxcXeamBAFKNCUocgwSMB8BSjTz1VzrGVOiUaJpfY4yPhIol8CsEm22VWeFz6+/6lJpdZpWL0o0rVaGcZHACQKUaJwNJDA3AUo0zhASIAE5BCjR5FBjHzUJUKJRoqk5vzg2CVSSQEmJNlWWxeJJfOlbP8GZp27Q9JZOSrRKTiPeiwTkEaBEk8eNvcxDgBLNPLVmpiSgJAFKNCVpciwlCFCiUaIpMY84BglogQAlmhaqwBhIwKQEKNFMWnimXTYBSrSyUbEhCZDABAKUaJwOWiNAiUaJprU5yXhIQC4BSjS55NiPBEhgwQQo0RaMkAMYnAAlmsELzPRIQCUClGgqgeWwsglQolGiyZ487EgCGiNQUqK9tOtAWSFvWr9CU4cNcDtnWWVjIxKoKgFKtKri5811QIASTQdFYogkoEEClGgaLIrJQ6JEo0Qz+Z8A0zcQgTlP59RznpRoeq4eYzcLAUo0s1SaecolQIkmlxz7kYC5CVCimbv+WsyeEo0STYvzkjGRgBwClGhyqLEPCZCAIgQo0RTByEEMTIASzcDFZWokoCIBSjQV4XJoWQQo0SjRZE0cdiIBDRKgRNNgURgSCZiFACWaWSrNPOUSoESTS479SMDcBCjRzF1/LWZPiUaJpsV5yZhIQA4BSjQ51NiHBEhAEQKUaIpg5CAGJkCJZuDiMjUSUJEAJZqKcDm0LAKUaJRosiYOO5GABglQommwKAyJBMxCgBLNLJVmnnIJUKLJJcd+JGBuApRo5q6/FrOnRKNE0+K8ZEwkIIcAJZocauxDAiSgCAFKNEUwchADE6BEM3BxmRoJqEiAEk1FuBxaFgFKNEo0WROHnUhAgwQo0TRYFIZEAmYhQIlmlkozT7kEKNHkkmM/EjA3AUo0c9dfi9lTolGiaXFeMiYSkEOAEk0ONfYhARJQhAAlmiIYOYiBCVCiGbi4TI0EVCRAiaYiXA4tiwAlGiWarInDTiSgQQKUaBosCkMiAbMQoEQzS6WZp1wClGhyybEfCZibACWaueuvxewp0SjRtDgvGRMJyCFAiSaHGvuQAAkoQoASTRGMHMTABCjRDFxcpkYCKhKgRFMRLoeWRYASjRJN1sRhJxLQIAFKNA0WhSGRgFkIUKKZpdLMUy4BSjS55NiPBMxNgBLN3PXXYvaUaJRoWpyXjIkE5BCgRJNDjX1IgAQUIUCJpghGDmJgApRoBi4uUyMBFQlQoqkIl0PLIkCJRokma+KwEwlokAAlmgaLwpBIwCwEKNHMUmnmKZcAJZpccuxHAuYmQIlm7vprMXtKNEo0Lc5LxkQCcghQosmhxj4kQAKKEKBEUwQjBzEwAUo0AxeXqZGAigQo0VSEy6FlETgyPIgLt38doURiUv/z1qzHG9a/Bm/Y8BosqWuQNbbeOzXVujESSiCVyek9FcZPAqYgQIlmijIzSRLQJgFKNG3WhVFphwAlmnZqwUhIQE8EKNH0VC3zxJrJZvG3wwfw0K6X8efdr6Czp3tS8muaW3CBEGrrX4PTlq2A3WYzBRxKNFOUmUkaiAAlmoGKyVRIQG8EKNH0VjHGW2kClGiVJs77kYAxCFCiGaOORs+iZ3QED776kiTVnti3B/F0qphywO3G61bnV6ldsOE1qPf6DIuDEs2wpWViBiVAiWbQwjItEtADAUo0PVSJMVaTACVaNenz3iSgXwKUaPqtnVkjT2bSeHxvZ3GV2rHhoSIKq8WCkxYvzQu1dRul90a6KNGMVE3mYgYClGhmqDJzJAGNEqBE02hhGJZmCFCiaaYUDIQEdEWAEk1X5WKwMxDY09ONh3a/Ikm1Zw8fQDqbLbZqDtTg9Ws3SFLt3DXr4HO5dc2QEk3X5WPwJiRAiWbCojNlEtAKAUo0rVSCcWiVACWaVivDuEhA2wQo0bRdH0Y3PwKheBwPd+aF2sO7X8VQNFIcwGGz4YzlK4ur1FY0tcxvcA20pkTTQBEYAgnMgwAl2jxgsSkJkICyBCjRlOXJ0YxH4GfPfhJD0WO4aM3fY2PL66uaoNdth9NmwUjkxDNrqhoQb04CJDArAUo0Tg6jEsjmcnjhyKHits+Xu45NSrWjoUna8ilWqW1buVoXhxNQohl1tjIvoxKgRDNqZZkXCeiAACWaDorEEKtKYHf/Y7h/922wwIq3b7wRK+pPq1o8lGhVQ88bk8A5RQMjAAAgAElEQVS8CVCizRsZO+iUQH84hIfGDyd4bG8nIslEMROf04XXrl4rCbU3bNiEJn9Ak1lSommyLAyKBGYlQInGyUECJFA1ApRoVUPPG+uIwPNdv8fD+38Cq8WO92z6EhYHN1Ylekq0qmDnTUlAFgFKNFnY2EnnBNKZDJ7cv7e4Su3QYP+kjF7Tvri4Sm3L0g6IAwu0cFGiaaEKjIEEyidAiVY+K7YkARJQmAAlmsJAOZxhCTx+8D/wzLG7YLe6cNmWb6DJ11HxXCnRKo6cNyQB2QQo0WSjY0cDETjQ34s/jx9O8PTB/UhlMsXs6r0+nL8ufzjB+Ws3IuCu3uEElGgGmnRMxRQENCPRdrywG1dcc7MEfdP6FfjhzdeiLlh6yW2h389uvxGnb1lXLFoolkYoyue2mGIWM0ndEqBE023pGHgVCDyw53t4tfdhuB1+XLb5G6jzLKpoFJRoFcXNm5HAgghQoi0IHzsbkEAkEceje3YXV6mJbaCFy2614tRlK/LbPtdtxJrWtooSoESrKG7ejAQWTEATEm3/4S58/hs/wtc++1GsXNaOu+5/FE89+yq+8ukr4XE7Z01yonijRFvwXOAAJFBxApRoFUfOG+qYQA5Z/Pcr38DBoWfhc9bhA1u+iYCrsWIZUaJVDDVvRAILJkCJtmCEHMDgBHYeO1Jcpfbi0cPITch3cV19cdvnOavXwmmzq0qDEk1VvBycBBQnoAmJJqTZoaM9uO6qS6UEp0q1mbIWbb71g//CZz5+GT73jR/h+qsu5Uo0xacHByQBdQlQoqnLl6Mbj0A2m8JvX74Jx0ZfRo2rBR84+WZ4HcGKJEqJVhHMvAkJKEKAEk0RjBzEJASGohE8vOsVPPDqTjy6ZxfCiROHE1z3hjfj+gvfqioJSjRV8XJwElCcgCYk2vY77pQSK0i04dEQPnbjbdPEWCH7iZKtvjYwY1tu51R8rnBAElCcACWa4kg5oAkIpLIJ/Or5GzEQPYx672Jpa6fL7lM9c0o01RHzBiSgGAGtSLQj4RCuffIhLPYH8J1tb1AsPw5EAmoSeGLfHvz7Xx/D7196HpRoapLm2CSgTwKakWgdS1rxrrecK1GcS6KJ7z779R/h01e/X9r6OVvbTDYH8cOLBEhAuwTEoUg2qwXpDP9WtVslRqZFAtHkGH74xA0YjBzH4uBq/N+zb4HdOvvjD5TIQZxiZrUAaf67VQmcHIMEVCVgt1qQzeVQ7T/XA2Nj+PAf758xV6/dDq/dAZ/DgYDLCbfNBp/dAa8j/9nEH+kzW/6z/Pd2eOwO1DjV/eeeqkXi4JomcNO99+Cffn8v/vHiS/CFS96maqwOmxXpTHbSllJVb8jBSYAEFkTAabcW+1tyuVxV/pfsfFaiiVVoV33mVnT3Dk5LfOJz0aKJDKLx9ILgsDMJkIC6BOx2C/wuB0YiSXVvxNFJwIAEwskh/GzH9Qgnh9FRvwWXnvQFWC021TJ1u2wQ/8M8HOO/W1WDzIFJQCECfo8dqUwOieSJ0wgVGnpew/TGIvjm808jkc4gnknnf9IZJLPKxHVO2yL8w8lnzismNiaBcgjc8sf78K0/3odPX/RWfOYidbdz1gacCEdT/D+VyykM25CABgg0Bl3Vl2hynolWiHq2lWjczqmB2cUQSKAEAW7n5BQhgYURGI4dx3++8A9IpqNY1XgmLll/Ayw48f+OLWz0yb25nVNJmhyLBNQloJXtnHNlmZdqGSQyaSQyGcTTaSSyWcTSKcSzGSQzacSkzzLSZ8l0BrHxtn2xKPaNDWNbyyJcv3mrujA5uikJ3Pqn+7H9T/fjuje+Bde/8S2qMuAz0VTFy8FJQHECmtjOWep0TiHZ7rz3Efzw5mtRFwxMgkCJpvic4IAkUDEClGgVQ80bGZhAb2gffr3zC0hnE9jQcj7etOYTqmRLiaYKVg5KAqoQ0INEW0jiT/Qcx/adz+CslnbcsPmMhQzFviQwIwFKNE4MEiCB2QhoQqKJ4Ha8sBtXXHOzFOem9SsmCTNKNE5gEjAmAUo0Y9aVWVWewLHRV/Dbl76EbC6LrYvfhXOW/3+KB0GJpjhSDkgCqhGgRFMNLQc2CQFKNJMUmmmSgAwCmpFoMmKfswu3cypNlOORgPIEKNGUZ8oRzUtg78Bf8ftd30YOOZy/8kqc3H6xojAo0RTFycFIQFUClGiq4uXgJiBAiWaCIjNFEpBJgBJNJjh2IwESWDgBSrSFM+QIJDCRwCt9D+OPnd+TPrpo7Sewsfl8xQBRoimGkgORgOoEKNFUR8wbGJwAJZrBC8z0SGABBCjRFgCPXUmABBZGgBJtYfzYmwRmIvDUkd/gycO/ggUWXLz+BqxuPEsRUJRoimDkICRQEQKUaBXBzJsYmAAlmoGLy9RIYIEEKNEWCJDdSYAE5BOgRJPPjj1JYC4CD+39F+zseRBWixXv2fQVLA5uXDAwSrQFI+QAJFAxApRoFUPNGxmUwK0P3oftD/0B173hzbj+wreqmiVP51QVLwcnAcUJUKIpjpQDkgAJlEuAEq1cUmxHAvMjIJ6L9ofdt2F3/+OwW11430k3oSWwan6DTGlNibYgfOxMAhUlQIlWUdy8mQEJFCSaSM3vcmFdSztWt7RiXVs71ra0Y01LK1pqgopkTommCEYOQgIVI0CJVjHUvBEJkMBUApRonBMkoB4BcVLn3a/chMPDL8Jp9+Kyzd9Ag3eJ7BtSoslGx44kUHEClGgVR84bGozAo3t24xdPP449PV3Y1983Y3ZBj6co1NYKudbchjWtbWjyB+ZFgxJtXrjYmASqToASreolYAAkYF4ClGjmrT0zrwyBTC6JO1/8ErpDnfDaa3DZyTcj6G6VdXNKNFnY2IkEqkKAEq0q2HlTgxJIZzLY39+Hzt4udPZ0Y3dPF/b09uDwYD8yudy0rOu9Pqxtbcfa1jasbWmTXsVKtqDXOyMhSjSDThymZVgClGiGLS0TIwHtE6BE036NGKH+CSQzMfzyhX/AUPQY/K4GfHDLN+Fz1s87MUq0eSNjBxKoGgFKtKqh541NRCCZSWNfX68k1jolsSYEWzeODg8iO4NcEyvUxDZQsR1UbAsV79e1LsKK1lqMhBJIZaYLORPhZKokoBsClGi6KRUDJQHjEaBEM15NmZE2CURTo/iP529AODGIWk+7JNJcdt+8gqVEmxcuNiaBqhKgRKsqft7c5AQS6ZS0Um2PWLXW2yW9it+FXJtJk7XV1mJNUyvWiFVr0rbQVqxpbZeexcaLBEhAewQo0bRXE0ZEAqYhQIlmmlIzUQ0QGI334FfP34hoegwt/lW4dPNNcFjL/w90SjQNFJEhkECZBIwu0f7adxzffuEZbGtZhOs3by2TijrN4pk0IqkUIuk0wulE/n0qhXA6iWg6jbFEEpF0UvrsHctXY0NdozqBcFTNE4ilkpJQ6+zrQWf3cXQK0dbbjeMjwzPG3h6szYu1ljasa180Ltfa4HE4NZ8rAyQBIxOgRDNydZkbCWicACWaxgvE8AxHYCB6GP/1wucgtngurd2E92z6Stk5UqKVjYoNSaDqBMwi0Rb7A9jWvKgs3nabFTaLDXYrYLdY4bDaYLNYYbda4LBYYbOK96KNFdFUEqF0XoZFUgmEx9+HU0lEM2mEkkmpzWgqWda9C41u2LIVZ5UZ77wGZmNdE/C4gaf3HcIr3d3o7O7Cnj6xPbQbPWOj0/KyAFhcVz8u11qxtnWR9Mw1sTXUZXfomgODJwG9EKBE00ulGCcJGJAAJZoBi8qUNE+gK7RbEmniuu61d5UdLyVa2ajYkASqTsAsEq3qoCcE4LLa4HU44LXb4bE74LTait8eDY8hlEqCEk1LFdNOLLMdLBCKx7G757gk1Pb29WJX9zFpW2h/ODRj8EvrGvCb//cpSbLxIgESUI8AJZp6bDkyCZBACQKUaJwiJFAdAtsfexclWnXQ864kUBECRpdoYgXYobFRpHMZpLM5ZHJZpLNZpHO5/Gs2O+mzVCaDdC6LTDYnvU76vvCZ9L3ol4NHEmF2eO1CijngG3/1CElms8PrsMNnd+bb2BzwO+ZeAXTLi0/j6d4uSrSKzH793WS+p3OOxWLY1XMcu7u7pIMNdvV04dXuYxiNxfC/N3wBq5pb9AeBEZOAjghQogEIeOw6Kpk2Qg3F0toIhFHomgAlmq7Lx+B1TIASTcfFY+gkUAYBo0u0MhBoqsm3XnwaT/V2Sc9vE89x40UCEwnMV6LNRO/8b/8T9vT14C/XfQ5rW9sJmARIQEUClGiUaLKmFyWaLGzsNIUAJRqnBAlUhwAlWnW4864kUCkClGiVIl3efSjRyuNk1laUaGatPPPWKwFKNEo0WXOXEk0WNnaiROMcIAFNEKBE00QZGAQJqEaAEk01tLIGpkSThc00nSjRTFNqJmoQApRolGiypjIlmixs7ESJxjlAApogQImmiTIwCBJQjQAlmmpoZQ1MiSYLm2k6UaKZptRM1CAEKNEo0WRNZUo0WdjYiRKNc4AENEGAEg0YiXcjngqh3rsETptHE3VhECSgFAFKNKVIKjMOJZoyHI06CiWaUSvLvIxKgBKNEk3W3KZEk4WNnSjROAdIQBMEjCzRYqkQIqkhhJPDCMX7EUoMIix+kkP598lBJNKRSXVo8C5FW2ANFgXXoTWwBg3exZqoE4MgAbkEKNHkklOnHyWaOlyNMiolmlEqyTzMQoASjRJN1lynRJOFjZ0o0TgHSEATBPQq0UKJAYQTQwin8q8FQRZKDEtyTMiyTC61YMZOuxftgbVor1mLthoh1lbDxdVqC+bKASpHgBKtcqzLuRMlWjmUzNuGEs28tWfm+iRAiUaJJmvmUqLJwsZOlGicAySgCQJak2jpbAJjiUFEJqwYE8IsIq0eEz8DiKVGkUOuJD+PvQZ+Vz38znr4nPUIuBsRGP/d72qAz1EPjyNQHEdIt57wPvSM7UHX6F50hzslGTfxssCCeu9iabVae3Ad2gJrUe9dBPE5LxLQIgFKNG1VhRJNW/XQWjSUaFqrCOMhgbkJUKJRosn6G6FEk4WNnSjROAdIQBMEKiXRhPSKpcakrZTSlsrE4ITtlSe2WCYzsZJcbBYHhATzO+vgdzZIoiwgfnfVwydJsgYEnPWwWuwlxyrVIJoaRdfoLnSFOtE9the94f0Qom/iJa1W869Ba01erIn34jNeJKAFApRoWqjCiRgo0bRVD61FQ4mmtYowHhKgRCs5BwKehf8Hd8mbGKwBJZrBClqldBx2C4JeJwbGJv+P0yqFw9uSgGkIKCHRsrk0QgU5Jm2lPLG9Mr/lUoizIYh2pS6vvWZchNVLokzIMZ94dYrf6+F3NMDt8JcaRrXvs7ksBqOH0S1Wq4U6pVVrQ7Guafer9yxCW81a6dlqbf41qPct4Wo11arCgeciQImmrflxy4tP4+neLtywZSvOal6kreAYTdUJUKJVvQQMgATmRYAr0bgSbV4TptCYEk0WNnaaQoASjVOCBKpDoJRES6ajCCXzq8akLZXJQcRSw4gkBzEcFc8jG0QsPVYyeJvFWdxaKbZU5rdXitVk+RVkQo75XXWKrB4rGYzCDcTquYJQ6xrrRHdoz7QDC8Spn22B1dJhBZJYC6yFy+5TOBIORwLTCVCiaWtWFCTaxKg8NhsCThf8dicCTgcCDhcCDmf+x+WE3+FC0OGCz+HIf293wWvn//GvrcoqEw0lmjIcOQoJVIoAJdocEu37P/kdfvHbB6bV4vPXXI5LLjxn0uf3Pvg4vnb7z2es24a1y7H9y59AbfDEM1gqVWC17kOJphZZc41LiWauejNb7RAoSLTzV32kuIIsUlhJlhyatnVxpsgnPntMWj3mbsxLssKWyyqvHqsG7cHoUfSG9qM3tE8SbGIb6NRLrFZrrVmdP7gguA6N3mXVCJX3NDgBSjRtFfiXe1/B031dCCWTGE0lFxRc0Clkm5Bu7nG5Ni7hnJ4JvwsZl28n2vPSNgFKNG3Xh9GRwFQClGglJNqzL3VOEmDP7ezE1Td+G3/3njfh41e+u8hTSLQf//L3uO2rn8Type2Gn2mUaIYvcUUSpESrCGbehASmEShItJnQnFg9JrZV1hVXjzX4mlHvbUQuU4MadxOplkng+Niu4jZQsR1UrOybeDmsLun0T3FowaLgemm1WjW3rpaZFptpnAAlmrYLFMtkEEolJKkWTqXy71P592NJ8T4x/nkSYdEmnUQklSrjaJWZ8xYr2E6sdHPA78xLtpqCkBO/213jnwtB54TbxlVvlZpFlGiVIs37kIAyBCjR5inRBHaxQm2qXKNEU2ZCchRzEaBEM1e9ma12CNz9ytekLZU10uqx/IP6xfPHxEqy2QSO122H02bBSCSlnUR0GIl0aMFYJ7rG5ZqQbFOvOk87WgOrJKEmnrHW4l+hw0wZcjUJUKJVk746987mcpJIE0JNyLdQWgi2FEJpcbpxXrRJUk76PImQaJtKQAg7OZeQaI0eD5rcXjSLH4+v+HuTx4s6l5vnE8sBO0MfSjSFQHIYEqgQAUo0SjRZU40r0WRhY6cpBCjROCVIQD8EKNHUq1Vv+AB6QnvQNbYb3aF9GJlyaIHd6kKLfxU66jfjjCXvUS8QjmwYApRohimlIokMJ+L5lW3p/Oq3vGATr4XfJ6yISyYxkizvwKdmtw8tXg8ahWTz+qTXFo8XDW4PWj18/mO5xaNEK5cU25GANghQos1TosXiSdz83fyzz2785OXwuJ3Se65E08aEZhT6IkCJpq96MVpzE6BEq1z9E5kYusd2oSe0D/ntoJ1IZuJSAItq1uNtG/8B4pl0vEhgNgKUaJwbCyUgnt3WH4ugLxbN/0TF+wj64+L3GJLZ0ivcxGq1FreQal5pFVuLx4elgRqsr21YaHiG6q+IRLv1n7CntweP3PAFrG5uMRQfJkMCWiNAiTZPiTabLJvtYIHW5gZDPieNK9G09qesz3go0fRZN0ZtTgKUaNWt+9HRl3HPq9+UTgAVBzm8c+Pn0eTrqG5QvLtmCVCiabY0hglMrFYbiEXRG4+gLxpFrxBsknCLoCsamTXPxf4AvrPtDYbhoEQiSkq005Yux/vP2IbLTj9LidA4BgmQwAwEKNHmeTrnRedtnbQCrcCUK9H490UC8ydAiTZ/ZuxBAtUiQIlWLfIn7htKDOCul2+COAVUbPF8y7prsapha/UDYwSaI0CJprmSmC4gsYVUWsEWj0py7UhoBI/1HAcl2vSpoIREu+u5HfjWH3+PI8OD0g1aaoL4yNnn4UNnvRYBt9t0848Jk4CaBCjR5rESrbDa7PPXXI5LLjxnUl0o0dScphzbqAQo0YxaWeZlRAKUaNqoaiqbwP27tmP/0A4poDOXvBfbOi7TRnCMQjMEKNE0UwoGMk7gSDiEa598CDUOJ9605MRhKVarFR67DR67Az6bI/9qt8Ntd0CcKip+jH5SqBISTWDO5XL44ys78YP/fQjPHj4okQ+4XPjgGWfj/557gSTWeJEACSycACXaPCSawC1O5vzTozumbdGkRFv4ZOQI5iNAiWa+mjNj/RKgRNNW7f565E789fB/SUGtrD8db153DZw2j7aCZDRVI0CJVjX0vPEsBAoSTS4gIdN8dic8Nht8DifcQrBJ0s0On8MOr8MJr01It/xnQsaJ93kRl391Wm1yb69qP6Uk2sQgdxzajx8+8hAefPUl5ADYbTa8Y8up+Ph5F2JNS6uq+XBwEjA6AUq0eUq0wsECR7v7sf3Ln0BtMCDNEUo0o/+pMD81CFCiqUGVY5KAOgQo0dThupBR9w0+g/t334Z0NoF6TzveuemLCLqaFzIk+xqEACWaQQppoDTimTR2DQ8ilkkjmk4jnkkhls4glk4ilk5LP/FMBjHpc/E+/1ksnUIsU/oQg3JR+R2OCfJNSDkh2Wzw2vNiTgg6SbyNC7qOmiCa3d5yh5fVTg2JVgjk0GA/vv/wn/DbZ59BMpOWPj5/7QZcfd4bsW3lalnxshMJmJ0AJdo8JZqYMAePdOHaL34XmzesLD4fjRLN7H9KzF8OAUo0OdTYhwSqQ4ASrTrcS911MHIEv3vlJoQTg3DZfXj7hhuxOLixVDd+b3AClGgGL7AJ0xNSTZJsklRLIy4E27hoKwo3IehSkyVc/ru8iBOvYgzxWbnXpSvW4X2r1pfbXFY7NSVaIaDBSBg/evQv+PenHsNoLCZ9fNKiJfjYeW/AxSedAqvFIit2diIBMxKgRJMh0cREeW5nJ66+8dsoHDTw0KPP4Me//L0hT+Kc6Q+Dp3Oa8R8XyudMiaY8U45IAmoRoERTi+zCx42lQvjvV76O7lAnrBYrzlvxEWxpf/PCB+YIuiVAiabb0jHwChEoSDVptVsmjYS0Qi6FuFgdl0ljR18XnhvohVEkWgFrLJXEL59+Av/62MM4Njwkfby0rgEffd3r8YHTz4Lb4axQBXgbEtAvAUq0OSSafsuqfuSUaOozNsMdKNHMUGXmaBQClGjarmQ2l8Gf9vwAr/Q9LAW6sfl8vHHN1bBatPkMIG3T1H90lGj6ryEzqC6BX+/fjTv378KlK9fjfSvXqRpMJVaiTU0gk83i3p3PSc9Ne7nrmPR1rdeLK846F//nnPNR5/OpmjMHJwE9E6BEo0STNX8p0WRhY6cpBCjROCVIQD8EKNH0UasXux/Aw/v/DdlcFm2BtXjHxs/B48g/v5WXeQhQopmn1sxUHQJGl2gTqT2+bw9++PCDeGTvbuljl82O9552Bj5+/huxtL5RHcAclQR0TIASjRJN1vSlRJOFjZ0o0TgHSEC3BCjR9FO6Y6Ov4J5d30Q8FYbf1YB3b/wCGnxL9ZMAI10wAUq0BSPkACYnYCaJVij1nt4efO8vD+Cenc8jnclIz0m7cMMmfPKCN2HzYv47xOR/Ekx/AgFKNEo0WX8QlGiysLETJRrnAAnolgAlmr5KF0oM4K6Xb8Jg9CjsVhfesu5arGrYqq8kGK1sApRostGxIwlIBMwo0Qql7x4dwfcffhC/3vEUoqmk9PHxW/6ZM4MESGCcACUaJZqsPwZKNFnY2IkSjXOABHRLgBJNf6VLZRO4f9d27B/aIQV/xpL3YFvHZbCAp7Dpr5rzi5gSbX682JoEphIws0QrsAjF41j3xRso0fjnQQJTCFCiUaLJ+qOgRJOFjZ0o0TgHSEC3BCjRdFs6PHnoV3jq6G+kBDrqTsHF66+H0+bRb0KMvCQBSrSSiNiABOYkQImWx7PoM39Pica/FRKgRJs+BwIeOyfGPAlQos0TGJvPSIAHC3BikIB+CFCi6adWM0W6b/AZ3L/7NqSzCdR72vHOTV9E0NWs76QY/awEKNE4OUhgYQQo0SjRFjaD2NvIBLgSjSvRZM1vSjRZ2NhpCgFKNE4JEtAPAUo0/dRqtkgHI0fwu1duQjgxCJfdh7dvuBGLgxv1nxgzmEaAEo2TggQWRoASjRJtYTOIvY1MgBKNEk3W/KZEk4WNnSjROAdIQLcEKNF0W7pJgcdSIfz3K19Hd6gTVosVr1v5YZzc9lZjJMcsigQo0TgZSGBhBCjRKNEWNoPY28gEKNEo0WTNb0o0WdjYiRKNc4AEdEuAEk23pZsx8Af3/AAv9z4kfXfa4rdjc/ubub3TQCWmRDNQMZlKVQhQolGiVWXi8aa6IECJRokma6JSosnCxk6UaJwDJKBbApRoui3drIG/2P0A/rzvX4vfN3qXYWXD6VjVsBUtgVXGS9hEGVGimajYTFUVApRolGiqTCwOaggClGiUaLImMiWaLGzsRInGOUACuiVAiabb0s0ZeH/kEF7tfQR7Bp5EKDFQbOtz1ksyTUi1jrqTjZm8gbOiRDNwcZlaRQhQolGiVWSi8Sa6JECJphOJ9v2f/A59A0O48ZOXw+N2Kj7Z7n3wcdz9h0ex/cufQG0wUHJ8SrSSiNigDAI8WKAMSGxCAhohQImmkUKoGMZg9BgODO7A3sGn0RPaU7yT0+ZGR90pWNl4BlbUnwaXzaNiFBxaCQKUaEpQ5BhmJkCJRolm5vnP3OcmQIlGiSbNEEo0/qOiGgQo0apBnfckAXkEKNHkcdNrr1h6DPsHn8G+gWdweHgnMrmklIo4jGBRcCNWNW7F6oYz4Xc26DVFQ8dNiWbo8jK5ChCgRKNEq8A04y10SoASjRKNEk2nf7xGCJsSzQhVZA5mIUCJZpZKT88znU3g0PCL2D/wNA4MPQsh2ApXk68DK6Vtn1vR4l9hXkgay5wSTWMFYTi6I/Drfbtw54HduHTFOrxv1XpV42+qdWMklEAqk1P1PnIGX/SZv5e6Hb/ln+V0Zx8SMCQBSjQdSDSxlfMXv31g0gS86Lytxa2dI6MhXPfl7+HVzoNSm9bmBtz21U9i+dL2Yp+pbcQXG9Yul7ZvPvb0i/ja7T+fNH7hu9m2dnI7pyH/eVDxpCjRKo6cNyQB2QQo0WSjM1THHLLoCnVi/8Az2D+4A8OxrmJ+flcDVtaLgwnOwJLajbBa7IbKXU/JUKLpqVqMVYsEChKtEFuHP4gWrw9tPh8W+WrQ7vOjzetH0LHwx+xQomlxBjAmEpidACXaDBKte3QUP33i0YrPm/ZgLa44+7Uz3ne2Z6IdPNKFa7/4XXzkAxfjkgvPkfqKrZk//uXviyKtINBO3bQWH7/y3cXxf/br+/C6s06WZBu3c1a83LwhAEo0TgMS0A8BSjT91KqSkY7EurB38BlJqnWFdhdv7bC6sK75XGxd+i4EXS2VDIn3AkCJxmlAAgsjsHOwH386dhBdkTC6omEks5kZB/Ta7Wj3BiS5tsRfI4k18bPI54fTaisrCEq0sjCxEQlohgAl2gwS7bkjh3Het75R8SKdsnQZHvn0Z8uWaLF4Ejd/9+dobqyfJMcKn5+2Zb0k1p7b2Ymvbv/ptNVpE29EiVbxcvOGlGicAySgKwKUaHJHKl0AACAASURBVLoqV1WCjafC2D+8A3v7n8Lh4ReQyaWkONY1vRZnLH0vGryLqxKXGW9KiWbGqjNntQiITZaD8RiOR8I4HglJP12REI5FQhhKxGe9bb3LLa1Ya/f60e4LSO8Xef1o8vhgs1iK/SjR1KocxyUBdQhQoul4JVphFdoXr/swTjlp7aQZIlauiUusPCu0q6+rmfX0TUo0df7AOOrcBLgSjTOEBPRDgBJNP7XSQqTR9Bh2HLkLO7v/iFQ2IYW0qmErzlz2PjT7lmshREPHQIlm6PIyOQ0RECvUjoTH0BWNoDucF2s90QgOhEZmjbLZ7UOjJ3/Ksd1qQbPPA6/FiaDTjRqXC3UuNwIO8bsTTW5vVbPlM9Gqip831ygBSjQdPBNNzJ2ZtnMW5FhP3+CM02vic9PEarSrb/z2pHafv+bySVtA7/7Do7NKtqk34DPRNPoXrbOwKNF0VjCGa2oClGimLr/s5MXqtB3H78aLXX9AMpNfsbGs9iRpZdri4EbZ47Lj3AQo0ThDSKC6BMTqtYF4VFq91hUN4Vg4v3pN/D7X6rWZohZbRoVgq3W6JMkmXmtdbgTFq8OFoMslvRdtRFslL0o0JWlyLKMQoEQzgESbaSVaqQlaOKzgBzffIK1i40q0UsT4vRoEKNHUoMoxSUAdApRo6nA1y6jJdBR/O/Y/eK77Poj34moPrMMZy96D5XWnmAVDxfKkRKsYat6IBOZNIJPLYSgRw2gygZFEAhl7Ft2jIQzE4tLvI8k4RqTvYohlZn4W22w3vW3bBVjqr5l3TLN1oERTDCUHMhABSjQdS7TZnolWzvwsHDbwzjefK61Go0QrhxrbKE2AEk1pohyPBNQjQImmHlszjZzMxPB813149vg9EKvUxNXkW44zl70bqxrOhAVWM+FQLVdKNNXQcmASUJxAqWei9cWjGImPi7VkQpJvw/GYJNrGkglpZZv4LJ5J4ztnvxGLfX7FYqREUwwlBzIQAUo0nUi0qSduFuZgYZvmxK2Z4jvx+fGe/uLBAn/928uTDh+YethAYZzCyrRSc5zbOUsR4vflEKBEK4cS25CANghQommjDkaJIpWN44WuB/Ds0f+GeH6auOo97di65D3SqZ5WC2XaQmpNibYQeuxLApUlUEqilRPNp554SHoeG1eilUOLbUhgYQQo0XQi0USZC1swxfuJzzsrrCp7tfNgcTa0NjcUT+Ms9X2hkxB1X7v959KvG9Yun/P5aJRoC/vDY+88AUo0zgQS0A8BSjT91EpPkaazCezsfhDPHL0b0VT+Qdw17macvvgdeE3rBbBZHHpKRzOxUqJpphQMhARKEqBEK4mIDUhAUwQo0XQk0bQ0cyjRtFQN/cZCiabf2jFy8xGgRDNfzSuZcSaXws7uP2HH0bsRTuYPTPI6anHa4rdjc/tFcFjdlQxH9/eiRNN9CZmAiQhQopmo2EzVEAQo0SjRZE1kSjRZ2NhpCgFKNE4JEtAPAUo0/dRKz5Fmc2m83PsXPHP0LozF+6RUXHYfTll0CU5pf6v0nldpApRopRmxBQlohYAiEu3Jh6QTQG/f9gYs8QcUS43PRFMMJQcyEAFKNEo0WdOZEk0WNnaiROMcIAHdEqBE023pdBv4q72P4MnDv8ZYolfKwW51YXPbRXjdiit0m1OlAqdEqxRp3ocEFk5ASYm28GjyI7htdtitFgyFQshmc1jV1AS7xQaHzQqH1QaH1ZJ/tdhgt1nglD4TP1Y4LFY47DY4x9vbxWfj3zktVthtVmn8gMOFVq9X6suLBPREgBKNEk3WfKVEk4WNnSjROAdIQLcEKNF0WzrdB76r73/x1yO/wUisq5iLxx5Aa2A12oPr0OpfjbaaNXDaPLrPVakEKNGUIslxSEB9AkpItAeOHkBfLIJkJod0LoNUNoNUJoeU9D6LdDaDTA5IZNJIZTJI5XJIZ7NIZjPSq2gj3lfjCjqcaPb60OrxotnjR4vPhzaPD00eL5rc3mqExHuSwJwEKNEo0WT9iVCiycLGTpRonAMkoFsClGi6LZ1hAt/d/zieP34fukOdM+bU4F2MJv8KtNWsRqsvL9bMelGimbXyzFuPBJSQaErmHc+kkc7mJBF36tf/ERarDX++/nNIZ7JICikn5Ny4fEvmhKATEi4v7tKZXL5NWoi6/HdCzuVFXl7W5dtmMZiIoycaLhl6q8eHFq8XLdJrAC1eD5rdPrR5/fDa7SX7swEJKE2AEo0STdacokSThY2dKNE4B0hAtwQo0XRbOsMFLp6b1hc5hN7QPnSH9qBnbC+GYsen5Wm12NHk70BbYDXaAmvQGliFOs8iw/GYKSFKNFOUmUkahIDWJNpErJV4JtpQIo6+eBT90Sh64xH0RSLoj0fRGxM/kTmrLCSakGlixZrYGtrs9WNNsB7LA0GDzA6moUUClGiUaLLmJSWaLGzsRInGOUACuiVAiabb0pki8GQmJkm1HkmsdaI7tBeR5PC03J12L9r8q9DiF1tB16AtsA4eh3IP4dYKbEo0rVSCcZBAaQJml2ilCA3EY+iLR9AfFa9R9EbDkmTri0al36de21oW4frNW0sNy+9JQDYBSjRKNFmThxJNFjZ2okTjHCAB3RKgRNNt6UwbeDg5mJdqY3vQE9qL3vB+CNk29Qq4GovPVWurEYJtlXSIgZ4vSjQ9V4+xm40AJdrCKt4fi0pS7W/93fifQ/tAibYwnuxdmgAlGiVa6VkyQwtKNFnY2IkSjXOABHRLgBJNt6Vj4OMEcshhKHr8xDbQ0F70Rw5DbA+deFlgRb13cX4baI3YBroajb6lEJ/r5aJE00ulGCcJAJRoysyCJ3qOY/vOZ3BWSztu2HyGMoNyFBKYgQAlGiWarD8MSjRZ2NiJEo1zgAR0S4ASTbelY+BzEMhmU+iLHER3eC+6x/ZKK9cmngJa6CpWprX4V0hCTRxc0BJYjaCrWbNsKdE0WxoGRgLTCFCiKTMpKNGU4chRShOgRKNEKz1LZmhBiSYLGztRonEOkIBuCVCi6bZ0DHyeBBKZGHrEFtCiWNuLaGpk2iheew1aak6sVmsLrIXL5pnn3dRpTommDleOSgJqEKBEU4YqJZoyHDlKaQKUaJRopWcJJZosRuxUmoDDbkHQ68TAWKJ0Y7YgARKoKgFKtKri582rTCCUGJCeqyadBhraL20JTWXj06KqdbdJp4CKbaBiO2izbzmsVkfFo6dEqzhy3pAEZBOgRJONblJHSjRlOHKU0gQo0SjRSs8SSjRZjNipNAFKtNKM2IIEtEKAEk0rlWAcWiHQHzkkHVbQG9qPntAe9IYPTAutxtWEwPi2T4fVAY8zCL+rHl5HED5HLXzivb0GXlctPPYaxVKjRFMMJQciAdUJUKIpg5gSTRmOHKU0AUo0SrTSs4QSTRYjdipNgBKtNCO2IAGtEKBE00olGIdWCWRyKUmqiRVrPWNi1do+jMZ7yg7XYrGNy7UgvM46+BzitRZ+Vx08jlr4neI1KL267L45x6VEKxs7G5JA1QlQoilTAko0ZThylNIEKNEo0UrPEko0WYzYqTQBSrTSjNiCBLRCgBJNK5VgHHoiIE7+DCeGpWeqiZ9IUryOIpwYQjQ5OuGzESQzsbJTs1rs8Drzq9mkVW3OuvyrW8i3WrTUNMJhC8KWC5QUbmXflA1JgARUIUCJpgxWSjRlOHKU0gQo0SjRSs8SSjRZjNipNAFKtNKM2IIEtEKAEk0rlWAcRiUgTgoNpYYRTYwgkhpBbFy6CfEWSQ5L0k18Hk2OzPg8ttm4WC0O+Jz5VW156VYLn3gvVru5gvlVbo5aeMQKN40cjGDUGjMvEpiJACWaMvOCEk0ZjhylNAFKNEq00rOEEk0WI3YqTYASrTQjtiABrRCgRNNKJRgHCQBi62g4MThJrIUl0SYE3CiSmRGE4iMIJ0eQzpZ/eI/T5kGtuxW1nnbptd67CEFvC+rc7dJKN14kQALKE6BEU4YpJZoyHDlKaQKUaJRopWcJJZosRuxUmgAlWmlGbEECWiFAiaaVSjAOEihNYOIz0cQ2UWkrqVjFJla5TdxSmhpFLDWGSHJI+lzIudkuh9WFeu9iBN0tqBOSzduGOk8bgu5WaYUbLxIgAXkEKNHkcZvaixJNGY4cpTQBSjRKtNKzhBJNFiN2Kk2AEq00I7YgAa0QoETTSiUYBwmUJiD3YAEh2kZi3RiJ92A4chzDsR6MxLsxGu9GMhOf9cYzrWCr9bai1t3GFWyly8UWJidAiabMBKBEU4YjRylNgBKNEq30LKFEk8WInUoToEQrzYgtSEArBCjRtFIJxkECpQnIlWhzjSxWsw0LwRbrxlDsOEaivRiJd2Ek1jPnM9oo2ErXiy3MTYASTZn6U6Ipw5GjlCZAiUaJVnqWUKLJYsROpQlQopVmxBYkoBUClGhaqQTjIIHSBNSQaKUE21CsC6OxnnHBll/BRsFWulZsQQKUaMrMAUo0ZThylNIEKNEo0UrPEko0WYzYqTQBSrTSjNiCBLRCgBJNK5VgHCRQmkClJdpcEYmTRYclodaN4Wh+5dqwEG5xsYJt9kMPuIKtdJ3ZwhgEKNGUqSMlmjIcOUppApRoc0i07//kd/jFbx+YRvHz11yOSy48Z9Ln9z74OL52+89nJL5h7XJs//InUBsMlK6ITlqEYmmdRMowtUyAEk3L1WFsJDCZACUaZwQJ6IeAliTa3IJtSFqxJraJSj/RLul1NN4756mihUMO2gNrsbR+M5bWboLD6tZPgRgpCUwgQImmzHSgRFOGI0cpTYASrYREe/alzkkC7Lmdnbj6xm/j797zJnz8yncXCQuJ9uNf/h63ffWTWL60vTR5nbegRNN5ATUSPiWaRgrBMEigDAKUaGVAYhMS0AgBvUi0uXCFk4PSarW8XBOSTaxe68VQ9PiMp4guqtmAjvotWFa7Ga2B1RqpBMMggdIEKNFKMyqnBSVaOZTYRgkClGjzlGgCulihNlWuUaIpMR05htkIUKKZreLMV88EKNH0XD3GbjYCRpBopQTbQPQojgy/iANDz2IoemxSc7EVdFntFnTUb8bKhq3wOmrNNgWYr44IUKIpUyxKNGU4cpTSBCjRNCrRYvEkbv7uz/HHR54pVvEHN9+AU05aW/x9pjatzQ0VWQ3HlWil/7jYojQBSrTSjNiCBLRCgBJNK5VgHCRQmoDRJdpUAtHUKA4NPY9Dw8/h8PBOxNJjk5rUexZhWd3JWF6/BYuDG2G3ukpDZAsSqBABSjRlQFOiKcORo5QmQIk2T4lWEFcC7Y2fvBwet1OirORKtJHREK778vdw6qa1xS2jhW2kBZE2VxyLWpsmybbS02D+LSjR5s+MPaYToETjrCAB/RCgRNNPrRgpCZhNok2seA459IUPSqvUDg4/h66xTmRzJ57la7U4sKhmLTrqT8ayui1o8nXAAgsnDQlUjQAlmjLoKdGU4chRShOgRJunRJtNls12sICclWFirLv/8Oi0wwgmfj48GsK1X/wuvnjdh1UXZjNNI0q00n9cbFGaACVaaUZsQQJaIUCJppVKMA4SKE3AzBJtKh1xAuixkZdxcOgFHBl5HkOxrklNvPYaLK3bjI66kyWx5nUESwNmCxJQkAAlmjIwKdGU4chRShOgRJvn6ZwXnbd10gq0AmKlVqIVVpg1N9ZPOrhA3EesRvvq9p9K2zXrggFptdrQ8FhFtm9OnUqUaKX/uNiiNAFKtNKM2IIEtEKAEk0rlWAcJFCaACXa7IzGEv04NPQcDg6/gKMjO5HMxCY1XlSzEUtqN0KcANrgW4KguxUN3sWlobMFCcgkQIkmE9yUbpRoynDkKKUJaEai7XhhN6645mYp4k3rV+CHN18riaKZroltxfdvveBMfOXTVxa3VorPhOQJRVOlCcxjJVphtdnnr7kcl1x4zqSxKyHRDh7pmrT6rPB7T99gMZapp4aWBUBGI0o0GdDYZRoBSjROChLQDwFKNP3UipGSACVa+XOgJ7QHh0ZexKHB59EV2j1rx1p3G2o9bWj0LUWddxHqve1o8iyD0+4t/2ZsSQIzEKBEU2ZaUKIpw5GjlCagCYm2/3AXPv+NH+Frn/0oVi5rx133P4qnnn11mhgrpCO+X9LejNO3rINYufWlb/0Erc31uO6qS4sZqyHRxODiZM4/Pbpj2uqvSki0iSvRli9tn1bduSRf6akwvxaUaPPjxdYzE6BE48wgAf0QoETTT60YKQlQosmbA2JVWleoE4ORIxiMHMVQ9DgGY0eRSEdmHdDt8KPBvQS13jY0eJegztuOOs8i1Hum/7e6vKjYy+gEKNGUqTAlmjIcOUppApqQaEKKHTraU5RgU6VaqTRmkm5qSbTCdsuj3f2TnlmmlEQTuZbzTLTaGVbpzbUVtBTD+X5PiTZfYmw/EwFKNM4LEtAPAUo0/dSKkZIAJZqyc0Cc/jkcO4bByDEMRI5hOJ5/H06e2A0y0x3rPO0QJ4MKsSYE2/L6U/nMNWVLY4jRKNGUKSMlmjIcOUppApqQaNvvuFOKtLCSTDw0/2M33obrr7pUWm1W6praX7RXS6KJsQvbKDdvWFl8PpqSEq2c0zlFDL+592F84iPvLW5jnbrdsxS3hXxPibYQeuxbIECJxrlAAvohQImmn1oxUhKgRKvMHEhl4xiMHsNQ5BgGo2Ll2jEMxo5jZMrhBYVoLtlwA1Y3bKtMcLyLbghQoilTqr/2Hce3X3gG21oW4frNW5UZlKOQwAwENCPROpa04l1vOVcKcT4STTwf7dY77pz2DLVMNgfxU85ls858rPXt//ob7HhxN/7569dMez6buO9Hrvsm3vL6M/GlGz6MBx5+Cv/y7/fgBzdfJ21JXeglVpV95ds/xf1/eao41I+3/0NRKs70vWg4sc1CY5irf7ls1YyBY+ufgMUCiL+/dKa8v1X9Z8wMSEC/BKwWC8S/LtNl/rtVv5kychLQPwG71YJsLgf+uVavlr3hIxiIHEff2GG81PUYekKH8IHTPovXtE5+rnL1IuSdtULAYbMinclCi/817LrqoxKmxB0/0gquWeN45PhRfOnJJ4rf1zidaPf50OD2osXnQ5vPJ722eH1o9XhQ63ZrPicGqE0CTru1GJgll8tV5W9X7ko0IbI++40f4Y5brp8mrqKJDKLxdFnUvS5bWe3Y6AQBwZcXCSyUgN1ugd/lwEgkudCh2J8ESEBlAm6XDeJ/mIdj5f27VeVwODwJkMAcBPweO1KZHBJJ/veaFibK3S9/E539f8U7XvNprGs6WwshMQYNEagNOBGOpjT5fyo3XXe1RKp/+w80RGzmUI6Ex/A/B/eiNxZFXyyK7kh4zpidVhuaPB40ebxo9ngludbk9hZ/F5/xIoGZCDQGXdWXaHKeiTaXQBMZKbGdU6kpU9ie+WrnwZJD/uDmG3DKSWtLtqt2A27nrHYFjHF/buc0Rh2ZhTkIcDunOerMLI1BgNs5tVXHe3fdgr0DT+Hi9TdgTSO3c2qrOtWPhts51avBSDKBvmgEffEoBmIx9MbC6I9F0R8Xoi2GZHb2/6NBrMCvd7klsdbo9kivzV4fGj1e6X2L1wuH5cSKJPWy4MhaI6CJ7ZylTucUku3Oex8pbtmcbQvnRLhakmhaK7oS8VCiKUGRY1CicQ6QgH4IUKLpp1aMlAQo0bQ1ByjRtFUPrUVDiVa9ioymkuiPRaSVa/2xGPpiEUmy9cUjGIhFEcvMvZo34HAWV68J0dbszQs2sbqt0e1FjcNZveR4Z9UIaEKiieyEGLvimpulRDetXzHpGWdTJZrY/vnjX90/CUpbS8OkbZ2UaKrNGWlgSjR1+ZpldEo0s1SaeRqBACWaEarIHMxCgBJNW5W+Z9ct2DfwlLQKbVXjmWgLrELQ3aqtIBlN1QhQolUNfckbh1MpSahJYi0WRW80igFpFVt+dVssPfcjLsSW0WaPRxJq4kesZGsW76XPPGhweSBWvPHSFwHNSDSlsVGiKU108niUaOryNcvolGhmqTTzNAIBSjQjVJE5mIUAJZq2Kl2QaBOjcto8aKtZg1b/arQEVqLVvwp+V4O2Amc0FSFAiVYRzKrcJJ5Jo2d89ZoQbUKyia2i0uq2eBRCws112axWLPMFsLymFivET6AWHTVBCPnGS7sEKNEABDx27VZIo5FRomm0MDoLixJNZwVjuKYmQIlm6vIzeZ0RoETTVsFS2QT6IgfQFzqAntA+9IUPYCh6HDlkJwXqddSiNbAabTVCrK1Cm381XHaftpJhNIoToERTHKlmBhTPXOuJRjAYj6E7GpFWsfWK3xMx6XUsNfPhakv8AXT4g1gZrMPyQF6wee10FlopLCUaJZqsuUiJJgsbO00hQInGKUEC+iFAiaafWjFSEqBE0/4cSGcT6A8fQk94P/pC+9ErxFrsKLK5yWIt6GqWhJqQa62BVdKqNYfVrf0EGWHZBCjRykZluIZipdqB0AgOjI3iwOiw9L47OvOpoi0eH5YHxsXa+Mq1IJ+5VpU5QYlGiSZr4lGiycLGTpRonAMkoFsClGi6LR0DNyEBSjT9Fr17bI+0ai2/Yu0g+iMHpyVT72kfF2urAIsFDqsLXkcQYiWb+KlxN+kXgAkjp0QzYdHnSDmWSeNgaAQHhVgbG8aB0REcj4aRyeWm/7PA5ZZWqQm5tqKmTnovnrXGS10ClGiUaLJmGCWaLGzsRInGOUACuiVAiabb0jFwExKgRDNW0XtCe9Eb3o/e8RVrM4m1qRmLZ64JoeZz1sHjrIFPvHfVjcu2oPS71xnkAQcamCqUaBoogg5C2Dc6jH1Cqo2NC7bQyIxR++wOrK6pw6bGFpzU0Cg9Z42XsgQo0SjRZM0oSjRZ2NiJEo1zgAR0S4ASTbelY+AmJECJZvyi94T3oT98ACOxXoSSg4glRxBOjkiv0fTYvACIlWweSbLl5Zr03pn/kVa4iffjK92cdu+8xmbj0gQo0UozYouZCRwIjUqr1g6NjmC/kGuhUYjnsE28hFTbWN+IzQ3NOKmhGe1eP3EukAAlGiWarClEiSYLGztNlWg2C4J+JwZGE2RDAiSgcQKUaBovEMMjgQkEKNHMPR3EgQXR1BiiyRFEhFhLjUqvkeSw9BNN5T+PJkcRT4eQw/RtYrMRtFmc8DmD8DjHV7ONyzWfW4i2/HbSvHSr5aEIZU5DSrQyQbFZWQSOhkN4ZbgfLw324+Xh/mknhIrtnpvrm7FJkmpNCDpdZY3LRicIUKLpRKJ9/ye/Q9/AEG785OXwuJ2Kz+F7H3wcd//hUWz/8idQGwyUHJ8SrSQiNiiDgIMSrQxKbEIC2iBAiaaNOjAKEiiHACVaOZTYpkAgkhxCJDWKqJBs0usIwolhxFJidZt4HZVeE+nIvKH5nPX5VWxiVZuzFi3+5Ti5/eJ5j2PkDpRoRq5udXMTelysThNCbedgL14dHpy2Uk2cBLqpvllaqSZWrHlsPAW0VNUo0SjRpDlCiVbqT4Xfq0GAEk0NqhyTBNQhQImmDleOSgJqEKBEU4MqxxQEwolBRFJiFdvI+OuoJNzE6jbpJzmMcGoEyXR0RmD13sW44tTvEuYEApRonA6VIpDJZtE5OoSdg33YOdgvPWNt4oEFNosFK4N12FTXhC2NzVgTrIfdaq1UeLq5DyUaJRolmm7+XI0XKCWa8WrKjIxLgBLNuLVlZsYjQIlmvJrqMaNQYqAo2waih/H4wf8EJdr0SupBor1p40m48uzzcPaqNXqciox5FgLxTBqvDA9g50B+pdqRSGhSS6fVhvV19TipoVU6pGB5oBYW0gQlmg4kmtjK+YvfPjBpul503tbi1s6R0RCu+/L38Gpn/gjs1uYG3PbVT2L50vZin6ltxBcb1i6Xtm8+9vSL+NrtP580fuG72bZ2cjsn/+mhBAFKNCUocgwSqAwBSrTKcOZdSEAJApRoSlDkGEoSGIgcxr8/dy0avEtw+anfUXJo3Y+lZYn2nT8/gDse/TNGYzGJ8ylLO/D351+IizaepHvuTGA6gdFUEq8M9eOFgV68NNSPvtjkFaXLA0F47A4EHS60+3xo9QXQ7vWh1etHrYmerUaJpgOJJqb3bM9EO3ikC9d+8bv4yAcuxiUXniP9JYitmf9/e2cCJVdVLuq/uqrnKT0m6cyChCFhCkMSERAQlGveVVH0etVA7uPxhAcvDLLwukQvXh9ZAiFGL/exvKLoeqg8lfWEEAwJF4NCmGJCIJKEmKQz95Ce566ut/bpPkV1papr6DpVZ5/9FatXd1fts8//f/8uuvvLHn7y5LNhkWYLtEUL58utK64Lv1t+9ut1ctmS8yzZxnJO/jeaCwJItFxQ554QSI8AEi09blwFgVwQQKLlgjr3nIgAEi0+HTdLNBV1/9Cg/GLLn+R//3GTHOvssBJZ0DBTbr/yGrl2wbni8zE3yavv/uN9PdayT7X8U0m1rqHBuKkW+/0yvaTMEmrTS0qlobRcppWWyfTiUs8dXoBEiyHR1IkWa7e9lfX3wozycll5zqKY940l0fr6B2XV2iekvrZ6nByzn7/g3DMssbb17V1y/+qfnjQ7LfJGSLSsl5sbiggSjWEAAX0IINH0qRWRQgCJxhhwGwEkmr4SzY58OBiUp956TX704gY5cKLFevrUunq57YpPyGfOu0D87J3ltrddxuNpHxyQY73dcqy3V471dsmx3h452tcjx3t7khBs5TKtpNQSbaOCbfTryvzMH5qY8cSjOkSixZBou9rb5LY/bnSa/Un9nzalSn502VVJSzR7Ftp9d94o5589f9x1Srqph5p5ZrerrqqIe/omEi3r5eaGSDTGAAS0IoBE06pcBGs4ASSa4QPAhekj0fSXaHYGI6GQ/H77W/LDTX+Q944ftZ6eXVUjt37s4/LFC5dIwO934QgkJKcJ9AWDcqSnS9TsNSXVjlqyrcf6vqV/dDlwrEeRCBkkqQAAIABJREFUPyDn106Vu865yOkQM9Y/Ei2GROsLDsue9raMQU62I3Wc7IenVKUs0Y41tca8JnLfNDUb7ZZ7HxrX7psrl49bAvr0+s1xJVv0DdgTLdmq0m4iAsxEY3xAQB8CSDR9akWkEECiMQbcRgCJ5h2JFpnJhp07ZO2m5+UvBw9YT0+tqJSvXXalfGXxJVKk4Qwjt71vvBTPoZ5uae77QK4d6e2Wpr4eOdzTLTPLyuUHS2NPJnIjAySaxnuiTTQTLdFgsw8reHTV3dYsNmaiJSLG604QQKI5QZU+IeAMASSaM1zpFQJOEECiOUGVPidDAInmTYlmZ/Xn93fL2heflz+9v9t6qrqkVG669Aq5cellUl5UNJmhw7UeJnCgu1PufGWTzCqrkDVLr9QmUySaxhIt3p5oyYw++7CBz3zyUms2GhItGWq0yTQBJFqmidIfBJwjgERzji09QyDTBJBomSZKf5MlgETztkSzs9t+qFHWbFwvL+zcISH1d3ZRkdy45FK5+bKrZEpJyWSHEdd7jAASzWUFVcsNu3qHkoqqvDiQVLtcNoo+cdOOxV6mGbk0U72mnj98rDl8sMCrb74z7vCB6MMG7H7smWmJcmU5ZyJCvJ4MASRaMpRoAwF3EECiuaMORAGBZAgg0ZKhRJtsEkCimSHR7Cx3Hz8mazetl99v3yrBUEiK8wvkyxd/RG65/Cqpr6jM5tDjXi4mgERzWXG8JtEUXnsJpvo6cr8ze1bZzl37wlWYVl8TPo0z0ev2RUrUfW/NE9a3Z86fN+H+aEg0lw14TcNBomlaOMI2kgASzciyk7SmBJBomhbOw2Ej0cySaHa2jW2t8qNNf7BO9RwKBqXAH5DrL7hYbr/iGplRVe3hEU9qyRBAoiVDKYttvCjRsogv4a2QaAkR0SAJAki0JCDRBAIuIYBEc0khCAMCSRBAoiUBiSZZJYBEM1Oi2Vk3dXbIoy9tlJ+/+rIMBIetp8sLC+WU+mnWyZ7zautkTm2dzK2plTnVtTKtckpWxyc3yw0BJFpuuMe9KxLN2YIg0Zzla0rvSDRTKk2eXiCARPNCFcnBFAJINFMqrU+eSDSzJZqdfXtvr/z45Rflp6/8UTr6+uJCKQrky+yaGplbU2dJtbm2YKuplVlVNRLw+/UZ/EQalwASzWWDA4nmbEGQaM7yNaV3JJoplSZPLxBAonmhiuRgCgEkmimV1idPJBoSLZJAcGREDne0yYGWFtnf2iz7W5pkf2uLHGhtkcYTrdIzOBAXmN/nkxlTqmVOTY3MqamTubX1Mre6JjyTraSgUJ83huGRItFcNgCQaM4WBInmLF9TekeimVJp8vQCASSaF6pIDqYQQKKZUml98mztaZQntq6U4kCFnNPwCS0C9/nypMBfJIWBEinwj34Uqs+BEikMFI89VzzpXOqmFEl714AMBdV5ljwUgebuLjnQ2vyBZFNfn2iV/c1N0trbMyGk2tIyS6jNqa6ReXVTZW51rcxRy0RraqW2rBzALiKARHNRMVQoSDRnC4JEc5avKb0j0UypNHl6gQASzQtVJAdTCCDRTKm0PnnaEk2fiJOPVEm1In9phGQr/kC8qdfyS6UgT4m3UikIFEtRfpmUF9RKRWGddRMkWvKsVcvewQHZ19JszVpTs9fULLYDJ0ZnsR1pb7NOA433KC0oDAs1tf+atVxUfdTWyozKKvHn5aUWDK0nRQCJNil8mb8YiZZ5ppE9ItGc5WtK70g0UypNnl4ggETzQhXJwRQCSDRTKq1Pnr1DHbLtyHp9AlaRhkIyEOy1PgaHIz/3yeBwjwwM90owNDSpnCoKp0pt2VQpza+TiqKpllirKKqXysJ6KSusmVTfJl48HAzKwbZWS6gp0Ta6RFQJN/XRGj7UIBYbtc/aLGuZaOQebHWjM9lqa6UwkG8iUkdzRqI5ijf1zpFoqTNL5QokWiq0aBuPABKNsQEBfQgg0fSpFZFCAInGGIBA9gj0DXeOSbY+GQr2St9QjwwF+6R/uEcGlYSzhJsSb6Mirn+4Wzr7m6R3qD1hkJVF06SyqE4qCuulsniqJdcqiust2VZWgGRLCDCiQSgUkuOdHdasNWsGW7OawdY6uidba/OEBx34RKS+ojIs1ObV1o/KNmupaJ1MKSlJJRTajhFAorlsKCDRnC0IEs1Zvqb0jkQzpdLk6QUCSDQvVJEcTCGARDOl0uSpO4GOgePiz++UoyeOSntfq3QMNEnXQIt09bdI12CLJeAmekRKtqqSBqkumSk1JTNlStF03dFkPf6u/n75m1oaGrH/mjWT7USLHOtol4l2rKsoKvpgaag6VdQ67GB0Rtu0ikrx+ZSG4xFNAInmsjGBRHO2IEg0Z/ma0jsSzZRKk6cXCCDRvFBFcjCFABLNlEqTpxcITLQnWjA0KO19TdI9eEI6B5qlq3/sY7BFOgdaLdmm2sR61JXOk5qSGVJTOltqS+dIdXGDVBXP8AKyrOcwGBy2loPa+6/tDy8VbbGWjw4Fg3FjKvAHRk8SHZu1NrdubImo2outukbUMlJTH0g0l1UeieZsQZBozvI1pXckmimVJk8vEECieaGK5GAKASSaKZUmTy8QmOzBAn1DXdastY7+o9LUtV9aeg+KOsihvf9oHLk2V6qLZ0pt2WypKZ4p1aWzpBq5lvZQGgmFrAMN1D5satbaPjWbrUUtGW2WxhMt0jUwELfvokC+fHnxJXLbFVcbeXIoEi3tYefMhUg0Z7javSLRnOVrSu9INFMqTZ5eIIBE80IVycEUAkg0UypNnl4gMFmJFo+BOvSgtfeQJdSae/ZLS89Bae1ttJaLRj/yfAGpKm6QmpJZUls6y/pcXTJLqoqnS57P3JlSmRhfLd1d0jh2kqgt2RrVrLbWZmnu7rJuUegPyFeXfFRuveJqqSsrz8RttegDieayMiHRnC0IEs1Zvqb0jkQzpdLk6QUCSDQvVJEcTCGARDOl0uTpBQJOSbR4bAaDfdLcu19O9ByUlp5D0tyzT1p7Doo6ICHWo6ZktixftMYLqF2Xwws7d8gjG9fL9kONVmymzUxDorlsSCLRnC0IEs1Zvqb0jkQzpdLk6QUCSDQvVJEcTCGARDOl0uTpBQLZlmjxmPUPdVtCTQm2lu6DcqJXCbb9MjTSL3d+9HdeQO3aHF7atVMeeWG9vNm4zyiZhkRz2ZBEojlbECSas3xN6R2JZkqlydMLBJBoXqgiOZhCAIlmSqXJ0wsE3CLRYrFc/fJnracXz74+/LLPlyf5eYVSGCiWfH+JFAZKpMBfbH3OV5/zSqQov8wLpcl6Dn9+f7esfuE52bLvfSNkGhIt60Ns4hsi0ZwtCBLNWb6m9I5EM6XS5OkFAkg0L1SRHEwhgEQzpdLk6QUCOki0dDgH8gotuVYQKJFC9TlStAVKrJNCz2u4Np2uPX/N1gP75MENz8rmPbvCMu0riy+R/+GxAwiQaC4bykg0ZwuCRHOWrym9I9FMqTR5eoEAEs0LVSQHUwgg0UypNHl6gYCbJdqB9rdlYLhL1D5qA8O9MhTsl/6hHhkM9srAcJ8MBdVzA9IXHG0zONxrfU7mUV0yU25YtDaZpsa2UXulPfSHZ+XFXTs9KdOQaC4b2kg0ZwuCRHOWrym9I9FMqTR5eoEAEs0LVSQHUwgg0UypNHl6gYCbJVq6fJVIG1LibUysWfJtuNsSbG29R+T1Q78TJFrydN85ckhWb1gnG3bukNDYAQRemJmGREt+DGSlJRLNWcxINGf5mtI7Es2USpOnFwgg0bxQRXIwhQASzZRKk6cXCHhRok1Ul5aeA/LzrXdITcksWb7oB14oYdZy2H38mDUz7bl3tnlCpiHRsjZ0krsREi05Tum2QqKlS47rIgkg0RgPENCHABJNn1oRKQSQaIwBCOhDAImmT63cEune5iZ55IV18vvtWyUYCklRIF++uuSjcuvHPi61ZeVuCTNhHEi0hIiy2wCJ5ixvJJqzfE3pHYlmSqXJ0wsEkGheqCI5mEIAiWZKpcnTCwSQaF6oYm5yaGxrtZZ5Pv2XN2V4ZEQ7mYZEy824iXtXJJqzBUGiOcvXlN6RaKZUmjy9QACJ5oUqkoMpBJBoplSaPL1AAInmhSrmNoeDba3yg43Pyy/feNUKpKFyisytrZP5U6fLWQ0z5cyGmXLOzNm5DTLG3ZFoLisJEs3ZgiDRnOVrSu9INFMqTZ5eIIBE80IVycEUAkg0UypNnl4ggETzQhXdkcOR9jZZs3G9vLT7r3K4ve2koBYqoTZ9hiycOVvOnjlbzmyYIcX5BTkLHomWM/Sxb5wJifZvj/9WfvGb50+6wTdXLpdlV18y7vlnNvxJvrfmiZjBnDl/nqz+zm0ypVKf9cmJyolES0SI15MhgERLhhJtIOAOAkg0d9SBKCCQDAEkWjKUaAMBdxBAormjDl6LoqO3V94+fFDUyZ47DjXKjsMHZV9Lk3Uggf3I8/nklLp6WTBjliXVFjTMkoUzZkl5UVFWcDR2d8kdr2yUmWXl8oOlV2Xlnpm4SUNNcbgbXygUimSaif5z1kemJNpbO3aNE2Bb394lt9z7kHzlc5+QW1dcF85PSbSfPPmsPHL/7TJvdkPO8s7WjZFo2SLt7fsg0bxdX7LzFgEkmrfqSTbeJoBE83Z9yc5bBJBo3qqnm7PpHRywpNo7hw9aUm3HoYOyp+mYtZ9a5GN2VY0smDkq1tTsNTVzraa0LOOp2RJNdVyY55cPVVTJhyoq5dTKKplXPkVmufSQBCSaiJQXB2IOCDUTLVqiqYaxnkeiZfw9RYcGEECiGVBkUvQMASSaZ0pJIgYQQKIZUGRS9AwBJJpnSqllIoPBYfnrkcOWXHt7bMbae0ePyEBweFw+UysqR4XajFmyYEyuzaiqnlTOx/t75L7XX5aW/r6Y/RTk+eWUiikyt3yKJdaUYJtdVjGpe2biYiSaCyWamu12/+qfnjSrTYm6p9dvjjkzLnIwRM+Sy8RAie6DmWhOUDWvTySaeTUnY30JINH0rR2Rm0cAiWZezclYXwJINH1r59XIgyMj1gw1NVNNzVhTM9fePXpIugcGxqVcVVIiC8bEmpqtpgTb3Jo68fl8KaHpHR6WfV3tox+d6qNDDvZ0yUiMhZJqxtq88kqZV1E1JtamyMzSMlFLU7P1QKKlKNH6+gdl1drRvc/uvX25FBeNbsSXyZloyUo0e2npo6vulvPPnm/F0d7RJf/ntxtkxZeWhWNzYjAh0Zygal6fSDTzak7G+hJAoulbOyI3jwASzbyak7G+BJBo+tbOpMjVzl9qT7XIPdbU1229veMwlBUWylnTZ1r7rCmptnDmLPlw/TTx5+WlhEstMVUibX9Xh/yts936rCRb3/D4GXKqUzVjbW5FpZxSPkVOqayyZq/NKC0Xv0NiDYmWokSLJ8viHSwwrb4m5X3SkpVoallpU8uJcTIvpZE5icZItEnA49IwASQagwEC+hBAoulTKyKFABKNMQABfQgg0fSpFZGeTOBw2wnZofZZG1sKqr4+3tkxrmGhPyCnT2+wpJp1gMGMWXLG9AYp8MfeVmsizmoJ6P7OjtEZa5ZY65DWOMtB/37uh+Wrpy3IeNmQaAkkWvTpnNdcflFMaZWLmWi2uMvG8s3okYdEy/h70cgOkWhGlp2kNSWARNO0cIRtJAEkmpFlJ2lNCSDRNC0cYccl0NrTbe2vpmaqbT94QN49fEga21pPan/61OnWTLUrz1ggy84+P22i3UND4Zlq9qy1xu5OWTp1htx1zkVp9xvvQiRaCjPRbGn1zZXLZdnVl4xjmguJpgJQs9EiRV86M9/SGVVItHSocU00ASQaYwIC+hBAoulTKyKFABKNMQABfQgg0fSpFZGmT6Crv9/aX82Sa4cb5d0jh2R30/Fwhx+unyr/88pPymfOuyD9m4xd+edjh2X126/LkqkNcvc5F0+6v+gOkGgpSDRbWr2w+Y2Ym/7/5MlnU166GauiyS7njL5W7Yd253d+aD29+ju3yZTK8owPGLtDJJpjaI3qGIlmVLlJVnMCSDTNC0j4RhFAohlVbpLVnAASTfMCEn7aBPqGBuXlPbvkoT88K+8ePWz1M6+mTm678hr5wgWL0+4XiZYmOiV5unqHkrq6vDj2Wlw1y+utHbvGCSn7YIGDR5vHPZ/JmWj7Go/IHfetlfvuvDF8YIBKJNbpnNEJxhNwSYFIoRESLQVYNI1LAInG4ICAPgSQaPrUikghgERjDEBAHwKmSbTWnkZ5YutKCeQVytSyUzNeqNlVC2XJ7Osz3i8dOkvgP3ftlNUvPCdbG/dbN5pdVSO3X/UJ+fz5F0nA70/p5ki0lHB90NgpiabuYEuuc848Jbw/WiYlmj2jbNHC+XLriuuspOylpGfOnxeWd0ryLblgwTjRlq3DBpBoaQ5MLhtHAInGgICAPgSQaPrUikghgERjDEBAHwKmSjSnKnRa7VL51Bl3O9U9/TpMYPPu92TNxvXy2v691p1mVlXLrZd/XL500dKkZRoSLc0iOSnRVEhqxtct9z4k9kEDGze/Lplazhkp6o41jW7Ap/ZhU4+n128OSzQ7hkhE8Q4+SBNj3MuQaJkmamZ/SDQz607WehJAoulZN6I2kwASzcy6k7WeBEyTaJFVCoYGZSQ0IiOhkIj1eURCMiIh9Vl9r74e+161Uc9Z7dR/9teqrW9EDra/I3/e/6Qg0fR8H0RH/erePbJ643Pyyt491kvTKirl1o99XP7x4o9IYSB/wiSRaGmOgUxItDRvbcRlSDQjyux4kkg0xxFzAwhkjAASLWMo6QgCjhNAojmOmBtAIGMETJZoGYMoIruaX5F17z0kp9UukU+d8fVMdk1fOSSw9cA+eXDDs7J5zy4rirqycvna5VfJ8iUflaL8gpiRIdHSLJibJJq9PHPnrn0Js3l01d3jlmcmvCBHDZBoOQLvsdsi0TxWUNLxNAEkmqfLS3IeI4BE81hBScfTBJBomSnvntZX5JmdD8nMygWydM4XMtNpRC/lRXVSWVif8X7pMDkC2w81WgcQvLhrp3VBdUmp/PfLrpIbP3KplBQUjusEiZYc05NauUmipZmCqy9Dorm6PNoEh0TTplQECgFBojEIIKAPASSaPrUiUggg0TIzBmyJlpneTu5l8ezrZemcLzrVPf0mSeCdI4fk4Q3rZMPOHdYVU0pK5L9e8jHro7yoyHoOiZYkzOhmSLQ0wSV5GRItSVA0m5AAEo0BAgF9CCDR9KkVkUIAicYYgIA+BJBomanVoY535c/7f5WZziJ66Rpoks6BZpmsRBsa6ZeRkaCMSNDa2y04Mmx9PaI+q/3eJGg9FwoFJRgaa2N9Vq+rdqPXBtUecCNB9ZWERoZH21r9qH3igjJitR/JOAe7Q7eIxN3Hj1nLPNfv2CYhEUugrVh6mTU7bUfHCVn99uuyZGqD3H3OxRln0VBTHO7TFwqpHf288UCiOVtHJJqzfE3pHYlmSqXJ0wsEkGheqCI5mEIAiWZKpcnTCwSQaO6u4isHfiVbGp+S0oIqKSusGZVZY3LLElpKbYXll5Jgo4ceDI8MuDuxNKO7/uzvpnll/Mvy8wplavmpafW7t7nJWub57I6/WDKytKBQln3kEtnvFyRaqkSRaKkSS609Ei01XrSOTQCJxsiAgD4EkGj61IpIIYBEYwxAQB8CSDR318qWaJOJ0u/LlzyfX3x5eeIXv/h8fsnLU1+p5wLi9+WJT32XN/aaqNcDkufzWc+rtnm+gFhX5+WNXh/jw+fLE78vIOpzph9KJDr1qC6ZKTcsWjup7pVMW7PxOfndX96U6vp6Oe3shTLQ0SGfnj5HPnPehVJTWjap/iMvZiaamvpXHMgYUFM6QqKZUmln80SiOcuX3iGQSQJItEzSpC8IOEsAieYsX3qHQCYJINEySTPzfXUMNEn3QKslsCwJpmSWEmI+/6j8sj7b348KrDxfngTyxm92n/nIstvjr7d/K+M3HB7pl+PdeyUTEs0OrrGtVf71pQ3SWlokrcePy54d70jA75erTj9LvnDhErny9LMsETmZBxINiZbW+EGipYWNi6IIINEYEhDQhwASTZ9aESkEkGiMAQjoQwCJpk+tiDSzBFp6DsjPt94hNSWzZPmiH2Ssc/tggbq8gLy3bZvsaToe7ru2tEyuO/8i+eJFS+W0qdPSuicSDYmW1sBBoqWFjYuQaIwBCGhLAImmbekI3EACSDQDi07K2hJAomlbOgKfJIHWnkZ5YutKqS6eITdc8EMJhgat/eTU3mYytrec2nNO7TNn7TWnvh773jqMQR2gMPa8dZjC2DU72o/LL3fvlLOqZ8nd518rf2ncL79641X5f9vfkq7+/nDU58ycLV+4YLG13LOi+IPDAhKlhURDoiUaIzFfR6KlhY2LkGiMAQhoSwCJpm3pCNxAAkg0A4tOytoSQKJpWzoCnyQBW6JNspu4l7cEZ8uuwcvGvV7mD0hvT7c0tbXLQH+fDA4MSnBwSC6cNVs+d/Yiufr0s6y96CZ6INGQaGmNWSRaWti4CInGGICAtgSQaNqWjsANJIBEM7DopKwtASSatqUj8EkScFqihaRYBqRKhkdGJKhmtyXxCIVC4vf5pNDvl0J/QPLz8iQ/zy8B6/Po13dd+XC4J19IXeGRB6dzOltIJJqzfE3pnT3RTKk0eXqBABLNC1UkB1MIINFMqTR5eoEAEs0LVSQHNxHY0/qKPLPzIcdCeujT65FoOpzO+W+P/1aaWk7Ivbcvl+KigowPiGc2/EmeXr9ZVn/nNplSWZ6wfyRaQkQ0SIIAEi0JSDSBgEsIINFcUgjCgEASBJBoSUCiCQRcQgCJ5pJCEIZnCPQOd8qJnoMp5zMwPCQvvr9bXt2/V450dUggP9/6KCwqkimlZVJbtF9q8t4XT0q0jo4OOXSsRXr6hpMCN2NaTVLtctnoP55cJy2t7bLyps9LkQMS7fn/fF3Wbdoi/3rPCqmsKEuY6uFjrQnb0AACiQgE/D4pL8mXtq7BRE098XpeXp6MjIx4IheSMI9AcaFflPju7E3uZ6t5hMgYAu4hUFESkMHhEekf5GeOe6pCJKkQMOl3puqKQunsGZThoGcWhaVSatpCwJUEjnS0yTPbt8q6HdvkeGeHFeOl5/nl7FlN8sN/3BiO2TPLObdt2yavvvam9A8GkyrI4osWJdUul41+89wr0tbRLV+97gopLAhkPJQ/vbFT/vjau3L7jZ+S8tLEJ1Nsef2tjMdAh+YR8Of5pLgwIN19Q0YkX1ZeId1dnUbkSpLeI1CQr/aDEOkdSO5nq/cIkBEE9CFQUuiXoWBIhoaRaPpUjUgjCZj0O5P6B+Xe/mEJjiDReBdAwG0E1IZne5uPy2v73pe9Jw7Lf7n6I/LEyvu9J9FURl7aE00t5fzFb54fN56uufyi8NLO9o4uufM7P5Sdu/ZZbabV18gj998u82Y3hK+JbqNeOHP+PGv55suvbZfvrXliXP/2a/GWdrKc021vbz3jYTmnnnUjajMJsJzTzLqTtZ4EWM6pZ92I2kwCLOc0s+5krR+B7oEB8UlIPtxQhUSL3hNtMNgrRzv/lvWqFviLZHrFqTHvG29PtH2NR+SO+9bKP33pU7Ls6kusa9X+Zj958tmwSLMF2qKF8+XWFdeF+//Zr9fJZUvOs2Qbe6JlvdzcUMRaGlZZViAtHQPwgAAEXE4AiebyAhEeBCIIINEYDhDQhwASTZ9aESkEFIGGmg9W7nlmOadKbDIz0Q537pH/2HJX1kdIQ8WpctPi1UlLtL7+QVm19gmpr60eJ8fs5y849wxLrG19e5fcv/qnJ81Oi7wREi3r5eaGSDTGAAS0IoBE06pcBGs4ASSa4QOA9LUigETTqlwECwEkmhoD0TPRWnoPy7p3H8368KgunSHLzrwlaYlmz0K7784b5fyz54+7Ts1cUw8188xuV11VEff0TSRa1svNDZFojAEIaEUAiaZVuQjWcAJINMMHAOlrRQCJplW5CBYCSLRYEs2N4yLWck5bjh1rin1SZuS+aWo22i33PjQutW+uXD5uCejT6zfHlWzRTNgTzY2jRL+YWM6pX82I2FwCSDRza0/m+hFAoulXMyI2lwASzdzak7meBFjOGWMmmhtLOZFEizUTLVEO9mEFj66625rFxky0RMR43QkCSDQnqNInBJwhgERzhiu9QsAJAkg0J6jSJwScIYBEc4YrvULAKQJINI0lWrw90ZIZLPZhA5/55KXWbDQkWjLUaJNpAki0TBOlPwg4RwCJ5hxbeoZApgkg0TJNlP4g4BwBJJpzbOkZAk4QQKJpItGiT9y0B4O9TDNyaaZ6TT1/+Fhz+GCBV998Z9zhA9GHDdj92DPTEg02lnMmIsTryRBAoiVDiTYQcAcBJJo76kAUEEiGABItGUq0gYA7CCDR3FEHooBAsgSQaJpINFVQewmm+jpyvzN7VtnOXfvCdZ9WXxM+jTPR6/ZFStR9b80T1rdnzp834f5oSLRk32K0m4gAEo3xAQF9CCDR9KkVkUIAicYYgIA+BJBo+tSKSCGgCCDRNJJobhqySDQ3VUPfWJBo+taOyM0jgEQzr+ZkrC8BJJq+tSNy8wgg0cyrORnrTQCJhkRLawQj0dLCxkVRBJBoDAkI6EMAiaZPrYgUAkg0xgAE9CGARNOnVkQKAWaijY2B8uIAoyFFAki0FIHRPCYBJBoDAwL6EECi6VMrIoUAEo0xAAF9CCDR9KkVkUIAiYZES/tdgERLGx0XRhBAojEcIKAPASSaPrUiUggg0RgDENCHABJNn1oRKQSQaEi0tN8FSLS00XEhEo0xAAEtCSDRtCwbQRtKAIlmaOFJW0sCSDQty0bQBhNgTzT2REtr+CPR0sLGRVEEmInGkICAPgSQaPrUikghgERjDEBAHwJINH1qRaQQUASQaEi0tN4JSLRAAEqwAAAM6klEQVS0sHEREo0xAAFtCSDRtC0dgRtIAIlmYNFJWVsCSDRtS0fghhJAoiHR0hr6SLS0sHEREo0xAAFtCSDRtC0dgRtIAIlmYNFJWVsCSDRtS0fghhJAoiHR0hr6SLS0sHEREo0xAAFtCSDRtC0dgRtIAIlmYNFJWVsCSDRtS0fghhJAoiHR0hr6SLS0sHEREo0xAAFtCSDRtC0dgRtIAIlmYNFJWVsCSDRtS0fghhJAoiHR0hr6SLS0sHEREo0xAAFtCSDRtC0dgRtIAIlmYNFJWVsCSDRtS0fghhJAohlaeNKGgBsIcDqnG6pADBBIjgASLTlOtIKAGwgg0dxQBWKAQHIEkGjJcaIVBNxCAInmlkoQBwQMJIBEM7DopKwtASSatqUjcAMJINEMLDopa0sAiaZt6QjcUAJINEMLT9oQcAMBJJobqkAMEEiOABItOU60goAbCCDR3FAFYoBAcgSQaMlxohUE3EIAieaWShAHBAwkgEQzsOikrC0BJJq2pSNwAwlUlubL0PCI9A4EDcyelCGgFwEkml71IloIINEYAxCAQM4IINFyhp4bQyBlAki0lJFxAQRyRgCJljP03BgCKRNAoqWMjAsgkFMCnpVoOaXKzSEAAQhAAAIQgAAEIAABCEAAAhCAAAQ8S8AXCoVCns2OxCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgkAECSLQMQKQLCEAAAhCAAAQgAAEIQAACEIAABCAAAW8TQKJ5u75kBwEIQAACEIAABCAAAQhAAAIQgAAEIJABAtpLtLaOLvnavY/Ijr/+zcLxszX3yoXnnp4BNHQBAQikS+CNbe/JDStXWZcvPOND8u+r7pCqyvKY3e09cERuvudhOXq8Nan26cbEdRCAQGwCv3tus3zr+49bL/7dlYvlX76+QoqLChList/n/NxNiIoGEMgIgb7+Qfn2g4/Luk1brP6+e88K+ey1l07Yd+TP2OlTa+Sx798lp8xpyEg8dAIBCMQnkOr7Nfpv2n/6h2vlzpuvBzEEIOBCAlpLNPt/TosXnWn9EqF+UfjmAz+W733jJn5BcOFgIyQzCES/D9Uf6Fve2hn3D3P1h/jBI03hPwRWP/aUHGs6kfQf8mZQJUsIOENAvf8efuypsOhW7z/1SPSLe6QoR6I5Uxt6hUA0gcj3p/0H9103Xx/3H4/5vZgxBIHcEUjl/Rr9N23097nLgjtDAAKxCGgt0dQvBw8++it54J9vsma58D8cBjkEck9ASbP9B4+F/whP9Zf46D/qc58REUDAuwTUL/lzZ00LS+xk3n/2z957bv0H+ecHfiwT/RHvXXJkBoHsElDS7Bv/68fy9Vu+GP6H4omkt/078eeXXc4KjeyWirtBQFJ9v8aS4sn+oxa4IQCB7BPQWqLF+mWf/+FkfxBxRwhEEoh+Dybzr+WR1yeauQZtCEAgMwRi/cNTIukd+Xr1lHJrOwUkWmbqQS8QmIhArPfmRD8vo5eGqb5TWa5NNSAAgfQJpPp+VXeyt1ZQs7tPnTfjJGmefjRcCQEIZJqA9hLt/z7z0rhlX0i0TA8R+oNAagSiZ7akItES/QGfWiS0hgAEJiIQa6bKRO/B6H9ZT+W9TSUgAIHJEYhefWH/0R1vu4R4qzWm1VcnXK49uUi5GgIQSPX9qojZP3/V1zve2yfsicY4goB7CWgv0SL3clGYkWjuHWxEZgaBdGei2ZsfP/CNm1h6YsZQIcscE0h1Jlr0ISCR4bMvWo6Lye09TyDVmS2x/ohPZrm250GSIASyQCDV92v0P1LZP5+R3lkoFreAQBoEtJZo7ImWRsW5BAIOE0hnTzQEmsNFoXsIxCGQzp5odlfMRGNYQSB7BNLZYyl6DzUl0aJXcGQvA+4EAXMIpPp+TWfmmjk0yRQC7iOgtUTjdE73DSgigkCi0zmVZHvqmZfCpwGyhJMxA4HcEUh0Omf0+zUyUiRa7urGnc0kkOi0v+jTrSO/V8S+/eDjYp9obyZBsoZA9ghM9H61f35ev+xy62Cf6O+ZiZa9OnEnCKRDQGuJphKO3jiVJSXpDAOugUBmCag/zG9YucrqdOEZHwoLM/V99B/l9kaq0RHwXs5sTegNAvEIRL4HozceR6IxbiDgHgL2H9brNm2xgvruPSvCJ+uq76MlWnR79lhyTy2JxPsEJnq/RkszRSN6ywTer94fI2SoLwHtJZq+6IkcAhCAAAQgAAEIQAACEIAABCAAAQhAQBcCSDRdKkWcEIAABCAAAQhAAAIQgAAEIAABCEAAAjkjgETLGXpuDAEIQAACEIAABCAAAQhAAAIQgAAEIKALASSaLpUiTghAAAIQgAAEIAABCEAAAhCAAAQgAIGcEUCi5Qw9N4YABCAAAQhAAAIQgAAEIAABCEAAAhDQhQASTZdKEScEIAABCEAAAhCAAAQgAAEIQAACEIBAzggg0XKGnhtDAAIQgAAEIAABCEAAAhCAAAQgAAEI6EIAiaZLpYgTAhCAAAQgAAEIQAACEIAABCAAAQhAIGcEkGg5Q8+NIQABCEAAAhCAAAQgAAEIQAACEIAABHQhgETTpVLECQEIQAACEIAABCAAAQhAAAIQgAAEIJAzAki0nKHnxhCAAAQgAAEIQAACEIAABCAAAQhAAAK6EECi6VIp4oQABCAAAQhAAAIQgAAEIAABCEAAAhDIGQEkWs7Qc2MIQAACEIAABCAAAQhAAAIQgAAEIAABXQgg0XSpFHFCAAIQgAAEIAABCEAAAhCAAAQgAAEI5IwAEi1n6LkxBCAAAQhAAAIQgAAEIAABCEAAAhCAgC4EkGi6VIo4IQABCEAAAhCAAAQgAAEIQAACEIAABHJGAImWM/TcGAIQgAAEIAABCOhJYPVjT8mxphPyL19fIcVFBfK75zbLU8+8JP++6g6pqizXMymihgAEIAABCEAAAgkIINEYIhCAAAQgAAEIQMCFBNo6uuRr9z4iO/76t3HRTZ9aI499/y45ZU5DzqJGouUMPTeGAAQgAAEIQCCHBJBoOYTPrSEAAQhAAAIQgEA8ArZEu+jc0+XOm68PN1MC6ye/fE5+tuZeufDc03MCEImWE+zcFAIQgAAEIACBHBNAouW4ANweAhCAAAQgAAEIxCIQT6LFez6bFJFo2aTNvSAAAQhAAAIQcAsBJJpbKkEcEIAABCAAAQhAIIJAOhLNnqVmd/Pde1bIZ6+9dBzXN7a9JzesXDXuObtdrNcWnvGhk/Y6Q6IxVCEAAQhAAAIQMJEAEs3EqpMzBCAAAQhAAAKuJxBPou09cERuvudhuWX534cFWV//oHz7wcetnOzN/mO1UwcAfOv7j49bCqrabXr5LflvX14mSqIdPNI0TrwpYfb6tvfGiTQkmuuHDwFCAAIQgAAEIOAAASSaA1DpEgIQgAAEIAABCEyWQCyJFkuWqfvEOx1TPb/lrZ2WWOsfGLAOKrh+2eUnzU6bKFYl1r7xwI/HHWaARJtsdbkeAhCAAAQgAAEdCSDRdKwaMUMAAhCAAAQg4HkC8U7njF6iaYu1afXV4w4gUICUAHv4saesWWTv7zt8kgyLBdGewXb0eOu4lyMPMkCieX74kSAEIAABCEAAAjEIINEYFhCAAAQgAAEIQMCFBKJnotmybOs7e8bNCrOfX7dpS8wspk+tsdqfaOtMKNHsPdUiRZ29TxoSzYWDhJAgAAEIQAACEMgqASRaVnFzMwhAAAIQgAAEIJAcgVjLOe3nZjfUh/c+m2gmWuSdYi3LjHw91h5q6nUkWnL1ohUEIAABCEAAAt4ngETzfo3JEAIQgAAEIAABDQkkOljg2isuDi/fjLcnWmTadn/x9kSzJdoD37hJLjz39PClSDQNBw8hQwACEIAABCDgCAEkmiNY6RQCEIAABCAAAQhMjkA8iaZ6tU/ZtJddxpqhptqp53/6q/XyteWfluKigvB1kUsz7dM5v/K5a6wTPiP3VovcH43lnJOrJ1dDAAIQgAAEIKA/ASSa/jUkAwhAAAIQgAAEPEhgIomm0o21f5n9XCSO6IMI7JllkW1sQRZ9mMHfXblYPvXxJdapnkg0Dw4yUoIABCAAAQhAICUCSLSUcNEYAhCAAAQgAAEIQAACEIAABCAAAQhAwEQCSDQTq07OEIAABCAAAQhAAAIQgAAEIAABCEAAAikRQKKlhIvGEIAABCAAAQhAAAIQgAAEIAABCEAAAiYSQKKZWHVyhgAEIAABCEAAAhCAAAQgAAEIQAACEEiJABItJVw0hgAEIAABCEAAAhCAAAQgAAEIQAACEDCRABLNxKqTMwQgAAEIQAACEIAABCAAAQhAAAIQgEBKBJBoKeGiMQQgAAEIQAACEIAABCAAAQhAAAIQgICJBJBoJladnCEAAQhAAAIQgAAEIAABCEAAAhCAAARSIvD/AcVlD9PSc+AaAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "atom.plot_prc()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plotly.com" }, "data": [ { "hovertemplate": "(%{x}, %{y})RF - test", "legendgroup": "RF", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF" }, "line": { "color": "rgb(0, 98, 98)", "dash": "solid", "width": 2 }, "marker": { "color": "rgb(0, 98, 98)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines", "name": "test", "showlegend": true, "type": "scatter", "x": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0010570824524312897, 0.0021141649048625794, 0.0021141649048625794, 0.006342494714587738, 0.006342494714587738, 0.008456659619450317, 0.009513742071881607, 0.009513742071881607, 0.010570824524312896, 0.015856236786469344, 0.019027484143763214, 0.02854122621564482, 0.03276955602536998, 0.03488372093023256, 0.040169133192389, 0.04439746300211417, 0.056025369978858354, 0.06553911205073996, 0.07188160676532769, 0.080338266384778, 0.09408033826638477, 0.10570824524312897, 0.13002114164904863, 0.14482029598308668, 0.16913319238900634, 0.19767441860465115, 0.22938689217758984, 0.2748414376321353, 0.3403805496828753, 0.4281183932346723, 0.5391120507399577, 0.7357293868921776, 1 ], "xaxis": "x", "y": [ 0, 0.018518518518518517, 0.07407407407407407, 0.1111111111111111, 0.12962962962962962, 0.16666666666666666, 0.2222222222222222, 0.25925925925925924, 0.3148148148148148, 0.35185185185185186, 0.35185185185185186, 0.37037037037037035, 0.4074074074074074, 0.4444444444444444, 0.46296296296296297, 0.46296296296296297, 0.5, 0.5370370370370371, 0.5370370370370371, 0.5555555555555556, 0.5925925925925926, 0.6481481481481481, 0.6851851851851852, 0.7037037037037037, 0.7407407407407407, 0.7407407407407407, 0.7777777777777778, 0.7777777777777778, 0.8148148148148148, 0.8148148148148148, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8518518518518519, 0.9074074074074074, 0.9259259259259259, 0.9629629629629629, 0.9814814814814815, 1 ], "yaxis": "y" }, { "hovertemplate": "(%{x}, %{y})RF_os - test", "legendgroup": "RF_os", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF_os" }, "line": { "color": "rgb(56, 166, 165)", "dash": "solid", "width": 2 }, "marker": { "color": "rgb(56, 166, 165)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines", "name": "test", "showlegend": true, "type": "scatter", "x": [ 0, 0, 0, 0, 0, 0, 0, 0, 0.0010570824524312897, 0.0010570824524312897, 0.0021141649048625794, 0.0021141649048625794, 0.004228329809725159, 0.004228329809725159, 0.005285412262156448, 0.007399577167019027, 0.007399577167019027, 0.008456659619450317, 0.009513742071881607, 0.010570824524312896, 0.013742071881606765, 0.013742071881606765, 0.014799154334038054, 0.014799154334038054, 0.017970401691331923, 0.0200845665961945, 0.021141649048625793, 0.024312896405919663, 0.026427061310782242, 0.026427061310782242, 0.02959830866807611, 0.03488372093023256, 0.035940803382663845, 0.042283298097251586, 0.052854122621564484, 0.05391120507399577, 0.056025369978858354, 0.06342494714587738, 0.06553911205073996, 0.06659619450317125, 0.06871035940803383, 0.07505285412262157, 0.08139534883720931, 0.08562367864693446, 0.08773784355179703, 0.09408033826638477, 0.10359408033826638, 0.1109936575052854, 0.11733615221987315, 0.1226215644820296, 0.13002114164904863, 0.13742071881606766, 0.14482029598308668, 0.15750528541226216, 0.16913319238900634, 0.18604651162790697, 0.19873150105708245, 0.2219873150105708, 0.23995771670190275, 0.2653276955602537, 0.2832980972515856, 0.3107822410147992, 0.34249471458773784, 0.38266384778012685, 0.4323467230443975, 0.47463002114164904, 0.5317124735729387, 0.5909090909090909, 0.6680761099365751, 0.7304439746300211, 0.8234672304439746, 0.9175475687103594, 1 ], "xaxis": "x", "y": [ 0, 0.037037037037037035, 0.09259259259259259, 0.1111111111111111, 0.18518518518518517, 0.2037037037037037, 0.24074074074074073, 0.2777777777777778, 0.2777777777777778, 0.2962962962962963, 0.3148148148148148, 0.3333333333333333, 0.3333333333333333, 0.35185185185185186, 0.37037037037037035, 0.3888888888888889, 0.4074074074074074, 0.4074074074074074, 0.4444444444444444, 0.4444444444444444, 0.4444444444444444, 0.48148148148148145, 0.48148148148148145, 0.5, 0.5185185185185185, 0.5555555555555556, 0.5555555555555556, 0.5740740740740741, 0.5925925925925926, 0.6111111111111112, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6481481481481481, 0.6481481481481481, 0.6666666666666666, 0.6851851851851852, 0.6851851851851852, 0.6851851851851852, 0.7222222222222222, 0.7407407407407407, 0.7407407407407407, 0.7777777777777778, 0.7777777777777778, 0.7777777777777778, 0.7962962962962963, 0.8148148148148148, 0.8148148148148148, 0.8518518518518519, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.9074074074074074, 0.9259259259259259, 0.9444444444444444, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 1, 1 ], "yaxis": "y" }, { "hovertemplate": "(%{x}, %{y})RF_us - test", "legendgroup": "RF_us", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF_us" }, "line": { "color": "rgb(115, 175, 72)", "dash": "solid", "width": 2 }, "marker": { "color": "rgb(115, 175, 72)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines", "name": "test", "showlegend": true, "type": "scatter", "x": [ 0, 0, 0, 0, 0.0021141649048625794, 0.004228329809725159, 0.006342494714587738, 0.008456659619450317, 0.011627906976744186, 0.016913319238900635, 0.0200845665961945, 0.023255813953488372, 0.02959830866807611, 0.03805496828752643, 0.04334038054968287, 0.046511627906976744, 0.05496828752642706, 0.06765327695560254, 0.07505285412262157, 0.08668076109936575, 0.10253699788583509, 0.11416490486257928, 0.13002114164904863, 0.14376321353065538, 0.1543340380549683, 0.16596194503171247, 0.18076109936575052, 0.20084566596194503, 0.21458773784355178, 0.2357293868921776, 0.2526427061310782, 0.2653276955602537, 0.27801268498942916, 0.29704016913319237, 0.32452431289640593, 0.3382663847780127, 0.35412262156448204, 0.3678646934460888, 0.39112050739957716, 0.40380549682875266, 0.4175475687103594, 0.43446088794926, 0.45348837209302323, 0.47780126849894294, 0.492600422832981, 0.5105708245243129, 0.5221987315010571, 0.53276955602537, 0.5507399577167019, 0.5602536997885835, 0.5718816067653277, 0.5824524312896406, 0.5909090909090909, 0.6025369978858351, 0.6131078224101479, 0.6289640591966174, 0.6479915433403806, 0.6553911205073996, 0.6617336152219874, 0.6765327695560254, 0.6976744186046512, 0.7040169133192389, 0.7156448202959831, 0.7283298097251586, 0.7399577167019028, 0.7484143763213531, 0.7632135306553911, 0.7716701902748414, 0.7854122621564482, 0.7938689217758985, 0.8107822410147991, 0.8181818181818182, 0.8234672304439746, 0.8329809725158562, 0.8414376321353065, 0.8604651162790697, 0.8657505285412262, 0.8773784355179705, 0.8932346723044398, 0.9027484143763214, 0.904862579281184, 0.912262156448203, 0.9217758985200846, 0.9260042283298098, 0.9323467230443975, 0.9492600422832981, 0.9587737843551797, 0.9619450317124736, 0.9725158562367865, 0.9820295983086681, 0.9894291754756871, 0.9957716701902748, 1 ], "xaxis": "x", "y": [ 0, 0.018518518518518517, 0.05555555555555555, 0.1111111111111111, 0.1111111111111111, 0.12962962962962962, 0.12962962962962962, 0.16666666666666666, 0.2037037037037037, 0.2962962962962963, 0.37037037037037035, 0.37037037037037035, 0.37037037037037035, 0.3888888888888889, 0.3888888888888889, 0.4444444444444444, 0.48148148148148145, 0.5, 0.5185185185185185, 0.5370370370370371, 0.5740740740740741, 0.6111111111111112, 0.6481481481481481, 0.6666666666666666, 0.6851851851851852, 0.6851851851851852, 0.7037037037037037, 0.7407407407407407, 0.7407407407407407, 0.7407407407407407, 0.7407407407407407, 0.7777777777777778, 0.7962962962962963, 0.8148148148148148, 0.8333333333333334, 0.8333333333333334, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8888888888888888, 0.8888888888888888, 0.8888888888888888, 0.8888888888888888, 0.9074074074074074, 0.9259259259259259, 0.9444444444444444, 0.9444444444444444, 0.9444444444444444, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "yaxis": "y" } ], "layout": { "font": { "size": 12 }, "height": 600, "hoverlabel": { "font": { "size": 16 } }, "legend": { "bgcolor": "rgba(255, 255, 255, 0.5)", "font": { "size": 16 }, "groupclick": "toggleitem", "traceorder": "grouped", "x": 0.99, "xanchor": "right", "y": 0.01, "yanchor": "bottom" }, "margin": { "b": 50, "l": 50, "pad": 0, "r": 0, "t": 35 }, "shapes": [ { "line": { "color": "black", "width": 1 }, "opacity": 0.5, "type": "line", "x0": 0, "x1": 1, "xref": "x", "y0": 0, "y1": 1, "yref": "y" } ], "showlegend": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "font": { "size": 24 }, "pad": { "b": 15, "t": 15 }, "x": 0.5, "xanchor": "center", "xref": "paper", "y": 1, "yanchor": "top" }, "width": 900, "xaxis": { "anchor": "y", "automargin": true, "domain": [ 0, 1 ], "range": [ -0.03, 1.03 ], "title": { "font": { "size": 16 }, "text": "FPR" }, "type": "linear" }, "yaxis": { "anchor": "x", "automargin": true, "domain": [ 0, 1 ], "range": [ -0.03, 1.03 ], "title": { "font": { "size": 16 }, "text": "TPR" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABNEAAAJYCAYAAABMw3BUAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQd4XFeZv39TpRn1Xm0Vy7bci2QrcXqDVAIBQkInwLLsssuGsoGFpezSAktd+hb4s5BAQgIhkEAIJIEUy5bkIhfZliXZVu91NH3+zzkjyXKfcjVzy+8+jx+1e777nfe7TuzX3znHFAqFQuBFAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwQQImSjS+HSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwcQKUaHxDSIAESIAESIAESIAESIAESIAESIAESIAESOASBCjR+IqQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQACUa3wESIAESIAESIAESIAESIAESIAESIAESIAESiI8AO9Hi48fRJEACJEACJEACJEACJEACJEACJEACJEACBiBAiWaAInOKJEACJEACJEACJEACJEACJEACJEACJEAC8RGgRIuPH0eTAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYgAAlmgGKzCmSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnER4ASLT5+HE0CJEACJEACJEACJEACJEACJEACJEACJGAAApRoBigyp0gCJEACJEACJEACJEACJEACJEACJEACJBAfAUq0+PhxNAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgAEIUKIZoMicIgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQHwEKNHi48fRJEACJEACJEACJEACJEACJEACJEACJEACBiBAiWaAInOKJEACJEACJEACJEACJEACJEACJEACJEAC8RGgRIuPH0eTAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYgAAlmgGKzCmSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnER4ASLT5+HE0CJEACJEACJEACJEACJEACJEACJEACJGAAApRoBigyp0gCJEACJEACJEACJEACJEACJEACJEACJBAfAUq0+PhxNAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgAEIUKIZoMicIgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQHwEKNHi48fRJEACJEACJEACJEACJEACJEACJEACJEACBiBAiWaAInOKJEACJEACJEACJEACJEACJEACJEACJEAC8RGgRIuPH0eTAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYgAAlmgGKzCmSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnER4ASLT5+HE0CJEACJEACJEACJEACJEACJEACJEACJGAAApRoBigyp0gCJEACJEACJEACJEACJEACJEACJEACJBAfAUq0+PhxNAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgAEIUKIZoMicIgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQHwEKNHi48fRJEACJEACJEACJEACJEACJEACJEACJEACBiBAiWaAInOKJEACJEACJEACJEACJEACJEACJEACJEAC8RGgRIuPH0eTAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYgAAlmgGKzCmSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnER4ASLT5+HE0CJEACJEACJEACJEACJEACJEACJEACJGAAApRoBigyp0gCJEACJEACJEACJEACJEACJEACJEACJBAfAd1ItN6R2fhIxDk602lDusOKSZcP07P+OKNxOAmQQDQECrJTMT7lgS8QimYY7yUBEoiTQFaaDT5/EC5PIM5IHE4CJBANAWeqFXaLCeMzvmiG8V4SIIE4CdgsJmSl2zE84YkzEoeTAAlES6AkNxV9o+5ohyl+PyWaQkgp0RQCyTAkEAMBSrQYoHEICShAgBJNAYgMQQIxEKBEiwEah5CAAgQo0RSAyBAkECMBSrQYwV1oGDvRFAbKcCSgIQKUaBoqFlPVFQFKNF2Vk5PREAFKNA0Vi6nqigAlmq7KyclojAAlmsIFo0RTGCjDkYCGCFCiaahYTFVXBCjRdFVOTkZDBCjRNFQspqorApRouionJ6MxApRoCheMEk1hoAxHAhoiQImmoWIxVV0RoETTVTk5GQ0RoETTULGYqq4IUKLpqpycjMYIUKIpXDBKNIWBMhwJaIgAJZqGisVUdUWAEk1X5eRkNESAEk1DxWKquiJAiaarcnIyGiNAiaZwwSjRFAbKcCSgIQKUaBoqFlPVFQFKNF2Vk5PREAFKNA0Vi6nqigAlmq7KyclojAAlmsIFo0RTGCjDkYCGCFCiaahYTFVXBCjRdFVOTkZDBCjRNFQspqorApRouionJ6MxApRoCheMEk1hoAxHAhoiQImmoWIxVV0RoETTVTk5GQ0RoETTULGYqq4IUKLpqpycjMYIUKIpXDBKNIWBMhwJaIgAJZqGisVUdUWAEk1X5eRkNESAEk1DxWKquiJAiaarcnIyGiNAiRZjwY6f6MVXvvtzfPFf3oucrIyFKJRoMQLlMBLQAQFKNB0UkVPQJAFKNE2WjUnrgAAlmg6KyClokgAlmibLxqR1QoASLcpCjk1M4f0f+zpaD3dgw5pqfO9L91OiRcmQt5OAXglQoum1spyX2glQoqm9QsxPrwQo0fRaWc5L7QQo0dReIeanZwKUaDFWl51oMYLjMBLQMQFKNB0Xl1NTNQFKNFWXh8npmAAlmo6Ly6mpmgAlmqrLw+R0ToASLcYCU6LFCI7DSEDHBCjRdFxcTk3VBCjRVF0eJqdjApRoOi4up6ZqApRoqi4Phl0ncHTolSVJ0hMMwO0PwBP0wxMQn/vhDQYQCi3J43QbNBgKIhgKyV8h8TEoPg8ihPnPwz9b+Lm8LzxmQ8kWvL72jqSzMYVE5hq6LiTRBNRkXiaTCSZAvgjJzSSZFPhsEkgOAbPJpNrfe/5ACFaL+K8DLxLQH4Hw//kg/+DDS3sE/P4QrFb+90l7lQP4e0+LVWPO0RBQ65+fxH8xxd/7kv13z2hYGuHeweluPHP4J9jf+6IRpmu4OQb8QfQdHcdssAa/+sRPkz5/3Ui0/lF3UmGmO6wQv6Zm/ZiZ9Sc1Fz6cBIxGIC8rBRPTXog/cKntEnJh/i87asuN+ZBAvAQy06zw+YOY9QTjDcXxySBgCgEhSrRkoI/3mY5UC+wWEyZm+GfOeFlyvDoJqPXPT+IfRjPTbBid9KoTnMGymnAP4KWun+PQ4PMLMy/N2ga7vTDcLRYId415/H64g/5wJ1nAD3cgELUItZnNSLFYkWqxIMViQarFKr82Rfi/UdldJbuu5jqwRPfVXMfV2Z1X891aZ/x8vmPrgmPmY5/u9Jp/ViConj+nieYHIaLNJjPE5wtfm00w48yvvVNujLT3Y/zUEApXluFVN9yBN298fdLfct1INJ7OmfR3iQmQQNIIcDln0tDzwQYnwOWcBn8BOP2kEeByzqSh54MNToDLORP3Aoh/Gp/2ejHh82LS68a414MJ8cvjxrhnCNNTz8Pka4UJYikgMBJYjlP+zXAFsyJK0mYyw2mxwiGEmNmCFLMZdgB2IXdCIZiDIZiCQfkr6PXB6/fB4xMizgevkHM+Pzzie34f3D5/+Of++e+Jn4d/Ju4T9yf7n/qF67ML8WezIsVqQ6rNBrs1/HnK3MdUqxV2m/jaFr5P3D//uRhjt4fvlXHm7hNfL3xugV3ct2iM+Jl4rohttVgiqk1H+zE0NzViZmYGW+u2YePmrXIc90SLCN+5N3FPtBjBcRgJ6JgAJZqOi8upqZoAJZqqy8PkdEyAEk3HxeXUVE2AEi228ri8HimTJrxujM66MOoWUswdlmJeL6Z8Hsz4fXD5A3CJjrFgAN7zbJNkM7lRbm1FsfUYzAiE5Zm/AqcCm+AKZCLg94d/eb3wzv1yuz3web3wecVH39znXgQDgdgmE+Mom5B189JqTjrZRVeb7UzpdLbomhdci6WVEGBCbtmtljkJFpZeQl6Fxdi8/DotxERctV8tzbvR0rQLefn5qKtvwPKKyjNSpkSLsoJjE1N4/8e+jtbDHQsj333vrfjQ++6WX7MTLUqgvJ0EdESAEk1HxeRUNEWAEk1T5WKyOiJAiaajYnIqmiKgRYnm9nkXuqbk8sb5rinZKRXunBKb5IuP3kXdVbLrSt5/eny4u0oskZzrtAr4pezyhELwm4Cg2C/ObEbIbILJaoFZdB/ZbLDZU2Cz22COsBNp/qXw+3zw+XwI+WdQldKGysyTsJrDyyBPjGWjqasAg+MmKcb8fr/YoPy875PogAp3VS3qmjpPp5UUVeJe2Ul1utNKdGDJbqq5Lq757qyw8BIS7LS0mpdgshtrUUeWpl70BCY7OTmB5t2NEAJty9Z6bK3fjuzsnPNmQImmcGEo0RQGynAkoCEClGgaKhZT1RUBSjRdlZOT0RABSjQNFYup6opAtBJNiim/OMlRLOtbtNzPF14SKJYBzi8JnF/2F753Tm6JbqpF0kr+TJwKOb9UUOzxJSXYIgEmfiZi+/3wR9ttZTLBarXCZrfLX1KApdhhkyJMfLTDKr6Wn9vkz6O5QmJppM+PUMAPBIIwhUKwBEOwwQQbQkgxmeWySofFKpdaplpDSHUcAcytgCm8D53DvBL5zmuRYS873XF11pLC8BLFcHeWwyYWafJSG4FTJ09IeTY4OIC6bQ2oq99+yRQp0S6JKLobKNGi48W7SUBPBCjR9FRNzkVLBCjRtFQt5qonApRoeqom57JUBHxiM/n5Dquz9qqS0mlOQM3vWxWWWaf3tHJ7veHurHkJ5vdBxAyEApj2eE8LsEVyTAiveQkmJFmyL7EPliMlFU6nA6kpqXA4UpGSkjInw2wwW22wiO4wqwUhiwUhszmqlMXdQnilWW3ItNqRabchMyUVOakO5KakIld+dCArJQWZ9hR5bySXP+jBnt6nsbv7cbh903JITd527Ki8F/nOikhC8B6VEjiwf6/sOktNTZXybEXNqogzpUSLGFVkN1KiRcaJd5GAHglQoumxqpyTFghQommhSsxRjwQo0fRYVX3NSXRASSklPoquq0WbsodlVWDue6eXEsr75pYbyiWI8xu2i+8t6s4S9wk5Fr53bvN2Ia8WjRf3J3sjd1HRxUv7ztjEfdFG7Iu7puSG74v2ulrYyH3R5u92mxUBk1kunxSz9InllAhiNuDHbCCI6YAPLp8PUz4fJn1eeIPR7f0lhFiW3Y4seyoyU1KQZROfpyArJVV+zLYLIZYqv59utyPCwykjesGDQR/29T+DxpO/hMs3IcesyN2GK6reTHkWEUF13jQ7OysPChD7na2uXSsPCygoLIo6WUq0qJFdfAAlmsJAGY4ENESAEk1DxWKquiJAiaarciZ8MuIvdv2uGfS5ptHvcsnuDV6REbBZzbCYTXB7o/vLcWTReZceCXgDAfgCAfgDfvgCQfgCfviD4Y/i++GfzX0MBuV94ucB8XkwgEAwhEBQ3CO+DspuLPE9+bO5783fJz6q5RKbuVvN4veLBRazWX4e/nr+41nfX7hf/HzuZ5a58SYzxO89h90GsUpyPk44lgUWy3x8Mc4kvxfPFQyFMOELn0g56fFg3OeVG/PPir2/Fl3Z5j5kmAcv+CiLyRTe50vs3yU2t587KVF+zyz28pr7nsUScadYPPO60Fi3bwbHRl7GjHdM3lKduw07Ku9BYVrVUjyOMRNAoL+/T4qzzo52eVCA2O/Mbo99eS0lmsJFo0RTGCjDkYCGCFCiaahYTFVXBCjRdFXOJZmMJxhA78w0+men0T8zgz75+Qx6XdMY87iX5JkMSgIkQAJ6JyA7w2x2FFgOItX3gq6mK+TZ5RVvQlF6ta7mZaTJHGk7JOVZIBCQ4mztug2KTJ8STRGMp4NQoikMlOFIQEMEKNE0VCymqisClGi6KmfMkxFLiBZEmcuFvpkpKcv6ZmdkB8XFriJHGkocaShOS0cmN3+OuAbsRIsYlSI3+oJndmotdG2d9X3ZySW+5w93d813di2Mlz8T98x1ggUCEB1iibhEV5TNYobNYoV1/qNZfC2+H/4Vvmfuc0u4C8tiMkOcbLi4c2txJ9d8B9ZCN5bZJJcw6vUym01ItVvgci/9fmcmswkZc0spxRLKDJtYUpmy8N/KPx77Plr7n5GoNxa/Ck57tuaxr8jbTnmm0SoKYRY+ZXMXysqXy4MCSsvKFZ0NJZqiOAFKNIWBMhwJaIgAJZqGisVUdUWAEk1X5bzoZFx+P3pdU+hzzcglmL0zU7KjrH9mWu65c6FL/MW6KNWBYmc6SsSvtPS5z9NQkOqEWGbEK3oC3BPtNDOx5M3l9WLW68Gszzv3+dxH+bX4vg8uz/xH9+n7xM893jO+Dsc5fb+IudR7awkp5bDb5SmCTrH5us0GZ8rcR/m1+H74546U8D3zXzvF9+xzP5+/R/zcZoMjJfwxlYI6+t9kFxgR7emcij14USCPfwZPHHoQ3RMHYDHZcGvt/ViZf9lSPIoxSeCSBEZHhmXX2YHWffKggK1125GWnn7JcbHcQIkWC7WLjKFEUxgow5GAhghQommoWExVVwQo0XRVTinDhBSTyy2FJHNNo8/lkksxp30X3q/MZjKjyOlEiTMDxc40KcpKHOkoTktDfooDZooyxV8ULUk0sfn7rMcLly8susSG5/Kj1yfl1awQYItk14xbSC7fnPxa9POzZJeUY97wRvRLfYm9pJwp85LrTNklRJWUXotkl5Rcc/efIcfs8/edeb/o9OKlDQLJlmiT7iH88sBnMD7bB6ctC69b90kUZazQBjxmqSsCHcfbZdfZ1OSkXLK5afPWJZ8fJZrCiCnRFAbKcCSgIQKUaBoqFlPVFQFKNO2Vc9zrmZNjYn+y051lfbPT52xWvXh2drMlLMhkR5kTJWkZKBaizJmGvFSHoqezaY9q4jNWSqKFQqGwyJqXVkJsLe7oOk+nlsszJ7nmO7su0AE2L8gCoaXt4xKS9uxOrcVfS7m1WF6lpIbvX9Sp5ZCdW3MdXTY7UkW3l/h6To6ZKIIT/5Kr9InJlGh9k0fxq4Ofh9s/hVxnOV6//tPISMlTKSmmpVcCe1qaZOdZTm6u7DqrrErc3nWUaAq/VZRoCgNlOBLQEAFKNA0Vi6nqigAlmjrLOepxS1HWK0++nJIb+oslmKLDzH2Rrh2HRYiy9LAcS5vvKEuT38tNSVXnZHWelTgZUSxVDC9JPL1UMQixl5YPQ5MzUoBJ8eUNd2/JpY3nWcZ4vuWOiTgRVeyxdXanlpRYizq7xHLDedmVJiXXmZ1aqfPLFRcvd5yTYylWm87fAk5PTQSSJdHahl7E7498C8GQHxXZm3HH2o/CbnGoCQ1z0TGBqalJKc7EnmebttTJzrOcnNyEz5gSTWHklGgKA2U4EtAQAUo0DRWLqeqKACVacsop+npG3LNz+5OJJZdzHWVyKaYL3uCFNyp3Wq2ym2y+i6xU7lEWFmVi42pe0RFwy+WI80sPz1qCKOXXnNCaW7Y4I2TX3LJEsYzxzCWO5+7jJTamX8pL7EgnBNbZe3CFpdaivbZk51b46zR7yulOLSG35Pfn9uBaJLvk9+x2uSE9LxLQC4FkSLSXT/wcO08+IhFuKb0N1654F0zg7yu9vFNqnkf3qZNSnvX39UpxJvY8S2ZnLiWawm8LJZrCQBmOBDREgBJNQ8ViqroiQIm2dOUUm6UPeVzon3HNLb8Usmxafj7gcsEXCl7w4ek2W3jzfnHy5fxm/gY8AXNhw/m5vbjOJ7vCG9LPd3iJLq65TeUXdXadsz/X3P2ii0s8YykvcfCCEFELnVpzG86np9iRnpICq1l0bIXlVnhz+UUbzp+1jFFIrYVljnOyK9VqS+pfiJaSHWOTwFIQSKRECwR9svvsyPBLUprdWPM+bCi5aSmmxZgkcAaBg6370Ny8Gyl2u5RnK1fVqoIQJZrCZaBEUxgow5GAhghQoiW2WGJPped7TsKTgM2cEzszPi1aAil2C4LBEHz+CwudaGMa+X5xAmaPWH4pl2FOXxRFps2OYtFF5khDaVoGipxpKJ37XHSb6eU6OTqMjuEhdA4NYmhqEtNyH675kxjnOr/O0wk2MTubMARZDseZpypeQF4J6XW+ZYlSbi3s2XX6FMZsp/OCc1BqT7SEQeKDFCfQPXEQJ8dbFY/LgBcnYDabkGq3wOVe+gMtusb2oH/qmFy2ecfaB1CRvZHlIYElI+B2u+VBAWLJppBmW+u2obCoeMmeF0tgSrRYqF1kDCWawkAZjgQ0RIASLTHF6pmZxq87j+DPvScT80A+hQQMTiDLnjK3kb/Yn0ycfOlEkSMdZWnpcFj0I8p6x8fQOTyEjuFBnBgZQvvgADqHB9E+NBj3G3C+DeTF92TXlvi4sIG8HWnylMXFXV1nnsLoXHQKo+gMy0hN3j5xlGhxvxqaDvD88R+hpfdJTc+ByUdGID0lTx4gkOcsj2wA7yKBKAkM9PehpXk3jrcfDS/ZrG9ASoo6t3egRIuyuJe6nRLtUoT4cxLQLwFKtKWt7cGxYfym6xiahvoXHrQmOx8bcvOX9sGMrnoC7ERTtkQpVqvsLBOb+pc60yFOxNTLNTg5gc4RIcqG0CUE2eAATo2O4GBfz0WnWJCegar8QlTl5WNZXr5cuig3oD9rz66zlzuKPb7EPXq9KNH0WtmLz2vYdQK/PfQVjM72yhtr8rYjP63SmDCSNOtEdqKZTGZsLr0ZDmtmkmbLx+qZwLGjbbLrzOf3y66zdevV3+lIiabwG0mJpjBQhiMBDRGgRFO+WGKfn52DvXii8xjaJ8fkA8TePDuKSvGaqtWozshS/qGMqDkC3BNNcyVb0oRHXTNy2aXsKhsS3WTh7rKukSG5DPNCV47TKUVZdUEhqoUwyy+QX68oKJTCjNe5BCjRjPVWhBBEc/eTeLHrZ/J0xlRbOm6o+Ruszr/SWCBUMNtE7ommgukyBZ0RCAaDC6dslpSWyYMCysqXaWaWlGgKl4oSTWGgDEcCGiJAiaZcscSpfn/qOYHfdLZj0D0jAzusVryqvBK3V6xEbkryli8pN0tGUooAJZpSJLUTR8iw44P94X3KRGfZnCwTyy8vtg+ZWPooBVleQViWFRRJWbaioCipyyK1Q/7MTCnRtFq56POe8ozgt4f/A31TR+TgypwtuHnVP8Jp5z9mRU8z/hGUaPEzZITEExgbHUFz0y607tuzcMpmenpG4hOJ84mUaHECPHs4JZrCQBmOBDREgBIt/mJNeb343cl2PH2qA9M+nwxYmOrE7ZU1uL6sQlf7L8VPixHmCVCi6fNdcPu8OC47ygalLJOibGhIfj3iCsv1811ij7H5LjLxsbqwCNVzXWV5aen6hJWkWVGiJQl8gh97ePAF/Kn9h/AGZuXm8teteDfWFV2f4Cz4uMUEKNH4PmiJQFdnB5qbGjExPi7l2eYtdVpK/5xcKdEULh8lmsJAGY4ENESAEi32Yg3MzuDXnUfxfO8piC40ca3MysGdVSvRUFAKs8kUe3CO1D0BSjTtltgb8C+IsXlRJrvLhgcxODV5wYmlWKyoLCgId5QJUTbXUSaWXxZlsjMmUW8EJVqiSCfnOW7/DJ45+m20jzTKBMqz1uHW1fcjPSU3OQnxqQsEKNH4MmiBwN49zXLZZmZWljwooKp6hRbSvmSOlGiXRBTdDZRo0fHi3SSgJwKUaNFXs31yHI93HMGuwV6EACnLthWW4M6KlVidzT+kR0/UmCMo0dRdd38ggK6RYSnGwksv57rLhgbRNzEuf++f77JaLKjIzZtbelkkl1/Ob+5fmp0DE+V60gtPiZb0EixZAifH9+Optm/A5RuHzZyCq6vfgU0lNy/Z8xg4OgKUaNHx4t2JIzA9PSXFmfi1fuNm1NVvR05uXuISSMCTKNEUhkyJpjBQhiMBDRGgRIusWOIvzE1Dffh15zG0jY/IQakWK64rrcCdlTUocDgjC8S7SGCOACVa8l+FQDCI7rGR8B5lYvmlEGVD4WWYPeOjCITOr8rEQSHlOXly+aXcq6wwvKm/6C4T32cXavJre7EMKNHUXZ9YsguEvPjL8Z9gT99TcnhxxkrcVvthZKUWxhKOY5aIACXaEoFl2JgJ9PZ0y1M2xUexZFP8slj0c7r3YjCUaDG/JucfSImmMFCGIwENEaBEu3ixDo0N48j4KP7Y3QWxfFNcOSmpuG35Crx6WTWcVquGqs1U1USAEi0x1QiFQugZH5OnXQpRNr9fmfj65NgIRMfZ+S4hwkTnWFVe/sLpl7KjLL9QdpqJjjNe2iRAiaZ83aY8wzg0+DwCQb/ywSOIeHjwL5hw98s7r656B+rL74xgFG9JNAFKtEQT5/MuRODggf1oad4t/18uTtlctXqN7mFRoilcYko0hYEyHAloiAAl2rnFahrqR+NAD3YN9S0cFCDuWpaegddX1eKqknINVZipqpUAJZqylemfGA+LsrlTL+eXX3aNjEDsYXahS+xFdvapl9V5BbLLzEZJrmyRVBKNEk25QngCs2g8+Qiaup9QLmiMkYrSV+CW2n9CrqMsxggcttQEKNGWmjDjX4yAx+MJL9ls3oXqFSuxtW4biopLDAONEk3hUlOiKQyU4UhAQwQo0YDZgB9Ng0Kc9WLPyADci/7C7bBYUF9YghvKqrAhN19DlWWqaidAiRZ9hYanp9Ah9ihbfOrliOgwG8Ksz3vBgPlp6eF9yQrCm/nPn3opPqba7NEnwhGaJkCJpkz5mnt+g1dOPgKv3yUDlmbUYnnORmWCRxnFacvC5tJbohzF2xNNgBIt0cT5PEFgcKBfdp0dO9oWXrJZtx0Oh8NwcCjRFC45JZrCQBmOBDREwKgSbdLnxe7BPrwy0IPWkSH4Q8GFqmXZU7C9sAQNRWXYmJMPi9msoYoyVa0QoEQ7f6XGXa6F/cnmhZnc3H94EFMezwXLm+10yo4yuU/ZolMvawoKkZaSqpXXgnkmgAAlWuyKTDX+AAAgAElEQVSQQwjhyNCLeKnzZ5jwDMpAuY5SXFn1NtTkNcQemCMNQYASzRBlVs0k248dkfudebxe1NVtw7oNm1STWzISoURTmDolmsJAGY4ENETASBJtyO1C42Avdvb3ysMBFm8ZXpiahoaiElxWVIrV2XkwaaiGTFWbBIws0WY87vDeZHNdZMcH+xeWYgqJdqErIyUFlXmnJZnc1D9fiLNC5KSlafNFYNYJJ0CJFhvyU+MH8XzH/2BopksGcNqysaPyHqwvuhFmE/+xKTaqxhpFiWaseidjtmIfVLFks7lpF4qKiuV+Z+XLlicjFdU9kxJN4ZJQoikMlOFIQEME9C7RTk5PSXEm9jjrnJo4ozLL0zNxeXEZGgpLUZGeqaGqMVU9ENC7RHP7vAunXnYODaFjaGDh6+GZ6QuW0GGzo1Js5l8QFmQrFnWVFaRn6KH0nEOSCVCiRVeAEVc3Xuj4MbrGWuRAuyUV9eWvlZv3W80p0QXj3YYmQIlm6PIv6eTHxkalPNu3p3nhlM3MzKwlfabWglOiKVwxSjSFgTIcCWiIgN4kmuguOzY+isbBHuwc7Ee/6/Rf1kV32eqsXDQUl+KyojIUpjo1VCmmqjcCepBoPr8fnSPDZ+5TNncKZv/kmdJ6cf3sFisq8/LC+5TNLb+c7yorzsrWW6k5H5URoESLrCAz3lG82PUQDg08B7GM02SyYGPxTbi88h44rfyHp8go8q7FBCjR+D4oTeBEVyeamxoxNjoq5dmWrfVKP0I38SjRFC4lJZrCQBmOBDREQA8SLRAK4eDoMHYO9mDXYB/GPO6FCphNJmzMKUCD7DgrgdjvjBcJqIGAViSaPxDAydHhsCwT3WRiGabYo2xkGL3jYwiGFi+MPk1WHBu/LDsX1bKjrHBhM3+xuX95di5MJi6aVsN7aMQcKNEuXnVvYBa7Tj6G5p7fIhAKH9ixMu9yXF39NmSlFhvxleGcFSJAiaYQSIbB/r0tcslmekYG6uobUL2ihlQuQYASTeFXhBJNYaAMRwIaIqBVieYNBrBneAA7B3rRPNSPGb9vgXqK2YLNBUWy26w+vxhOq1VDFWGqRiGgJokmRFj32Eh4ueXQoBRl85v6i+8LUX2+y2IyoSw7V556KUTZijlhJrrLluXk8VAOo7zMGpsnJdr5CxYM+bGv7w/YeeIRzPqn5E2lmbW4tvo+FGfwL6gae81VmS4lmirLopmkZqan0dK8Sy7bXLt+I+rqtyM3L18z+Sc7UUo0hStAiaYwUIYjAQ0R0JpEE9Lshb6T2Ds8CCHS5i8hysTeZtvlrxINVYCpGpVAIiWa2Kx/cGoSY65pBINhIfZS+xG09pyS4kwIs4tdJVnZspNMbOq/orBobhlmIVYWFhm1fJy3hglQop1bvI7R3Xju+I8w4e6XP8x1lOGq6rdjRe42DVeaqauNACWa2iqijXx6e3ukOOs+dQJb67bLZZtW/gN51MWjRIsa2cUHUKIpDJThSEBDBLQi0Z7p7sKvO49iYHZmgW62PQU7isqwragUG3MLNESdqZIAEK9Em5ydxdD0FIamJuY+TmJ4agoDk+Gvx1wz6JsYl78iucSm/YtPu1xZVIzluXlYU1IWyXDeQwKaIUCJdmapuicO4pH9/yq/KfY6u6LqLdhQfJNm6slEtUOAEk07tVJDpocPHUDz7kaYzWYpzmrXrFNDWprNgRJN4dJRoikMlOFIQEME1CzRXH4/nj51HL87cRwTXo+kajOZcUN5Ja4rW46azBwNkWaqJHAmgfNJtGmP5wwpNjQ1heGpSQxMTWJI/JLSbBI942NR4XTa7CjIyIQQZQWZ4Y8l2TnhUzDzC1FTWARxKiYvEjACAUq001We9ozg/1o+jFn/JNYVXY8bat7LEzeN8JsgSXOkREsSeA091uv1yq4zsWyzorIaddsaUFzMFSZKlJASTQmKi2JQoikMlOFIQEME1CjRRj1uPNF5DM/2dMEd8Eua4kCA2ypW4NXl1Ui32TREmKkanYA34Ef/xDiEEJsXYYOTE5hwz6B/YgL9k5MYEr+mpzDrC2/iHcklpNdiKTYvyQozs8LfF9IsIwPitEtxGiYvEiCBMAFKtDCHQNCPh/d9DIPTHSjOWIU3bfwcLGb+t4K/T5aOACXa0rHVeuThoUF5UMCRtkOy66yubjscTqfWp6Wq/CnRFC4HJZrCQBmOBDREQE0S7dT0FB7raMPLAz0LG5kvS8/AnZWrcFVxOaxms4bIMlU9ExAnVvaLZZOLusOEBBNyTHaLzUkx8fOZuS7KSHgI2SXE10LX2Fz3mBBjhRmZyM/ICH9Mz0R6Ck+ajYQp7yGBswlQooWJPNv+A+zv+wMctky8Y+s34bRn8WUhgSUlQIm2pHg1Gfx4+1G5ZHN2dlYeFLB+42ZNzkMLSVOiKVwlSjSFgTIcCWiIgBok2v6RIfy66wj2jQwtkNuUV4DXVK7C5rxCDdFkqlomIMSY2Hx/fsnkwsfJybO+P4kptzviqVotlnBn2Hx32NzH5fk5yE/LQGZqGgoywt1jmQ5HxHF5IwmQQGwEKNGAw4Mv4Okj34QJZtyz6fMoyVwdG0yOIoEoCFCiRQFL57eKrjOxbLOgoFAu2Vy2vELnM07+9CjRFK4BJZrCQBmOBDREIFkSLRAKyY6zJzqPonNqQhKzmM24urhcdp6JDjReJBAvgUAwiGHRITY1efrj3Ob7p78flmQTs7MRP85iMiFvkRgrzBTdYRkoysySHwsz5j9mIvsCyxHiPVgg4mR5IwmQwBkEjC7Rhma68NCef0Yg5Md1K96NLaW38Q0hgYQQoERLCGbVPmRiYlx2nbU075ZdZ2LZZlZWtmrz1VtilGgKV5QSTWGgDEcCGiKQaInmCQbwp+4u/KarHUNulyQl9jh7dXkVbq2ogThxkxcJXIxAMBTCiFgyOS/HpsKSTC6tnDupUkqzqfAJlaEIcZpNJuQ6RVdYeC+xM/cYE987/X1xn8lkijDy+W+jRIsLHweTQMwEjCzR3P4Z/F/LhzDlGUJtwVW4tfb+mDlyIAlES4ASLVpi+rj/5IkuNDc1YnhoSHadba3bpo+JaWwWlGgKF4wSTWGgDEcCGiKQKIk24fPid13H8IfuTkz7fJJQsSMNd1TW4PqyCtjNFg1RY6pKEwiFQhh1zcyJsPkN+CdP7zEmBVn4++I+IdIiuYTmEp1gQoCJvcTCSyqzFr6e32NMfF90lgmRlqiLEi1RpPkcEjiTgFElmvjv7OMH/g0nxvch37kcb97yFVjNPKiHvz8SR4ASLXGs1fCk1n17ZNeZ0+lEXX0DqmtWqiEtw+ZAiaZw6SnRFAbKcCSgIQJLLdGGZl145Phh/Ln35AKVNdl5eE3lSmwv5JHVGnpVFEn1r8eO4MX2Nrkp/7DYa0x0lM3tQxbNAzJTU+c6xeY6xOaXUp61KX+JipcJUKJFU3HeSwLKETCqRGs8+SheOvEw7BYn3r7168hMLVAOKiORQAQEKNEigKTxW2ZdLtl1JvY8W7N2vew6yy/g/sZqKCslmsJVoERTGCjDkYCGCCylRBNdZz9ua4U3GJBErigqx2uqVqImk/sfaOgViTvVrpEhPLzrZfxi9065BPNClzhtsiD9tBQryMxc2GNs8ab8ZTm5ceekhgCUaGqoAnMwIgEjSrTO0Wb8/si3MOufwuvXfxoVOZuMWHrOOckEKNGSXIAlfHxfX688KOBEV4fsOhP7ndls7HRdQuRRh6ZEixrZxQdQoikMlOFIQEMElkKiTXg9+PaBZrQMD0gS9QXFeM+aTShIdWqIDFONh8CEy4VftjTi8T1N2HvqxEIo0UH2hq0NWFVcEl5SmZ6B/MxMLM/Ji+dxmhxLiabJsjFpHRAwmkTrnWrDo/s+g0DIi+tW3IctpbfroIqcghYJUKJpsWoXz7nt8EEpz8RycSHORPcZL3USoERTuC6UaAoDZTgS0BABpSXa7sE+fPtgC6Z9XjgsFryzdhNuLOOx1Rp6JWJO1R8I4NnDB/BocyOebTsI8bW4bBYLbqhdh7vrL5MfrRbufye4UKLF/KpxIAnERcBIEm145iQe3vcx+AJubF/2BlxZ+ea42HEwCcRDgBItHnrqGevz+aQ4a2nehWXLK6U8Ky0tU0+CzOS8BCjRFH4xKNEUBspwJKAhAkpJNJffj/9u24sXek/J2a/OzsWHNm5DPrvPNPQ2xJaq6DQT4uyJvU0Yc4VPXBXX5mUVeGNdA163uR5ZTnYhnk2XEi22942jSCBeAkaRaFOeYfx0z0cw65vE2sLrcPPqf4gXHceTQFwEKNHiwpf0wSPDQ/KggEMHW1FXvx1b67bDmZaW9LyYQGQEKNEi4xTxXZRoEaPijSSgOwJKSLRDY8P4+v7dGPW4YTWZ8ZZVa3FHxUok7pxD3ZVF9RMamJzAo02NeLR5J9qHBhfyLc3Kxl1bt+He7TtQmcdNqy9WSEo01b/mTFCnBIwg0VzeCdmBNuEeQE3eZbhjzUdgMpl1WlFOSysEKNG0Uqkz8+xoP4bm5l2YmZ6WBwVs3LxVmxMxeNaUaAq/AJRoCgNlOBLQEIF4JJo/GMRPjh7A704elzOuSM/EhzdtR1lahoYIMNVICbi8HjzVug+PNL2CVzraEQyF5FCnzY5bN27GG+suwxUrVsJkoj6NhCklWiSUeA8JKE9A7xLN65+VAm3EdQoV2ZvwuvWfhNnEZfTKv0mMGC0BSrRoiSX3ftF1JpZt5uXny66zisqq5CbEp8dFgBItLnznDqZEUxgow5GAhgjEKtE6Jsfxjdbd6JmZhsVkwusqV+HumjXyc176ISBE2cvHj0lx9nTrPrh8Xjk5s8mEHStWSnF2+8bNSLXZ9TPpBM2EEi1BoPkYEjiLgJ4lWiDowyP7P4W+qSMoyViNN278LKxm/veZvwnUQYASTR11uFgWk5MTUpw1N+3Clq31cr+z7Owc9SfODC9JgBLtkoiiu4ESLTpevJsE9EQgWokWCIXwq66j+EX7YdmJVOxIw4c2bcOKTP4PVk/vRdfIEB7a9TIeb9mNvonxhanVFBRKcfbG+gYUZWbpacoJnwslWsKR84EkIAnoVaIFQwE8cehL6BxtRp5zGe7d9CXYrQ5WnQRUQ4ASTTWlOCeRUydPSHk2MNAv9zur29ag3mSZWUwEKNFiwnbhQZRoCgNlOBLQEIFoJNqAawZf3b8LxyfDUuWWZSvw9tXrYDdzmYiGSn7BVCdcLjy+Z7c8JGBf98mF+3KcTty5uV4eEiAOC+ClDAFKNGU4MgoJREtgsUQ7NPA8xt390YZQ5f2D0x3oGG1CVmox7t38RTht/IcOVRbKwElRoqmv+Af275WHBaSmpsqus5qVq9WXJDNShAAlmiIYTwehRFMYKMORgIYIRCrR/nCqEz8+0gpvMICclFR8ZON21ObkaWimTPV8BPyBAJ49fECKs2fbDkJ8LS6rxYIba9dJcXbjmvXya17KEqBEU5Yno5FApASERPMFJvCLPV9D19ieSIdp4j6nLRtv3vwgMlN5sIsmCmawJCnR1FHw2dlZtDTvQvPuRqyuXSsPCygoLFJHcsxiyQhQoimMlhJNYaAMRwIaInApiTbmceObrU1oHR2Ss7q2dBnes2YLHJQqGqryuanuPXVCirMn9jZhzOVauGFT+XIpzu7asg1ZTqem56j25CnR1F4h5qdXAqemmvDkgW/B7Z+WU9xUcjMctkxdTLe28CrkOsp0MRdOQn8EKNGSW9P+/j65ZLOzo10eFCCWbNrt3DMxuVVJ3NMp0RRmTYmmMFCGIwENEbiYRNs50IvvHGyBy+9DutWGD26sx9b8Yg3NjqkuJjAwOYFHmxrxaPNOtA8NLvyoJCsbd23dhjdv34HKPHYvJOqtoURLFGk+hwTCBLyBWTzX/t84OPic/DrHUYrbaz+CgvRKIiIBEkgAAUq0BEA+zyOOtB2S8iwQCMglm2vXbUhOInxqUglQoimMnxJNYaAMRwIaInA+iTbj9+GHh/bixf5uOZMteUX4hw11yLKnaGhmTFUQcHk9eKp1nzxd85WOdnkYhLicNjtu2bBJHhJwRc0qedomr8QSoERLLG8+zdgEeifb8Lu2r2PKMwQTTLi88rXYXnYPzGabscFw9iSQQAKUaImDLYSZWK4plm2WlS2TXWelZeWJS4BPUh0BSjSFS0KJpjBQhiMBDRE4W6LtHxmUyzfHvR65ZPM9azbj2tLlGpoRUw2FQnjp+DEpzp5u3QeXzyuhCE22Y8VKKc5u27gZTkrRpL4slGhJxc+HG4RAMOTHSyceRtOpXyOEEDJTCvD6Tf+MqtxajM/4DEKB0yQBdRCgRFv6OoyODMuuswOt+6Q4E8s209LTl/7BfILqCVCiKVwiSjSFgTIcCWiIwLxEm/H58ZMjB/D0qQ6Z/ersXHl4QG6qQ0OzMXaqXSNDeGjXy3i8ZTf6JsInqIprRUEh3lh/Ge6ua0BRJk9rU8tbQommlkowD70SGJvtxZOHvoxhV/i0YbH32TXV70CmMw12i4kSTa+F57xUS4ASbelK09lxHM1NjZianJRLNjdt3rp0D2NkTRKgRFO4bJRoCgNlOBLQEAEh0Zp7BvDlPY3oc83AbrbgravW4dblK2TnEi91E5hwufD4nt3ykIB93eG/KIor2+nEnZvq5CEBW5Zzvx81VpESTY1VYU56IbCn93f4S8dPEAj5kGbPwa2r78ey7PVyeuJ0Tko0vVSa89ASAUo05au1p6VJdp5l5+Sgrr4BlVXVyj+EEXVBgBJN4TJSoikMlOFIQCMEAqEQnuppx/8dPgjxeUV6Jj66uQElTrZ9q7mE/kAAzx4+IMXZs20HIb4Wl9ViwQ2r10pxdtPaDfJrXuolQImm3towM+0SmPGO4am2b+DURKucxLrC63BdzXtgt5zuqqZE0259mbm2CVCiKVO/qalJKc7Er42bt8rOs5ycXGWCM4puCVCiKVxaSjSFgTKcJgnsGRnE0bERTeYea9LNw/04Phle9vemmjW4u7o21lAclwACe0+dkOLsib1NGHO5Fp64qXw53lDfgLs2b5MdaLy0QYASTRt1SlaWA9PHcXxkd7Ier8nnBoN+7O17Wp7C6bRl49Wr/h5VuXXnzIUSTZPlZdI6IECJFl8Ru0+dlOKsv69XijPxy2w2xxeUow1DgBJN4VJToikMlOE0R2D/yBA+2/yi5vJWIuHy9Ax8eNM2LE/jXllK8FQ6xsDkBB5tasSjzTvRPjS4EL44Mwt3bd2Ge7ddjuqCIqUfy3gJIECJlgDIGn1E46lf4qWuhzSaffLTri24Etev+Buk2s7fVU2JlvwaMQNjEqBEi63uB1v3obl5N1LsdinOVq7iP3rHRtLYoyjRFK4/JZrCQBlOUwTaJ8fxqV1/gScYQH1BMaozsjWVfzzJptlteNfG9Rif8sAXCMUTimMVJODyevBU6z4pzl4+fgzBULg2Dpsdt6zfKE/XvHLlaphN3LVOQewJD0WJlnDkqn/gpHsIv2v7Gvqmjshcl2dvQGnmGtXnraYEC9OrUJPXcNGUKNHUVDHmYiQClGiRV9vtdqOlObxks2blamyt24bCouLIA/BOEjiLACWawq8EJZrCQBlOMwT6XdN4oPEFTPu8qMsvxse2XGY4MTF/OiclWnJf21AohJeOH5Pi7Kn9e+HyeWVCQpNdVr0Sd2+7DLdv2AynPSW5ifLpihGgRFMMpS4CHRj4E55r/x/4gm7YzCm4pvqd2Fjyal3MTW2ToERTW0WYj1EIUKJdutID/X1oad6N4+1Hw0s267YjNTX10gN5BwlcggAlmsKvCCWawkAZThMERt2z+PiuFzDsnsXqrFx8dttVsBlwXwFKtOS+rl0jQ3h418t4rGU3+ibC+9OJqzq/EG+sb8Cb6i9DUSaX2ia3SkvzdEq0peGqtaizvin84eh/omO0SaZenLESt9V+GFmphVqbimbypUTTTKmYqM4IUKJduKDHjraheXcjfH6/7Dpbt36jzqrP6SSbACWawhWgRFMYKMOpnsCMz4uPNb6AXte0PJHy89uvhsNqU33eS5EgJdpSUL14zAmXC7/a24RHmnZiX/fJhZuzHA7cualOnq65taIq8YnxiQklQImWUNyqfFjn6B78/ug3MeubhMVkw5VVb8HWstthAjeKXsqCUaItJV3GJoELE6BEO5NNMBiUyzWFPCspLUPdtgaUlS/jK0QCS0KAEk1hrJRoCgNlOFUT8AYC+Nfdf0X75BgKHU58ueFaZBh4iRwlWmJeV38ggGcPH5Cnaz7bdhDia3FZzWZct3ot7q6/DDetWQ+b1ZqYhPiUpBOgREt6CZKWQCDkxXPHf4T9fX+QOeSnVeD22o8g11mWtJyM9GBKNCNVm3NVEwFKtHA1xkZH0Ny0C6379sglm0KepadnqKlUzEWHBCjRFC4qJZrCQBlOtQQCoRC+0PIy9o4MItNux1cuuw75qU7V5puIxCjRlpby3lMnpDh7Ym8TxlyuhYdtKC2X+5zdtWU7sp3GfgeXtgLqjU6Jpt7aLGVmg9Md+O3hr2Lc3QeTyYLLK+7G9vK7YDZZlvKxjL2IACUaXwcSSA4Bo0u0rs4ONDc1YmJ8XMqzzVvqklMIPtWQBCjRFC47JZrCQBlOtQS+2dqEv/SdgtNqk0s4l6dnqjbXRCVGiaY86YHJCTza1CgPCWgfGlx4gNjb7K4t9Xjz9h2oLihS/sGMqCkClGiaKlfcyQZDQezqfgw7T/wC4vM85zK591l+2vK4YzNAdAQo0aLjxbtJQCkCRpVo+/a2yCWbmVlZqKtvQFX1CqWQMg4JREyAEi1iVJHdSIkWGSfepW0CPz7SiidPtMvDAz637WrUZOVoe0IKZU+JFj/IGY8bbf19mPZ48J3n/iBP2Vx8vW5LPd5Q14BrV62J/2EGjuDxz6C1/1l4A7O6oJBityAYDMHnD+piPpzExQl0je1F/9RReVN9+Z24uuodRJYkApRoSQLPxxqegJEk2vT0lNzvTPxav2GTXLKZk5tn+HeAAJJHgBJNYfaUaAoDZTjVETg6PipP4hTXJ+uuwJY8nno2XyRKtOhe16MD/Tjc34O23h4c7OvBkYE+dI+NnhOkoaoGd9c34I6NW5CWwqPJo6N85t1CmrX0PImm7id0I9Di4cGx2iWQlVqM22r/CcUZq7Q7CR1kTommgyJyCpokYASJ1tvTLbvOxEexZFP8sli4XF+TL6zOkqZEU7iglGgKA2U41RH48r5GNA704q7KVXjLqnWqyy+ZCVGinZ++WJJ5uL8XR/p7cbC3G219vVKaXeiqyivAmtIybCpbjru2bkNpNjsd432v/UEP9vQ+jV2nHoPoQhNXrqMMq/J3ACZTvOGTPj7VboE/GIKfnWhJr0UiErBbHNhSdgssJnsiHsdnXIQAJRpfDxJIDgE9S7RDB1vlYQFWi0V2na1azdUHyXnL+NQLEaBEU/jdoERTGCjDqYrAgGsGf/fiM7CaTPjhNbcgy8AncZ6vMEaXaG6fVy7FFMLsUE832gZ6pTAbdYWlzdlXQXoGaotLUFtchrVl5agtKkFtSSnsFp6qqdRv/GDQh339f0TjyV/C5RuXYcX+UTsq34SavMthgvYFmphTdpoNHn8Qs57wSa28SIAEEkOAEi0xnPkUEjibgN4kmsfjCS/ZbN6Fquoa1NVvR1FxCQtPAqokQImmcFko0RQGynCqIvCDQ3vwTHcXbiyvxPvXblFVbmpIxigSLRQKoWtkCIf7enG4r0dKM/H5ydFhBEOhc0rhsNmxqqgYa4pLZYeZkGbrS8t5kuYSvrTBUACHBp/DKycewZRnWD4p11mOHRX3YGW+fuTZPEJKtCV8mRiaBC5CgBKNrwcJJIeAXiTa0OCA7Do7drQtvGSzbjscDkdyoPKpJBAhAUq0CEFFehslWqSkeJ/WCEz7vHj380/BHwrhe1e9CoWONK1NYcnz1aNEm3C5cKC3W+5ddrg3LMzEXmazPu85PM0mEypy82U3mRBma0vK5OeVeQUw6WDJ4JK/QAo8IIQg2gZfxMsnfo4Jd7+MmOcsx+UVb8LK/B266Tw7GxUlmgIvD0OQQAwEKNFigMYhJKAAAa1LtPZjR+R+Z6IDTXSdrduwSQEqDEECiSFAiaYwZ0o0hYEynGoI/Pz4YTx6vA0NhSX4582XqSYvNSWiZYnmDfhxpL9PLr8Md5f1yO6yoemp8yLOc6YtdJWtmZNmQpilWG1qKolhcgkhhPbhnXj5xMMYcXXLeYs9zy6vfBNW5V+hW3k2X2BKNMO86pyoyghQoqmsIEzHMAS0KNHESgaxZFN0nhUVFcv9zsqXLTdMzThR/RCgRFO4lpRoCgNlOFUQ8AQCeO8LT2PG78ODDdeiJosbvZ+vMFqRaCfHRmRXWdvcMszDfd3oHB5C4DxLMVOtNrkUU3aXlZRhTXG4u0zsZ8ZLHQQ6R5vxYtdDGJrpXJBnl1XcjdUFQp6Z1ZHkEmdBibbEgBmeBC5AgBKNrwYJJIeAliTa+PiY7Drbt6d54ZTNzMys5IDjU0lAAQKUaApAXByCEk1hoAynCgJPn+rAfx/ehzU5efjctqtVkZMak1CbRJtyu3Gor1t2lB0Sp2IO9MkTMqc9nnPwie3ll+fmY76rbH7vsqr8AohlmrzUR+DkeCte7PoZ+qeOzsmzUjRUvAm1BpJn81WhRFPf+8mMjEGAEs0YdeYs1UdACxLtRFcnmpsaMToyIrvOtmytVx9IZkQCMRCgRIsB2sWGUKIpDJThJIH+iXE8tPsVhILBhBMRy8Ra4IPQLrUhK3JNxuhsiQW0+MuE2xtAMHju5vqxxItljDgh81Bfr+wy65+cOG+IHKdTbu6/rrR87nRM0WVWilSbPZZHckyUBPqn23FqvBW+wLkyM5JQvoAbA9Md6J44IG/PcZTi8uV3o7bQuEpR87YAACAASURBVIKbEi2SN4f3kIDyBCjRlGfKiCQQCQE1S7T9e1vQ0rwbaenpqKtvQPWKmkimxHtIQDMEKNEULhUlmsJAGQ6PNe/CJ594BJNud1Jo5BYWYNXGjZidcWHfK68kJQc+NHYC68QSzLkTMcXntcUlKGQLfexAYxjpCczixNgedIw2o3OkCbP+8+8zF23orNRi7Kh4E9YUXhPtUN3dT4mmu5JyQhohQImmkUIxTd0RUJtEm5meRkvzLrnn2dr1G7G1bhvy8gt0x50TIgFBgBJN4feAEk1hoAYOJ5biPfDYw3hiX7Ok8LrNdajKL0w4kf3wYRoh1IQsKDRZEv58LT1QDZ1oFosFqwuLUVNUgpWFRVrCp6tcxeb+Yq+y4yNN6Jk8eMbcUm3pqM7dhsyU2P9wKbrP1hi48+zsl4USTVe/fTgZDRGgRNNQsZiqrgioRaL19vZIcdZ96gS21m2Xe55ZrVZdseZkSOBsApRoCr8TlGgKAzVouJ0d7fj7h34kl+NlO534xt1vw01rNyScxsHRYXyq6a/ISUnFD656NSxmLuW8WBHUtidawl8YAz8wEPLJJZpCmnWOtWDSPXgGjcK0KlTl1mFFXj2KMlbq/rTMRL8KlGiJJs7nkUCYACUa3wQSSA6BZEu0w4cOSHlmMpmkOKtdsy45IPhUEkgCAUo0haFToikM1GDhfH4/vvD0b/Bff/0zxK5a165ag2/e83bkJ+kkxC+0vILm4X68fdV63Fm50mDViH66lGjRM9PyiCnPMDpGm9Ax0oST4wcQCHkXpmMzp6IiZyOq8rahOrcOabZsLU9V9blToqm+RExQpwQo0XRaWE5L9QSSIdG8Xq8UZ2LZZkVltZRnJSWlqmfFBElAaQKUaAoTpURTGKiBwh3u68Hf/ux/0T44AIfNjk/d/jq8/fKrkkagZ2YK//jSs0i1WPHf19wMh9WWtFy08mBKNK1UKrY8g6EAeifbwuJstBmjru4zAok9yoQwq86tx7LsdTCbuJwhNtLRj6JEi54ZR5CAEgQo0ZSgyBgkED2BREq04aFBeVBA2+GDUpzV1W2Hw+mMPmmOIAGdEKBEU7iQlGgKAzVAuFAohO//5c948Pe/gS8QkCcmfv+t96E6CfufLcb93YN78KeeLry2chXetoot2pG8ipRokVDS1j2z/kl0jrTIZZonxvfAG5hdmIDJZEF51lqsyK1HVe5W5DjKtDU5HWVLiaajYnIqmiJAiaapcjFZHRFIhEQ73n5Udp65XC55UMCGTVt0RJBTIYHYCVCixc7uvCMp0RQGqvNwfRPjcu+zxs7jsJhM+MfrX41/uvEWWC3J3cB/wuPB3/zlaUn/h9fcgix7is4rocz0KNGU4ZjMKCGEMDh1HB1jLXKZ5sB0+xnpOG3ZqMrZguq8elTkbIbd4khmunz2HAFKNL4KJJAcApRoyeHOp5LAUkq0ZrFks2kXCgoKZefZ8opKAicBElhEgBJN4deBEk1hoDoO93jLbvzLr38BcQrn8tw8fO8t92HzsgpVzPhnxw7h8c4juKGsEn+3jv/qFGlRKNEiJaWu+zyBWZwY2yOXaHaNtsDlmzgjwaL0GinNRLdZUfoKHgqgrvLJbCjRVFgUpmQIApRohigzJ6lCAkpLtImJcSnOhECrqw+fspmVxf1cVVh6pqQCApRoCheBEk1hoCoN96e2g9h7sivm7A719eD3B/fL8W/ZvgOfvfMNch+0RFxd0xNo7O+96KN+e7IdLr8f377yJpQ40xORli6eQYmmnTKKZZkHBp7FsaFd6Jk8eEbidksqlmdvQlVePVbkbYPTmqmdiRk0U0o0gxae0046AUq0pJeACRiUgFIS7eSJLjQ3NWJ4aCi831n9doMS5bRJIHIClGiRs4roTkq0iDBp+ibROXbZlz6FcZcrrnnkOdPwjXvejutrE7vf2Adf+iO6Z6Yvmfv2whI8sPmyS97HG04ToERT/9sw4e5Hc/fvpEDzBz0LCWc7Suf2NqvD8uwN6p8IMzyDACUaXwgSSA4BSrTkcOdTSSBeida6b488LMDpdKKuvgHVNSsJlQRIIEIClGgRgor0Nkq0SElp974Hn/4NvvXcM1hbUoab122MaSJiz7O3X3YVctLSYhof66CHjh3EY51HUZ6Wjh1F5RcNs6O4HMvSM2J9lCHHUaKpt+xdY3uxt/cpebLm/JWRko8tpbdhZX4DxMmavLRLgBJNu7Vj5tomQImm7foxe+0SiEWizbpcsutMLNlcs3a9PCwgv6BQuxCYOQkkiQAlmsLgKdEUBqqycGOuGWz7/L9i1ufFU//wUWxSyR5mkWA6OT2JD7/yZyAUwpcvuw5VmdznIBJu0dxDiRYNraW/NxDy4uDA89jT81uMuLoXHliZvRlbym5DZe5W7m+29GVIyBMo0RKCmQ8hgXMIUKLxpSCB5BCIRqL19fXK/c5OdHXIrjOxbNNmsyUncT6VBHRAgBINwO69bXjnP31JlnPDmmp870v3Iyfrwh04X/vBI/ifh5867/2UaDr4XXGRKXzqiUfxPy+9gBtq1+En971fM5MNhEJ4YOdz6JyawOurV+PNNWs1k7uWEqVEU0e1ZryjaO55Eq39z8Ljn5FJiVM01xZej7ry29h1po4yKZoFJZqiOBmMBCImQIkWMSreSAKKEohEorUdPijlWSgUkuJMdJ/xIgESiJ+A4SXa8RO9+MQX/wuf//h7saKiFI8/9RfsbD6Ez370PjhSz93o/eyfn/01JVr8L6VaI/SOj+HyL30a/mAQz97/cawpKVNrqufk9VjnETx07BCKHWn4xhU3wmY2ayZ3LSVKiZbcanVPHkJLz29xfHgXQgjKZPKc5dhceivWFl0Lmzk1uQny6UtGgBJtydAyMAlclAAlGl8QEkgOgQtJNL/fj+bdjWhp3oVlyyulPCst1c7fWZJDk08lgegIGF6iCQnWdaofH3rf3ZLc2VLtbJyiC01c8/eLLrav/uCRhe41SrToXkAt3X3/Iz/FI007cefmOnz3ze/STOq9M9O4/+VnEQyF8IWGa7AyK1czuWstUUq0xFcsGPShbegl2Xk2NNMpEzDBjBV59XK/s2U8JCDxRUnCEynRkgCdjyQBAJRofA1IIDkEzpZoI8ND8qCAQwf2o25bA7bWbYczwXsvJ4cEn0oCiSdgeIl2thQbm5jC+z/2dXz4fXdj2+bacyoiJNv7/vmruPX6BinSxPjKZcW469ar5b2UaIl/iRPxxOODA7jmq5+DCcBLD3way3PzE/HYuJ8h2rc/vusFHJsYw2sqVuIdq9nGHTfUiwSgRFtKumfGdvkmsKfnd2jtewYu/6T8YaotHeuLbsSW0lshDg3gZRwClGjGqTVnqi4ClGjqqgezMQ6BeYm2q/kAmpt3YWZ6Wh4UsHHzVuNA4ExJIEkEKNHOkmCXkmizbi8+/ZX/xcTUDF7c1XrOHmoeX3gJUbIuq8UEi9kEfyCEQDCUrDR099x7f/h9/KqlGfddeRW++9a3a2Z+vzx2FN/e14KytHT8+NW3wGa2aCZ3LSZqt5rhDwShxt964r8H4r8NWr/6Jzvwl+OPobXvrwiGAnI6JZnV2FF1JzaWXgOrmRvlar3GseQv/t8n/tEgkNz/BceSOscA8s8revjvkxGLKepmMkH+uZMXCeiRgFr/+9S0uxG7dzUiJ68ADdsbUFVdrUf8nBMJqJJAis2MZHsfAcYUEn/6TcIVbSfa2Z1nYjnoI08+v7Ccc2TSm4RZnH6kM8UCR4oFLk8As57wXzB5xUfgUG8Prv7K52A1m7H/M19EYUZmfAETNHrANYP3v/AHeINBfO2K67Eqm8s4lxp9drod0y4v/Cr8i7z4D6yWFdqRoZew88Sv0Dt5bKGMtYVXYNuyO1CetWapS8v4KieQnmqBLxBSxR9oVI5KlemFEOJJuaqszKWTSrFbYDMD027+mfPStHgHCcRHYHJiAk1NjWjavQvb6utxzdVXwmxPjy8oR5MACURNIC/TjmR7n6RKtGj2RJvvQnvjHdcuLPU8ew81LueM+h1U/YB7/+vb+MuxNvzN1dfj07ffpfp85xN8cO9O7Brswy3LVuA9azZqJm8tJ8rlnMpXb3y2F384+h30TB6WwZ22LGwuvQUbS14tP+dFAoIAl3PyPSCB5BDgcs7kcOdTjUXg1MkT8pTNgYF+1NVvl4cFiNUPWel2DE94jAWDsyUBFRAw/HLOS53OeXanmehE6x8cXTi98+yfU6Kp4K1WMIVdncfxuu99HQ6bHbs/8e/IcaYpGH3pQv3f0QP4ddcxLE/PxJcvE6cSchnn0tE+HZkSTVnKL3U9hMZTv5RBxX5n11bdJ0/Z5EUCZxOgROM7QQLJIUCJlhzufKoxCBzYv1ceFpCamirFWc3K1QsTv9DpnMYgw1mSQHIJGF6iCfzihM13/tOXZCU2rKleWJopvj5bks13o/3uTzvPez8lWnJfaKWffsu3voz93Sfx4ZtuxYduulXp8EsSr3moH1/Y8wqcViu+dvkNKHA4l+Q5DHouAUo0Zd6KU+Ot+OOx72Pc3ScDrim8GteveC9SrNqQ2MpQYJRoCFCiRUOL95KAcgQo0ZRjyUgkIAjMzs6ipXkXmnc3YnXtWnlYQEFh0TlwKNH4vpBA8ghQoinMnhJNYaBJDPfMoVa868c/QLbDKbvQnPaUJGYT2aO7Z6bwwM7n4A4E8Om6K7AxrzCygbxLEQKUaPFhnPVP4vnjP8LhwRdkoIyUAty86gNYlr0hvsAcrXsClGi6LzEnqFIClGgqLQzT0hyB/v4+uWSzs6MdW+u2o25bA+x2+wXnQYmmuRIzYR0RoERTuJiUaAoDTVK4YDCIa776OXQMDcp90MR+aGq/Zv1+fPiVP2NgdgZvqK7FvTXcbD3RNaNEi534wcHn8ELHj+D2TcMEM+rK78COintgNatfXsc+a45UigAlmlIkGYcEoiNAiRYdL95NAmcTONJ2SMqzQCAgl2yuXRfZPxxSovFdIoHkEaBEU5g9JZrCQJMU7vE9u/EPD/8/5KdnoOkTn4PNov49xT7f8jJahgewIbdAdqGZxJnzvBJKgBItetxjs714ZtHBAQVplbh59QdRkFYRfTCOMCwBSjTDlp4TTzIBSrQkF4CP1yQBIcyEOGtuakRZ2TLZdVZaVh7VXCjRosLFm0lAUQKUaIriBCjRFAaahHCBYBBXPPhZnBobwVdefy/e3HBFErKI7pGPdx7Bz44dQn6qQ+6DlmazRReAdytCgBItcozBoA+N3b9C48nHEAz5ZMfZFZX3YGvZHbITjRcJREOAEi0aWryXBJQjQImmHEtG0j+B0ZFhKc8OtO6TXWd19Q1IS0+PaeKUaDFh4yASUIQAJZoiGE8HoURTGGgSwv1k54v4+OM/x7KcPLz0wKdhMav7L/SHxobxqd1/hcVklidxVmRkJYEaHykIUKJF9h50TxyS3WfzBwdUZG/CTSvfj8xU7uEXGUHedTYBSjS+EySQHAKUaMnhzqdqi0Bnx3HZdTY1OSnl2abNW+OeACVa3AgZgARiJkCJFjO68w+kRFMY6BKEm/V58d3n/njByD9tfAmDU5P4/lvvwx0b4/+f3NkP6nVN46+9pxSb2e9OHseM34cPrK/DdaXLFYvLQNEToES7ODNf0I1nj/1g4eAAhzUD1614N2oLr44eNkeQwCIClGh8HUggOQQo0ZLDnU/VBoG9e5rlKZvZOTmy66yyqlqxxCnRFEPJQCQQNQFKtKiRXXwAJZrCQJcg3BeefgLfuYhEE4+sLSrBnz78iSV4OvCDQ3vwTHeXorFvKKvA361TXvgpmqQBglGiXbzIvzn0INpHGuVNa4uuw3XV9yHFmmaAN4NTXGoClGhLTZjxSeD8BCjR+GaQwJkEpqYm5ZJN8WvDpi1yv7OcnFzFMVGiKY6UAUkgYgKUaBGjiuxGSrTIOCXrrhMjQ9jx4Gfl4//+upuQYrGeN5Ub16zHpmVLs7H5W//0G8wGArh9eQ2c1vM/Pxo+ZrMZb6xeHc0Q3rtEBCjRLgy2uec3eKHjx/KG16//NCpyNi1RFRjWiAQo0YxYdc5ZDQQo0dRQBeagBgI93adk11l/X69csil+iT+jL9VFibZUZBmXBC5NgBLt0oyiuoMSLSpcCb/5TT/8T7zYfgRvabgCX379vQl//nM9J/Dtgy1Ynp6Jr++4IeHP5wOXlgAl2vn59k0ewc/3fQIhBPGqlR/A+uLrl7YQjG44ApRohis5J6wSApRoKikE00gagYMH9qO5aRfsNpvsOlu5qjYhuVCiJQQzH0IC5yVAiabwi0GJpjBQBcP98VAr3vnjHyDL4cDLD3wW2U6ngtEjC/WJXS+gbXwU712zCTcvU25fhMiezruWmgAl2rmEXd4J/L+WD2LWN4mNxTfhxpXvX+oyML4BCVCiGbDonLIqCFCiqaIMTCLBBNxuN1qaw0s2V9SsQl39dhQWFSc0C0q0hOLmw0jgDAKUaAq/EJRoCgNVKJzH78OVX/439I6P4XN3vhHvuuIahSJHHqZ3Zgr/8NKzsJrM+N9rb0WazRb5YN6pCQKUaGeWKRgKyA60/qmjKEyrwr2bH4TFHP8SZk28DEwyoQQo0RKKmw8jgQUClGh8GYxEYHCgX3adHW8/Gl6yWbcdqampSUFAiZYU7HwoCUgClGgKvwiUaAoDVSjcN//0e3z5D79FTWER/vyhT8CyhHsUXCjlHx9pxZMn2nFdaQU+sJ6HAChUWlWFoUQ7sxx/Pv5f2Nv7NBy2TLxty9eQnqL8xrqqegGYTNIIUKIlDT0fbHAClGgGfwEMMv1jR9vkfmden092na1bvzHpM6dES3oJmICBCVCiKVx8SjSFgSoQbmByAjse/AzcPh9+9f77sb1qhQJRowvhDwbxnheexpTPi89vvwa12ZQJ0RHUxt2UaKfrdGx4J548/GWYYMY9mz6PkkwefqGNt1ibWVKiabNuzFr7BCjRtF9DzuD8BILB4MIpm8UlpXK/s7LyZarBRYmmmlIwEQMSoERTuOiUaAoDVSDc+376P/jt/j147aY6fOct71IgYvQhXh7owVf37UKJMw3fvvJV0QfgCE0QoEQLl2nU1Y2f7vkI/EEvrlvxbmwpvU0T9WOS2iVAiabd2jFzbROgRNN2/Zj9uQTGRkfkks3WfXsWTtnMyMhUHSpKNNWVhAkZiAAlmsLFpkRTGGic4XZ1Hsfrvvd1pNpsePmBz6AoMyvOiLEN//fml7F3ZAD3rd6I2yoS3wkXW9YcFS0BSjTA45+RAm3CPYDagqtwa+390WLk/SQQNQFKtKiRcQAJKEKAEk0RjAyiAgJdnR1obmrExPi4lGebt9SpIKsLp0CJpuryMDmdE6BEU7jAlGgKA40jXCAYxPVf+zzaBwfw8Vtegw9cl5wOsDGPWy7l5IECcRRTI0ONLtFCoRAeO/BZnBzfj3zncrx5y1dgNfMADY28vppOkxJN0+Vj8homQImm4eIxdUlg394WuWwzIzMTdfUNqKrWxj92U6LxBSaB5BGgRFOYPSWawkDjCPfff30On37yMVTk5uOFj/4rbBZLHNFiH/qL42145PhhXF2yDB/cUB97II5UPQGjS7TGk4/ipRMPI9Wajrdu+SoyUwtUXzMmqA8ClGj6qCNnoT0ClGjaqxkzBqanpxb2O1u/YZPsPMvNy9cUGko0TZWLyeqMACWawgWlRFMYaIzhRqancPmDn8GMx4Ofv/cDuGplbYyR4hsmOnNEF9q414N/33YV1uZo63/Q8c3eeKONLNFOjO2TXWiACXdv/DeUZ60z3gvAGSeNACVa0tDzwQYnQIlm8BdAY9Pv7emWp2yKj0KciV+WJP0je7zoKNHiJcjxJBA7AUq02NmddyQlmsJAYwz34Ud/hp/vfgU3rVmPH7/rb2OMEv+wluEBfL7lZR4oED9KTUQwqkSbdA/hJy33wxtw4aqqt2Fb+es0US8mqR8ClGj6qSVnoi0ClGjaqpdRsz10sFV2nglhJsTZ6tq1mkdBiab5EnICGiZAiaZw8SjRFAYaQ7g9J7tw+7f/A1azWR4mUJaTG0MUZYZ8ZV8jdg704p2rNuCOyhplgjKKagkYUaL5gz48tOejGHadRE1eA16z9gHV1oeJ6ZcAJZp+a8uZqZsAJZq662Pk7LxeLw607sMrL/0FVdU1Up4VF5foBgklmm5KyYlokAAlmsJFo0RTGGgM4W76+hdxqK8H/3j9q/HAzXfEEEGZIZNej1zKKa4fXXsb0mzcYF0ZsuqNYkSJ9lTb19E29FfkOMrw1i3/AZslRb0FYma6JUCJptvScmIqJ0CJpvICGTC9ocEBtDTvxpG2Q7jiqmuxdt0GOBwO3ZGgRNNdSTkhDRGgRFO4WJRoCgONMtzDu17GR375EAozMmUXmsNujzKCcrc/0XUMPzl6AFcUl+NDG7cpF5iRVEvAaBKttf+P+OOx78FmTsXbtn4N2Y5i1daGiembACWavuvL2amXACWaemtjtMyOtx+V+5253W5srduG9Rs36xoBJZquy8vJqZwAJZrCBaJEUxhoFOGm3W55mMDozDS+/5b7cMemrVGMVv7WD7z4R/S5pvGZ+iuxIZenFCpPWH0RjSTRBqY78PDeBxAMBfDadZ9AdW6d+grCjAxDgBLNMKXmRFVGgBJNZQUxYDrNTbukPCssLELdtgYsW15hCAqUaIYoMyepUgKUaAoXhhJNGaA/3fkiBiYnogq299QJ/PnIIVxevRK//NsPRjVWqZv/2t+N3ukpTPl8ePrUcRQ50vDdq16lVHjGUTmBrAzgT22Pwev3qTzT+NM7OPBnTHmGcXnFPbh8+d3xB2QEEoiDACVaHPA4lATiIECJFgc8Do2ZwPj4mDwoYE9Lk+w6E/IsMzMr5nhaHEiJpsWqMWe9EKBEU7iSlGjxA/X4faj+l/tjDvTchz6BVUnYOHRo1oW//esfzsj7bas24LU8UCDmWmppoDih8snDX8DA9AktpR1XrpU5W3HX+k/GFYODSUAJApRoSlBkDBKIngAlWvTMOCJ2AidPdKG5qREjw8PyoAAh0Ix6UaIZtfKctxoIUKIpXAVKtPiBvth+FG/64bewPCcPb6jbHlXA6oIivG5LfVRjlLr5Pw804fneU6jNzsPGueWbN1esQJYtefuyKTU3xrk4gRNj+/Bk21fg9btQkFaBFXkNhkBWV34nUiz626zXEMXT2SQp0XRWUE5HMwQo0TRTKk0n2rpvD8SyzbS0NNTVN6C6ZqWm56NE8pRoSlBkDBKIjQAlWmzcLjiKEi1+oF98+jf49nPP4P3X3IhP3vba+AMmIELPzBQ++NKzMAH49pWvQpEzLQFP5SPUQGB396/xYuf/IYQQ1hXvwKtX/iMAilM11IY5GIfA/2fvTMCyrNI+/mdfZBFkE1EUUFkEhJdFTdNs1bI9a6b6pt1qpmnVMstKMx1tr6kcq2mdJpv2xdIstTIFXhAFRFncEFFQZN/hu97HMheUdznv+2x/rstrvq/Ouc99/+5j4/w65zmUaPrpNStVFgFKNGX1Q0vZNDc1IdeYJcmzuPhRMKRlYEAQvzH8e48p0bS021mL2ghQognuGCWa7UAvfHExNlXsxvs334lJI+NtD+iACP/YtAFZB/bh7EFDcWdCigNW5BJyE+joasOKbc+j9OBGOMEZE4ZdjymjrsbhhjZ0dPXInR7XJwFdEaBE01W7WayCCFCiKagZGkll375K6aGAPbt3ItWQIV3bdHNz00h14sqgRBPHkpFIwFIClGiWEutjPCWabUCb29sw/JH74eLsjJInn4GHq/L/S7O0rhYPblwDFycnvDrhfAzw5PU223aB8mebPqj/ScF8HGzeAw8Xb0yLfxBD+idCT69zKr9LzFBPBCjR9NRt1qokApRoSuqGunMp3looyTPTj+mhgNi4BHUXZOfsKdHsDJjhSeA0BCjRBG8PSjTbgK4oyMct7yzDmKgYfHz7PbYFc9DsOVlrUXz4EC6MjMZNI5MctCqXkYtARV0RvihahNbORgzwHozLEubAzzNESocSTa6ucF29E6BE0/sOYP1yEaBEk4u8Ntbt6OiQXtk0XdscPGSoJM8GDgzXRnF2roISzc6AGZ4EKNEctwco0WxjPeez5Xhr/To8cO5U3HvuVNuCOWB2/sEDmGf8BR4uLlg64Xz4uns4YFUuIReB3MovsbbsbfSgGzEDMjFl5D1wc/mj55RocnWG6+qdACWa3ncA65eLACWaXOTVve7BmmrkGrNRVLhF+taZ6dqmdz9+T9iSrlKiWUKLY0lALAGeRBPLE5RotgGduGQ+Sqv347M77kX6sGjbgjlg9r3rV2N3Yz2uiIrFn2PiHLAil5CDQGd3B77d9iK21/xy9PtnaRGXnJQKJZoc3eGaJABQonEXkIA8BCjR5OGu1lXLS0tgNGahqbERqYZ0JI1OVWspsudNiSZ7C5iAjglQogluPiWa9UCrG+oxev7D8HJzR/G8JXB1cbE+mANm/lK1F89uzoK3qytem3AB+vGjpw6g7vglTN8/+7RwAWqadh33/bPeMqFEc3x/uCIJmAhQonEfkIA8BCjR5OGutlVNp85M1zYHBAVJp84ihw5TWwmKy5cSTXEtYUI6IkCJJrjZlGjWA/3IuBH3fPguJscm4N2b7rA+kINmPrhhDUrra3H9iFG4dOhwB63KZRxJYF/9Nkmg9fb9M0o0R3aCa5HA6QlQonGHkIA8BCjR5OGuhlXr6+skcWbMyUJKapr0ymb//gFqSF0VOVKiqaJNTFKjBCjRBDeWEs16oHd/+C7+Z9yIuRdehhkTz7Y+kANmVjY14K5fvpde5Hx94hT48VtoDqDu2CXy932LH8reQE9PV6/fP6NEc2w/uBoJnI4AJRr3BwnIQ4ASTR7uSl51z+5dkjzbv79KJMDKFAAAIABJREFU+t6Z6bEA/ognQIkmnikjkoC5BCjRzCVl5jhKNDNB9TIsed5s1DQ2YOXdDyJh0GDrAzlg5hvFm/HN7jKcERaB+5LSHbAil3AUga7uDqwseQVbD6w97ffPKNEc1RGuQwJ9E6BE65sRR5CAPQhQotmDqjpjFmzeJD0W4OnpKZ06ixk+Up2FqCRrSjSVNIppapIAJZrgtlKiWQe0rHo/zlwyH/5eXih6Yol1QRw0q7O7Gzeu+RrNnZ14PG08EgODHbQyl7E3gcb2WnxWuAAHGsv7/P4ZJZq9u8H4JGA+AUo081lxJAmIJECJJpKm+mK1tLQg15glnTwbMTJOeiwgOCRUfYWoMGNKNBU2jSlrhgAlmuBWUqJZB/Tt9evw8GfLcVFSCpZed7N1QRw06+d9FXhuSzaCPL2w9MwLHLQql7E3gf0NZfikcD5aOuoxwHswLkuYAz/PEIuW5cMCFuHiYBIQRoASTRhKBiIBiwhQolmESzODq6r2SeJsR3mp9FCA6eSZh4eHZupTQyGUaGroEnPUKgFKNMGdpUSzDuit7yzDNwX5WHT5Nbh+zHjrgjho1uM5P2PLoWpcPyIBlw4d4aBVuYw9CRTtXyNd4ezu6TT7+2e95UOJZs8uMTYJnJoAJRp3BwnIQ4ASTR7ucq26rbhIkmddXV2SOItPSJQrFd2vS4mm+y1AADISoEQTDJ8SzXKgPT09SHh8FupaWvDzrMcwLEi51yMPtDThjp9W8kEBy9usyBndPV34oXQZNlethBOcMH7Y9UiPuNTqXCnRrEbHiSRgEwFKNJvwcTIJWE2AEs1qdKqZaBJmJnFm+hU+KEJ6KMD0n/yRlwAlmrz8ubq+CVCiCe4/JZrlQPMrdmPqi4sR5OOL/LkLLQ/gwBn/Kd2Kj8uLMTY0HA8k87UhB6IXvlRzex0+K1qIqobtVn3/rLeEKNGEt4kBScAsApRoZmHiIBIQToASTThSxQSsPXQQxuyNKNiSL506M/3y8fFVTH56T4QSTe87gPXLSYASTTB9SjTLgf7zx5V4asUXmJ42Bs9Nv87yAA6a0d3Tg1vXrsDh9jbMNZyB5AGWfS/LQWlyGTMI1LVW4b/5c9DUXotA7whcNmoO/D1s/xAuJZoZ8DmEBOxAgBLNDlAZkgTMIECJZgYklQ3ZUV4GY85G1NfVSafOkkenqqwCfaRLiaaPPrNKZRKgRBPcF0o0y4FOeno+Sg7sx8t/ugGXpaRZHsBBM3Kq92Fh3gbpQYHXJpwPJycnB63MZUQRaOlowK+7/4tNlSukkMMHjMUFsXfBzdlTyBKUaEIwMggJWEyAEs1iZJxAAkIIUKIJwaiIIJvyjNKVTf/+/WFIy8TQYVGKyItJ9E6AEo07gwTkI0CJJpg9JZplQJ9e+TWe+34FBvUPwLqZc+Hp5mZZAAeO/semDcg6sA9/ionHlVEjHbgyl7KVQGd3G3IqPkf2ns/Q0d0KL1dfTIi6HqNCz7E19HHzKdGE4mQwEjCbACWa2ag4kASEEqBEE4rT4cEaGxukK5smeZaYnAJDWgYCAgc4PA8uaDkBSjTLmXEGCYgiQIkmiuRvcSjRzAe6rWofzn1+Ibq6u/HZnfcifWi0+ZMdPLK+vQ03rflGWvXNSVPh585nvB3cAquW6+7pRuH+1fhl5wdo7jgMN2cPpA2+DGkRFws7fXZsYpRoVrWJk0jAZgKUaDYjZAASsIoAJZpV2GSftLdijyTP9lXula5smr535uzsLHteTMB8ApRo5rPiSBIQTYASTTBRSjTzgJrE2ZQXF6OwsgI3nzER8y65yryJMo36bOd2vLu9EBkhA/Hg6DEyZcFlLSFQejALP+94F4da9sIJzhgVdjbOGHYtvF39LAlj0VhKNItwcTAJCCNAiSYMJQORgEUEKNEswiX74MKCzcg1ZsPN1VWSZ8NHxMqeExOwjgAlmnXcOIsERBCgRBNB8ZgYlGjmAX1lzSos+OZzVVzjNFV0+7rvUN3ajDkpY5EaHGZekRwlC4GqhlL8ULYMVQ0l0vpRgWmYGPUXBHgNsns+lGh2R8wFSKBXApRo3BgkIA8BSjR5uFuyaltbm/RQgOnKZnTMCKQa0hEaNtCSEByrQAKUaApsClPSDQFKNMGtpkTrG2h5zQFMfmYBOrq6FH+N01RNUW0NHs3+Cf3dPfD6xCl8UKDvFssywvTi5tod76C0ZoO0fnC/oZgcfSsG+cc5LB9KNIeh5kIkcBwBSjRuCBKQhwAlmjzczVn1wP4q6dRZyfbiI1c2DRnw9BTzkJI563OMfQlQotmXL6OTwOkIUKIJ3h+UaH0DveilJcjbs0sV1zhN1bxYYMTayt24OjoW06MdJ2T6JskRJgLNnfVYv/MDFFStgukbaP4eIdK1zZHB4+EEx76gSonGPUkC8hCgRJOHO1clAUo05e2B0pJt0vfO2trbYTCkIyExWXlJMiObCVCi2YyQAUjAagKUaFaj630iJdrpgb69fh0e/my5aq5xtnZ24oY1X6OzuxvLJk5BgAf/DZ7g3zJWhzO9splT8QVyfntx08O1H8YMuQopA6fA2VmeV14p0axuJyeSgE0EKNFswsfJJGA1AUo0q9EJndjT0yNd1zTJM9NVTdPJs4jBQ4SuwWDKIkCJpqx+MBt9EaBEE9xvSrRTA91XdxhnLpmH5vZ22a9xNnd24sudR76ZdbqfiqYGrN+/F2nBYZidMrav4fz7VhAw7v0CbZ3NFs3s6ulAwb7v0dLZIM0zDLoYYyKvhoeLl0VxRA+mRBNNlPFIwDwClGjmceIoEhBNgBJNNFHL4tXWHpLkWX6eUXph0yTPfH3t94CSZdlxtD0JUKLZky5jk8DpCVCiCd4hlGinBjr38//hjV/W4OYzJmHeJVcKJm9ZuNL6w3hww49mT3o4dSwMQXxQwGxgZgysb6vGl0WLsb+xzIzRvQ+JDTkT4yOvhZ9nsNUxRE6kRBNJk7FIwHwClGjms+JIEhBJgBJNJE3zY+3auUN6LKD20CFJnqWkppk/mSM1QYASTRNtZBEqJUCJJrhxlGinBnrdG6/gx21FePuGGTgnPlEwecvCmU6XPZOfhQgfX4wLOf2rjU7OTpgexSfALSN8+tE7Dhnx9bbn0N7ZjAHeERgeNM7i8DFBmQjpN8ziefacQIlmT7qMTQKnJkCJxt1BAvIQoERzLPfNm3JhzMmCj68vDGmZiIqOcWwCXE0xBCjRFNMKJqJDApRogptOiXZqoBMWz4PpZc4f75+DEaHyPq396Y7teK+kEBdFxuDGkfIKPcFbUNHhetCNn3e+j+w9n0p5xgZPwLnD74Sbi4ei8zY3OUo0c0lxHAmIJUCJJpYno5GAuQQo0cwlZf24psZG5BqzpGub8aOSYEjLQOCAIOsDcqYmCFCiaaKNLEKlBCjRBDeOEu3UQAc/eBe6e3pQtuA5eLrJ8+H337NbWpSHlRU7cXNsEqYOiRa8CxiuNwLN7XX4qngJKuqK4OLkhskxtyAx7FxNwaJE01Q7WYyKCFCiqahZTFVTBCjR7NfOysq9kjir2LMLqYYM6dqmq6ur/RZkZFURoERTVbuYrMYIUKIJbiglWu9AK+sOI33BIwjx9UPeo08Jpm55uHnGX5B/8ABmp4xBWrC8p+Isz159Myrri/FF0WI0dxyGn0cILkmYjeB+keorpI+MKdE011IWpBIClGgqaRTT1BwBSjTxLd1aVCC9suns7CyJs9i4BPGLMKLqCbi5OsHf2x019W2qr4UFkIDaCFCiCe4YJVrvQDeUl+KK155HWuQwfP7X+wVTtzzc335ehX3NjXjhjHMQ0c/X8gCcYTaBnIrP8fPOd9Hd042owHRMHXkP3F3lfUXT7OQtHEiJZiEwDicBQQQo0QSBZBgSsJAAJZqFwE4xvL29XTp1Zrq2GTk0SnplMyyM/5JXDF1tRqFE02ZfWZU6CFCiCe4TJVrvQD/K2YB7lr+HK1LS8eKf/iKYuuXhrlr5KboBfHD2xXB3cbE8AGf0SaC9swVfFT+NnbV5cHJywaSovyAl/KI+56l5ACWamrvH3NVMgBJNzd1j7momQIlmW/dqqg8g15iN4q2F0qkzgyEDXt7etgXlbF0QoETTRZtZpEIJUKIJbgwlWu9An175NZ77fgXuOWcKZp53oWDqloU72NaK29auQKCHJ5ZNnGLZZI42i0B10y58XrgQ9W0H4OMeiGnxD2Kg73Cz5qp5ECWamrvH3NVMgBJNzd1j7momQIlmXffKSrdLJ8+am5uRakhHYnKKdYE4S7cEKNF023oWrgAClGiCm0CJ1jvQu//7Dv6Xm4Xnpl+H6WljBFO3LNzW2oN4JHsdYvsHYkHGRMsmc3SfBEprNuCLrYulcZH9R+OiuPvh4dqvz3laGECJpoUusgY1EqBEU2PXmLMWCFCiWdZFo+nKZk4WgoNDpJNnQyKHWhaAo0ngNwKUaNwKJCAfAUo0wewp0XoHeukrzyJ7Zzk+vv0ejImKEUzdsnAf79iG/5QUYVL4YNw1Ks2yyRx9SgKHWyrxQ9kb0vVN08+EYdcjPeIyXRGjRNNVu1msgghQoimoGUxFVwQo0fpud13dYUmcmQSaIe3IK5v+/v37nsgRJHAaApRo3B4kIB8BSjTB7CnRegdqeHIOqurrkD3nSYTL/AeHp/Oz8Ov+vbg1LhkXDI4SvAP0F669qwXrd/0XuXu/lIoP9BqE80b+FeG+sbqDQYmmu5azYIUQoERTSCOYhu4IUKKduuW7d+2U5Fl19YEj3ztLy9Dd/mDB9iNAiWY/toxMAn0RoETri5CFf58S7WRgXd3dGPLQ3+Hs5IQ9/3jJQqLih//fD1+hqbMDL51xLsL7+YhfQCcRe9CDwv0/4Ocd76G5ow7uLl4YF3kNRodfCGcnZ51QOL5MSjRdtp1FK4AAJZoCmsAUdEmAEu3ktm/Jz5MeC/D29pbkWXTMCF3uDRZtXwKUaPbly+gkcDoClGiC9wcl2slASw9UYeLTTyIqKAQ/zZormLhl4crrD2Pmhh/h7+6BNydNtWwyRx8lsL+hDN+VvIyapl3SX4sNHo9J0TfB203f1xMo0fibhATkIUCJJg93rkoClGhH9kBLczOMxiPfO4uNS5AeCwgKDuEGIQG7EaBEsxtaBiaBPglQovWJyLIBlGgn81q9tQD/9+/XcNbIeLx3852WARU8+vOdJXhnewHOCo/E30alCo6u/XCmE2dry/+NrQfWScUGekfgnJgZiPBP0H7xZlRIiWYGJA4hATsQoESzA1SGJAEzCOhdou3bVymJs107y5FqOPK9M3d3dzPIcQgJ2EaAEs02fpxNArYQoESzhV4vcynRToby1vp1mPPZcvxl7AQ8ddnVgolbFu7J3PXIq9mPuxPTcObAwZZN1vHo7p5OGCu+xIbdH6GjuxXuLp4YG3kNUsIv0u3Vzd62AyWajn+TsHRZCVCiyYqfi+uYgF4lWvHWQkme9fT0SOIsLn6UjncBS5eDACWaHNS5JgkcIUCJJngnUKKdDPSJrz7Bv9b9gLkXXoYZE88WTNz8cKZvs/159Zfo7OnGGxOnoL+Hp/mTdTyy7FA21pT9G3WtVRIFXt089WagRNPxbxSWLisBSjRZ8XNxHRPQk0Tr7OyUxFmuMQsRgyMleRYePkjH3WfpchKgRJOTPtfWOwFKNME7gBLtZKC3vP0vrCjcjGXX34KpiaMFEzc/XFFtDR7N/gmDffzw/Dj5ZJ75Gcs7sralEt+XLMWeui1SIgFe4Th3+B28unmatlCiybtnubp+CVCi6bf3rFxeAnqQaIcO1sCYk4Wigs2SODNd2+znw4ep5N15XJ0SjXuABOQjQIkmmD0l2slAz31+EYoqK7Dy7geRMMh+Vyi/27MDh9taT9nR7XWHsOngAVw4JBo3xSYJ7rx2wnV2t+Gn8neRt+8bqSg3Zw/p6mZaxCXaKdJOlVCi2Qksw5JAHwQo0bhFSEAeAlqWaOVlpTDmbERjQwMMaRlIGs1v6cqzy7hqbwQo0bgvSEA+ApRogtlTop0MdNCsv0l/cfv8p9HPTlco27q78OfvvzCrmw+njoUhKMyssXob1NXTjk+2PIk9dQVS6SODxuOsGL66ae4+oEQzlxTHkYBYApRoYnkyGgmYS0CLEi0vN0e6thkQGAhDWiYihw4zFwfHkYDDCFCiOQw1FyKBkwhQogneFJRoxwMtq96PM5fMR4ivH/IefUow7T/CmR4LMD0aEObVr88HAy4eNhxeLq52y0WtgSWBVrAAew5vgZerLy6Kn4nB/vxQriX9pESzhBbHkoA4ApRo4lgyEglYQkArEq2hoR7G7I2SPEtOMUjXNgMCAi1BwbEk4FAClGgOxc3FSOA4ApRogjcEJdrxQL/anIcZ772BiSPi8J9b/iqY9h/h3tq2BV/uKsUVUSPx55h4u62j1cCd3e34tODICTQvNz9cnfQkAr0jtFqu3eqiRLMbWgYmgdMSoETjBiEBeQioXaJV7NktybP9VftgSM+U5JmTk5M8MLkqCVhAgBLNAlgcSgKCCVCiCQZKiXY80KdXfo3nvl+BGRMmY+60ywXT/iPcfb/+gF0NdXgifTxGBQTbbR0tBu7q7sAnBfMlgebp6oNrkp+iQLOy0ZRoVoLjNBKwkQAlmo0AOZ0ErCSgVolWuCUfRmM2PNzdJXkWM3yklQQ4jQTkIUCJJg93rkoCJgKUaIL3ASXa8UB/f5nz+enX4aq0MYJpHwnX2NGOv/z4NVydnPGfs6fBxdnZLutoMahJoH1etBA7azdJAu2qpPkI7hepxVIdUhMlmkMwcxESOIkAJRo3BQnIQ0BNEq21tRW5xizp5NnwEbFINaQjJJTfyJVn53BVWwlQotlKkPNJwHoClGjWs+t1JiXa8VjGL34CO2qq8e3fZyExYohg2kfCra/ai2c2ZyFpQAgeM5xhlzW0GPRYgebu4o2rkxdQoNnYaEo0GwFyOglYSYASzUpwnEYCNhJQg0QzXdXMNWajrHS7dF3T9FiAh4eHjZVzOgnIS4ASTV7+XF3fBCjRBPefEu0PoO2dnRj28D3StyXKFzwHd1f7fMz/tcI8rNq7E9cNT8Blw0YI7qg2w50o0K5KmodQnyhtFuvAqijRHAibS5HAMQQo0bgdSEAeAkqWaCXbi6VTZx2dndKps4RRSfJA4qokYAcClGh2gMqQJGAmAUo0M0GZO4wS7Q9S+RW7MfXFxYgODsW6mY+ai9DicXf+tBL7W5qwOHMSov0DLJ6vtwndPV34rHCBdIXTzdkT05OfpEATtAko0QSBZBgSsJAAJZqFwDicBAQRUJpE6+7ull7YNMmzgeGDpO+dDYoYLKhahiEB5RCgRFNOL5iJ/ghQognuOSUaJKG1Zu9uFFRWYGXRFowICcNFSSmCSR8J124SQjtK4O3qincnT7PLGloKahJoXxQtRvmhbEmgXZn4OAb68fSeqB5TookiyTgkYBkBSjTLeHE0CYgioBSJVnvoIIw5WdiSn3fkymZ6Jnx8fEWVyTgkoDgClGiKawkT0hEBSjTBzaZEA94o3oxvdpcJJnv6cJmh4ZiVnOnQNdW22LECzdXZHVclzqNAE9xESjTBQBmOBMwkQIlmJigOIwHBBOSWaDt3lMOYsxF1hw9L8mx0ikFwhQxHAsokQImmzL4wK30QoEQT3GdKNOD/fvgKTZ0dcK5vxO6aalycnIqY4FDBpI8PlxgUjPj+QXZdQ83BTxRoV4x6DIP849RckiJzp0RTZFuYlA4IUKLpoMksUZEE5JJo+ZtypSubfv7+0kMBw6KiFcmHSZGAvQhQotmLLOOSQN8EKNH6ZmTRCL1LtHX79uCFLTkY6O2DX378EQca6vHLrMcwNCjYIo4cLI7AsQLNxclNusJJgSaO77GRKNHsw5VRSaAvApRofRHi3ycB+xBwpERrbGyQvndm+jUqMVm6shkQOMA+hTEqCSicACWawhvE9DRNgBJNcHv1LtEezf4JRbU1mD5sBO5b9iq83NxRuuBZwZQZzlwCJoH2dfGzKKn5FSaBdtmoRzCkf6K50znOQgKUaBYC43ASEESAEk0QSIYhAQsJOEKiVe6tkE6dmf7TdGXT9MvFxcXCTDmcBLRFgBJNW/1kNeoiQIkmuF96lmiVTY2465dVcHFywozIEfi/119B6uBIfHnXTMGUGc4cAscKNGcnV1w+6lEKNHPA2TCGEs0GeJxKAjYQoESzAR6nkoANBOwp0YoKt0inzkzCzCTORsbG25App5KAtghQommrn6xGXQQo0QT3S88S7e1tBfhiVwnGhg5CYGMLHv38I/w5YxyWXPlnwZQZri8CJwq0S+JnY1igfV5I7SsXPf19SjQ9dZu1KokAJZqSusFc9ERAtERra2s7cmXTmIVhUTGSPAsLG6gnpKyVBMwiQIlmFiYOIgG7EKBEE4xVrxKts7sbt6xdgYaOdsw1nIH316zG+xt/wbyLr8TN4ycJpsxwpyPQ09ONr4qfka5wOsEZlybMoUBz0JahRHMQaC5DAicQoETjliABeQiIkmjVB/Yj15iN7du2HrmyaciAl5eXPEVxVRJQAQFKNBU0iSlqlgAlmuDW6lWira/ai2c2ZyHI0wuvTTgfF//zGeTu3onlM/6OM6JHCKbMcKciYBJoK7a9gOLqnySBdnH8LEQPyCAwBxGgRHMQaC5DApRo3AMkoAgCtkq00pJt0smz1tZWpBrSMSpptCLqYhIkoHQClGhK7xDz0zIBSjTB3dWrRHsi5xdsPnQAf4qJw5VRsYiZcx9aOtpR+Phi9Pf2FkyZ4U5FYMW257H1wDrpb0+LfwDDB4wjLAcSoERzIGwuRQLHEOBJNG4HEpCHgLUSzfRQgDEnC6GhYdLJs8FDIuUpgKuSgEoJUKKptHFMWxMEKNEEt1GvEu2KlZ9KJN+YNBUNjY0Ys+gxhPr6IffRpwQTZrhTEcjf9y1Wl/5L+tsXxd2PEUFnEJaDCVCiORg4lyOB3whQonErkIA8BCyRaIcP10qnzvJyc2D47ZVNPz9/eRLnqiSgcgKUaCpvINNXNQFKNADZm4pxwz2LpEYmxkXh1UX3IsDf95SNbWltx2NL3sTXqzdIY+bPugmXTz1T+r/1KNHaurrw59VfwM3ZGf895xKsKtqCG95aiokj4vCfW/6q6t8gakn+YHMF3su9H109HZgSey/igieoJXVN5UmJpql2shgVEaBEU1GzmKqmCJgj0Xbt3CE9FHCwpua3752la4oBiyEBOQhQoslBnWuSwBECupdoZbsqMWfhMiyYfSuiI8PxyTfrsMFYhCdm3gQvT/eT9snvAm2MIf6oODt2ECXaJXjph++w6NsvMWPCZMyddjl/r9mZQFd3B97LewAHm/cgLmQSpoz8u51XZPhTEaBE494gAXkIUKLJw52rksDpJNrmTbnSYwH9fHxgMGQgKmY4gZEACQgiQIkmCCTDkIAVBHQv0UzSbOeeKtw3Y7qE70SpdiLTE8ef+Pcp0S7BX9//Nz7LN+L56dfhqrQxVmxLTrGEwJod/0ZuxZfw8wjBXwzPw83F05LpHCuQACWaQJgMRQIWEKBEswAWh5KAQAInSrTmpibp1Jnpe2fxCYnSYwEDgoIFrshQJEACJgKUaNwHJCAfAd1LtGeXLpfo/y7RausacMdDz+H+GdORPjr2pM6Yxr/xwTdH//rA0AFYuvh+6RSb6YcS7RKc/exTKK6qxLd/n4XEiCHy7W4drFxRV4jlmx8F4ITrUpYgxCdKB1Urt0RKNOX2hplpmwAlmrb7y+qUS+B3iba1dBdMjwXs2b0TqYYM6dqmm5ubchNnZiSgcgKUaCpvINNXNQFKtKXLMXRw2NGrmaeTaL9f5bxq2qSjgs10Mm35l2uOfketqbVT1g3h7uoMN1dntHd2o6Oz2yG5mL6JduEXH0vfRPt62uXw//ud0roHn38Z7q6uDslBj4u0dDTi5Z/uQGP7YZw1/FpMir5GjxgUVbOXuwvaOrrQ3aOotKRkTCk5KS8tZkQCQgh4uDqjq6cHnV0K/M0npEJtB+npAZz4DyhVNrl4ayGyN25EZ3c3MjPHID5hlCrrYNIkcCoCSv3zk7Mz4O7qgtb2LjaPBEjAwQS8PVzQ3Cb/7z2nnh7TH6Ec/2PJSbTeJNqJ0q2uqcPxRRyzoqe7CzzcnKV/oLZ1OE6iXfL1J5JE+4dhLMYtnIcRoWHImvO4rCy0vvgHefNQWpODcL8RuCljMZycnLVesuLr8/F2Q0trJ7oUaNH4P1IVv32YoA0EvDxcJIHmqH95ZEOqnNoLAdM/Mp0p0VSzNzo6OpCdtRE52RsRExONMWPGIDAoTDX5M1ESsISAUv/85OLiBC83FzTKfIDDEpYcSwJaIeDfzw1yex8TS9kkmqXfRDNJtxNPrs1+ahlm3nmNdKVT79c5rxkwCH/94C1clJSCpdfdrJXfJ4qrI79qJVaXvCZ9/+wGw4vw9QhSXI56TIjXOfXYddasBAK8zqmELjAHrRM4WFMtfetsa1EBDGkZ0rXNoAH+cHdxwmGZ/yWy1tmzPhI4kQCvc3JPkIB8BHR/nbOv1zlPvK6ZvakYsxcuO/odtBNf89S7RBvd4YSXflyJmeddiHvOmSLfztbwyrXNlXgn91509XRgWtxMDA8aq+Fq1VUaJZq6+sVstUOAEk07vWQlyiNQXloCY85GNDU1SfIsMTnlaJKne51TeZUwIxLQDgFKNO30kpWoj4DuJZqpZSYxdsM9i6TuJcZFHf2+men/P1Gi/f7XHl38Zq/j9SjR6jvaceOPX8Pd2QXVmwuwtaoSb994O86J43cxRP8joau7A+/lPYCDzXsQFzIRU0beLXoJxrOBACWaDfA4lQRsIECJZgM8TiWBUxDINWYjNycLA4KCYEjLxJDIoSeNpETj9iEBeQhQosnDnauSgInTaTv9AAAgAElEQVQAJZrgfaBHifbr/ko8nb8RAc4uWLFyJWJCQvHDfXPgYvriJX+EElhb/jaMez+Hj/sA3Jj2knSdkz/KIUCJppxeMBN9EaBE01e/Wa39CNTX10mvbJoEWkpqmvTKZv/+AadckBLNfr1gZBI4HQFKNO4PEpCPACWaYPZ6lGj/KtqE7yp2YP+u3dhRUoJP77gXGcOiBZNluIq6Qizf/Kj0xuKfkhdioN8IQlEYAUo0hTWE6eiGACWablrNQu1EYM/uXZI8O3BgPwzpmdK1TXN+KNHMocQxJCCeACWaeKaMSALmEqBEM5eUmeP0KNH++ssqVDU1ojA7BxOHDMPS628xkxaHmUugtaMRbxn/juaOwxg75GqMjbza3Kkc50AClGgOhM2lSOAYApRo3A4kYB2Bgs2bpFNnnp6ekjyLjrHsX9BRolnHnbNIwFYClGi2EuR8ErCeACWa9ex6nak3iXa4rRU3r12Brq4u5P/0M36eOReDAgIFU2W4TwuexI7aXIT5DpdOoTk58aqsEncFJZoSu8Kc9ECAEk0PXWaNogi0tLQg15glnTwbGRuPVEM6gkNCrQpPiWYVNk4iAZsJUKLZjJABSMBqApRoVqPrfaLeJNqPe3fh5cJc1FZXY1pIBO49d6pgogy3ed9KfF/6mvT9sxsML8LXI4hQFEqAEk2hjWFamidAiab5FrNAAQSqqvZJDwXsKC9FqiFDOnnm7u5uU2RKNJvwcTIJWE2AEs1qdJxIAjYToESzGeHxAfQm0e5dswK721txaPcefHvDHfBwdRNMVN/h6lr3462cv6Orp0N6idP0Iid/lEuAEk25vWFm2iZAiabt/rI62whsKy6S5Jnp1oDpoYD4hETbAh4zmxJNGEoGIgGLCFCiWYSLg0lAKAFKNKE4AT1JtMbWVlz7/RdwdXfD5UGDcG2qeR+hFYxcs+G6e7rwft4sVDftQMyAMbg4fpZma9VKYZRoWukk61AbAUo0tXWM+dqbgEmYmcSZMWcjBg0aLJ06Cx8UIXxZSjThSBmQBMwiQIlmFiYOIgG7EKBEE4xVTxLtwS/+h1JPF/R0duGTqVcKJslwq0pexZaqVfDxGCBd43R38SIUhROgRFN4g5ieZglQomm2tSzMQgKHDtZI8qxgS7506syQlol+Pj4WRjF/OCWa+aw4kgREEqBEE0mTsUjAMgKUaJbx6nO0XiRayf4qXPn+MgyLi0NGUBgeTh/fJxsOMJ/A2vK3YNz7hTThT8mLMNDPsteyzF+JI0USoEQTSZOxSMB8ApRo5rPiSG0S2FFeJp06a6ivl+RZ8uhUhxRKieYQzFyEBE4iQInGTUEC8hGgRBPMXi8S7dJXnkVbWDC8fXzwqGEcRg+w7lUnwfg1Ee6nne8ie8+nUi1nx9yG5IEXaKIuPRRBiaaHLrNGJRKgRFNiV5iTIwhsyjNKJ8/8+/eXTp0NHRbliGWPrkGJ5lDcXIwEjhKgRONmIAH5CFCiCWavB4n2xSYjHvjyIyRmZsLf3QNvTJwCJycnwST1GW797g+xYdeHUvGTom5E6qBp+gSh0qop0VTaOKategKUaKpvIQuwgEBDQ70kzky/EpNTYEjLQEDgAAsiiBtKiSaOJSORgCUEKNEsocWxJCCWACWaWJ6af1igpb0d4/7xOPoNGojQiAhcHR2L6dFxginqM1zWnk/w8873KNBU3H5KNBU3j6mrmgAlmqrbx+TNJLC3Yg+M2RtRta9SurJp+uXs7GzmbPsMo0SzD1dGJYG+CFCi9UWIf58E7EeAEk0wW62fRFu04gu8vGYVMs6aBCdnZ7w+cQoCPDwFU9RfuNy9X2JN+b8p0FTeeko0lTeQ6auWACWaalvHxM0gUFiwGbnGbLi5ukqvbA4fEWvGLMcMoURzDGeuQgInEqBE454gAfkIUKIJZq9libbzYDUmLpmPgNBQRCfEIzUoFHNSxwkmqL9wxwq08UOvQ8bgy/UHQSMVU6JppJEsQ3UEKNFU1zIm3AeB1tZW5BqPXNmMjhmBVEM6QsMGKo4bJZriWsKEdEKAEk0njWaZiiRAiSa4LVqWaFf/6yX8XLoNZ06ahHZXF8xMzsSY0HDBBPUVLr/yW6wu+5dUNAWa+ntPiab+HrICdRKgRFNn35j1yQQO7K+STp2Vlmw7cmXTkAFPT+We+KdE4y4mAXkIUKLJw52rkoCJACWa4H2gVYm2qmgLbnhrKfz9/BCXkQ5fN3fpKqerzN/iENw+h4ajQHMobocsRonmEMxchAROIkCJxk2hdgIl24ulU2dt7e0wGNKRkJisipIo0VTRJiapQQKUaBpsKktSDQFKNMGt0qJEa+vswPjF8+AcGICk6Bgc6unCpUNjcP2IRMH09BOuoGo1Vpb8Uyp4TOTVGDfkav0Ur+FKKdE03FyWpmgClGiKbg+TOwWBnp4e6aEAkzwLGxgunTyLGDxEVbwo0VTVLiarIQKUaBpqJktRHQFKNMEt06JE+yhnI2Z9vhypE8YfpfXP8ecizNtHMD19hDtWoKVHXIYJw67XR+E6qJISTQdNZomKJECJpsi2MKlTEKitPSSJs/w8o/RQgEme+fr6qZIXJZoq28akNUCAEk0DTWQJqiVAiSa4dVqUaJe9+hy21h5EQpoBQZ5euGTYcEwdHC2YnD7CbT2wDiu2PS8VS4GmvZ5Tommvp6xIHQQo0dTRJ71nuXNHufRYQO2hQ5I4S0lNUz0SSjTVt5AFqJQAJZpKG8e0NUGAEk1wG7Um0cqrD2DCknkIDQ/HsPg4jAsbhPuTMgRT00e4IwLtBQA9SAm/CGdF36SPwnVUJSWajprNUhVFgBJNUe1gMicQyN+UK5088/Xzkx4KiIqO0QwjSjTNtJKFqIwAJZrKGsZ0NUWAEk1wO7Um0RZ8/RleWfs9zh57Bpr6eeLyYSNx7fB4wdS0H2579Xp8VfwMBZrGW02JpvEGszzFEqBEU2xrdJtYU2OjdOrMJM8SRiVJJ88CBwRpjgclmuZayoJUQoASTSWNYpqaJECJJritWpJo3d3dSJo3G7XNTbjx0iuwtfEw7ohPwTkRQwVT03a4soNZ+KJoMXrQzRNo2m41KNE03mCWp1gClGiKbY3uEqus3Cs9FrC3Yrd06swkz1xdXTXLgRJNs61lYQonQImm8AYxPU0ToEQT3F4tSbTvCjfjprf/hWEDgjHhrEnYfvgQHksbj6TAYMHUtBvuWIGWNPB8nBMzQ7vFsjJKNO4BEpCJACWaTOC57FECW4sKJHnm7OwsPRYwMlYfp/Yp0fibgATkIUCJJg93rkoCJgKUaIL3gZYk2g3/fg2rthZg7oWXYSPaUdfWilcnnI8QL2/B1LQZbsehPHxWuEA6gUaBps0en1gVT6Lpo8+sUnkEKNGU1xM9ZNTe3i5d1zRd24wcGiXJs7CwgXoo/WiNlGi6ajeLVRABSjQFNYOp6I4AJZrglmtFoh1qapSucro4OSFrznzc+esPcAbw0XmXCSamzXAmgfZ50UJ093RSoGmzxb1WRYmmo2azVEURoERTVDs0n0xN9QEYc7KwrbhIuq5pMGTAy1uf/4KREk3z250FKpQAJZpCG8O0dEGAEk1wm9Um0b7cnIvtVftOolC0by++LdyMS5MNmHXJFbhv/WqEeffDP8efJ5iY9sLtq9+OD/IfkgpLHngBzo65TXtFsiJKNO4BElAQAUo0BTVDw6mUlW6Xrmy2tLTAkJaBUUmjNVyteaVRopnHiaNIQDQBSjTRRBmPBMwnQIlmPiuzRqpNol277GWsKSk+ZW0f3343XHx9sChvA5IGhOAxwxlmcdDroOw9n+Knne9K5SeGnYdzh9+uVxS6rJsn0XTZdhatAAKUaApogoZTMJ06M13bDA4Oka5sDh4SqeFqLSuNEs0yXhxNAqIIUKKJIsk4JGA5AUo0y5mddobaJNrUFxcjv2I3rss8AyG+fsfV5ubqir9PPh9f7irFW9u24LyIoZgRnyKYmDbC1bdWY0Xx89jbsFUqaGzkNRg7ZLo2imMVZhOgRDMbFQeSgFAClGhCcTIYgLq6w5I4Mwk006kz07VNf//+ZHMCAUo0bgkSkIcAJZo83LkqCZgIUKIJ3gdqk2jjFz+BHTXV+GnmXEQFh/RK443ifHyzuxzXj0jApUNHCCam/nBbqlZhTdm/0dHdiv6eA3FR3P0I8YlSf2GswGIClGgWI+MEEhBCgBJNCEYGAbB7104Yczaiprr6yPfO0jLI5TQEKNG4PUhAHgKUaPJw56okoBmJtm5DPhLjohDg7yt7V9Um0UY9/iBqm5uw5bFFCOzn0yu/p3J/hbGmCvcnZ2Bc6CDZGSslgeb2Ony7/QXsrN0kpTR64IWYGH09XJzclZIi83AwAUo0BwPnciTwGwFKNG4FWwlsyc9DrjEb3t7eMKRlIipmuK0hdTGfEk0XbWaRCiRAiabApjAl3RBQ/Um0Z5cuR9amYry66F5KNAB+3m7w8XJFfXMHGls6+9zIg2b9TRpT8Y+X4OTk1Ov4u3/5HhVNDVgyZhKi/AL6jKmHASU1G7Cq5BW0djbCxz0QU2PvRYR/gh5KZ42nIUCJxu1BAvIQoESTh7vaV21pbobRmCU9FhAXPwqphnQEneJUvtprtVf+lGj2Isu4JHB6ApRo3CEkIB8BRUu0T75Zh0cXvynRGRg6AEsX34/oyPCjtEwC7Y0PvsH8WTfh8qlnykfxmJXVdBKtobUFsXNnwsfDE9vmP31Kftd8/zk6urvxzlkXoZ+bmyI4y5VEW1cLVpe8huLqn6QU4kLOxOSYGfBw8ZIrJa6rIAKUaApqBlPRFQFKNF212+Zi9+2rlL53tmtnOVINGdJjAW46//ONtVAp0awlx3kkYBsBSjTb+HE2CdhCQLESLXtTMWYvXHZUnJXtqsSchcuwYPatCA8NwmNL3sTXqzcoSqCZGqEmiba39hAyFs7FoP4ByHp4fq/76FBrC25d9y18XN3x9uQLbdlrqp+7+/BmfLvtRTS2H4Knqw/OHX4nhgeNUX1dLEAcAUo0cSwZiQQsIUCJZgkt/Y4t3looybOenh7pe2em02f8sY0AJZpt/DibBKwlQIlmLTnOIwHbCShSorW0tkuSLCwkEPfN+OOFQ9PJtIJtO9HY2CwJtLeefwjpo2NtpyAwgpokWmFlBc57fhHiwyOw6p6HeqVQXHsQc7LXIcq3P5aMPUsgKfWE6uppx9ryt7GpcoWU9NCA0bhgxN3wdvdXTxHM1CEEKNEcgpmLkMBJBCjRuClORaCzs/O3VzY3YvCQoZI8Cw/n911F7RhKNFEkGYcELCNAiWYZL44mAZEEFCnRausacMdDz2H6tEnHXdM0nUabMesZqf4Tr3aKhGJLLDVJtPVl23HV0hcxLmo4Prr97l7LXlO5Gy8VGDE2dBAeSNbfC1XVTTvwRdES1LVWwc3ZE5NibkZi6Nm2bBHO1TABSjQNN5elKZoAJZqi2yNLcgdrqqWHAooKNv/2ymYmvPv1kyUXLS9Kiabl7rI2JROgRFNyd5ib1gkoWqLdP2P6cSfNfpdoC2ffqrgTaL9vFDVJtBUF+bjlnWW4ICEJb/zltl73+jd7yvBOcQEuGhqD64br68P5Nc278N9ND6O9qwWDfOMwJfYe+HkGa/2fCazPBgKUaDbA41QSsIEAJZoN8DQ2tbysFMacjWhqbJQeCkganaqxCpVVDiWasvrBbPRDgBJNP71mpcojQIkmuCdqkmj/zVqP+//3H1ydNgbPTr/uJBKmb4bcsnYFDre3YVHmJAz318/LnKaTZx9smo3mjjoMDUjF5aMeEbxTGE6LBCjRtNhV1qQGApRoauiSfXPMy82Rrm0GBAbCkJaJyKHD7Lsgo0sEKNG4EUhAHgKUaPJw56okYCJAiSZ4H6hJoi1duxrzvv4Ut505GY9ddPlJJIzVVXgq71cM8fHDc+P0c4Wxub0O7+U9gMb2gwj1icHVyU/C1dld8E5hOC0SoETTYldZkxoIUKKpoUvic6yvr5PEmelXcopBurYZEBAofiFGPCUBSjRuDhKQhwAlmjzcuSoJKF6ibdlablaXEuOi8OqiexHg72vWeHsOUpNEW/zdV3hh9beYdd6FuPucKSdhWZj3K3Kqq3Bb3GicP1gf/0a3tbMJH+Y/jIPNezDAezCuTn4Knq78hoo9f89oKTYlmpa6yVrURIASTU3dsj3Xij27YczeiP37q2BIy5DkmZOTk+2BGcFiApRoFiPjBBIQQoASTQhGBiEBqwgo8iSaVZUoZJKaJNqcz5bjrfXrsODS6bhh3JnHEaxta8Wta1fAxckZb591ITxdXRVC2H5pdHS1YfnmR7G/sRT+nqH4U/IivsBpP9yajEyJpsm2sigVEKBEU0GTBKRYuCUfRmM2PNzdYUjPRMzwkQKiMoQtBCjRbKHHuSRgPQFKNOvZcSYJ2EqAEs1WgifMV5NE+9t/3sKnm3Lw8p/+gstS0o+rZHnZVnxYVozJgyLx1wTtf5S3u6cL/9vyOCrqCuHl5ofrUp6Gr0eQ4N3BcFonQImm9Q6zPqUSoERTamdsz6u1tVV6KMB0ZXP4iFjpsYCQ0DDbAzOCEAKUaEIwMggJWEyAEs1iZJxAAsIIKFqiZW8qxg33LDpa7PxZN+HyqcefmBJGQlAgNUm06998FT8UF+Ldm+7A5Ng/Xt7s7umRTqGZHhRYmDkJIzT+oEBPTze+3Po0Sg9ugIeLt3SFM6jfEEE7gmH0RIASTU/dZq1KIkCJpqRuiMllf9U+5BqzUVa6XXoowHRl08PDQ0xwRhFGgBJNGEoGIgGLCFCiWYSLg0lAKAHFSrTfBdpbzz+E9NGxqK1rwB0PPYfp0yYpWqSpSaJNe/lp5O7eiS/+ej8MkX988yznwD4s3LRBNw8KfLvtJRQd+FF6PGB60nyE+Q4X+puMwfRDgBJNP71mpcoiQImmrH7Yks32bVulU2cdnZ3SqbOEUUm2hONcOxOgRLMzYIYngVMQoETj1iAB+QgoVqI9u3S5ROW+GdOP0jGJtWeWLlfMIwK9tU1NEu3MJfNRVr0f62Y+iujg0KPl/P6gwK1xybhgcJR8u9MBK2dXfIqfdrwrrXRF4uOI7M8/rDsAu2aXoETTbGtZmMIJUKIpvEF9pNfT04OcrA2SPAsfFCGdOhsUMVjdRekke0o0nTSaZSqOACWa4lrChHREIHyAF+T2PibcTj2mP0H99nOqU2e///X7Z0yXTqcp8UdumH7ebvDxckV9cwcaWzpPiyj1yTnYX1+HvEcWIMTP/+jYK1Z+Kv3f706eBm+NPijQ3FGHH0qXYXvNeqnWi+NmISZojBK3FHNSEYH+Pu5obG5HZ7eKkmaqJKABAr5erujo6kZrO3/zqamdtYcOwpiTBdN/hoYNlOSZj4/8L62riaHcuXq5O8PVxRkNffyZU+48uT4JaI2Aqwvg4+mGw00dWiuN9ZCA4gkE+rrjUEO77Hn2KtFOlGUtre14bMmbGGOIV+yVTjVJtJT5D+NAQz1y5zyJUP/+J0m0j8+7TPaNYY8E8vd9K50+a+9qgbdbf5w34k5EBabZYynG1BkBnkTTWcNZrmII8CSaYlphViI7d5RLjwXUHT4sibPRKQaz5nGQ8gjwJJryesKM9EGAJ9H00WdWqUwCij6JRolm+aax5CSa3iTaweYKfLf9ZVQ1bJfAJoWdhzOj/gJ3Fy/LQXMGCfRCgBKN24IE5CFAiSYPd0tXzd+UC2P2Rvj5+0uPBQyLirY0BMcrjAAlmsIawnR0Q4ASTTetZqEKJECJJrgpPIkmGKiAcJ3dbfh113Lk7P0CPT1dCPQahPNH/A0D/UYKiM4QJPAHAUo07gYSkIcAJZo83M1ZtbGxQfrWmenXqMRkGNIzERA4wJypHKMCApRoKmgSU9QkAUo0TbaVRamEgKIl2pat5WZhTIyLUsxjA5RoZrXMYYN21m7CqpJX0dBWDRcnN4yJvArpEZfC2cnVYTlwIf0QoETTT69ZqbIIUKIpqx+mbCr3Vkinzkz/abqyafrl4uKivESZkU0EKNFswsfJJGA1AUo0q9FxIgnYTECREs3mqmQMQIkmI/xjljY9HLCm7A0UV/8s/dVBfnE4f8Rd6O8VpowEmYUmCVCiabKtLEoFBCjRlNOkosIt0mMBri4u0qmzESPjlJMcMxFOgBJNOFIGJAGzCFCimYWJg0jALgQo0QRjpUQTDNTCcD3oQUHVKqzd8Q7aO5vh6eaDiVE3IiHkLAsjcTgJWE6AEs1yZpxBAiIIUKKJoGh9jLa2tiNXNo1ZGBYVA0NahvTaJn+0T4ASTfs9ZoXKJECJpsy+MCt9EFCkRKuta8AdDz2HEx8WUENLKNHk69KJDwfEhpyJs6Jvgpern3xJcWVdEaBE01W7WayCCFCiydOM6gP7pVNnJduLj1zZNGTAy4uP9cjTDXlWpUSThztXJQFKNO4BEpCPACWaYPZqlmiH29vw3e5yLC8vlqh8fN5lgunYL9zPO95DVsUn0gJ+HqE4f8SdGNw/0X4LMjIJ9EKAEo3bggTkIUCJ5ljupSXbpO+dmU6gmU6dJSQmOzYBrqYYApRoimkFE9EZAUo0nTWc5SqKACWa4HaoWaLtaqzHfetXHyWiFolWWrMBX2xdLOWdHnEZJgy7XnBXGY4EzCNAiWYeJ44iAdEEKNFEEz05Xk9Pj3Rl03TyLDQ0TPreWcTgIfZfmCsomgAlmqLbw+Q0TIASTcPNZWmKJ0CJJrhFWpBo/u4eOD9iGK6OUcfHgP+d8zfUtlTirJibkTLwQsEdZTgSMJ8AJZr5rDiSBEQSoEQTSfP4WIcP10qnzvLzjEdf2fTz87ffgoysKgKUaKpqF5PVEAFKNA01k6WojoCiJdqWreVmAU2Mi8Kri+5FgL+vWePtOUjNEm1Hw2E88OuPiPT1x7NjJ9sTk7DYhft/xHfbX4K3mz9uyVgKV2d3YbEZiAQsJUCJZikxjicBMQQo0cRwPDbKrp07YMzZiEMHD0qnzlJS08QvwoiqJ0CJpvoWsgCVEqBEU2njmLYmCChaovFhAcv3mJ+3G3y8XFHf3IHGls7TBkiZ/zAONNQjd86TCPXvD7VJtO6eLryedTsa2w/inJgZSBp4vuXAOIMEBBKgRBMIk6FIwAIClGgWwOpj6OZNucg1ZqOfjw8MaZmIio4RF5yRNEeAEk1zLWVBKiFAiaaSRjFNTRKgRBPcVp5EEwz0NOHy932L1aX/gp9HCG5K/yecnVwctzhXIoFeCFCicVuQgDwEKNFs497c1CSdOjN98yx+VBJSDekYEBRsW1DO1gUBSjRdtJlFKpAAJZoCm8KUdEOAEk1wqynRBAM9RbjO7na8njUDzR11mBJ7D+KCz3TMwlyFBE5DgBKN24ME5CFAiWYd98rKvZI427N7p3TqLDUtA66urtYF4yxdEqBE02XbWbQCCFCiKaAJTEG3BCjRBLeeEk0w0FOEy6n4DOt2vIMAr3DcmPayYxblKiTQBwFKNG4REpCHACWaZdy3FhVI8szJyUkSZ7FxCZYF4GgS+I0AJRq3AgnIQ4ASTR7uXJUETAQUKdHU3BpKNPt3r6OrFcuybkNrZyMuTZiNqMB0+y/KFUjADAKUaGZA4hASsAMBSrS+oXZ0dEjizHRtM3JolCTPBg4M73siR5DAaQhQonF7kIA8BCjR5OHOVUmAEs0Oe0AtEu2VNd/j+e9XoKm9DZsefQrBvn6qeVhg/e4PsWHXhwj1ica1KUvs0EWGJAHrCFCiWceNs0jAVgKUaKcmWFN9QHoowHT6zJCWIV3b9PL2thU555OARIASjRuBBOQhQIkmD3euSgKUaHbYA2qQaFV1h2FY8MjR6tUk0Vo6GqRTaJ3dbbg6aQEG+cfZoYsMSQLWEaBEs44bZ5GArQQo0U4mWF5aIp06a25ulh4KSExOsRUz55PASQQo0bgpSEAeApRo8nDnqiRAiWaHPaAGifZB9q944KP3kTBwEM5PSMLtE89GPw9PVZxEW1v+Nox7P0dkwGhcMWquHTrIkCRgPQFKNOvZcSYJ2EKAEu0PeqZTZ8bsjQgKDpZOnQ2JHGoLWs4lgdMSoETjBiEBeQhQosnDnauSACWaHfaAGiTanf/5Nz7fZMSTl1yFG8+YeJTCjobDeODXHxHp649nx062Ax3bQja1H5Ze5Ozq6cD1qc8huF+kbQE5mwQEE6BEEwyU4UjATAJ6l2h1dYd/+95ZlnTqzJCeCX///mbS4zASsJ4AJZr17DiTBGwhQIlmCz3OJQHbCPBhAdv4nTRbDRItbu5M1Le2YM0Dj2B4SJhqJNr3pUuxed93GB40BtPiZgnuHMORgO0EKNFsZ8gIJGANAb1KtD27d0mnzqqrD0gPBZi+ecYfEnAkAUo0R9LmWiTwBwFKNO4GEpCPACWaYPZKl2iFlRU47/lFCPLxRf7chcdVr+STaA1tNXg963b0oAc3GF5EoPcgwZ1jOBKwnQAlmu0MGYEErCGgN4lWsHkTjDlZ8PLykk6dRceMsAYb55CAzQQo0WxGyAAkYBUBSjSrsHESCQghQIkmBOMfQZQu0ZauXY15X3+KK1Mz8MI1/6caibZi24vYemAN4kPPwgUj7hLcNYYjATEEKNHEcGQUErCUgB4kWktzM4zGLOna5sjYeOnUWVBwiKWoOJ4EhBKgRBOKk8FIwGwClGhmo+JAEhBOgBJNMFKlS7Tr3ngFP24rwvNXX4+rDJmqkGiHmivwlvFuODs54+b0V+HrESS4awxHAmIIUKKJ4cgoJGApAS1LtKqqfdKVzV07y5FqyJCubbq7u1uKiONJwC4EKNHsgpVBSaBPApRofSLiABKwGwFKNMFolSzROru6MPyR+9He1YlNjz6FYF8/VUi0L4v+gZKDGzE6fAomR98quGMMRwLiCFCiiWPJSCRgCQEtSrRtxUnDZ+8AACAASURBVEWSPOvu7paubMbFj7IECceSgEMIUKI5BDMXIYGTCFCicVOQgHwEKNEEs1eyRPu1rARXLn0BMcGhWDvzUXyzpwwNbe1HCRxub8XKip2I9PHDs+POFkzGunDVTTvxbu59cHFyw22Zr8PLzde6QJxFAg4gQInmAMhcggR6IaAVidbZ2Sld18w1ZmFQxBBJnoWH8xug3PTKJUCJptzeMDNtE6BE03Z/WZ2yCVCiCe6PkiXam7+swaOf/w/XjxmPRZdfg5vWfIO69raTCChJoq0qeRVbqlYhI+IKjB92reBuMRwJiCVAiSaWJ6ORgLkE1C7RDh2skR4KKCrYLF3XNF3b7OfjY275HEcCshGgRJMNPRfWOQFKNJ1vAJYvKwFKNMH4lSzR/rXuBzzx1Se4dcJZeHzaFbhi5adS9VdFjYQTnI6S6O/pifMjhgkmY124jzbPxZ66AlyVOB+D+ydYF4SzSMBBBCjRHASay5DACQTUKtHKy0phzNmIxoYG6aGApNGp7C0JqIoAJZqq2sVkNUSAEk1DzWQpqiNAiSa4ZWqRaLOnXoo/r/4C7s7O+OCcSwRTEBduWdZtaGirwS0ZS+HnESwuMCORgB0IUKLZASpDkoAZBNQm0fJyc6RrmwGBgTCkZSJyqDL+xZUZqDmEBI4jQInGDUEC8hCgRJOHO1clARMBSjTB+0AtEu2u8y7EbWtXIMDdA69PmiqYgphw3T1deP7nq+AEZ9w74X9igjIKCdiRACWaHeEyNAmchoAaJFpDQ730UIBJniWnGKRrmwEBgewrCaiaACWaqtvH5FVMgBJNxc1j6qonQIkmuIVqkWg3nXUu7l2/GhH9fPHCGecIpiAmXG3LPvw756/o7xWGm9JeEROUUUjAjgQo0ewIl6FJQKUSrWLPbkme7a/aJz0UYJJnTk5/fEKBjSUBNROgRFNz95i7mglQoqm5e8xd7QQo0QR3UC0S7erxk/BI9jrE9g/EgoyJgimICbezNg+fFMxHZMBoXDFqrpigjEICdiRAiWZHuAxNAiqTaIVb8mE0ZsPD3V2SZzHDR7KHJKA5ApRommspC1IJAUo0lTSKaWqSACWa4LaqRaJdlDkOCzdtgCEoDA+njhVMQUy4/H3fYXXpUiSFnYdzht8uJiijkIAdCVCi2REuQ5OACiRaa2ur9FCA6crm8BGxSDWkIyQ0jL0jAc0SoETTbGtZmMIJUKIpvEFMT9MEKNEEt1ctEm2SIR0vFRhx5sDBuDsxTTAFMeHW7XgHORWfYfyw65ARcbmYoIxCAnYkQIlmR7gMTQIKlmimq5q5xmyUlW6XHgowXdn08PBgz0hA8wQo0TTfYhaoUAKUaAptDNPSBQFKNMFtVotES08ajTe3bcbUIVG4OTZZMAUx4b7augTba37FhbEPYGTwODFBGYUE7EiAEs2OcBmaBBQo0Uq2F0vfO+vo7JROnSWMSmKfSEBXBCjRdNVuFqsgApRoCmoGU9EdAUo0wS1Xi0SLj4/Hh2XFuCo6FtdExwmmICbce3kP4EBjOf6cshhhPjFigjIKCdiRACWaHeEyNAkoRKJ1d3cffWVzYPgg6XtngyIGsz8koEsClGi6bDuLVgABSjQFNIEp6JYAJZrg1qtFog0ZMRxf7yrDDSMTMS1SmYLq5fXXob2rGXeMeRtebr6CO8VwJCCeACWaeKaMSALmEOjfzw1tnd1oaesyZ7hVY2oPHYQxJwtb8vOOvrLp48P/brIKJidphgAlmmZayUJURoASTWUNY7qaIkCJJridapFogcOGYm3lbtw1KhWTwiMFU7A9XGtnI1759f/g4uSGu8d/aHtARiABBxCgRHMAZC5BAr0QsKdE27mjXHosoO7wYelbZ6NTDOwBCZDAbwQo0bgVSEAeApRo8nDnqiRgIkCJJngfqEWieUSEI6e6Cg+ljEF68EDBFGwPt7+hDO9vmolgn2G4PuUZ2wMyAgk4gAAlmgMgcwkScJBEy9+UK13b9PP3lx4LGBYVTfYkQAInEKBE45YgAXkIUKLJw52rkgAlmh32gFokWmdYMLbWHsS8tAlICAyyAwnbQm6vWY+vtj6NmAGZuDj+QduCcTYJOIgAJZqDQHMZEjiBgKiTaI2NDcjNyZJ+jUpMlq5tBgQOIG8SIIFTEKBE49YgAXkIUKLJw52rkgAlmh32gFokWt2A/tjdWI9nx05GpK+/HUjYFjK74lP8tONdpEZMw6RhN9oWjLNJwEEEKNEcBJrLkIBgiVa5t0I6dWb6T9OVTdMvFxcXciYBEuiDACUatwgJyEOAEk0e7lyVBCjR7LAH1CLRKv28cbCtFUvPvABBnl52IGFbyO9LXsPmqpWYHH0rRodPsS0YZ5OAgwhQojkINJchAUESrahwi/RYgKuLi3TqbMRIZb5WzYaTgFIJUKIptTPMS+sEKNG03mHWp2QC/Caa4O6oRaJt83ZDe1cX3p88DZ6uroIp2B7u44J52FW7CZcmzEFUID/ibDtRRnAEAUo0R1DmGiRwMgFLrnO2tbUdubJpzMKwqBgY0jIQGqa8b4OyzySgBgKUaGroEnPUIgFKNC12lTWphQAlGoDsTcW44Z5FUs8S46Lw6qJ7EeDf97P1v8976/mHkD46VpqvdIm2aPU3OD9zHA64Okn5fnzeZYrcq2/m3InDLVW4Ie1FBHpFKDJHJkUCJxKgROOeIAF5CJgj0aoP7JdOnZVsLz5yZdOQAS8v5Z3ElocgVyUB6whQolnHjbNIwFYClGi2EuR8ErCegO4lWtmuSsxZuAwLZt+K6MhwfPLNOmwwFuGJmTfBy9P9lGSPFW9qkWjPr/4WS7PXIz41RarL380db551ofW7x44zn/vpSvSgG38/479wdT51H+yYAkOTgMUEKNEsRsYJJCCEwOkkWmnJNul7Z6YTaKZTZwmJyULWZBASIAGAEo27gATkIUCJJg93rkoCJgK6l2gmabZzTxXumzFd2hEnSrXetolpzJJX/otZf/0THl64DPfPmK6Kk2jTl76ILbU1kkQL8fTGtKExmDokWnG/E+pbq/F69gz4uAfgtsw3FJcfEyKBUxGgROPeIAF5CJwo0Xp6eqQrm6aTZ6GhYdL3ziIGD5EnOa5KAhomQImm4eayNEUToERTdHuYnMYJ6F6iPbt0udTi3yVabV0D7njouePE2LF74FjJFtjf96SxSr3O2dbZgdhHZ8K7vx9iU1IwKjAYT6SNV+T23lNXgI82z0W4XyyuSX5KkTkyKRLojQAlGvcFCchD4HeJtm9/jXTqLD/PePSVTT8/5b1ALQ8lrkoC4glQoolnyogkYA4BSjRzKHEMCdiHACXa0uUYOjgMl089UyJ8Oolm+nuzn1qGmXdeI1397G1sXVOHfTplZlRPdxd4uDmjtb0LbR3dR2et2bYVl/7zBaTHx8MlfCCSg0Lwj3ETzYzq2GGb9q7Cl0UvIXHgJFw66r4jix/5hBt/BBIgUoEwfwvl4+WGltZOdPX0iA9uY8SebsDJ2cYgnE4CCiWwr2IX1v/6Kw4cqEZG5hgY0tIVminT6o0A//mk3n3h5uoCV2egpb1LvUUwcxI4DQHTH+mcFPiHZhdnJ5j+d19Tayf7RwISAeX9rw8NNOYUUP37uUFu7yMpkh7T3QsZfiw5iWY6hTZj1jPYt//gSZn+/l00uf9B5u7qDDdXZ7R3dqOj8w+JNvezT/Dsqu9w6/nnY0tXJ0YHh+Dp8ZNkIN73kqu3v4t15csxKfoanDX82iMTZNkdfeeq5hFEKr57Xh4uaOvoQvcfv/XEL2JlRFO/FfhnQCur4TQSOEIgL9eI7OwsBPj7IT0zE0OHxRCNCgnwn08qbNpvKZtOwzg7OR33L27VWw0zJwH1EHB2BjxcXSiw1dMyu2fKP+fbAfEpoPbzdFWEwJZNolnzTbTf29PbSTSlXuec+uJi5FfsxtP/dxP+V7lL0dc5vyl+FsXVP+P8EX9DQuhkO/xuYEgSsA8BXue0D1dGJYFjCTQ3NcGYs1H65ln8qCSkGtKl0+Ftnd1oaeNpGO4WEnAkAV7ndCRtrkUCfxDgdU7uBhKQj4Dur3P29TqnSbIt/3INXl10LwL8fY/rlFok2uHmZiQ8PgvuLq745P6H8GTur4qWaB9sehD7GkowPWk+IvwT5PvdwZVJwEIClGgWAuNwErCAQGXlXkmc7dm9E4a0TOmbZ66urlKE073OacESHEoCJGAhAUo0C4FxOAkIIkCJJggkw5CAFQR0L9FMzLI3FeOGexZJ+BLjoo4TZlqQaN9s2YRb330dE2JG4uErr8YTOb8oWqK9tuFGNHfU4daMf8HXI8iKbc0pJCAPAUo0ebhzVW0T2FpUIMkzJycnSZzFxp38L1co0bS9B1idcglQoim3N8xM2wQo0bTdX1anbAKUaIL7o8TrnLM/+S/e2fAzZk+5GGcmj1aMRCs+sA6HWipP6sCG3b+9mDrhE8HdYTgSsC8BSjT78mV0/RDo6OiQXtnMNWYhcmiUJM8GDgw/JQBKNP3sDVaqLAKUaMrqB7PRDwFKNP30mpUqjwAlmuCeKFGiTVg8D+U1B/D1XTPR4emORXkbkBoUijmp4wRXb364X3b+Bxv3/O/U/4PIKxw3pb1sfkCOJAEFEKBEU0ATmIKqCdRUH0CuMRum02eG9EwYDBnw8vbusyZKtD4RcQAJ2IUAJZpdsDIoCfRJgBKtT0QcQAJ2I0CJJhit0iRadUM9Rs9/GF5u7ih58hm8tX0LvtpVhj/FxOPKqJGCqzcv3I9lbyKv8itpcGr4NLi7ep000d8rFAkhZ5kXkKNIQCEEKNEU0gimoToC5aUl0mMBzc3N0kMBickpFtVAiWYRLg4mAWEEKNGEoWQgErCIACWaRbg4mASEEqBEE4oTUJpEW56zAfcufw8XJCThjb/chvvWr8auxnoszJyEEf4Bgqs/fbienh6sLPknCvf/ACc448LY+zAiWL7TcA4tnovpggAlmi7azCIFEjDmZEnfOwsKDpYeCxgSOdSq6JRoVmHjJBKwmQAlms0IGYAErCJAiWYVNk4iASEEKNGEYPwjiNIk2l0fvI1P8rLx5CVX4bK0TNy8dgU8XVzw3uRp0keaHfXT3dOFr4ufRUnNr3BxcsXF8Q9hWGCqo5bnOiTgEAKUaA7BzEVUTqCu7rAkzkwCzZCWIX3vzN+/v01VUaLZhI+TScBqApRoVqPjRBKwiQAlmk34OJkEbCJAiWYTvpMnK02iJc+bjZrGBqx54BHs6+7AC5tzkBYchtkpYwVXfupwXd2d+LxoIXbW5sHV2R2Xj5qLCP94h63PhUjAUQQo0RxFmuuokcCe3bukxwKqqw9I4swk0ET9UKKJIsk4JGAZAUo0y3hxNAmIIkCJJook45CA5QQo0SxndtoZSpJoxh27MfnZpxDk44v8uQvxz8Jc/LB3F24YmYhpkTGCK+89XEdXGz4rfAp76rbA3cULV4yai4F+8nyLzSEFcxFdE6BE03X7WfwpCGzJz5MeC/Dy8pIeC4iOGSGcFSWacKQMSAJmEaBEMwsTB5GAcAKUaMKRMiAJmE2AEs1sVOYNVJJEe37lKjz25ce4PCUdL/3pL5ix7lvUtLbg2bGTEenrb15BNoxq62zGxwXzUNWwHZ6uPrgqaR6C+1n3vRsb0uBUEnAYAUo0h6HmQgon0NLcDKPxyPfOYuMSpMcCgoJD7JY1JZrd0DIwCZyWACUaNwgJyEOAEk0e7lyVBEwEKNEE7wMlSbQrX3kZq7YW4NmrrsWZ8Yn42y+r0M/VDe9Mvkhw1SeHa+1swvL8R1DTvAtebn64JvkpBHiF231dLkACchKgRJOTPtdWAoGqqn3Slc1dO8uRajjyvTN3d3e7p0aJZnfEXIAEeiVAicaNQQLyEKBEk4c7VyUBSjQ77AGlSLRDDa2ImHkvWjrakTV7HrY01WFZ0SaMCxuE+5Os+w7N+l3/NZvY9pr1ONRcAT+PYFyV9AT8PcPMnsuBJKBWApRoau0c87aVQPHWQunUWXd3t3RlMy5+lK0hLZpPiWYRLg4mAWEEKNGEoWQgErCIACWaRbg4mASEEuBJNKE4AaVItNydFTDMfwyDAwKxYfY8vFxgxI+Vu3FHQgrOGWT5lcqm9kNYuvEWi2iZTp6ZBJqP+wCL5nEwCaiVACWaWjvHvK0h0NnZKYmzXGMWIgZHSqfOwsMHWRPK5jmUaDYjZAASsIoAJZpV2DiJBGwmQIlmM0IGIAGrCVCiWY2u94lKkWjZ5buRseAJxASHYu3MRzEnay2KDx/C/PQJiA8IsrjqqsZS/CdvFnw8BmBU6Nl9zndycsbogVPg5ebb51gOIAGtEKBE00onWcfpCBw6WANjThaKCjZL4sx0bbOfj4+s0CjRZMXPxXVMgBJNx81n6bISoESTFT8X1zkBSjTBG0CpEu3WtStwqK0V/5o4BQM8PC2uuuxQNj4vXIiowDRcmvCwxfM5gQT0QIASTQ9d1m+N5WWlMOZsRGNDAwxpGUganaoYGJRoimkFE9EZAUo0nTWc5SqGACWaYlrBRHRIgBJNcNOVKNF+eOARTF/1GZwBfHTeZVZVnF+1EqtLXkNS2Lk4Z/gdVsXgJBLQOgFKNK13WJ/15eXmSNc2AwIDYUjLROTQYYoDQYmmuJYwIZ0QoETTSaNZpuIIUKIpriVMSEcEKNEEN1uJEu39O+/B3b98j0H9fPHiGedYVfH63R9iw64PMSbyaowbcrVVMTiJBLROgBJN6x3WT30NDfXSK5smeZacYpCubQYEBCoWACWaYlvDxDROgBJN4w1meYolQImm2NYwMR0QoEQT3GQlSrTnbrgVC/J+RWpQKOakjrOq4lUlr2JL1SqcEzMDSQPPtyoGJ5GA1glQomm9w9qvr2LPbkme7a/aJ72yaZJnTk5Oii+cEk3xLWKCGiVAiabRxrIsxROgRFN8i5ighglQoglurhIl2kPXXIvXt+bjgsFRuDUu2aqKPy1cgB2HjLg0YTaiAtOtisFJJKB1ApRoWu+wdusr3JIPozEbHu7ukjyLGT5SVcVSoqmqXUxWQwQo0TTUTJaiKgKUaKpqF5PVGAFKNMENVaJEu/HiS/HlrlLcMCIR04bGWFXx+3kPYH9jOf6cshhhPtbFsGphTiIBFRGgRFNRs5gqWltbpYcCTFc2h4+IRaohHSGhYaokQ4mmyrYxaQ0QoETTQBNZgioJUKKpsm1MWiMEKNEEN1IJEm1f/UEsWfEdlv20FsNDQnHhOedhw4FKzBo9BpkhA62qeOmGm9DUcRi3Zi6Dr/sAq2JwEglonQAlmtY7rI36TFc1c43ZKCvdLj0UYLqy6eHhoeriKNFU3T4mr2IClGgqbh5TVzUBSjRVt4/Jq5wAJZrgBipBon29JRfXLF0qVWaSaJnjJ6C0vhb/GHMWYvz6W1xxT08Pnvv5CmneveM/VsX3cSwukhNIQAABSjQBEBnCbgS2b9sqnTrr6OyUTp0ljEqy21qODkyJ5mjiXI8EjhCgRONOIAF5CFCiycOdq5KAiQAlmuB9oASJ9t7Gn3HHu+9i9OBIXGXIRKFzF8rrD2Nx5iRE+wdYXHFTey2WbrwZ3u79cXvmmxbP5wQS0AsBSjS9dFo9dXZ3dx99ZTN8UIR06mxQxGD1FGBmppRoZoLiMBIQTIASTTBQhiMBMwlQopkJisNIwA4EKNEEQ1WCRHvph+/w8Cef4K6zzsNDUy7GzA0/2iTR9jeU4f1NMxHsMwzXpzwjmBjDkYB2CFCiaaeXaq+k9tBBGHOysCU/7+grmz4+vmov65T5U6JptrUsTOEEKNEU3iCmp1kClGiabS0LUwEBSjTBTVKCRJv31adY8u23eOTCS3HHxHNslmjlB3PwWdFTGBaYissSHhFMjOFIQDsEKNG008v/b+9MwKuqzoX9hUAgQEiYwwxhCPOQkwRrcei1tVZrB4fa9taqcNVWf6igrVpu0drfK9e2aLHVohXKtbdetfr3ltaqHaQtbSFwwjzPUxgDhEACISH/sxc9p0lMcvY+Z52z99r7zfPwtCZrfev73m9Fkte19zK1kt27dkppuEQqTp1Sp84mTgqZWoqjvJFojnAxGALaCCDRtKEkEAQcEUCiOcLFYAhoJYBE04pTxAsSbeZrP5Of/OUv8t2bvyBfnPzhhCXaukPvye93/FjG5F4jHx9+v2ZihIOAfwgg0fzTS9MqWbM6rN53lp2TIwWhYhmSN9S0EhLKF4mWED4mQyBuAki0uNExEQIJEUCiJYSPyRBIiAASLSF8H5zsBYl256IX5c1wWF68/d/khnETE5Zoy/e+Jn/b95pMHnirfHjQFzQTIxwE/EMAieafXppQyZkzlUqcWX/Gjp8oocJi6dotmLcnI9FM2LHk6EcCSDQ/dpWaTCCARDOhS+ToVwJINM2d9YJE+8yPnpU/bN4sr90zXaYMy09Yov1++49l3eH35Jph98iEPtdpJkY4CPiHABLNP730ciVlBw+oywKs/7Ue2bT+pKeneznlpOeGREs6YhaAQLMEkGhsDAi4QwCJ5g53VoWARQCJpnkfeEGiXfX0k1K6b5+8+7WHZWy/AQlLtF9ufEp2nVgpN45+WIZ3n6yZGOEg4B8CSDT/9NKLlWzcsE5KwyulbXq6uixgRP4oL6bpSk5INFewsygEBInGJoCAOwSQaO5wZ1UIINGSsAe8INHGPz5b9ldUyOzP3y7ZmZny3oHdcqrmvHz3Qx+RvKwcx1X/fPU35PCZHfL5CXOlb5cRjuczAQJBIYBEC0qnU1fn+fPnLz2yGS6RvKHDpSBUJL1z+6QuAUNWQqIZ0ijS9B0BJJrvWkpBhhBAohnSqACnmZXZ1rfVZ3VsJ5VVF7TXV1ld6yhmWn19fb2jGR4d7AWJNuDrD8i5Nm1k4ocua0QpXon24oq75UxNufxb0QLp0qGnR8mTFgTcJ4BEc78Hfsng2NEjEl5VItu3bbn0yGaoWDIzM/1SnvY6kGjakRIQArYIINFsYWIQBLQTQKJpR0pAzQSQaM6BItGcM9Myw9qsXaZ/RTp06qQkWla7DPnEgDwV+9oBQ6Rr+w6O1rHc5jPLblZzvvbh1yW9jX+NsiMwDIZAMwSQaGyLRAns2L5Vve/MOoFmXRQwZtyEREMGYj4SLRBtpkgPEkCiebAppBQIAki0QLTZ6CKRaM7bh0RzzkzLjLr6Ghn48Czp1b275E2aKP06Zcn8D3807thVNafkxyumSod2WXLfZYvjjsNECASBABItCF3WX6P1HyusRzatk2e9e+eq9531HzBQ/0I+johE83FzKc3TBJBonm4PyfmYABLNx831SWlINOeNRKI5Z6ZlxonqChn32GwZ2q+/9ByVn7BEO3pmt/xs9YPSo+NA+XLoWS05EgQCfiWARPNrZ5NT16lTJ9Wps7Wrw9FbNrt0yU7OYj6PikTzeYMpz7MEkGiebQ2J+ZwAEs3nDfZBeUg0501EojlnpmXGruNlcsXT/yGThg6T9kMGJSzRdp8Iy//b+KQMypkgN497TEuOBIGAXwkg0fzaWb117d2zW8KrVsiJ8nJ16mxSQaHeBQIYDYkWwKZTsicIINE80QaSCCABJFoAm25YyUg05w1DojlnpmVG6f6dcuNzz8iVY8dKTW7vhCXahsO/l/e2Py+je39ErhsxXUuOBIGAXwkg0fzaWT11rVtTKqXhldKpc2cJFU6WvKHD9AQmiiDR2AQQcIcAEs0d7qwKASQae8DrBPws0TpntpUzDm/StNMvJJodSkkY88et6+T2l1+UTxYWyfGcLglLtOX73pC/7X1VivvfJFOGfCkJGRMSAv4hgETzTy91VVJ19qw6dWa982z02PFSECqS7j245VgX30gcJJpuosSDgD0CSDR7nBgFAd0EkGi6iRJPNwEkmnOiSDTnzLTMeGv1cpn+6s/kC1OukN0dMhKWaH/Y8aKsPfSOXJ03TQr63aAlR4JAwK8EkGh+7azzusrKDipxtn/fHnXqrKCwWNq25XZj5yTtzUCi2ePEKAjoJoBE002UeBCwRwCJZo8To9wjgERzzh6J5pyZlhkv//WPMud/35J7P3qtrJW6hCXarzb9p+woXyE3jHxI8nteriVHgkDArwSQaH7trP26Nm/aoORZWlqaEmcjR42xP5mRcRNAosWNjokQSIgAEi0hfEyGQNwEkGhxo2Niiggg0ZyDRqI5Z6ZlxrO//418973fygM33CjLz1fJwM5d5JnLr4k79qtrHpZDldvltvFPSr/sUXHHYSIEgkAAiRaELn+wxgsXLqhbNkvDJTJocJ6SZ3369A0mDJeqRqK5BJ5lA08AiRb4LQAAlwgg0VwCz7K2CSDRbKOKDkSiOWemZca83/9avv/eO3Lv9TfI2ppzUtAzV2ZP+lDcsV8quUcqzx+XqYXPS05mbtxxmAiBIBBAogWhy/+s8fixo+qiAOv0mXXLZihULJkdOwYLgkeqRaJ5pBGkETgCSLTAtZyCPUIAieaRRpBGiwRakmi795XJzDnz5fDR8kZzR+cPkXmPT5ec7Kzo51saGxnw/NyHpGB8fsq7wMUCmpGXlVdrjugsXESiffm6T8i22hq5fmCeTBs5wVmQBqOfXXarXKyvk699+HVJb8P7fOIGycRAEECiBaLNsnPHNvXIZlVVlbooYNyEScEo3MNVItE83BxS8zUBJJqv20txHiaARPNwc0hNEYgl0aZ98ZNy47VT1NjqczUyd/5iWbtppzzzxAwZMvDSEx0RidZwrBfwItE0d8ErEu3Wj18n++suyJ354+TGQcPiqrL6QoW8sPwuaZ/eUe6//GdxxWASBIJEAInm726HV5UoedazZy/1yObAQYP9XbBB1SHRDGoWqfqKABLNV+2kGIMIINEMalZAU3Ui0VoSZki01jdPWn19fb0f9pdXJNonr71Wjl+sTJhaUwAAIABJREFUk0cmXSZFPfvEhfbY2T3ySuks6ZbZT+4sfC6uGEyCQJAIINH81+2KilNKnFkCLVRYrORZdnaO/wo1vCIkmuENJH1jCSDRjG0diRtOAIlmeAMDkD4SzXmTeSeac2ZaZkQe57zmYx+Vs/X16lIB63KBeD72nFwtb234jgzIHiu3jn8inhDMgUCgCCDR/NPufXv3KHl27NhRJc4sgcaHdwkg0bzbGzLzNwEkmr/7S3XeJYBE825vyOwSAacSrXTdVrnvke9Jw/eccRKt9d3ESTRN320RiXb5R6+RiyLy6jWfkoz09LiibzzyR3l32w9lVM8r5RMjH4grBpMgECQCSDTzu71+7Wp1WUDHjh2VPBs6bIT5RQWgAiRaAJpMiZ4kgETzZFtIKgAEkGgBaLLhJTqRaKcqKmXW489JaFy+3D/15mjlrV0sMPuBO6LvVEs1Kt6Jppm4Fx7nnL/0jxK68grJad9BXr7qE3FXuGL/m/LXPf8toX6flqvy7og7DhMhEBQCSDQzO11dVSXh8KX3nY0cNUZdFtCjZy8ziwlo1ki0gDaesl0ngERzvQUkEFACSLSANt6gsmNJtKa3czZ30yYn0VpvOCfRNH1DWCfRFqz4u4wtKpT8nG7yH8VXxR35/Z0/kdVlb8tVQ+6UUP9PxR2HiRAICgEkmlmdPnSoTImzvXt2SUHo0vvOMjIyzCqCbBUBJBobAQLuEECiucOdVSGARGMPeJ1ALIkWuXEzcgrNqmfe49MlJzsrWhoSDYmWkn1uSbRFa0plxPhxcnnvfvLghPjf47N01yIpPbhEbhg1S/J7XLp+lg8IQKBlAkg0M3bHls0blTyz7rOxxNmo0WPNSJwsWySARGNzQMAdAkg0d7izKgSQaOwBrxOwK9GsOiKy7GNXFjX7OGdEuHmlZh7n1NwJLzzO+dO1q2X4uLFyeW4/eXB8/BLtv1c/JEfO7JLPT5grfbvwXiDNW4VwPiSARPNuU2tra5U4Kw2XSP8Bg5Q869u3n3cTJjNHBJBojnAxGALaCCDRtKEkEAQcEUCiOcLFYBcIOJFoVnqRiwUavuuMk2itN47HOTVtbOskmi6J9qO/f1nO156Rr0xeKB0zcjRlSBgI+JcAEs17vT1RflzCq0pk04Z1SpxZj2126tzZe4mSUUIEkGgJ4WMyBOImgESLGx0TIZAQASRaQviYnAICTiWaldKPFr4pr/zinegNnUg0JFoKtqqILolWe7FG5v/185Ke1k6+NuW1lOTOIhAwnQASzTsd3LVzh4RXrZAzlZUSKiyW8RMLvJMcmWgngETTjpSAELBFAIlmCxODIKCdABJNO1ICaiYQj0SrPlcjc+cvlneXliiR1jUnS2bOmS88ztl8cziJpmnT6pJox87skldWPyQ9Og6UL4ee1ZQdYSDgbwJINPf7u7p0lXpss2u3bhIqnCyDBg9xPykySDoBJFrSEbMABJolgERjY0DAHQJINHe4s6p9Ai1JNPsRvDuSd6Jp7o1f3om2/fhyWbL5acnrViifGfNNzZQIBwF/EkCiudPXysrTEl65QsmzCZNC6rHNrl27uZMMq7pCAInmCnYWhYAg0dgEEHCHABLNHe6sap8AEs0+q8jIyupaR5M4ieYIV8uDdZ1ECx/4X/nT7sVS0O8GuTpvmqbsCAMBfxNAoqW2vwf271Py7MjhQxIqmqzkWVpaWmqTYDVPEECieaINJBFAAki0ADadkj1BAInmiTaQRCsEkGjOtwcSzTkzLTN0SbQ/7HhR1h56Rwk0S6TxAQEIxCaARIvNSMeIjevXSji8UtpnZCh5Nmx4vo6wxDCYABLN4OaRutEEkGhGt4/kDSaARDO4eQFJHYnmvNFINOfMtMyY8/sl8ufDZdK9Vy+5vHc/eXBCcVxx39rwHdlzcrV8ZsyjktetKK4YTIJA0Agg0ZLX8XPnzqmLAqxHNoePGCkFoSLp1Ts3eQsS2SgCSDSj2kWyPiKARPNRMynFKAJINKPaFchkkWjO245Ec85My4wZ7/2vHJSLKlYiEm3RqulysvqgulTAulyADwhAIDYBJFpsRk5HWI9qloZXys4d29RFAdYjm+3bt3cahvE+J4BE83mDKc+zBJBonm0NifmcABLN5w32QXlINOdNRKI5Z6ZlRkSidW2TLtPGh+RDvfrFFfeZv9wi9XJRZnz4f6Rtm4y4YjAJAkEjgETT1/FtWzerU2cXamvVqbMxY8frC04k3xFAovmupRRkCAEkmiGNIk3fEUCi+a6lvisIiea8pUg058y0zJjxu1/Jwfo6Gdo2Q57+l/jeZVZZUy4vrbhbOmbkyFcmL9SSF0EgEAQCSLTEunzx4sXoLZt9+/VXp8769R+QWFBmB4IAEi0QbaZIDxJAonmwKaQUCAJItEC02egikWjO24dEc85MywwdEu1AxSZ5fd2/S58uI+QLE+ZqyYsgEAgCASRafF0+eaJcwqtKZP3a1dFbNjt3zoovGLMCSQCJFsi2U7QHCCDRPNAEUggkASRaINtuVNFINOftQqI5Z6Zlhg6JtunI+/LOtudkZM8r5PqRM7XkRRAIBIEAEs1Zl3fv2iml4RKpOHVKnTqbOCnkLACjIfAPAkg0tgIE3CGARHOHO6tCAInGHvA6ASSa8w4h0Zwz0zJDh0T7277XZPne12TywFvlw4O+oCUvgkAgCASQaPa6vGZ1WL3vLDsnRwpCxTIkb6i9iYyCQAsEkGhsDQi4QwCJ5g53VoUAEo094HUCSDTnHUKiOWemZYYOifbO1h/IpqN/kmuH3ydjcz+qJS+CQCAIBJBoLXf5zJlKJc6sP2PHT5RQYbF07dY9CNuCGlNAAImWAsgsAYFmCCDR2BYQcIcAEs0d7qxqnwASzT6ryEgkmnNmWmbokGivrZ0tB09vllvHPyEDssdqyYsgEAgCASTaB7t88MB+Jc7KDh5Qj2xaf9LT04OwHagxhQSQaCmEzVIQaEAAicZ2gIA7BJBo7nBnVfsETJBou/eVycw582XOrLukYHy+7eI6Z7aVM9W1Mcc7jY9Ei4k0OQN0SLQXV0yTMzUn5d+KF0iX9j2TkyhRIeBDAki0fzZ144Z1UhpeKe3atlXibET+KB92nJK8QgCJ5pVOkEfQCCDRgtZx6vUKASSaVzpBHi0RQKKJINFsfn+UlVfbHJmcYYlKtIv1dfLsslslTdrIzCt+kZwkiQoBnxIIukQ7f/78pUc2wyWSN3S4FISKpHduH592m7K8RACJ5qVukEuQCCDRgtRtavUSASSal7pBLs0RQKIh0Wx/Z5gu0U5UH5CfrpohOZm5MrXwedt1MxACEBAJqkQ7euSwOnW2fduWS49shoolMzOTLQGBlBFAoqUMNQtBoBEBJBobAgLuEECiucOdVe0T8LpEi5wSO3y0vFFRz899KPpo55L3lsmTzy6Ofv32W66T+6feLJHHOavP1cjc+Yvl3aUl0TG5vbrLM0/MUP9sPSraWvymNHmc0/7+0joy0ZNou06E5Zcbn5RBORPk5nGPac2NYBDwO4GgSbQd27dKeOUKOV9TI6FQkYwZN8HvLaY+jxJAonm0MaTlewJINN+3mAI9SgCJ5tHGkFaUQHMS7Sd/WSpHKytTTumeK6+WHp2zPrBua49b/mjhmxJev1XmPT5dcrKz5FRFpcx6/DkJjcuXh++/TY6drFICzfp4ZMYdktkhQ/1/S7z1y+2pRByPc9pstekn0daU/Vb+uPMlGZ97rXx0+FdsVs0wCEDAIhAEiVZfX68e2QyvKpHevXMlVDRZ+g8YyAaAgKsEkGiu4mfxABNAogW4+ZTuKgEkmqv4WdwGgeYk2uT/+LZsPnTIxmy9Q1Y8OkdG9e1rW6KVrtsqT8xbpE6UDRn4z3nW53+46E1Z8J8z5cDhkzEvJUCi2eyj6RJt6e5FUnpgiVwx5HYp6v9Zm1UzDAIQ8LtEO3XqpGzeuEH+/tc/R2/Z7NIlm8ZDwBMEkGieaANJBJAAEi2ATadkTxBAonmiDSTRCgGTT6JZp9COHj/R6ISZVaolxb4zb5E89c27pX37THUy7cTJ0x+QbREsSDSb3yKmS7RfbZorO8pL5IaRD0l+z8ttVs0wCEDArxJt757d6qKA8uPH5UOXT+GRTba6Jwkg0TzZFpIKAAEkWgCaTImeJIBE82RbSKoBAa+/Ey0ixaz3ls2ZdVf0PWjW5y2J9sov3mmxn4ueeVhG5Q+LPq7Z8L1nkfemtRa/pcC8E82lb6FE34n2X6Wz5PjZPfKvE5+W3lnDXKqCZSFgJgE/Pc65bk2puiygU+fOEgoVS96w4WY2hawDQQCJFog2U6QHCSDRPNgUUgoEASRaINpsdJGmS7TmTqJFGhK5WKBpgyIXEcx+4A658dopvBPN7g42/STaD5bdJnX1F+Srly2WzHYffPmeXQ6Mg0AQCZgu0arOnlWnzqzLAkaPHS8FoSLp3qNnEFtJzYYRQKIZ1jDS9Q0BJJpvWkkhhhFAohnWsACma7JEa+mdaLEkWuS2zl49uqlbPHmc0+bGN1miVV84LS8sv1My0jvK/7n8ZzYrZhgEIBAhYKpEKys7qC4L2L9vjxSEitVlAW3btqWxEDCGABLNmFaRqM8IINF81lDKMYYAEs2YVgU2URMkWsMbNy3pFfmIyLD9h45Fb+e0vmZ9fuHPl8g9X7peXSzwxpL3Zfq0W6M3czaVZi3Fb2lT8DinS98uiTzOebhyh/x8zTekZ+c8uX3S91yqgGUhYC4B0yTa5k0blDxLS0tTlwWMHDXGXPhkHmgCSLRAt5/iXSSARHMRPksHmgASLdDtN6J4EySaBTIiviLvNXt+7kPR96NFHs9sCNx659nD998mx05Wydz5i+XdpSWN+tFwfqz4TRuJRHNpayci0bYeWya/2TJPhnefLDeOftilClgWAuYSMEGiXbhwQYmz8KoVMmhwnpJnffp88Mpnc7tA5kEkgEQLYtep2QsEkGhe6AI5BJEAEi2IXTerZlMkWjxUW3onWjyxGs5BoiVKMM75iUi0kv1vybI9P5NQv0/LVXl3xJkB0yAQXAJelmjHjx1VFwVYp89ChcUSKpwsmR07BrdZVO4rAkg0X7WTYgwigEQzqFmk6isCSDRftdOXxSDRnLcVieacmZYZiUi0321/QdYf/p1cM+wemdDnOi35EAQCQSLgRYm2a8d2deqsqqpKXRQwbsKkILWEWgNCAIkWkEZTpucIINE81xISCggBJFpAGm1wmUg0581DojlnpmVGIhLtF+sfl32n1slnx/y7DOlWoCUfgkAgSAS8JNGsU2fWY5vde/RQp84GDhocpFZQa8AIINEC1nDK9QwBJJpnWkEiASOARAtYww0sF4nmvGlINOfMtMxIRKK9vPKrUnHuiNwVek66duynJR+CQCBIBNyWaBUVp5Q4swTapIJC9b6znJyuQWoBtQaUABItoI2nbNcJINFcbwEJBJQAEi2gjTeobCSa82Yh0Zwz0zIjEYn2zF9ukXq5KA9MeUPapKVryYcgEAgSAbck2v59eyW8coUcO3ZUiTPrnWd8QCBIBJBoQeo2tXqJABLNS90glyARQKIFqdtm1opEc943JJpzZlpmxCvRKs4dlZdXfkU6Z3SXeya/pCUXgkAgaARSLdE2rFujTp116NBBQkWTZeiwEUFDTr0QUASQaGwECLhDAInmDndWhQASjT3gdQJINOcdQqI5Z6ZlRrwSzXoXmvVOtH7Zo+S28U9qyYUgEAgagVRItOrqanVRgPXYZv7I0eqygJ69egcNNfVCoBEBJBobAgLuEECiucOdVSGARGMPeJ0AEs15h5BozplpmRGvRFt/+Pfyu+3Py+jeH5HrRkzXkgtBIBA0AsmUaIcPH1LibPeuHeqiAOuxzYyMjKAhpl4INEsAicbGgIA7BJBo7nBnVQgg0dgDXieARHPeISSac2ZaZsQr0f66579lxf435fKBt8llg27TkgtBIBA0AsmQaFu3bFLyrK6uTomz0WPGBQ0r9UIgJgEkWkxEDIBAUggg0ZKClaAQiEkAiRYTEQNcJoBEc94AJJpzZlpmxCvRfrNlnmw9tkyuy58ho3tdrSUXgkAgaAR0STRLmFkXBZSGS6Rf/4HqooC+/foHDSf1QsA2ASSabVQMhIBWAkg0rTgJBgHbBJBotlEx0CUCSDTn4JFozplpmRGvRHt1zcNyqHK73DbhSenXZZSWXAgCgaARSFSinSg/rk6dbVi/Vl0UUBAqlk6dOwcNI/VCwDEBJJpjZEyAgBYCSDQtGAkCAccEkGiOkTEhxQSQaM6BI9GcM9MyI16J9sLyu6T6QoXcM/kn0jmjm5ZcCAKBoBGIV6Lt3rVTXRZQefq0emRzwsSCoKGjXggkRACJlhA+JkMgbgJItLjRMRECCRFAoiWEj8kpIIBEcw4ZieacmZYZ8Ui02os1Mv+vn5f0tHbytSmvacmDIBAIIgGnEm3N6rB6bDOna1d1WcDgIXlBxEbNEEiYABItYYQEgEBcBJBocWFjEgQSJoBESxghAZJMAInmHLBREm3lmi1y5wNzVZXjRuXJC3NnStfsrGarbjjWGnDDNZfJt78+VTI7XLolr6y82jktjTPikWjHzu6RV0pnSbfM/nJn4XyN2RAKAsEiYEeiVVaeVo9sWn/GTZikHtvs2pXTn8HaKVSrmwASTTdR4kHAHgEkmj1OjIKAbgJINN1EiaebABLNOVFjJNrOvWUy+6mX5MlH75ahg/rKW2//WZaHNzUSYw3Lt74+oG8vKZo4UqrP1chj310oub26yax7P2esRNtRXiK/2jRXhnQLyWfHzHbebWZAAAKKQGsS7eCB/erU2eFDZeqRTetPmzZtIAcBCGgggETTAJEQEIiDABItDmhMgYAGAkg0DRAJkVQCSDTneI2RaJYU27P/cFSCNZVqsUpvKt1MPIkWPrhE/rRrkUzs+wn5l6F3xyqZr0MAAi0QaE6ibdywTsKrSiSjXTt16mz4iJHwgwAENBNAomkGSjgI2CSARLMJimEQ0EwAiaYZKOG0E0CiOUdqjESbt+B1VV3kJNnJikr56iPPyIP3fk6dNov10XS+iRKtZP9bsmzPz+QjQ6fJpL43xCqZr0MAAjEkWuXZaikNX3pkc+iwERIqLJZevXPhBgEIJIkAEi1JYAkLgRgEkGhsEQi4QwCJ5g53VrVPAIlmn1VkpFESbfCAXLnp+itV7k4kmvV+tO8veL3RO9TKT593TkvjjK+8/Us5UF8nw9u1l2eu/aStyP8VfkQOVmyRf530f2Vg17G25jAIAhD4IIHqMyfkT3/+q2zdukUKCydLqKhYOnTo4AlU9SKS5olMSAIC+gl07tBWaurqpeZCnf7gREw6gfp6kTT+BZV0zslYoH1GurRrkyZnztUmIzwxIeA+gfo0kTTrpyhvfaSnp0nn9u2koqrGW4mRDQT+QSCzfbpvWWRmpEt1jf6fOavPO4uZVl9v/QiV+o94T6JZAu3Rp16SBU8/qN6lFvk4f+Fi6otosOKX33pD9l2skxEZ7eXFT302Zi4X6y/KE+/cIhcunpfHrntTMtK98Qt/zMQZAAEPEdiyebOsWLFc6movSFFRsYybMNFD2V1Kpe5ivaS34bdUzzWGhLQQaJueJtaPEXXu/hWspZYgBqmrr5d0LJqRrbf+XrFaV1vnyo/xRjIjabMIePXnJ+tHOkukXajle8+sHRWcbP38e4f1c2cy/t6z/n3j5MM1iRbPO9FaEmhWwaY9zlletV8Wh78mOZm5MrXweSc9YywEAk3g4sWL0Vs2c/v0Ve87mzh2uJyqPC8X+GUi0HuD4lNPgMc5U8+cFSFgEeBxTvYBBNwhwOOc7nBnVfsEeJzTPqvISGMe54x1O6cl2V5fsjT6yGZzj3A2xGOaRNt09E/yztYfyIgeH5JPjvq6804zAwIBI3Dy5Aklz9atKY3espmV1UVRaO12zoBholwIpJQAEi2luFkMAlECSDQ2AwTcIYBEc4c7q9ongESzz8o4iWYlbImxOx+Yq3IfNyqv0TvOmko06/HPl199uxGRPr27Rx/rNE2iLd21SEoPLpEPD/5XmTzgZuedZgYEAkJgz+5d6rKAkydOKHk2qaDwA5Uj0QKyGSjTcwSQaJ5rCQkFhAASLSCNpkzPEUCiea4lJNSEQEsSbfe+Mpk5Z74cPlreaMbo/CEy7/HpkpOdFf18S2MjA56f+5AUjM9POfvOmW3lTLX+d4EacxJNN3HTJNrr6/5dDlRskpvGfksGd52kGwfxIGA8gbVrStXJs6wuXaQgVCx5Q4e1WBMSzfh2U4ChBJBohjaOtI0ngEQzvoUUYCgBJJqhjQtQ2rEk2rQvflJuvHaKIlJ9rkbmzl8sazftlGeemCFDBl5653xEojUc6wWESDTNXTBNos3/6+el9mKN3PehV6RD206aaRAOAmYSOHvmjDp1Fl65QsaOm6BOnnXr3iNmMUi0mIgYAIGkEECiJQUrQSEQkwASLSYiBkAgKQSQaEnBSlCNBJxItJaEGRKt9Ya4drGAxn2iQpkk0U5WHZRF4enSOaOb3DP5J7pREA8CxhEoO3hAwqtK5OCBferUmXVZQHq6/euZkWjGtZyEfUIAieaTRlKGcQSQaMa1jIR9QgCJ5pNG+rgMr0q00nVb5b5Hvhcl//Gri+WRGXdIZoeM6OeWvLdMnnx2caPuzH7gjujJOU6iad64Jkm0LUeXydtb50let0L5zJhvaiZBOAiYQ2DTxvXqkU1LmFmnzvJHjo4reSRaXNiYBIGECSDREkZIAAjERQCJFhc2JkEgYQJItIQREiDJBJxKtIjcavieM90n0Sw59vLPfx19ZDTyGKmFIiLSmo6xvmbl8ae/r5Y7b7tBUUOiad48Jkm0P+1aLOGD/yuXDbpNLh94m2YShIOAtwnU1NQocWY9tjl4yFAlz3Jz+ySUNBItIXxMhkDcBJBocaNjIgQSIoBESwgfkyEQNwEkWtzomJgiAk4k2qmKSpn1+HMSGpcv90/952WHrV0s0PBkmJ2SImt89hNXRk+UWfMafv6jVxard7P16tGtUR5N4yPR7BB3MMYkifbGusdkf8V6+fSYR2VotyIHVTIUAuYSOHb0iJSGV8rWLZuUOAuFiiWzY0ctBSHRtGAkCAQcE0CiOUbGBAhoIYBE04KRIBBwTACJ5hgZE1JMIJZEa3o7Z3M3beo8iWaddHti3qJGFxdYSCKn0SLi7EcL35RXfvGOtCbpkGiaN5NJEu2Hf/uS1NRVyd3FL0pW+9gvTdeMinAQSCmBnTu2qYsCzp07JwWhIhk7fqL29ZFo2pESEAK2CCDRbGFiEAS0E0CiaUdKQAjYIoBEs4WJQS4SiCXRIjduRk6CWanOe3y65GRnRbNOhUSzFrPE2dHjJ9QjndaHdRrt3aUl0TxG5w9plBsSTfPGMkWinao+LAtX3Sft0zvK/Zf/TDMFwkHAOwSsiwKsxzZ79uylLgoYMHBQ0pJDoiUNLYEh0CoBJBobBALuEECiucOdVSGARGMPeJ2AXYlm1RGRZR+7sqjZxzkjwi2Rmu2eRGu6RiS3CaOHRt+bhkRLpBPNzDVFom07/jf59ebvyaCuE+XmsXM0UyAcBNwlUFFxSp06sx7bDBUWq8c2s7Nzkp4UEi3piFkAAs0SQKKxMSDgDgEkmjvcWRUCSDT2gNcJOJFoVi2RiwUaPkap8ySanXei3XjtlGaxWpcN/L/f/jl6Gg2Jpnn3mSLRlu3+mZQceEuK+98kU4Z8STMFwkHAHQL79u6R8KoVcvzYMXXqzHpsM5UfSLRU0mYtCPyTABKN3QABdwgg0dzhzqoQQKKxB7xOwKlEs+qJvI8s8n40nRLNih/rdk5rzHMvvyG33vgRGTKwr0Lc9J1p1ueQaJp3nykS7c0NT8jek2vkkyMflBE9P6yZAuEgkFoC69euVqfOOnbsKKHCyZI3bHhqE/jHakg0V7CzKAQEicYmgIA7BJBo7nBnVQgg0dgDXicQj0SLCCvrfWSWSOuakyUz58wXHY9zRnhFTrxF/vnjVxdHH9OMiLYnn13cCO/tt1zX6DFTJJrm3WeKRItcKnBX4Y+ka2YfzRQIB4HkE6iuqlKnzqx3no0aPVadOuvRs1fyF25lBSSaq/hZPMAEkGgBbj6lu0oAieYqfhYPMAEkWoCbb0jpLUk0Q9JvNU0kmuYumiDRzl44JQuWT5WM9Ez5P5f/t2YChINAcgkcOlSmLgrYu2eXOnVmve+sXbt2yV3UZnQkmk1QDIOAZgJINM1ACQcBmwSQaDZBMQwCmgkg0TQDJZx2AqmQaNbjmU1PjTVXSNPTZokWi0RLlGCT+SZItIMVm+W1dbMlN2uEfHHiXM0ECAeB5BDYsnmjkmf19fVKnFmnz7z2gUTzWkfIJygEkGhB6TR1eo0AEs1rHSGfoBBAogWl0+bWmQqJ5hYdJJpm8iZItI1H3pd3tz0nI3tOketHztJMgHAQ0Eegtrb2H7dslsiAgYOVPOvbt5++BTRHQqJpBko4CNgkgESzCYphENBMAImmGSjhIGCTABLNJiiGuUYAieYcfWV1raNJafXW8RIffJgg0f6+9zX5+77XpHjALTJl8Bd9QJ0S/Eag/PgxdVHApg3r/nHLZrF07NTJ82Ui0TzfIhL0KQEkmk8bS1meJ4BE83yLSNCnBJBoPm2sj8pCojlvJhLNOTMtM2b87ldysL5OhrbNkKf/5YZmY/5263zZfHSpfGz4fTIu96Na1iUIBHQQ2LVzh7os4OyZM+qigPETC3SETVkMJFrKULMQBBoRQKKxISDgDgEkmjvcWRUCSDT2gNcJINGcdwiJ5pyZlhl2JNpra2fLwdOb5Zbx35aB2eO0rEsQCCRCYHXpKvXYZrfu3dVlAYMGD0kknGtzkWiuoWfhgBNAogV8A1C+awSQaK4jkFD1AAAgAElEQVShZ+GAE0CiBXwDGFA+Es15k5BozplpmWFHor24YpqcqTkp04p+LNkdemlZlyAQcErg9OkKdVGA9WfCpJB6bDMnp6vTMJ4aj0TzVDtIJkAEkGgBajaleooAEs1T7SCZABFAogWo2YaWikRz3jgkmnNmWmbEkmgX6+vk2WW3Spq0kZlX/ELLmgSBgBMCB/bvU6fOjhw5LKHCYnVZQFpampMQnh2LRPNsa0jM5wSQaD5vMOV5lgASzbOtITGfE0Ci+bzBPigPiea8iUg058y0zIgl0U5UH5Cfrpoh2R16y7SiF7SsSRAI2CGwcf1aCa8qkfbt26tTZ8OG59uZZtQYJJpR7SJZHxFAovmomZRiFAEkmlHtIlkfEUCi+aiZPi0Fiea8sUg058y0zIgl0XadCMsvNz4pA3PGyy3jHteyJkEg0BKB6upqKQ1femRz+IiR6uRZz169fQsMiebb1lKYxwkg0TzeINLzLQEkmm9bS2EeJ9AuPU2yO2fI8YrzHs+U9IJKAInmvPNINOfMtMyIJdFWl70t7+/8iYzL/Zh8bPhXtaxJEAg0JXDk8CEpDa+UXTu3S0Ho0iOb1gk0v38g0fzeYerzKgEkmlc7Q15+J4BE83uHqc+rBJBoXu0MeUUImCDRdu8rk5lz5sucWXdJwXj7T0l1zmwrZ6prYzbbaXwkWkykyRkQS6It3b1ISg8skSmDvyTFA25KThJEDSyBbVs3q1NnF2prpSBUJGPGjg8UCyRaoNpNsR4igETzUDNIJVAEkGiBajfFeogAEs1DzSCVZgkg0USQaDa/OcrKq22OTM6wWBLtV5vmyo7yErlh5CzJ7zklOUkQNVAE6urqords9u3XX50669d/QKAYRIpFogWy7RTtAQJINA80gRQCSQCJFsi2U7QHCCDRPNAEUmiVABINiWb7W8TrEu2V0lly7Owe+eLEpyU3a5jtuhgIgaYETp4oVxcFbFi3Rokz60/nzlmBBoVEC3T7Kd5FAkg0F+GzdKAJINEC3X6Kd5EAEs1F+Cxti4DXJVrklNjho+WN6nl+7kPRRzuXvLdMnnx2cfTrt99yndw/9WaJPM5Zfa5G5s5fLO8uLYmOye3VXZ55Yob6Z+tR0dbiNwXJ45y2tpb+QbFOov1g2W1SV39BvnrZIslsl60/ASL6nsDuXTvVZQEVp04pcTZxUsj3NdstEIlmlxTjIKCXABJNL0+iQcAuASSaXVKMg4BeAkg0vTyJpp+A1yWaVXFrj1v+aOGbEl6/VeY9Pl1ysrPkVEWlzHr8OQmNy5eH779Njp2sUgLN+nhkxh2S2SFD/X9LvPXL7alEHI9z2txXXj6JVnWhQn68/C5JT2snX5vyms2KGAaBSwTWrA6rxzazc3LUZQFD8oaCpgkBJBpbAgLuEECiucOdVSGARGMPQMAdAkg0d7izqn0CzUm075WulCNVZ+0H0TTyoYJi6d2x4weitSS5StdtlSfmLVInyoYM7BudZ33+h4velAX/OVMOHD4Z81ICJJrNBnpZoh2q3C6vrnlYenYaLLcXzLNZEcOCTODMmcro+87Gjp8oocJi6dqte5CRtFo7Eo2tAQF3CCDR3OHOqhBAorEHIOAOASSaO9xZ1T6B5iTa3e+/K3tPn7YfRNPIFz/ycRncpYttiWadQjt6/ESjE2bWZEuKfWfeInnqm3dL+/aZ6mTaiZOnPyDbIgsh0Ww20IsSbUf5Cjl6ZrecqDoo247/VYZ1L5ZPjX7EZkUMCyKBgwf2K3lWdvBA9H1n6enpQUThqGYkmiNcDIaANgJING0oCQQBRwSQaI5wMRgC2ggg0bShJFCSCDQn0baeOiHn6+qStGLLYUdkd5UObds6kmiv/OKdFgMueuZhGZU/LPq4ZsP3nkXemxaRbtZ70ebMuiv6nrXWiuedaCnfGpcWbO6daD8Nz5ATVQeiGYX6fUquyrvTpQxZ1ssENm5YJ6XhldKubVslz0bkj/Jyup7LDYnmuZaQUEAIINEC0mjK9BwBJJrnWkJCASGARAtIow0u0+R3orV0Ei3SjsjFAk3bE7mIYPYDd8iN107hnWh296/XTqKdrTkpC1ZMk3ZtOkio/6dUGYO7TZS+WSPtlsQ4nxM4f/78pUc2wyWSN3S4FISKpHduH59XnZzykGjJ4UpUCMQigESLRYivQyA5BJBoyeFKVAjEIoBEi0WIr7tNwGSJ1tI70WJJtMhtnb16dFO3ePI4p81d6DWJtunon+SdrT+QId1C8tkxs21WwbAgEDh65LA6dbZ925ZLj2yGiiUzMzMIpSetRiRa0tASGAKtEkCisUEg4A4BJJo73FkVAkg09oDXCZgg0RreuGlJr8hHRIbtP3Qsejun9TXr8wt/vkTu+dL16mKBN5a8L9On3Rq9mbOpNGspfku943FOl3Z108c539n2nGw68r5clXeXhPrd6FJWLOslAju2b5XwyhVyvqZGQqEiGTNugpfSMzoXJJrR7SN5gwkg0QxuHqkbTQCJZnT7SN5gAkg0g5sXkNRNkGhWKyLiK/Jes+fnPhR9f1nk8cyGLbPeefbw/bfJsZNVMnf+Ynl3aUmjjjacHyt+062ARHPpm6OpRPvx8ruk6kKFuo3TupWTj2ASqK+vV49shleVSO/euRIqmiz9BwwMJowkVo1ESyJcQkOgFQJINLYHBNwhgERzhzurQgCJxh7wOgFTJFo8HFt6J1o8sRrOQaIlSjDO+Q0l2qOXTZRF4enSvm0nuf9Dr8QZkWkmEzh16qQ6dbZ2dTh6y2aXLtkml+Tp3JFonm4PyfmYABLNx82lNE8TQKJ5uj0k52MCSDQfN9cnpSHRnDcSieacmZYZDSXav45Klz/seFHye06RG0bO0hKfIGYQ2Ltnt4RXrZAT5eXq1NmkgkIzEjc8SySa4Q0kfWMJINGMbR2JG04AiWZ4A0nfWAJINGNbF5jEkWjOW41Ec85My4yGEu2K3A2yvXyFfGz4fTIu96Na4hPE2wTWrSlVlwV06txZQoWTJW/oMG8n7LPskGg+ayjlGEMAiWZMq0jUZwSQaD5rKOUYQwCJZkyrApsoEs1565FozplpmfGNPyyQmrRD0rVNunRvv1Vqaqvk34oWSJcOPbXEJ4j3CFSdPatOnVnvPBs9drwUhIqkew/67UankGhuUGdNCIgg0dgFEHCHABLNHe6sCgEkGnvA6wSQaM47hERzzkzLjMfef0yy266PxsrukCvTip7XEpsg3iJQVnZQibP9+/aoU2cFhcXStm1bbyUZsGyQaAFrOOV6hgASzTOtIJGAEUCiBazhlOsZAkg0z7SCRFoggERzvjWQaM6ZaZkx5/05ktN2g5y/2EeuGnyF9Og0UEb0uFxLbIJ4g8DmTRuUPEtLS1PibOSoMd5IjCwEicYmgIA7BJBo7nBnVQgg0dgDEHCHABLNHe6sap8AEs0+q8hIJJpzZlpmzHn/Mclpu14q60Ly2NWztcQkiPsELly4oMSZ9djmoMF5Sp716dPX/cTIoBEBJBobAgLuEECiucOdVSGARGMPQMAdAkg0d7izqn0CSDT7rJBo5dXOaWmcgUTTCNMDoY4fO6ouCrBOn4UKi9Vjm5kdO3ogM1JojgASjX0BAXcIINHc4c6qEECisQcg4A4BJJo73FnVPgEkmn1WSDQkmvPdwowPENi1Y7s6dVZVVaUuChg3YRKUDCCARDOgSaToSwJINF+2laIMIIBEM6BJpOhLAkg0X7bVV0Uh0Zy3k8c5nTPTMoOTaFowuhbEOnUWXrlCevTsqU6dDRw02LVcWNg5ASSac2bMgIAOAkg0HRSJAQHnBJBozpkxAwI6CCDRdFAkRjIJINGc00WiOWemZQYSTQvGlAapqDj1j/edlahTZ6GiyZKdnZPSHFhMDwEkmh6ORIGAUwJINKfEGA8BPQSQaHo4EgUCTgkg0ZwSY3yqCSDRnBNHojlnpmUGEk0LxpQE2b9vrzp1duzYUXVRgPXOMz7MJoBEM7t/ZG8uASSaub0jc7MJINHM7h/Zm0sAiWZu74KSORLNeaeRaM6ZaZmBRNOCMalBNqxbI+FVJZKZmalOnQ0dNiKp6xE8dQSQaKljzUoQaEgAicZ+gIA7BJBo7nBnVQgg0dgDXieARHPeISSac2ZaZiDRtGDUHqS6qkrC4RL12Gb+yNHq1FmPnr20r0NAdwkg0dzlz+rBJYBEC27vqdxdAkg0d/mzenAJINGC23tTKkeiOe8UEs05My0zkGhaMGoLcvjwISXO9uzeKQWhYvXYZkZGhrb4BPIWASSat/pBNsEhgEQLTq+p1FsEkGje6gfZBIcAEi04vTa1UiSa884h0Zwz0zIDiaYFY8JBtm7ZpORZXV2dEmejx4xLOCYBvE8Aieb9HpGhPwkg0fzZV6ryPgEkmvd7RIb+JIBE82df/VQVEs15N5FozplpmYFE04IxriC1tbVKnJWGS6Rf/4Hqkc2+/frHFYtJZhJAopnZN7I2nwASzfweUoGZBJBoZvaNrM0ngEQzv4d+rwCJ5rzDSDTnzLTMQKJpwegoyIny40qebdywTp06sx7b7NS5s6MYDPYHASSaP/pIFeYRQKKZ1zMy9gcBJJo/+kgV5hFAopnXs6BljERz3nEkmnNmWmYg0bRgtBVk184d6tRZ5enTSp5NmFhgax6D/EsAiebf3lKZtwkg0bzdH7LzLwEkmn97S2XeJoBE83Z/yE4EieZ8FyDRnDPTMgOJpgVjq0FWl65SJ8+6duumTp0NHpKX/EVZwQgCSDQj2kSSPiSARPNhUynJCAJINCPaRJI+JIBE82FTfVYSEs15Q5FozplpmYFE04LxA0EqK09fet/ZqhIZP7FAnTzr2rVbchYjqrEEkGjGto7EDSeARDO8gaRvLAEkmrGtI3HDCSDRDG9gANJHojlvMhLNOTMtM5BoWjBGgxzYv0+Js8OHyi6976ywWNq0aaN3EaL5hgASzTetpBDDCCDRDGsY6fqGABLNN62kEMMIINEMa1gA021Jou3eVyYz58yXw0fLG1EZnT9E5j0+XXKys6Kfb2lsZMDzcx+SgvH5KafbObOtnKmu1b4uEk07UnsBkWj2OMUatXH9WgmHV0r7jAwlzoaPGBlrCl+HgCDR2AQQcIcAEs0d7qwKASQaewAC7hBAornDnVXtE4gl0aZ98ZNy47VTVMDqczUyd/5iWbtppzzzxAwZMrCv+nxEojUcaz+D5I1EomlmW1ZerTmis3BINGe8Go4+d+6cuijAOnk2bHi+FISKpFfv3PgDMjNwBJBogWs5BXuEABLNI40gjcARQKIFruUU7BECSDSPNII0WiTgRKK1JMyQaK1vsLT6+vp6P+xBJJp5XTx65LCEV5XIzh3bLj2yGSqWDh06mFcIGbtOAInmegtIIKAEkGgBbTxlu04AieZ6C0ggoASQaAFtvEFle02iRU679erRTe6fenOU5KmKSpn1+HPy2U9cGT0ZF/ncpq27o+MaPm7KSTTNGxGJphloEsNt37ZFwitXSM2FCxIqLJYxY8cncTVCB4EAEi0IXaZGLxJAonmxK+QUBAJItCB0mRq9SACJ5sWukFNDAk4lWum6rXLfI9+Thu8503kSza5Eiwi00Lj8RrLtp6/9Rq760CT1qCkSTfNeR6JpBqo53MWLF6O3bOb26SuhosnSr/8AzasQLqgEkGhB7Tx1u00AieZ2B1g/qASQaEHtPHW7TQCJ5nYHWD8WAScSrSVx1drFArMfuCN6cixWLtbX7Uo0S+Y9MW9Ro3ezNY2PRLND3MEYJJoDWCkcevLkCXXqbP3a1dFbNrOyuqQwA5YKAgEkWhC6TI1eJIBE82JXyCkIBJBoQegyNXqRABLNi10hp4YEYkm0prdzNnfTphsn0SJrduva5QO3hUbqQ6Jp3utINM1AEwy3Z/cuCa9aIadOnlSnziZOCiUYkekQaJkAEo3dAQF3CCDR3OHOqhBAorEHIOAOASSaO9xZ1T6BWBItcuNm5BSaFXne49MlJzsruogbEs1aPPJoacNqG558Q6LZ3we2RiLRbGFK+qC1a0rVY5tZXbpIqHCyDMkbmvQ1WQACSDT2AATcIYBEc4c7q0IAicYegIA7BJBo7nBnVfsE7Eo0K2JEln3syqJG7yFzS6I1rfJHC9+UV37xTvR9bUg0+/vA1kgkmi1MSRl09swZderMkmdjx01Qj212694jKWsRFALNEUCisS8g4A4BJJo73FkVAkg09gAE3CGARHOHO6vaJ+BEollRI6e/Gp740inRrDUsGXb0+Al5ZMYdktkhQxXT3O2cTatsOgaJZn8f2BqJRLOFSeugsoMH1PvODh7cr06dWfIsPT1d6xoEg4AdAkg0O5QYAwH9BJBo+pkSEQJ2CCDR7FBiDAT0E0Ci6WdKRL0EnEq0iORqeOJLt0Rb8t4yefnnv45eGhCRY5u27paIvLNk3t9XbWh0Iq7pZQNINL17RZBomoG2Em7TxvXq1JklzCxxlj9ydOoWZyUINEMAica2gIA7BJBo7nBnVQgg0dgDEHCHABLNHe6sap9APBItcoPmu0tL1KOTXXOyZOac+RJ5f5r91VseGXk00xoxOn+IzJl1l7qN87OfuFLd9tlQrEWi5Pbq3ui2TiSajk40iIFE0wy0SbiamholzqzHNofkDVPyLDe3T3IXJToEbBJAotkExTAIaCaARNMMlHAQsEkAiWYTFMMgoJkAEk0zUMJpJ9CSRNO+kAsBkWiaoSPRNAP9R7hjR49IaXilbN2ySYkz67HNzMzM5CxGVAjESQCJFic4pkEgQQJItAQBMh0CcRJAosUJjmkQSJAAEi1BgExPOoFUSDTr8cwnn10cs5aPX13c6D1oMSfEGIBES5Rgk/lINL1Ad+7Ypt53du7cOSkIFcnY8RP1LkA0CGgkgETTCJNQEHBAAInmABZDIaCRABJNI0xCQcABASSaA1gMdYVAKiSaK4WJCBJNM3kkmh6gYeuRzZUrpFev3hIqmiwDBg7SE5goEEgiASRaEuESGgKtEECisT0g4A4BJJo73FkVAkg09oDXCSDRnHeosrrW0aS0+vr6ekczPDoYiRZ/Y06dOqned7a6dJU6dWbJsy5dsuMPyEwIpJgAEi3FwFkOAv8ggERjK0DAHQJINHe4syoEkGjsAa8TQKI57xASzTkzLTPmvP+Y5LRdL5V1IXns6tlaYiY7yL69e9RFAeXHj6v3nVkCjQ8ImEgAiWZi18jZDwSQaH7oIjWYSACJZmLXyNkPBJBofuiiv2tAojnvLxLNOTMtM0ySaOvXrlaXBXTs2FFdFJA3bLgWBgSBgFsEkGhukWfdoBNAogV9B1C/WwSQaG6RZ92gE0CiBX0HeL9+JJrzHiHRnDPTMsPrEq3q7FkpDZeI9c6zUaPHqlNnPXr20lI7QSDgNgEkmtsdYP2gEkCiBbXz1O02ASSa2x1g/aASQKIFtfPm1I1Ec94rJJpzZlpmeFWiHTpUpt53tm/vbikIFavHNtu1a6elZoJAwCsEkGhe6QR5BI0AEi1oHaderxBAonmlE+QRNAJItKB13Lx6kWjOe4ZEc85MywyvSbQtmzcqeWbdG2GJM+v0GR8Q8CsBJJpfO0tdXieARPN6h8jPrwSQaH7tLHV5nQASzesdIj8kmvM9gERzzkzLDC9ItNraWgmvXKEe2xwwcLCSZ3379tNSH0Eg4GUCSDQvd4fc/EwAiebn7lKblwkg0bzcHXLzMwEkmp+764/akGjO+4hEc85Myww3JVr58WPqooBNG9ZJqGiyemyzY6dOWuoiCARMIIBEM6FL5OhHAkg0P3aVmkwggEQzoUvk6EcCSDQ/dtVfNSHRnPcTieacmZYZbki0XTu2SzhcImfPnFEXBYyfWKClFoJAwDQCSDTTOka+fiGARPNLJ6nDNAJINNM6Rr5+IYBE80sn/VuHCRJt974ymTlnvsyZdZcUjM+33YzOmW3lTHVtzPFO4yPRYiJNzoBUSjTr1Jn1vrPuPXqoU2eDBg9JTlFEhYAhBJBohjSKNH1HAInmu5ZSkCEEkGiGNIo0fUcAiea7lvquICSaCBLN5rYuK6+2OTI5w5It0U6frlDizPozsaBQve8sJ6drcoohKgQMI4BEM6xhpOsbAkg037SSQgwjgEQzrGGk6xsCSDTftNK3hSDRkGi2N7dfJdqB/fvUZQFHjhyWUGGxkmdpaWm2uTAQAkEggEQLQpep0YsEkGhe7Ao5BYEAEi0IXaZGLxJAonmxK+TUkIDXJVrklNjho+WNGvf83Ieij3YueW+ZPPns4ujXb7/lOrl/6s0SeZyz+lyNzJ2/WN5dWhIdk9uruzzzxAz1z9ajoq3Fb7pjeJzTpe8h3SfRNqxboy4LaN++vbosYNhw+88Ku4SAZSHgGgEkmmvoWTjgBJBoAd8AlO8aASSaa+hZOOAEkGgB3wAGlN+cRCur2C4XLp5PefZ9uwyTdukdPrBua49b/mjhmxJev1XmPT5dcrKz5FRFpcx6/DkJjcuXh++/TY6drFICzfp4ZMYdktkhQ/1/S7z1y+2pRByPc9pstR9OolVXV0tp+NIjmyPyR6nLAnr26m2TAMMgEFwCSLTg9p7K3SWARHOXP6sHlwASLbi9p3J3CSDR3OXP6rEJNCfRnv/b/XLszP7YkzWP+OrlP5RenQfalmil67bKE/MWqRNlQwb2jc6zPv/DRW/Kgv+cKQcOn4x5KQESzWYjTZZoRw4fkvCqEtm9a4e6KMB6ZNM6gcYHBCBgjwASzR4nRkFANwEkmm6ixIOAPQJINHucGAUB3QSQaLqJEk83geYk2i83/EAqqo/qXipmvE+P/ZrkZPayLdGsU2hHj59odMLMmmxJse/MWyRPffNuad8+U51MO3Hy9AdkW2QhJFrM1lwaYKJE27Z1s3rfWW1dnXrf2egx42xWyzAIQKAhASQa+wEC7hBAornDnVUhgERjD0DAHQJINHe4s6p9Al5/J1pEilnvLZsz667oe9Csz1sS7ZVfvNNisYueeVhG5Q+LPq7Z8L1nkfemtRa/pcC8E83+/tI60u470erq6qK3bPbt11+978z6Xz4gAIH4CSDR4mfHTAgkQgCJlgg95kIgfgJItPjZMRMCiRBAoiVCj7mpIGC6RGvuJFqEW+RigaYcIxcRzH7gDrnx2im8E60hoLfe/rN86+mF6lM3XHOZfPvrU6MvkvP6SbSTJ8rVqbMN69eqxzWtP507Z6Xi+4g1IOB7Akg037eYAj1KAInm0caQlu8JINF832IK9CgBJJpHG0NaUQImS7SW3okWS6JFbuvs1aObusWTxzn/QWzlmi3y/QWvywtzZ0rX7CyZt+B19ZVZ935O/a9XJdruXTslvGqFnK6oUKfOJkws4FscAhDQTACJphko4SBgkwASzSYohkFAMwEkmmaghIOATQJINJugGOYaARMkWsMbNy3pFfmIyLD9h45Fb+e0vmZ9fuHPl8g9X7peXSzwxpL3Zfq0W6MHqppKs5bit9QU3z7OaUmzwQNy5abrr1S1N5VqXpNoa1aH1WOb2Tk5EiqcLIOH5Ln2jcTCEPA7ASSa3ztMfV4lgETzamfIy+8EkGh+7zD1eZUAEs2rnSGvCAETJJqVa0R8Rd5r9vzch6LvR4s8ntmwq9Y7zx6+/zY5drJK5s5fLO8uLWnU9IbzY8Vvult8KdEs8/jYdxfKZaHRUYm2c2+ZzH7qJXny0btl6KC+Ull1wdXvnFm/nS2dLq6VHRt6yISLw2TSpAIpKpos3bp3dzUvFodAEAhYv0ycq6mTixfrg1AuNULAMwQ6ZKRL7cV6qa296JmcSAQCQSDQrm0bSW+Tpv7u4wMCEEgdgTZt0sT6u6/qXG3qFmUlCDggkNGujYPRZg3NaNtGapLwM2fNBWc/x6bV19d7/rfOiES79carpWjiSNXpphLN7fY/u+x/5I9Lfy0jeo6Sp+9+VNq08e/mdZs160MAAhCAAAQgAAEIQAACEIAABCAAgVQTMEqiefkkWvt26WJZ3/MX6sSpyUx101kPAn4jwEk0v3WUekwhwEk0UzpFnn4jwEk0v3WUekwhwEk0UzoV3Dw5iea89079jRESzcLg9XeidenYTqwrV09XXZAz1Rzvdb51mQGB+AnwTrT42TETAokQ4J1oidBjLgTiJ8A70eJnx0wIJEKAd6IlQo+5qSBgyjvR4mFh+ZZkuBZfvhPNAuz12zmRaPF8GzAHAnoIINH0cCQKBJwSQKI5JcZ4COghgETTw5EoEHBKAInmlBjjU00AieacuG8lmoXirbf/LN96eqGicsM1l8m3vz41eq2p27dzItGcb1ZmQEAXASSaLpLEgYAzAkg0Z7wYDQFdBJBoukgSBwLOCCDRnPFidOoJINGcM/e1RGsNBxLN+WZhBgT8QgCJ5pdOUodpBJBopnWMfP1CAInml05Sh2kEkGimdSx4+SLRnPccieacmZYZnETTgpEgEIiLABItLmxMgkDCBJBoCSMkAATiIoBEiwsbkyCQMAEkWsIICZBkAkg054CRaM6ZaZmBRNOCkSAQiIsAEi0ubEyCQMIEkGgJIyQABOIigESLCxuTIJAwASRawggJkGQCSDTngJFozplpmYFE04KRIBCIiwASLS5sTIJAwgSQaAkjJAAE4iKARIsLG5MgkDABJFrCCAmQZAJINOeAkWjOmWmZgUTTgpEgEIiLABItLmxMgkDCBJBoCSMkAATiIoBEiwsbkyCQMAEkWsIICZBkAkg054CRaM6ZaZmBRNOCkSAQiIsAEi0ubEyCQMIEkGgJIyQABOIigESLCxuTIJAwASRawggJAIG4CfTp1kEOnTgX93xdE9Pq6+vrdQVzMw63c7pJn7Uh4C4BJJq7/Fk9uASQaMHtPZW7SwCJ5i5/Vg8uASRacHtP5e4TQKJp7gESTTNQwkHAIPzUVo4AAAspSURBVAJINIOaRaq+IoBE81U7KcYgAkg0g5pFqr4igETzVTspxjACSDTNDUOiaQZKOAgYRACJZlCzSNVXBLI7tZMLtRel6nydr+qiGAh4nQASzesdIj+/EkCi+bWz1GUCASSa5i4h0TQDJRwEDCKARDOoWaTqKwJINF+1k2IMIoBEM6hZpOorAkg0X7WTYgwjgEQzrGGkCwEIQAACEIAABCAAAQhAAAIQgAAEIBBcAr65WCC4LaRyCEAAAhCAAAQgAAEIQAACEIAABCAAgWQTQKIlmzDxIQABCEAAAhCAAAQgAAEIQAACEIAABIwngEQzvoUUAAEIQAACEIAABCAAAQhAAAIQgAAEIJBsAkg0DYRPVlTKVx95RtZv3qWi/fTZR6Ro4kgNkQkBAQhYBKrP1chj310ov/nDcgXkO9+YKjddf2WzcJqO5XuSPQSB+Ak4+d5rusq8Ba9LyZot8sLcmdI1Oyv+JJgJgYASeOvtP8u3nl6oqr/hmsvk21+fKpkdMlqkkcj3a0ARUzYEmiWwcs0WufOBuepr40blxfx7rOH3ap/e3WXB0w/K0EF9oQsBCGgmYP1sOXhAbou/B2persVwSLQESUd+YLksNFo1c+feMpn91Evy5KN38y/PBNkyHQIRAta/MK2PWfd+TiLS+sF7P9esrLa+vuh/fitfveMz6pcN6wehR596iR9o2E4QiIOAk++9huGteS+/+ratXz7iSIspEPA9Aevvru8veD36y3vD78Xmim/686jvAVEgBJJEoOnvcpYgWx7e1KLEbvq92vSfk5QmYSEQKAINRXVrhylSBQWJliBp61+0333+f+Spb96t/ks7P8QkCJTpEGhCwJJij/7HS/L1+z4fFdOxfploGCKWdAM4BCDQPIF4v/esH3T27D8sV0we30gCwBkCELBPoOl/bY/1i3nk+876j018QAAC8RNo+r0U64BEU8kWa3z8mTETAhDgJJpP9kBzP9Q4+QXfJxgoAwJJI9DcDyOx/qtgw2T4YSZprSGwzwnE873X8Htzw5ZdSDSf7xHKSw6B5v6DbKy/yyKnPyMZ8UhZcnpDVP8TaPp7XKz/GBv5+sC+vdRptd/+cbn6D0kIbf/vFSpMPQEkWuqZJ2VFS6K9sWRpoyO+SLSkoCZoQAk0Pe1pYbAr0TgZGtBNQ9laCDj93mv692GskzNakiQIBHxIIPJ31603Xh19bUFrEq258dbfk68vWRrzXU4+xEdJEEiIQNNf0mNJNGsxa87WnftlWcl6QWAnhJ/JEGiVABLNJxuEk2g+aSRleJZAPKdhrGIiv1Tk9urGfw30bHdJzMsEnH7vNXxfRcO67LyU2cscyA0CqSbg9CRacxLNzi/+qa6L9SBgAgGnJ9GaPv7Ju3hN6DI5mkoAiWZq55rkzTvRfNJIyvAsgXjey4RA82w7ScwgAvF87zUsj5NoBjWbVD1HwOk70Zo7PdP0faKeK5KEIOBBAk7fiRbPyTUPlk1KEDCCABLNiDbFTpLbOWMzYgQEEiXQ2g2Bkf/a/rkbr1Y35PIIZ6K0mQ+BfxKIdTun9fXDR080e2sZEo2dBIH4CcS6nbPp45pNT7/Yfe1B/BkyEwL+JBDrdk7r6/d+4/vy1KN3q8etY30v+pMSVUHAHQJINHe4J2XVyC/x6zfvUvF/+uwj0XdYJGVBgkIgYAQiYuw3f1iuKm94tXFTiRb54ebQkfJGlKZ94Xoe6wzYvqHcxAm09r1nRUeiJc6YCBBoiUDDR6RvuOayRrK6uXeeNRzPY9TsKwjET8CS0nc+MFcFaPq91FSiRf4ufPnVt9V43okWP3dmQsDO34de+D5Lq6+vr6ddEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQMsEkGjsDghAAAIQgAAEIAABCEAAAhCAAAQgAAEIxCCARGOLQAACEIAABCAAAQhAAAIQgAAEIAABCEAAicYegAAEIAABCEAAAhCAAAQgAAEIQAACEIBAYgQ4iZYYP2ZDAAIQgAAEIAABCEAAAhCAAAQgAAEIBIAAEi0ATaZECEAAAhCAAAQgAAEIQAACEIAABCAAgcQIINES48dsCEAAAhCAAAQgAAEIQAACEIAABCAAgQAQQKIFoMmUCAEIQAACEIAABCAAAQhAAAIQgAAEIJAYASRaYvyYDQEIQAACEIAABCAAAQhAAAIQgAAEIBAAAki0ADSZEiEAAQhAAAIQgAAEIAABCEAAAhCAAAQSI4BES4wfsyEAAQhAAAIQgAAEIAABCEAAAhCAAAQCQACJFoAmUyIEIAABCEAAAhCAAAQgAAEIQAACEIBAYgSQaInxYzYEIAABCEAAAhCAAAQgAAEIQAACEIBAAAgg0QLQZEqEAAQgAAEIQAACEIAABCAAAQhAAAIQSIwAEi0xfsyGAAQgAAEIQAACEIAABCAAAQhAAAIQCAABJFoAmkyJEIAABCAAAQhAAAIQgAAEIAABCEAAAokRQKIlxo/ZEIAABCAAAQhAAAIQgAAEIAABCEAAAgEggEQLQJMpEQIQgAAEIAAB/xI4WVEpX33kGVm/eVezRX7nG1PlpuuvlHkLXpeXX3270Zg+vbvLgqcflKGD+qrP79xbJvd+4/ty6Eh5o3HjRuXJC3NnStfsLP+CpDIIQAACEIAABCAQgwASjS0CAQhAAAIQgAAEDCYQkWjFE0fKrHs/12IllkQrWbOlkQx76+0/y7eeXig/ffYRKZo4MirR7rvj00q8WR/V52rkse8ulNIN2xsJN4ORkToEIAABCEAAAhCIiwASLS5sTIIABCAAAQhAAALeIJCIRIsIMquSb399qpQdOa5OojWUaNbXIifUmn7eGwTIAgIQgAAEIAABCKSGABItNZxZBQIQgAAEIAABCCSFQCISzUqo4Qm1E6cqkWhJ6RJBIQABCEAAAhDwAwEkmh+6SA0QgAAEIAABCASWQCok2so1W+TOB+ZGH/sMLGwKhwAEIAABCEAg0ASQaIFuP8VDAAIQgAAEIGA6gdYuFpj2heuj70lr7p1okcc5c3t1U+Oae2zTrqQznSP5QwACEIAABCAAgVgEkGixCPF1CEAAAhCAAAQg4GECdiVXcxLN+tzbf1wRvTCgpds5IxcPeBgDqUEAAhCAAAQgAIGkE0CiJR0xC0AAAhCAAAQgAIHkEXAi0V5+9e1GiYwbldfots6mJ9Eisa1JL8ydKV2zs5JXCJEhAAEIQAACEICAxwkg0TzeINKDAAQgAAEIQAACrRFwItFK1mxpVYY19zhn5HPX/8vk6KOhdAQCEIAABCAAAQgEkQASLYhdp2YIQAACEIAABHxDINkSzQIVuVjgO9+YKjddf6Vv2FEIBCAAAQhAAAIQcEIAieaEFmMhAAEIQAACEICAxwikQqJZJVvvT7MeB+X9aB7bAKQDAQhAAAIQgEDKCCDRUoaahSAAAQhAAAIQgIB+AqmSaJGbPH/zh+WINP1tJCIEIAABCEAAAgYQQKIZ0CRShAAEIAABCEAAAhCAAAQgAAEIQAACEHCXABLNXf6sDgEIQAACEIAABCAAAQhAAAIQgAAEIGAAASSaAU0iRQhAAAIQgAAEIAABCEAAAhCAAAQgAAF3CSDR3OXP6hCAAAQgAAEIQAACEIAABCAAAQhAAAIGEECiGdAkUoQABCAAAQhAAAIQgAAEIAABCEAAAhBwlwASzV3+rA4BCEAAAhCAAAQgAAEIQAACEIAABCBgAAEkmgFNIkUIQAACEIAABCAAAQhAAAIQgAAEIAABdwkg0dzlz+oQgAAEIAABCEAAAhCAAAQgAAEIQAACBhD4/9RL4ASuTAFHAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "atom.plot_roc()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }