plot_det
method plot_det(models=None, rows="test", target=0, title=None, legend="upper right", figsize=(900, 600), filename=None, display=True)[source]
Plot the Detection Error Tradeoff curve.
Read more about DET in sklearn's documentation. Only available for binary classification tasks.
| Parameters | models: int, str, Model, segment, sequence or None, default=None 
Models to plot. If None, all models are selected.
 rows: str, sequence or dict, default="test"
Selection of rows on which to calculate the metric.
 target: int or str, default=0
 
Target column to look at. Only for multilabel tasks.
 title: str, dict or None, default=None
Title for the plot.
 legend: str, dict or None, default="upper right"
 
Legend for the plot. See the user guide for
an extended description of the choices.
 figsize: tuple, default=(900, 600)
 
Figure's size in pixels, format as (x, y).
 filename: str, Path or None, default=None
Save the plot using this name. Use "auto" for automatic
naming. The type of the file depends on the provided name
(.html, .png, .pdf, etc...). If  display: bool or None, default=Truefilename has no file type,
the plot is saved as html. If None, the plot is not saved.
Whether to render the plot. If None, it returns the figure.
  | 
| Returns | go.Figure or None 
Plot object. Only returned if  display=None.
 | 
See Also
Plot the cumulative gains curve.
Plot the Receiver Operating Characteristics curve.
Plot the precision-recall curve.
Example
>>> from atom import ATOMClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=1000, flip_y=0.2, random_state=1)
>>> atom = ATOMClassifier(X, y, random_state=1)
>>> atom.run(["LR", "RF"])
>>> atom.plot_det()