{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example: Multiclass classification\n", "------------------------------------\n", "\n", "This example shows how to compare the performance of three models on a multiclass classification task.\n", "\n", "Import the wine dataset from [sklearn.datasets](https://scikit-learn.org/stable/datasets/index.html#breast-cancer-wisconsin-diagnostic-dataset). This is a small and easy to train dataset whose goal is to predict wines into three groups (which cultivator it's from) using features based on the results of chemical analysis." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load the data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "UserWarning: The pandas version installed (1.5.3) does not match the supported pandas version in Modin (1.5.2). This may cause undesired side effects!\n" ] } ], "source": [ "# Import packages\n", "from sklearn.datasets import load_wine\n", "from atom import ATOMClassifier" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
alcoholmalic_acidashalcalinity_of_ashmagnesiumtotal_phenolsflavanoidsnonflavanoid_phenolsproanthocyaninscolor_intensityhueod280/od315_of_diluted_winesproline
014.231.712.4315.6127.02.803.060.282.295.641.043.921065.0
113.201.782.1411.2100.02.652.760.261.284.381.053.401050.0
213.162.362.6718.6101.02.803.240.302.815.681.033.171185.0
314.371.952.5016.8113.03.853.490.242.187.800.863.451480.0
413.242.592.8721.0118.02.802.690.391.824.321.042.93735.0
\n", "
" ], "text/plain": [ " alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols \\\n", "0 14.23 1.71 2.43 15.6 127.0 2.80 \n", "1 13.20 1.78 2.14 11.2 100.0 2.65 \n", "2 13.16 2.36 2.67 18.6 101.0 2.80 \n", "3 14.37 1.95 2.50 16.8 113.0 3.85 \n", "4 13.24 2.59 2.87 21.0 118.0 2.80 \n", "\n", " flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \\\n", "0 3.06 0.28 2.29 5.64 1.04 \n", "1 2.76 0.26 1.28 4.38 1.05 \n", "2 3.24 0.30 2.81 5.68 1.03 \n", "3 3.49 0.24 2.18 7.80 0.86 \n", "4 2.69 0.39 1.82 4.32 1.04 \n", "\n", " od280/od315_of_diluted_wines proline \n", "0 3.92 1065.0 \n", "1 3.40 1050.0 \n", "2 3.17 1185.0 \n", "3 3.45 1480.0 \n", "4 2.93 735.0 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load data\n", "X, y = load_wine(return_X_y=True, as_frame=True)\n", "\n", "# Let's have a look\n", "X.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run the pipeline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<< ================== ATOM ================== >>\n", "Algorithm task: multiclass classification.\n", "Parallel processing with 16 cores.\n", "Parallelization backend: loky\n", "\n", "Dataset stats ==================== >>\n", "Shape: (178, 14)\n", "Train set size: 143\n", "Test set size: 35\n", "-------------------------------------\n", "Memory: 19.35 kB\n", "Scaled: False\n", "Outlier values: 12 (0.6%)\n", "\n", "\n", "Training ========================= >>\n", "Models: LR, LDA, RF\n", "Metric: roc_auc_ovr\n", "\n", "\n", "Running hyperparameter tuning for LogisticRegression...\n", "| trial | penalty | C | solver | max_iter | l1_ratio | roc_auc_ovr | best_roc_auc_ovr | time_trial | time_ht | state |\n", "| ----- | ------- | ------- | ------- | -------- | -------- | ----------- | ---------------- | ---------- | ------- | -------- |\n", "| 0 | l1 | 0.0054 | saga | 480 | --- | 0.5 | 0.5 | 0.870s | 0.870s | COMPLETE |\n", "| 1 | l1 | 0.122 | saga | 380 | --- | 0.9951 | 0.9951 | 0.509s | 1.379s | COMPLETE |\n", "| 2 | l2 | 0.0071 | sag | 720 | --- | 1.0 | 1.0 | 0.391s | 1.770s | COMPLETE |\n", "| 3 | l1 | 87.9641 | libli.. | 920 | --- | 1.0 | 1.0 | 0.020s | 1.790s | COMPLETE |\n", "| 4 | l2 | 0.0114 | sag | 630 | --- | 1.0 | 1.0 | 0.371s | 2.161s | COMPLETE |\n", "| 5 | l2 | 0.0018 | sag | 920 | --- | 1.0 | 1.0 | 0.366s | 2.528s | COMPLETE |\n", "| 6 | l2 | 43.4053 | sag | 780 | --- | 1.0 | 1.0 | 0.379s | 2.907s | COMPLETE |\n", "| 7 | l2 | 2.0759 | libli.. | 470 | --- | 1.0 | 1.0 | 0.019s | 2.926s | COMPLETE |\n", "| 8 | None | --- | sag | 110 | --- | 1.0 | 1.0 | 0.391s | 3.317s | COMPLETE |\n", "| 9 | l1 | 46.0233 | saga | 740 | --- | 1.0 | 1.0 | 0.557s | 3.874s | COMPLETE |\n", "| 10 | None | --- | lbfgs | 280 | --- | 1.0 | 1.0 | 0.525s | 4.399s | COMPLETE |\n", "| 11 | l1 | 6.8102 | libli.. | 940 | --- | 1.0 | 1.0 | 0.020s | 4.419s | COMPLETE |\n", "| 12 | l2 | 0.3324 | newto.. | 780 | --- | 1.0 | 1.0 | 0.368s | 4.788s | COMPLETE |\n", "| 13 | l1 | 0.0012 | libli.. | 1000 | --- | 0.5 | 1.0 | 0.020s | 4.808s | COMPLETE |\n", "Hyperparameter tuning ---------------------------\n", "Best trial --> 2\n", "Best parameters:\n", " --> penalty: l2\n", " --> C: 0.0071\n", " --> solver: sag\n", " --> max_iter: 720\n", "Best evaluation --> roc_auc_ovr: 1.0\n", "Time elapsed: 4.808s\n", "Fit ---------------------------------------------\n", "Train evaluation --> roc_auc_ovr: 0.9991\n", "Test evaluation --> roc_auc_ovr: 0.9977\n", "Time elapsed: 0.362s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> roc_auc_ovr: 0.9984 ± 0.001\n", "Time elapsed: 1.770s\n", "-------------------------------------------------\n", "Total time: 6.940s\n", "\n", "\n", "Running hyperparameter tuning for LinearDiscriminantAnalysis...\n", "| trial | solver | shrinkage | roc_auc_ovr | best_roc_auc_ovr | time_trial | time_ht | state |\n", "| ----- | ------- | --------- | ----------- | ---------------- | ---------- | ------- | -------- |\n", "| 0 | lsqr | 0.9 | 0.9221 | 0.9221 | 0.017s | 0.017s | COMPLETE |\n", "| 1 | eigen | 1.0 | 0.9121 | 0.9221 | 0.011s | 0.028s | COMPLETE |\n", "| 2 | eigen | 1.0 | 0.9121 | 0.9221 | 0.001s | 0.029s | COMPLETE |\n", "| 3 | lsqr | 0.7 | 0.8638 | 0.9221 | 0.009s | 0.038s | COMPLETE |\n", "| 4 | eigen | 0.7 | 0.9019 | 0.9221 | 0.010s | 0.048s | COMPLETE |\n", "| 5 | lsqr | auto | 1.0 | 1.0 | 0.010s | 0.058s | COMPLETE |\n", "| 6 | eigen | 1.0 | 0.9121 | 1.0 | 0.001s | 0.059s | COMPLETE |\n", "| 7 | lsqr | 1.0 | 0.9445 | 1.0 | 0.009s | 0.068s | COMPLETE |\n", "| 8 | svd | --- | 1.0 | 1.0 | 0.008s | 0.076s | COMPLETE |\n", "| 9 | svd | --- | 1.0 | 1.0 | 0.001s | 0.077s | COMPLETE |\n", "| 10 | lsqr | auto | 1.0 | 1.0 | 0.002s | 0.079s | COMPLETE |\n", "| 11 | svd | --- | 1.0 | 1.0 | 0.002s | 0.081s | COMPLETE |\n", "| 12 | svd | --- | 1.0 | 1.0 | 0.002s | 0.083s | COMPLETE |\n", "| 13 | svd | --- | 1.0 | 1.0 | 0.002s | 0.085s | COMPLETE |\n", "Hyperparameter tuning ---------------------------\n", "Best trial --> 5\n", "Best parameters:\n", " --> solver: lsqr\n", " --> shrinkage: auto\n", "Best evaluation --> roc_auc_ovr: 1.0\n", "Time elapsed: 0.085s\n", "Fit ---------------------------------------------\n", "Train evaluation --> roc_auc_ovr: 1.0\n", "Test evaluation --> roc_auc_ovr: 1.0\n", "Time elapsed: 0.014s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> roc_auc_ovr: 0.9998 ± 0.0005\n", "Time elapsed: 0.037s\n", "-------------------------------------------------\n", "Total time: 0.136s\n", "\n", "\n", "Running hyperparameter tuning for RandomForest...\n", "| trial | n_estimators | criterion | max_depth | min_samples_split | min_samples_leaf | max_features | bootstrap | max_samples | ccp_alpha | roc_auc_ovr | best_roc_auc_ovr | time_trial | time_ht | state |\n", "| ----- | ------------ | --------- | --------- | ----------------- | ---------------- | ------------ | --------- | ----------- | --------- | ----------- | ---------------- | ---------- | ------- | -------- |\n", "| 0 | 210 | gini | 10 | 17 | 20 | 0.5 | False | --- | 0.0 | 0.9803 | 0.9803 | 0.318s | 0.318s | COMPLETE |\n", "| 1 | 380 | gini | 4 | 15 | 3 | 0.9 | False | --- | 0.01 | 0.9816 | 0.9816 | 0.350s | 0.668s | COMPLETE |\n", "| 2 | 380 | entropy | 6 | 2 | 13 | 0.9 | False | --- | 0.03 | 0.9944 | 0.9944 | 0.357s | 1.025s | COMPLETE |\n", "| 3 | 470 | gini | 11 | 9 | 18 | None | True | 0.6 | 0.025 | 0.9569 | 0.9944 | 0.501s | 1.527s | COMPLETE |\n", "| 4 | 100 | entropy | 12 | 14 | 6 | 0.9 | False | --- | 0.035 | 1.0 | 1.0 | 0.143s | 1.670s | COMPLETE |\n", "| 5 | 470 | entropy | 13 | 11 | 1 | None | True | 0.6 | 0.01 | 1.0 | 1.0 | 0.484s | 2.154s | COMPLETE |\n", "| 6 | 250 | gini | 14 | 13 | 17 | 0.7 | True | None | 0.02 | 1.0 | 1.0 | 0.268s | 2.422s | COMPLETE |\n", "| 7 | 220 | gini | 5 | 10 | 7 | 0.5 | True | 0.9 | 0.035 | 0.9981 | 1.0 | 0.273s | 2.695s | COMPLETE |\n", "| 8 | 130 | entropy | 4 | 6 | 11 | 0.9 | False | --- | 0.03 | 1.0 | 1.0 | 0.193s | 2.889s | COMPLETE |\n", "| 9 | 370 | gini | 12 | 2 | 4 | 0.5 | False | --- | 0.02 | 0.9916 | 1.0 | 0.317s | 3.206s | COMPLETE |\n", "| 10 | 10 | entropy | None | 20 | 7 | log2 | False | --- | 0.035 | 1.0 | 1.0 | 0.041s | 3.247s | COMPLETE |\n", "| 11 | 70 | entropy | 13 | 12 | 1 | None | True | 0.5 | 0.01 | 0.9928 | 1.0 | 0.117s | 3.364s | COMPLETE |\n", "| 12 | 500 | entropy | 9 | 7 | 7 | 0.6 | True | 0.6 | 0.01 | 1.0 | 1.0 | 0.392s | 3.756s | COMPLETE |\n", "| 13 | 140 | entropy | 16 | 16 | 1 | 0.8 | True | 0.5 | 0.0 | 1.0 | 1.0 | 0.204s | 3.961s | COMPLETE |\n", "Hyperparameter tuning ---------------------------\n", "Best trial --> 4\n", "Best parameters:\n", " --> n_estimators: 100\n", " --> criterion: entropy\n", " --> max_depth: 12\n", " --> min_samples_split: 14\n", " --> min_samples_leaf: 6\n", " --> max_features: 0.9\n", " --> bootstrap: False\n", " --> ccp_alpha: 0.035\n", "Best evaluation --> roc_auc_ovr: 1.0\n", "Time elapsed: 3.961s\n", "Fit ---------------------------------------------\n", "Train evaluation --> roc_auc_ovr: 0.9993\n", "Test evaluation --> roc_auc_ovr: 1.0\n", "Time elapsed: 0.149s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> roc_auc_ovr: 0.9936 ± 0.0067\n", "Time elapsed: 0.639s\n", "-------------------------------------------------\n", "Total time: 4.749s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 12.149s\n", "-------------------------------------\n", "LogisticRegression --> roc_auc_ovr: 0.9984 ± 0.001\n", "LinearDiscriminantAnalysis --> roc_auc_ovr: 0.9998 ± 0.0005 !\n", "RandomForest --> roc_auc_ovr: 0.9936 ± 0.0067\n" ] } ], "source": [ "atom = ATOMClassifier(X, y, n_jobs=-1, verbose=2, random_state=1)\n", "\n", "# Fit the pipeline with the selected models\n", "atom.run(\n", " models=[\"LR\",\"LDA\", \"RF\"],\n", " metric=\"roc_auc_ovr\",\n", " n_trials=14,\n", " n_bootstrap=5,\n", " errors=\"raise\",\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Analyze the results" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
score_httime_htscore_trainscore_testtime_fitscore_bootstraptime_bootstraptime
LR1.04.8077410.99910.99770.3623310.9984131.7700846.940156
LDA1.00.0849911.00001.00000.0140120.9997730.0370340.136037
RF1.03.9606780.99931.00000.1491790.9936130.6391354.748992
\n", "
" ], "text/plain": [ " score_ht time_ht score_train score_test time_fit score_bootstrap \\\n", "LR 1.0 4.807741 0.9991 0.9977 0.362331 0.998413 \n", "LDA 1.0 0.084991 1.0000 1.0000 0.014012 0.999773 \n", "RF 1.0 3.960678 0.9993 1.0000 0.149179 0.993613 \n", "\n", " time_bootstrap time \n", "LR 1.770084 6.940156 \n", "LDA 0.037034 0.136037 \n", "RF 0.639135 4.748992 " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "atom.results" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
precision_macrorecall_macrojaccard_weighted
LR0.94290.94840.8924
LDA0.96670.97620.9457
RF0.87990.89150.7968
\n", "
" ], "text/plain": [ " precision_macro recall_macro jaccard_weighted\n", "LR 0.9429 0.9484 0.8924\n", "LDA 0.9667 0.9762 0.9457\n", "RF 0.8799 0.8915 0.7968" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Show the score for some different metrics\n", "atom.evaluate([\"precision_macro\", \"recall_macro\", \"jaccard_weighted\"])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "fill": "tonexty", "fillcolor": "rgba(0, 98, 98, 0.2)", "fillpattern": { "shape": "" }, "legendgroup": "RF", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF" }, "line": { "color": "rgb(0, 98, 98)", "width": 2 }, "mode": "lines", "name": "target=0", "showlegend": true, "type": "scatter", "x": [ 0, 0.010101010101010102, 0.020202020202020204, 0.030303030303030304, 0.04040404040404041, 0.05050505050505051, 0.06060606060606061, 0.07070707070707072, 0.08080808080808081, 0.09090909090909091, 0.10101010101010102, 0.11111111111111112, 0.12121212121212122, 0.13131313131313133, 0.14141414141414144, 0.15151515151515152, 0.16161616161616163, 0.17171717171717174, 0.18181818181818182, 0.19191919191919193, 0.20202020202020204, 0.21212121212121213, 0.22222222222222224, 0.23232323232323235, 0.24242424242424243, 0.25252525252525254, 0.26262626262626265, 0.27272727272727276, 0.2828282828282829, 0.29292929292929293, 0.30303030303030304, 0.31313131313131315, 0.32323232323232326, 0.33333333333333337, 0.3434343434343435, 0.3535353535353536, 0.36363636363636365, 0.37373737373737376, 0.38383838383838387, 0.393939393939394, 0.4040404040404041, 0.4141414141414142, 0.42424242424242425, 0.43434343434343436, 0.4444444444444445, 0.4545454545454546, 0.4646464646464647, 0.4747474747474748, 0.48484848484848486, 0.494949494949495, 0.5050505050505051, 0.5151515151515152, 0.5252525252525253, 0.5353535353535354, 0.5454545454545455, 0.5555555555555556, 0.5656565656565657, 0.5757575757575758, 0.5858585858585859, 0.595959595959596, 0.6060606060606061, 0.6161616161616162, 0.6262626262626263, 0.6363636363636365, 0.6464646464646465, 0.6565656565656566, 0.6666666666666667, 0.6767676767676768, 0.686868686868687, 0.696969696969697, 0.7070707070707072, 0.7171717171717172, 0.7272727272727273, 0.7373737373737375, 0.7474747474747475, 0.7575757575757577, 0.7676767676767677, 0.7777777777777778, 0.787878787878788, 0.797979797979798, 0.8080808080808082, 0.8181818181818182, 0.8282828282828284, 0.8383838383838385, 0.8484848484848485, 0.8585858585858587, 0.8686868686868687, 0.8787878787878789, 0.888888888888889, 0.8989898989898991, 0.9090909090909092, 0.9191919191919192, 0.9292929292929294, 0.9393939393939394, 0.9494949494949496, 0.9595959595959597, 0.9696969696969697, 0.9797979797979799, 0.98989898989899, 1 ], "xaxis": "x", "y": [ 19.748345418897507, 0.0034621758851511642, 0.33284814375704314, 1.0223981863702183E-30, 1.1067792612658853E-98, 4.222493273018117E-205, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "yaxis": "y" }, { "fill": "tonexty", "fillcolor": "rgba(0, 98, 98, 0.2)", "fillpattern": { "shape": "/" }, "legendgroup": "RF", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF" }, "line": { "color": "rgb(0, 98, 98)", "width": 2 }, "mode": "lines", "name": "target=1", "showlegend": true, "type": "scatter", "x": [ 0, 0.010101010101010102, 0.020202020202020204, 0.030303030303030304, 0.04040404040404041, 0.05050505050505051, 0.06060606060606061, 0.07070707070707072, 0.08080808080808081, 0.09090909090909091, 0.10101010101010102, 0.11111111111111112, 0.12121212121212122, 0.13131313131313133, 0.14141414141414144, 0.15151515151515152, 0.16161616161616163, 0.17171717171717174, 0.18181818181818182, 0.19191919191919193, 0.20202020202020204, 0.21212121212121213, 0.22222222222222224, 0.23232323232323235, 0.24242424242424243, 0.25252525252525254, 0.26262626262626265, 0.27272727272727276, 0.2828282828282829, 0.29292929292929293, 0.30303030303030304, 0.31313131313131315, 0.32323232323232326, 0.33333333333333337, 0.3434343434343435, 0.3535353535353536, 0.36363636363636365, 0.37373737373737376, 0.38383838383838387, 0.393939393939394, 0.4040404040404041, 0.4141414141414142, 0.42424242424242425, 0.43434343434343436, 0.4444444444444445, 0.4545454545454546, 0.4646464646464647, 0.4747474747474748, 0.48484848484848486, 0.494949494949495, 0.5050505050505051, 0.5151515151515152, 0.5252525252525253, 0.5353535353535354, 0.5454545454545455, 0.5555555555555556, 0.5656565656565657, 0.5757575757575758, 0.5858585858585859, 0.595959595959596, 0.6060606060606061, 0.6161616161616162, 0.6262626262626263, 0.6363636363636365, 0.6464646464646465, 0.6565656565656566, 0.6666666666666667, 0.6767676767676768, 0.686868686868687, 0.696969696969697, 0.7070707070707072, 0.7171717171717172, 0.7272727272727273, 0.7373737373737375, 0.7474747474747475, 0.7575757575757577, 0.7676767676767677, 0.7777777777777778, 0.787878787878788, 0.797979797979798, 0.8080808080808082, 0.8181818181818182, 0.8282828282828284, 0.8383838383838385, 0.8484848484848485, 0.8585858585858587, 0.8686868686868687, 0.8787878787878789, 0.888888888888889, 0.8989898989898991, 0.9090909090909092, 0.9191919191919192, 0.9292929292929294, 0.9393939393939394, 0.9494949494949496, 0.9595959595959597, 0.9696969696969697, 0.9797979797979799, 0.98989898989899, 1 ], "xaxis": "x", "y": [ 7.853725706790865, 7.899202354327811, 7.610160332871783, 7.030160472019913, 6.235719559656099, 5.319930857613258, 4.37477000480433, 3.476658634270177, 2.6781683424610785, 2.0064360637407974, 1.466876798303578, 1.0497420137007447, 0.7370865111640043, 0.508451190468764, 0.34455077188796707, 0.22906289953031045, 0.14905296479600327, 0.09465267834536321, 0.05847419611831737, 0.03503607953832544, 0.020304886786795776, 0.011355427251357485, 0.006116195330448899, 0.00316773017724914, 0.0015756168732988128, 7.518698192540053E-4, 3.4392429172333566E-4, 1.5070079781623767E-4, 6.322021554659203E-5, 2.5379255818615988E-5, 9.745634416266505E-6, 3.578493798513605E-6, 1.2560879487873136E-6, 4.213633819313704E-7, 1.3505536049933735E-7, 4.135218354723521E-8, 1.209317373992918E-8, 3.3773031216585064E-9, 9.005924966100554E-10, 2.2927828906588822E-10, 5.5722612751603716E-11, 1.2929635365677734E-11, 2.8792854518154984E-12, 6.944951676312936E-13, 5.69070321524831E-13, 2.1496095857136024E-12, 9.648758105904668E-12, 4.173240311350793E-11, 1.7224883709663346E-10, 6.78185856895373E-10, 2.5470867803716277E-9, 9.125171952736555E-9, 3.118463481397017E-8, 1.0165823341419295E-7, 3.1611619383461773E-7, 9.376769063993244E-7, 2.653151110999198E-6, 7.160989584722557E-6, 1.8436835812926144E-5, 4.527954188982545E-5, 1.0607668776883695E-4, 2.3705011303567898E-4, 5.053155618075254E-4, 0.0010275133412223445, 0.0019930333039947876, 0.0036876010708932175, 0.006508420420084151, 0.010957451464416578, 0.017597290452079153, 0.026957793305505757, 0.03939355420523464, 0.054912129093903195, 0.07301526903662686, 0.0926107469038735, 0.11204987435164135, 0.1293193910824959, 0.1423699125303152, 0.1495116641574588, 0.1497732392943838, 0.143118461899036, 0.13045459704321824, 0.11342934001781026, 0.0940792210159354, 0.07443279209569789, 0.05617423905343805, 0.040440114435430635, 0.027770892907970843, 0.018191545691881, 0.011367151533700394, 0.006775416346217937, 0.003852322308298694, 0.002089351618127746, 0.0010809428719127578, 5.334530963399096E-4, 2.511262020631004E-4, 1.1276909808009211E-4, 4.8304820814625474E-5, 1.973754503596851E-5, 7.693041629455609E-6, 2.8602587390556173E-6 ], "yaxis": "y" }, { "fill": "tonexty", "fillcolor": "rgba(0, 98, 98, 0.2)", "fillpattern": { "shape": "x" }, "legendgroup": "RF", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF" }, "line": { "color": "rgb(0, 98, 98)", "width": 2 }, "mode": "lines", "name": "target=2", "showlegend": true, "type": "scatter", "x": [ 0, 0.010101010101010102, 0.020202020202020204, 0.030303030303030304, 0.04040404040404041, 0.05050505050505051, 0.06060606060606061, 0.07070707070707072, 0.08080808080808081, 0.09090909090909091, 0.10101010101010102, 0.11111111111111112, 0.12121212121212122, 0.13131313131313133, 0.14141414141414144, 0.15151515151515152, 0.16161616161616163, 0.17171717171717174, 0.18181818181818182, 0.19191919191919193, 0.20202020202020204, 0.21212121212121213, 0.22222222222222224, 0.23232323232323235, 0.24242424242424243, 0.25252525252525254, 0.26262626262626265, 0.27272727272727276, 0.2828282828282829, 0.29292929292929293, 0.30303030303030304, 0.31313131313131315, 0.32323232323232326, 0.33333333333333337, 0.3434343434343435, 0.3535353535353536, 0.36363636363636365, 0.37373737373737376, 0.38383838383838387, 0.393939393939394, 0.4040404040404041, 0.4141414141414142, 0.42424242424242425, 0.43434343434343436, 0.4444444444444445, 0.4545454545454546, 0.4646464646464647, 0.4747474747474748, 0.48484848484848486, 0.494949494949495, 0.5050505050505051, 0.5151515151515152, 0.5252525252525253, 0.5353535353535354, 0.5454545454545455, 0.5555555555555556, 0.5656565656565657, 0.5757575757575758, 0.5858585858585859, 0.595959595959596, 0.6060606060606061, 0.6161616161616162, 0.6262626262626263, 0.6363636363636365, 0.6464646464646465, 0.6565656565656566, 0.6666666666666667, 0.6767676767676768, 0.686868686868687, 0.696969696969697, 0.7070707070707072, 0.7171717171717172, 0.7272727272727273, 0.7373737373737375, 0.7474747474747475, 0.7575757575757577, 0.7676767676767677, 0.7777777777777778, 0.787878787878788, 0.797979797979798, 0.8080808080808082, 0.8181818181818182, 0.8282828282828284, 0.8383838383838385, 0.8484848484848485, 0.8585858585858587, 0.8686868686868687, 0.8787878787878789, 0.888888888888889, 0.8989898989898991, 0.9090909090909092, 0.9191919191919192, 0.9292929292929294, 0.9393939393939394, 0.9494949494949496, 0.9595959595959597, 0.9696969696969697, 0.9797979797979799, 0.98989898989899, 1 ], "xaxis": "x", "y": [ 4.873402858906458E-250, 8.927449492661362E-244, 1.361239492729255E-237, 1.727641905599342E-231, 1.8250928744360387E-225, 1.6048271384281115E-219, 1.1745827021728219E-213, 7.1556813423597985E-208, 3.6285276290195103E-202, 1.5315173704192826E-196, 5.380535115201536E-191, 1.5734069486938004E-185, 3.829734861475505E-180, 7.759047364338242E-175, 1.308459089326215E-169, 1.8366396018485344E-164, 2.145852126927322E-159, 2.0868329628171304E-154, 1.6892255270677992E-149, 1.1381503439453195E-144, 6.382982926651737E-140, 2.979612462866854E-135, 1.1577317190258758E-130, 3.7442783999780824E-126, 1.007953236300364E-121, 2.2585238716250527E-117, 4.212316909010173E-113, 6.539272572212515E-109, 8.449867393110492E-105, 9.088294619651335E-101, 8.136299968818151E-97, 6.062943997768937E-93, 3.760557316155546E-89, 1.9414799883211322E-85, 8.343065921850689E-82, 2.984217565649395E-78, 8.884793536552224E-75, 2.201791792867842E-71, 4.541687072333251E-68, 7.797766332661644E-65, 1.1143850497003378E-61, 1.3255996712385258E-58, 1.3125067599963704E-55, 1.0816898652216894E-52, 7.420207035863324E-50, 4.23683290022787E-47, 2.013625485871494E-44, 7.96577643265867E-42, 2.6229473789959363E-39, 7.188910771051125E-37, 1.6400181675001434E-34, 3.1141983881695204E-32, 4.9221624503273765E-30, 6.475564917149371E-28, 7.091064433448544E-26, 6.463343751050567E-24, 4.903601074867837E-22, 3.096599696689793E-20, 1.6276726553303516E-18, 7.121330582976324E-17, 2.593387011692867E-15, 7.861142562854998E-14, 1.9834272160101593E-12, 4.165424913595005E-11, 7.281404684810101E-10, 1.0594599952335714E-8, 1.2831247630287532E-7, 1.2935131674662965E-6, 1.0854148329136247E-5, 7.581478492901416E-5, 4.4082431932649253E-4, 0.0021338821030196797, 0.008600961040856652, 0.028876909126209833, 0.08081483809879078, 0.18879318682800372, 0.36920768061006715, 0.6078402834561107, 0.8516564364167972, 1.035803956742494, 1.1286206555104532, 1.145749957026358, 1.1152624212989937, 1.0388287579033002, 0.8985979414762246, 0.6961377497655494, 0.4701949880251907, 0.27433243105292104, 0.14760084522657718, 0.11819487794243225, 0.2515433558622108, 0.7239955742012268, 1.8628157251030928, 4.039305411985592, 7.334369822624047, 11.138929377484395, 14.141252882831175, 14.999468766029038, 13.286487762378455, 9.824599017325124 ], "yaxis": "y" } ], "layout": { "font": { "size": 12 }, "height": 600, "hoverlabel": { "font": { "size": 16 } }, "legend": { "bgcolor": "rgba(255, 255, 255, 0.5)", "font": { "size": 16 }, "groupclick": "toggleitem", "traceorder": "grouped", "x": 0.99, "xanchor": "right", "y": 0.99, "yanchor": "top" }, "margin": { "b": 50, "l": 50, "pad": 0, "r": 0, "t": 35 }, "showlegend": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "font": { "size": 24 }, "pad": { "b": 15, "t": 15 }, "x": 0.5, "xanchor": "center", "xref": "paper", "y": 1, "yanchor": "top" }, "width": 900, "xaxis": { "anchor": "y", "automargin": true, "domain": [ 0, 1 ], "range": [ 0, 1 ], "title": { "font": { "size": 16 }, "text": "Probability" }, "type": "linear" }, "yaxis": { "anchor": "x", "automargin": true, "autorange": true, "domain": [ 0, 1 ], "range": [ -1.0971303010498614, 20.84547571994737 ], "title": { "font": { "size": 16 }, "text": "Probability density" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABb8AAAJYCAYAAABCY5tXAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Xl8FeW9x/FvVtZA2EMIhLAFUNRCtda61l2rVsW1dQGruFQrqBQXFFEEURFxrxcUt1oFta6gVREXFJWqIIssIWQjIQkJELIn9zVHTpocTiDrzJx5PvnnXsOceZ7f+zv0tt/OfU5YdXV1tfhBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBDAmGU3x5Kk1EQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEfAKU3zwICCCAAAIIIIAAAggggAACCCCAAAIIIIAAAp4ToPz2XKQMhAACCCCAAAIIIIAAAggggAACCCCAAAIIIED5zTOAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4DkBym/PRcpACCCAAAIIIIAAAggggAACCCCAAAIIIIAAApTfPAMIIIAAAggggAACCCCAAAIIIIAAAggggAACnhOg/PZcpAyEAAIIIIAAAggggAACCCCAAAIIIIAAAgggQPnNM4AAAggggAACCCCAAAIIIIAAAggggAACCCDgOQHKb89FykAIIIAAAggggAACCCCAAAIIIIAAAggggAAClN88AwgggAACCCCAAAIIIIAAAggggAACCCCAAAKeE6D89lykDIQAAggggAACCCCAAAIIIIAAAggggAACCCBA+c0zgAACCCCAAAIIIIAAAggggAACCCCAAAIIIOA5Acpvz0XKQAgggAACCCCAAAIIIIAAAggggAACCCCAAAKU3zwDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAp4ToPz2XKQMhAACCCCAAAIIIIAAAggggAACCCCAAAIIIED5zTOAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4DkBym/PRcpACCCAAAIIIIAAAggggAACCCCAAAIIIIAAApTfPAMIIIAAAggggAACCCCAAAIIIIAAAggggAACnhOg/PZcpAyEAAIIIIAAAggggAACCCCAAAIIIIAAAgggQPnNM4AAAggggAACCCCAAAIIIIAAAggggAACCCDgOQHKb89FykAIIIAAAggggAACCCCAAAIIIIAAAggggAAClN88AwgggAACCCCAAAIIIIAAAggggAACCCCAAAKeE6D89lykDIQAAggggAACCCCAAAIIIIAAAggggAACCCBA+c0zgAACCCCAAAIIIIAAAggggAACCCCAAAIIIOA5Acpvz0XKQAgggAACCCCAAAIIIIAAAggggAACCCCAAAKU3zwDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAp4ToPz2XKQMhAACCCCAAAIIIIAAAggggAACCCCAAAIIIED5zTOAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4DkBym/PRcpACCCAAAIIIIAAAggggAACCCCAAAIIIIAAApTfPAMIIIAAAggggAACCCCAAAIIIIAAAggggAACnhOg/PZcpAyEAAIIIIAAAggggAACCCCAAAIIIIAAAgggQPnNM4AAAggggAACCCCAAAIIIIAAAggggAACCCDgOQHKb89FykAIIIAAAggggAACCCCAAAIIIIAAAggggAAClN88AwgggAACCCCAAAIIIIAAAggggAACCCCAAAKeE/BU+Z2ZV+y5gBgIAQTcIxAeLvXo1FbZBSXu2RQ7QQABTwp0jYlWUUmFSsurPDkfQyGAgDsE2kZHqH2bCOXvLHPHhtgFAgh4ViCuazvlbC9WVbVnR2QwBBBwiUB8t3Z1dkL57ZJg2AYCCLhfgPLb/RmxQwS8IkD57ZUkmQMBdwtQfrs7H3aHgJcEKL+9lCazIOBuAcpvd+fD7hBAwMUClN8uDoetIeAxAcpvjwXKOAi4VIDy26XBsC0EPChA+e3BUBkJAZcKUH67NBi2hQAC7heg/HZ/RuwQAa8IUH57JUnmQMDdApTf7s6H3SHgJQHKby+lySwIuFuA8tvd+bA7BBBwsQDlt4vDYWsIeEyA8ttjgTIOAi4VoPx2aTBsCwEPClB+ezBURkLApQKU3y4Nhm0hgID7BSi/3Z8RO0TAKwKU315JkjkQcLcA5be782F3CHhJgPLbS2m6c5aYdpHu3Bi7arLAzuKKJn2W8rtJbHwIAQQQkCi/eQoQQMAuAcpvu6RZBwGzBSi/zc6f6RGwU4Dy205tM9ei/PZe7pTfQTLNzCv2XtJMhAACrhGg/HZNFGwEAc8LUH57PmIGRMAVApTfroiBTSBghADltxExOzok5bej/K2yOOU35XerPFjcFAEE6heg/ObpQAABuwQov+2SZh0EzBag/DY7f6ZHwE4Bym87tc1ci/Lbe7lTflN+e++pZiIEXC5A+e3ygNgeAh4SoPz2UJiMgoCLBSi/XRwOW0PAYwKU3x4L1IXjUH67MJRmbonym/K7mY8QH0cAgcYKUH43VozrEUCgqQKU302V43MIINAYAcrvxmhxLQIINEeA8rs5eny2IQKU3w1RCq1rKL8pv0PriWW3CHhAgPLbAyEyAgIhIkD5HSJBsU0EQlyA8jvEA2T7CISQAOV3CIUVolul/A7R4Paxbcpvym/vPdVMhIDLBSi/XR4Q20PAQwKU3x4Kk1EQcLEA5beLw2FrCHhMgPLbY4G6cBzKbxeG0swtUX5TfjfzEeLjCCDQWAHK78aKcT0CCDRVgPK7qXJ8DgEEGiNA+d0YLa5FAIHmCFB+N0ePzzZEgPK7IUqhdQ3lN+V3aD2x7BYBDwhQfnsgREZAIEQEKL9DJCi2iUCIC1B+h3iAbB+BEBKg/A6hsEJ0q5TfIRrcPrbtufK7uKRMdz0wT+9+9FXN2M/NnqRDDxla88+vv7dUk2fO8/3z6ccfrrtvGat2baNr/jwzr9h7STMRAgi4RoDy2zVRsBEEPC9A+e35iBkQAVcIUH67IgY2gYARApTfRsTs6JCU347yt8riniu/txfu1LOvvK9rLvujr9D+5vu1unX6M3p65k0amBjv++eHnn5VT84Yry6dYzTr6Vd9sBPGnU/53SqPGDdFAIFAAcpvngkEELBLgPLbLmnWQcBsAcpvs/NnegTsFKD8tlPbzLXqK78fn7dQLyxYtBfK7TdepjNOOrLO79/+4HNNmz0/KODw5CTNmnK9YjvHmAnswNSeK78DDa0y/JpJD+umcef73v62yu7+feN0zmlH+y4NLMOt3/HmtwNPIksiYJAA5bdBYTMqAg4LUH47HADLI2CIAOW3IUEzJgIuEKD8dkEIHt/Cvsrv71auq1Ncr/hxna6d9KAuGX2Krht7bo2MVX7PffkdPTz1BiX1i/e4mPvH83z5vTE1U7dPf0bTbr1S8b26+45EOXzU8Jryu/afW2+GU367/6FlhwiEugDld6gnyP4RCB0Byu/QyYqdIhDKApTfoZwee0cgtAQov0Mrr1DcbWPKb2s+643wwFKc8ttdyXu6/Paf/+0vu/3/fN4Zx9acAR6s/C4urXRXSuwGAQQ8JRAWJrWJCldJWZWn5mqpYaqqqxURHtZSt+M+CBgtEBUZrsrKall/r/hBoKEClVX863BDrbjuF4Hw8DDf/+0ur+Df2/BMINASApWVVQqPCG+JW3nuHm2jIlRaXilP/zsbTw/n/kcyMiL4fxZ95JnX9M0P6/TotL/5jlH2/wT7/Zvvf6anX3xLj9033ncEMz/OClRUNu0vVbs2EXU2HlZd7a7/VOUvuuN6dq05zzuwDLcmCFZ+5+8sdTYVVkcAAU8LWOV3p3bRKtxd5uk5mzyc9X+XLCR+EECg2QLWmysl5VUUUs2W5AYIILAvgejIcN9/sd/UN6vQRQCBugLVqlZY07oaz1PGxrRR4a5SuauBamF2/qNQC4M27nbtousWnv5PPzp3gb79cZ1mT72hpvy2ekb/2d7W2d/Wdw9aP/9e/Jmeeekdzbn3bxrAsSeNC6AVri4ua9pLzl1j2tTZjavK72DFt3+3nPndCk8Rt0QAgUYJcOxJo7i4GAEEmiHAsSfNwOOjCCDQYAGOPWkwFRcigEAzBTj2pJmAfHy/Ao059qS+403q+8LLuJ7dOAd8vwm0/AVN/S/n47u1c2f5Hezt7to7DfyCS6sMt34mjDu/5jK+8LLlHzTuiAAC/xOg/OZpQAABuwQov+2SZh0EzBag/DY7f6ZHwE4Bym87tc1ca1/l9wsLFtVBOfnYwzTphv+98e3/Q878dtez47ny2zrGZNzEh5SVnVdH+oqLTqspuF9/b6kmz5zn+/PTjz9cd98ytub/NcH6HeW3ux5SdoOA1wQov72WKPMg4F4Bym/3ZsPOEPCSAOW3l9JkFgTcLUD57e58vLC7hr757X+72zru5IyTjqwzOuW3u54Ez5XfLcFL+d0SitwDAQTqE6D85tlAAAG7BCi/7ZJmHQTMFqD8Njt/pkfATgHKbzu1zVyroeW3pfP4vIX6cOk3ex1lQvntrmeH8jsgjyVr12pIj0R3pcRuEEDAUwKU356Kk2EQcLUA5ber42FzCHhGgPLbM1EyCAKuF6D8dn1EIb/BxpTf1tHLM+bMV1rWNs2acr1iO8f45qf8dtdjQPkdkEfYFVcodfojiowI/u2u7oqP3SCAQCgKUH6HYmrsGYHQFKD8Ds3c2DUCoSZA+R1qibFfBEJXgPI7dLMLlZ03pvy2ZkrZkqnxd87RwcMH1pz/TfntrrQpv4OU3z9PfVAd2rZ1V1LsBgEEPCNA+e2ZKBkEAdcLUH67PiI2iIAnBCi/PREjQyAQEgKU3yERU0hvsrHltzXsih/X6dpJD8r/BZj/Wbpcc19+Z6/jUEIaJoQ3T/kdpPxeedcMde3QMYRjZesIIOBmAcpvN6fD3hDwlgDlt7fyZBoE3CpA+e3WZNgXAt4ToPz2XqZum6i+8ttt+2Q/DReg/A5Sfn9z+72K7xzbcEWuRAABBBohQPndCCwuRQCBZglQfjeLjw8jgEADBSi/GwjFZQgg0GwByu9mE3KD/QhQfnvvEaH8DlJ+fz7xLiV17+G9tJkIAQRcIUD57YoY2AQCRghQfhsRM0Mi4LgA5bfjEbABBIwRoPw2JmrHBqX8doy+1Ram/A5Sfn804TYNjYtvNXRujAACZgtQfpudP9MjYKcA5bed2qyFgLkClN/mZs/kCNgtQPltt7h561F+ey9zyu8g5fd7N0zUwQn9vJc2EyGAgCsEKL9dEQObQMAIAcpvI2JmSAQcF6D8djwCNoCAMQKU38ZE7diglN+O0bfawpTfQcrvN64Zr8OSBrYaOjdGAAGzBSi/zc6f6RGwU4Dy205t1kLAXAHKb3OzZ3IE7Bag/LZb3Lz1KL+9lznld5Dy+5Ur/6qjBg/1XtpMhAACrhCg/HZFDGwCASMEKL+NiJkhEXBcgPLb8QjYAALGCFB+GxO1Y4NSfjtG32oLU34HKb/nXz5OJwwf0Wro3BgBBMwWoPw2O3+mR8BOAcpvO7VZCwFzBSi/zc2eyRGwW4Dy225x89aj/PZe5pTfQcrvf1zyF50+4hDvpc1ECCDgCgHKb1fEwCYQMEKA8tuImBkSAccFKL8dj4ANIGCMAOW3MVE7Nijlt2P0rbYw5XeQ8vvRiy7TOb86tNXQuTECCJgtQPltdv5Mj4CdApTfdmqzFgLmClB+m5s9kyNgtwDlt93i5q1H+e29zCm/g5TfD46+WBcddoT30mYiBBBwhQDltytiYBMIGCFA+W1EzAyJgOMClN+OR8AGEDBGgPLbmKgdG5Ty2zH6VluY8jtI+T3tj+fr8iOObjV0bowAAmYLUH6bnT/TI2CnAOW3ndqshYC5ApTf5mbP5AjYLUD5bbe4eetRfnsvc8rvIOX3naefrXHHHO+9tJkIAQRcIUD57YoY2AQCRghQfhsRM0Mi4LgA5bfjEbABBIwRoPw2JmrHBg2F8vvxeQuVk5uvSTdcpnZtox2z2t/Cb3/wud54f6lmTblesZ1j9nd5g/7cuue02fNrrr1k9Cm6buy5+/ws5XeQ8nviyX/Q344/pUHoXIQAAgg0VoDyu7FiXI8AAk0VoPxuqhyfQwCBxghQfjdGi2sRQKA5ApTfzdHjsw0RoPxuiFLDrmnp8tu639yX39HDU29QUr94FRTu1IQpj2rUiOR9FuCU30HKb6v4tgpwfhBAAIHWEKD8bg1V7okAAsEEKL95LhBAwA4Bym87lFkDAQQsAcpvnoPWFggsv3eXlmrFltTWXnav+7ePjtbIxP5B1zXxzW9/0X32qUfrjJOOrHFZ8eM6TZ31bE0hHgyM8jtI+X310cdr8h/Otv3BZkEEEDBDgPLbjJyZEgE3CFB+uyEF9oCA9wUov72fMRMi4BYBym+3JOHdfQSW36sy0nXEjHttH3ho795afttde61rFd8vLFhU5/cnH3uY7wiU0tJS35vQq9el1PnzJ2bcrJEHJdf8zl+eX3D2ibpt2lPampOn2seHBK7x21EHqnBX0V7Hl+zrCJLAP7MWH56c1OQjUFK2ZGr8nXN054QxdWap7/e1ASi/g5TfY444Wvf+8XzbH2wWRAABMwQov83ImSkRcIMA5bcbUmAPCHhfgPLb+xkzIQJuEaD8dksS3t1HYPn9c/ZWXTl/nu0DJ8TG6qWrrg26bn1vfltvR7+08AONvfiMmrPArTejr530oGoX4P5y21+a+88NLy4p04w585WWta1OSW1d/93Kdfv8XbAjSFry2JP63vCu741wyu99PLJhV1yhiw87Qg+Mvtj2B5sFEUDADAHKbzNyZkoE3CBA+e2GFNgDAt4XoPz2fsZMiIBbBCi/3ZKEd/cRWH6XlJdrbVam7QO3jYzU0Pg+jSq/g10crByurzyvr2AOLLHru876/WPPLqwpyfdVfgd7Mzxw/7XfRg8879t/bUPO/ebN7wBZq/wePfIwPXLhpbY/2CyIAAJmCFB+m5EzUyLgBgHKbzekwB4Q8L4A5bf3M2ZCBNwiQPntliS8u49QL7/9b28vXrK8TkiBx5rk5Ob7jkrxv/VtXVxfKR5YYtd3nXUEyT2zntXkCWN8X0jZkm9+U3634N85q/z+w0G/0tN/vqIF78qtEEAAgf8JUH7zNCCAgF0ClN92SbMOAmYLUH6bnT/TI2CnAOW3ndpmrhXK5bf/iJPax5kEezO6vvK6MeV34LnjtZ8W/xErLVl+c+xJC/59tMrvE4cdqOfGXN2Cd+VWCCCAAOU3zwACCNgvQPltvzkrImCiAOW3iakzMwLOCFB+O+Nu0qqhWn773/i2sqr9Rndrld/B3hwPfE5a8tgTvvCyBf8WWuX30YOH6p9X/rUF78qtEEAAAcpvngEEELBfgPLbfnNWRMBEAcpvE1NnZgScEaD8dsbdpFUDy++yigptyc+znaBNRKT6dusWdN1gb2j7y++e3bvqurHn1nyuMeV3fWV1Q8/8bkz53VjQ+r7Ysr43wmvfnzO/A7St8vs3SQP1+jXjG5sD1yOAAAINEuDYkwYxcRECCLSAAOV3CyByCwQQ2K8A5fd+ibgAAQRaSIDyu4UguU29AoHltxup6jv/OrCkrn3+d0PO/A5WlPvfuO7apVPNF1n675uWta3md5aT9ft5L7+tP517kmI7x8h/DIv/GJTmWgbO3ZAvu7TWpPwOUn4fktBP794wsbmZ8HkEEEAgqADlNw8GAgjYJUD5bZc06yBgtgDlt9n5Mz0CdgpQftupbeZaoVB+W8lYb3/7z92ufcZ37d/H9eymOyeM0WPPLtSoEck1b4TXd7a3dV9/obx6XYrvAbDufUDyAC1a8nWdotv6M6uMnjZ7fp0HpXbJHnjN8OSkve7R2KcscM3A9YLdj/I7SPk9LC5e/5lwW2P9uR4BBBBokADld4OYuAgBBFpAgPK7BRC5BQII7FeA8nu/RFyAAAItJED53UKQ3KZegVApv+2M0Cqcv/1+TZ2zxO1cv7lrUX4HKb+TuvfQ5xPvaq4tn0cAAQSCClB+82AggIBdApTfdkmzDgJmC1B+m50/0yNgpwDlt53aZq5lcvltHVvy6NzXdN4ZxympX7zvAajviyZD6emg/A5Sfsd3jtU3t98bSjmyVwQQCCEByu8QCoutIhDiApTfIR4g20cgRAQov0MkKLaJgAcEKL89EKLLRzC9/J4xZ74WL1leJ6WWOrPbqegpv4OU3906dNSPd81wKhPWRQABjwtQfns8YMZDwEUClN8uCoOtIOBhAcpvD4fLaAi4TIDy22WBeHA7JpffHozTNxLld5DyO6ZNW62950GvZs5cCCDgsADlt8MBsDwCBglQfhsUNqMi4KAA5beD+CyNgGEClN+GBe7AuJTfDqC38pKU30HK7+iICKVMf6SV6bk9AgiYKkD5bWryzI2A/QKU3/absyICJgpQfpuYOjMj4IwA5bcz7iatSvntvbQpv4OU39avMmY+5r20mQgBBFwhQPntihjYBAJGCFB+GxEzQyLguADlt+MRsAEEjBGg/DYmascGpfx2jL7VFqb8DqBtc9VVKqus1IZ7Z6lddHSrwXNjBBAwV4Dy29zsmRwBuwUov+0WZz0EzBSg/DYzd6ZGwAkBym8n1M1ak/Lbe3lTfgdk2vGaa1RUVqafptyv2PYdvJc4EyGAgOMClN+OR8AGEDBGgPLbmKgZFAFHBSi/HeVncQSMEqD8NipuR4al/HaEvVUXpfwO4O1y/fUq2L1bK26/V706x7YqPjdHAAEzBSi/zcydqRFwQoDy2wl11kTAPAHKb/MyZ2IEnBKg/HZK3px1Kb+9lzXld0CmPW+8Udt27tSySXerX9du3kuciRBAwHEBym/HI2ADCBgjQPltTNQMioCjApTfjvKzOAJGCVB+GxW3I8NSfjvC3qqLUn4H8Pa56SZlFhRoyc13aHDPuFbF5+YIIGCmAOW3mbkzNQJOCFB+O6HOmgiYJ0D5bV7mTIyAUwKU307Jm7Mu5bf3sqb8Dsi0/8SJSs3L0+K//V0H9unrvcSZCAEEHBeg/HY8AjaAgDEClN/GRM2gCDgqQPntKD+LI2CUAOW3UXE7MmwolN+Pz1uonNx8TbrhMrVrG+2IU0MWffuDz/XG+0s1a8r1iu0c05CPNPgay8D6uW7sufv9DOV3ANHgW2/VhpwcvXXdTRqVmLRfQC5AAAEEGitA+d1YMa5HAIGmClB+N1WOzyGAQGMEKL8bo8W1CCDQHAHK7+bo8dmGCFB+N0SpYde0VvmdsiVT4++coxOPPpTyu2FR1L3qgMmTtTozU6+Ou0G/GzikKbfgMwgggMA+BSi/eUAQQMAuAcpvu6RZBwGzBSi/zc6f6RGwU4Dy205tM9cKLL93l5ZqxZZU2zHaR0drZGL/oOua+ub3ih/X6dpJD9aYXDL6FMrvpjyZh0yZoh/S0vTi2Gt03NADmnILPoMAAghQfvMMIICAKwQov10RA5tAwPMClN+ej5gBEXCNAOW3a6Lw7EYCy+9VmRk6Yvo9ts87tHdvLb/trr3WtYrvFxYsqvP7k489zHcESmlpqSZMeVSr16XU+fMnZtyskQcl1/zOX55fcPaJum3aU9qak6faRXLgGr8ddaAKdxXtdXyJ9Wb3tNnzg5bRgX9mXTQ8OalFjkApLinTjDnz1bN7V8rvpjyZI++8U//NyNDcy67SKQcc1JRb8BkEEECA8ptnAAEEXCFA+e2KGNgEAp4XoPz2fMQMiIBrBCi/XROFZzcSWH7/nL1VV86fV++81dXVKisrU2nxblVXS23atlWbdu0Uth8h63Pl5eUqsT5XVaWo6DZq16G9wvZ8MqFLF7105TVB71Lfm98FhTv10sIPNPbiM2rOAve/LV27APeX2/7S3H9uuL9UTsvaVqektq7/buW6ff7OWtsq3keNSK4ppFvr2BPK72b+9TtgwgStLizUExeP0VmHjGrm3fg4AgggsLcAx57wVCCAgF0ClN92SbMOAmYLUH6bnT/TI2CnAOW3ndpmrhVYfpeUl2vt1qygGFaBnZ2ZofWrVioiIkLxif3Vb+AghVv/oX8fP9bncnOytWn1al8BHpeQoKShwxRR63Nto6I0NK53o8rvYBf7S+mzTz1aZ5x0pO+S+spzqyifOutZPTz1BiX1i6+5XWCJXd911u8fe3ZhTUm+r/I72Jvhgfuv71gTyu9m/t0cMX68Vu3YoYfP/7PO//XhzbwbH0cAAQQov3kGEEDAOQHKb+fsWRkBkwQov01Km1kRcFaA8ttZfxNWb2j5XVVdrXyrwF67RuVlZUpIGqC+AwY2qPguyM/T5p/XqbioSL36JKj/kGRfeV77p6nlt78YXrxkeZ37BR5rkpOb7zsqxf/W975K8cASu77y3PoiyntmPavJE8b4ynPe/Hbp35jfTp6srzIzNf2cC3Xp4b/8NyL8IIAAAi0pwJvfLanJvRBAYF8ClN88HwggYIcA5bcdyqyBAAKWAOU3z0FrCzSk/LaK77ytW7V5/bpfiu8BA5XQP6lBxff2vFxt2bBeu3cVKa5vgvoOGKSoqKi9xmpK+e0/4qT2cSbBjiOpr7yu7/fByu/Ac8drD+A/YoXyu7Wf1ibe/5RZs7T4p5805YxzdeVRxzXxLnwMAQQQqF+A8punAwEE7BKg/LZLmnUQMFuA8tvs/JkeATsFKL/t1DZzrf2V31bxnbs1y1dg+4vvPon9G1Z85+Zqy8YNKi7apbiEvuqTNEBR0dFBzwdvbPntf+PbSq32G92tVX4He3M88Inh2BOX/h06c84cvf3DD7r11DP11+NOcuku2RYCCISyAOV3KKfH3hEILQHK79DKi90iEKoClN+hmhz7RiD0BCi/Qy+zUNtxYPldVlGhLfn5vjGqq6tUkJ+vnMwMVZSXq2d8H3Xr2VPh4XWPLAmc2Trje+eOAuVkZqq0uFhde/ZU915xe974Dv7VmNGREerXtVtQvmBvaNd3DnZjyu/6yuqGnvndmPK7Oc8FZ343R0/SuY8/rtdXrNCEE0/TTSee1sy78XEEEEBgbwE+NRegAAAgAElEQVTKb54KBBCwS4Dy2y5p1kHAbAHKb7PzZ3oE7BSg/LZT28y1AstvNypYZfTcl9/Z7xdT1j7/uyFnfgcryq1zvMffOUddu3Sq+SJL/33TsrbV/M5ysn4/7+W39adzT1Js5xj5j2HxH4PSUpaU382UvPDJJ/Wvb7/VdceeqNtOO6uZd+PjCCCAAOU3zwACCDgnQPntnD0rI2CSAOW3SWkzKwLOClB+O+tvwuqhUH5bOVhvf/vP3a59xnft38f17KY7J4zRY88u1KgRybpu7Lm+COs729v6M38Bvnpdiu9a694HJA/QoiVf1ym6rT+zSvhps+fXeSxql+yB1wxPTtrrHo15pvxleuBn9nffncUVjVmm5tr4bu3qfC6s2nqH3wM/lzzzjF786iv95chjdfeZoz0wESMggIDbBHjz222JsB8EvCtA+e3dbJkMATcJUH67KQ32goC3BSi/vZ2vG6YLlfLbTiur5P72+zV1zhK3c/3mrkX5HSA4dt48PfvFF7rk8CM145wLm+vL5xFAAIG9BCi/eSgQQMAuAcpvu6RZBwGzBSi/zc6f6RGwU4Dy205tM9cyufy2jhN5dO5rOu+M45TUL973APiPPbHeIB95UHJIPhSU3wGxjZs/X/9YulTn//pwPXz+n0MyVDaNAALuFqD8dnc+7A4BLwlQfnspTWZBwL0ClN/uzYadIeA1AcpvryXqvnlML79nzJmvxUuW1wmmpc/stjt1yu8A8b+++KIe/+QTnXXIKD1x8Ri782A9BBAwQIDy24CQGREBlwhQfrskCLaBgMcFKL89HjDjIeAiAcpvF4Xh0a2YXH57NFJRfgckO/6VVzT7ww91ygEHae5lV3k1d+ZCAAEHBSi/HcRnaQQME6D8NixwxkXAIQHKb4fgWRYBAwUovw0M3eaRKb9tBrdhOcrvAOSJr76qBxYv1nHJw/XiFdfaEAFLIICAaQKU36YlzrwIOCdA+e2cPSsjYJIA5bdJaTMrAs4KUH4762/C6pTf3kuZ8jsg00mvvqr7Fy/WEQMG67Wr/+a9xJkIAQQcF6D8djwCNoCAMQKU38ZEzaAIOCpA+e0oP4sjYJQA5bdRcTsyLOW3I+ytuijldwDvmPvu03MbN2pkv/56+683tyo+N0cAATMFKL/NzJ2pEXBCgPLbCXXWRMA8Acpv8zJnYgScEqD8dkrenHUpv72XNeV3QKaXT5mi+WlpOiA+QR/cOMl7iTMRAgg4LkD57XgEbAABYwQov42JmkERcFSA8ttRfhZHwCgBym+j4nZkWMpvR9hbdVHK7wDeGx99VI98/70G9eilT2+Z3Kr43BwBBMwUoPw2M3emRsAJAcpvJ9RZEwHzBCi/zcuciRFwSoDy2yl5c9al/PZe1pTfAZk+tGiRbn7tNfXt0lVf3TrVe4kzEQIIOC4QHh6mHp2ilV1Q6vhe2AACCHhbgPLb2/kyHQJuEaD8dksS7AMB7wtQfns/Y6cnpPx2OoGWX5/yO8D0sY8+0vUvv6xeMZ20YvJ9LS/OHRFAwHgBym/jHwEAELBNgPLbNmoWQsBoAcpvo+NneARsFaD8tpXbyMUov70XO+V3QKZPL1miq194QbHt2uunu2d6L3EmQgABxwUovx2PgA0gYIwA5bcxUTMoAo4KUH47ys/iCBglQPltVNyODBsK5ffj8xYqJzdfk264TO3aRjvi1JBF3/7gc73x/lLNmnK9YjvHNOQj+7zGmvuFBYvqXHP7jZfpjJOO3OfnKL8DeOZ99pmueO45tY2K0sZpDzc7GG6AAAIIBApQfvNMIICAXQKU33ZJsw4CZgtQfpudP9MjYKcA5bed2mauRfndcrm3ZPldULhTDz/9isaPu7CmSE/Zkqnxd87RiUcfquvGnlvvxim/A2heXLZMl/zf//l+mzHzsZZLnDshgAACewQov3kUEEDALgHKb7ukWQcBswUov83On+kRsFOA8ttObTPXCiy/t+3cqWc+W2I7Rs+YGP3lqGODrmvqm9/BMBpSsFN+Bym/L583T5VVVUq5b7aiIyNtf8BZEAEEvC1A+e3tfJkOATcJUH67KQ32goB3BSi/vZstkyHgNgHKb7cl4r39BJbfK9PT9Lv7p9k+aHKvOH1zx5S91g129MfJxx7mOwKltLRUE6Y8qtXrUup87okZN2vkQck1v/OX5xecfaJum/aUtubk6ZLRp9S8PR24xm9HHajCXUV7HV9iFc/TZs+vuW/tewT+mXXR8OSkFjsCxb+otc7cl9/Rw1NvUFK/+KA5UX4HKb+vfG6+SirKtXbqA4pp2872B5wFEUDA2wKU397Ol+kQcJMA5beb0mAvCHhXgPLbu9kyGQJuE6D8dlsi3ttPYPmdnp+vmYvfCzpoeVmZCvLzVF1d7fvz8PBwde7aVVFR+z6Hu6K8XDsKtquioqLmvrFduym6TZuaf+4Z00l3/OHMoOvW9+a3dTTISws/0NiLz6g5C3zFj+t07aQHVbsA95fb/tLcf254cUmZZsyZr7SsbXVKauv671au2+fvrLWt4n3UiOSaEr0hb2U35wmqb7+B96T8DlJ+X/vCi9pZWqIfJt+n7jGdmpMDn0UAAQT2EqD85qFAAAG7BCi/7ZJmHQTMFqD8Njt/pkfATgHKbzu1zVwrsPwuKS/X2q1Z9WJkZ2Zo7ff/VXhEhJIPPkQ943o3CC4vJ0c/r/xBZaWlGjziIMX37Vfnc9Z3EQ6t516NOfbEX0qfferRNV8MWd/nraJ86qxn93qLOrDEru866/ePPbuwpiTfV/kd7M3wQLjab5IHQ/UX+/u7jvI7SPl9w8v/1PbdRVp+61T16dK1QQ8tFyGAAAINFaD8bqgU1yGAQHMFKL+bK8jnEUCgIQKU3w1R4hoEEGgJAcrvllDkHvsSaEz5vbOwUCnr1qpNu7ayXv6uKC9T/8HJ6thp3y/SFu3aqS0bNkhhYbL6geKi3UoaOlSdY7vUbK2p5bf/bejFS5bXGTPwWJOc3HzfUSn+t76ti+srxQNL7Pqus76A8p5Zz2ryhDG+I0ha881vf6lv7XvWlOtrvgQzWLaU30HK7wmv/Evbdu3UZzdP1oCevfhXBQQQQKBFBSi/W5STmyGAwD4EKL95PBBAwA4Bym87lFkDAQQsAcpvnoPWFmho+b2jsECb161T2/bt1W/gIFVVVSlt00aVl5YqcUiyYuopwP3Fd1h4uPr0T1JUVJTSUzZpR0GBBg4brs5dfinAm1J++9+Ern2cSbDjSOorrxtTfr+wYFG9UfiPWGmt8ts/U/72Hfs869u/QcrvgKjmf/aZbrHK75JifXjjJA2PT2jtv1fcHwEEDBOg/DYscMZFwEEBym8H8VkaAYMEKL8NCptREXBYgPLb4QAMWD6w/N5dWqqfc7LrTG4V39Yb3+07dlTfpAFq2669rFO/i4t2KT0lRWUlJUEL8LrFd391jOmksLAw3xdVpqdsVGH+dg0cNkydu3RtdPntf+Pb2mjtN7pbq/wO9uZ44OPRGseeNLb4tvZE+R2QzJQnntBTK1cpu6xU715/iw7pm2jAX21GRAABOwUov+3UZi0EzBag/DY7f6ZHwC4Bym+7pFkHAQQov3kGWltgrze/y0q1bceOmi+xLC0tUUFurqKio9WpSxdFRkbVbMkqwK2jT6wvs6ysqFBs1+41X2JZVlamwu15ClOYOsV2UVSbaN//7v+prKz0fa5k92516dFDHTt0VPeOHYOOG+wNbX/53bN715ovnLQ+3Jjyu76yuqFnfjem/G5Kjo056qT2/Sm/A7RvmT5dr2RmKX13kV6/+kb9ZsCgpuTBZxBAAIF6BSi/eTgQQMAuAcpvu6RZBwGzBSi/zc6f6RGwU4Dy205tM9cKLL/dqGCV0XNffme/X0xZ+/zvhpz5Hawot87xHn/nHHXt0qnmbG3/fdOyttU5b9v6/byX39afzj3Jdwa3/xgW/zEozbFsavFtrUn5HSB/1+OP69XMLN83uf7zL9fp6CHDmpMNn0UAAQT2EqD85qFAAAG7BCi/7ZJmHQTMFqD8Njt/pkfATgHKbzu1zVwrFMpvKxnr7W//udu1z/iu/fu4nt1054QxeuzZhRo1IrnmjfD6zva27usvmVevS/E9ANa9D0geoEVLvt7riyWtEn7a7Pl1HpTaJbv1B7WvGZ6ctN8vp6zvqfMX6fX9eeC6ta+j/A5Qe/6LL/Tg4g+1MiNNz10+TicOH2Hm33amRgCBVhOg/G41Wm6MAAIBApTfPBIIIGCHAOW3HcqsgQAClgDlN89BawuESvnd2g61728V2N9+v6bOWeJ2rt/ctSi/AwRfXLZMsxZ/qP+mpeqpP43VGQePbK4xn0cAAQTqCFB+80AggIBdApTfdkmzDgJmC1B+m50/0yNgpwDlt53aZq5lcvltHVvy6NzXdN4ZxympX7zvAfAfe2K9QT7yoOSQfCgov4OU33P+87G+2bxJj1xwiUaP+k1IBsumEUDAvQKU3+7Nhp0h4DUBym+vJco8CLhTgPLbnbmwKwS8KED57cVU3TWT6eX3jDnztXjJ8jqhtMSZ3U6mTPkdpPx+8pNP9eXG9Zp57kX6029+52Q+rI0AAh4UoPz2YKiMhIBLBSi/XRoM20LAYwKU3x4LlHEQcLEA5beLw/HI1kwuvz0S4V5jUH4HKb+f+fRzLV2/VvecdZ7G/u4Yr2bPXAgg4JAA5bdD8CyLgIEClN8Ghs7ICDggQPntADpLImCoAOW3ocHbODblt43YNi1F+R2k/H7u82X6aO1PuuP0P+qaY06wKQqWQQABUwQov01JmjkRcF6A8tv5DNgBAiYIUH6bkDIzIuAOAcpvd+Tg5V1QfnsvXcrvIOX3i8uWa/FPP+qWk07XjSec6r3UmQgBBBwVoPx2lJ/FETBKgPLbqLgZFgHHBCi/HaNnYQSME6D8Ni5y2wem/LadvNUXpPwOUn7/a/kKvfPjCt3w+5P191POaPUQWAABBMwSoPw2K2+mRcBJAcpvJ/VZGwFzBCi/zcmaSRFwWoDy2+kEvL8+5bf3Mqb8DlJ+L/zuB73532807qjf684zzvFe6kyEAAKOClB+O8rP4ggYJUD5bVTcDIuAYwKU347RszACxglQfhsXue0DU37bTt7qC1J+Bym/3/z2ey38/ltdfsTRmvbH81s9BBZAAAGzBCi/zcqbaRFwUoDy20l91kbAHAHKb3OyZlIEnBag/HY6Ae+vT/ntvYwpvwMyff7zz/Xqx5/q3dRNuuiwI/Tg6Iu9lzoTIYCAowKU347yszgCRglQfhsVN8Mi4JgA5bdj9CyMgHEClN/GRW77wJTftpO3+oKU3wHE0+bO1dKfN+iD3Byd86tD9ehFl7V6CCyAAAJmCVB+m5U30yLgpADlt5P6rI2AOQKU3+ZkzaQIOC1A+e10AqyPgDkC8d3a1Rk2rLq6utoL40+cMUNri0v1dvoWnT7iEP3jkr94YSxmQAABFwlQfrsoDLaCgMcFKL89HjDjIeASAcpvlwTBNhAwQIDy24CQGREBlwh4tvyePGeOstp30txln+n4YQfq+TFXu4ScbSCAgFcEKL+9kiRzIOB+Acpv92fEDhHwggDltxdSZAYEQkOA8js0cmKXCHhBwLPl93NLl+rbLVl6/JMPdOSgZP3rquu9kBczIICAiwQov10UBltBwOMClN8eD5jxEHCJAOW3S4JgGwgYIED5bUDIjIiASwQ8W36/uGyZvktJ1+yPFunQ/gP05rUTXELONhBAwCsClN9eSZI5EHC/AOW3+zNihwh4QYDy2wspMgMCoSFA+R0aObFLBLwg4Ony+4fULD344bs6qE9fvf+3v3shL2ZAAAEXCVB+uygMtoKAxwUovz0eMOMh4BIBym+XBME2EDBAgPLbgJAZEQGXCHi6/F6dnqPpi95Scq/e+vim211CzjYQQMArApTfXkmSORBwvwDlt/szYocIeEGA8tsLKTIDAqEhQPkdGjmxSwS8IODp8nt9Vp6mvvuGkrr30OcT7/JCXsyAAAIuEqD8dlEYbAUBjwtQfns8YMZDwCUClN8uCYJtIGCAAOW3ASEzIgIuEfB0+Z2SU6A731qg3p1j9e3t97qEnG0ggIBXBCi/vZIkcyDgfgHKb/dnxA4R8IIA5bcXUmQGBEJDgPI7NHJilwh4QcDT5Xd63k7d+sa/1LVDR628a4YX8mIGBBBwkQDlt4vCYCsIeFyA8tvjATMeAi4RoPx2SRBsAwEDBCi/DQiZERFwiYCny++tBbt1y4KX1SG6jX6+9yGXkLMNBBDwigDlt1eSZA4E3C9A+e3+jNghAl4QoPz2QorMgEBoCFB+h0ZO7BIBLwh4uvzO3VGi8a++qMjwcKXOmOOFvJgBAQRcJED57aIw2AoCHheg/PZ4wIyHgEsEKL9dEgTbQMAAAcpvA0JmRARcIuDp8juvsFg3vvaSjzpj5mMuIWcbCCDgFQHKb68kyRwIuF+A8tv9GbFDBLwgQPnthRSZAYHQEKD8Do2c2CUCXhDwbPn9/BdfaOPajZq+bKnKq6u1/p6H1L5NGy9kxgwIIOASAcpvlwTBNhAwQIDy24CQGREBFwhQfrsgBLaAgCEClN+GBM2YCLhAwLPl9wMvvaT0zWn6x+ZNKqmq1Kq7ZqhLh44uIGcLCCDgFQHKb68kyRwIuF+A8tv9GbFDBLwgQPnthRSZAYHQEKD8Do2c2CUCXhDwbPn995kzVREWqf9L2agdpSX69vZ71btzrBcyYwYEEHCJAOW3S4JgGwgYIED5bUDIjIiACwQov10QAltAwBABym9DgmZMBFwg4Nny+47Zs9Wp30A98OlHyt21U19MvEv9u/dwATlbQAABrwhQfnslSeZAwP0ClN/uz4gdIuAFAcpvL6TIDAiEhgDld2jkxC4R8IKAZ8vvf3zwgUrD2mj6e28pa0eBPrnpdg3p1dsLmTEDAgi4RIDy2yVBsA0EDBCg/DYgZEZEwAUClN8uCIEtIGCIAOW3IUEzJgIuEPBs+f3ismXavqtcDyx+R2nb87TohokakdDPBeRsAQEEvCJA+e2VJJkDAfcLUH67PyN2iIAXBCi/vZAiMyAQGgKU36GRE7tEwAsCni+/Z//nfW3KzdG/r52gX/cf4IXMmAEBBFwiQPntkiDYBgIGCFB+GxAyIyLgAgHKbxeEwBYQMESA8tuQoBkTARcIeL78fuyTD/Rzdpb+ddX1OnJQsgvI2QICCHhFgPLbK0kyBwLuF6D8dn9G7BABLwhQfnshRWZAIDQEKL9DIyd2iYAXBEKi/J719Kvq3zdO55x2dI35xtRMjZv4kLKy82p+N2LYAD05Y7y6dI6R/9iTp5d+pJ8y0/X8mKt1/LADvZAZMyCAgEsEKL9dEgTbQMAAAcpvA0JmRARcIED57YIQ2AIChghQfhsSNGMi4AIBV5ffr7+3VJNnzvMx3TNx7F7l9+3Tn9G0W6/UwMT4vSj95ffczz/RD+lb9Mwlf9FpIw5xATlbQAABrwhQfnslSeZAwP0ClN/uz4gdIuAFAcpvL6TIDAiEhgDld2jkxC4R8IKAq8tvP3B9b343pPyev2ypvktN0WMXXaazf3WoFzJjBgQQcIkA5bdLgmAbCBggQPltQMiMiIALBCi/XRACW0DAEAHKb0OCZkwEXCAQ0uV37WNPah95Yrn63/x++esv9FXKBj00+mJdeNgRLiBnCwgg4BUBym+vJMkcCLhfgPLb/RmxQwS8IED57YUUmQGB0BCg/A6NnNglAl4QCNnyOxDfejt8a06+7r5lrNq1jfaV30UlFXr56y+1dP3PmnnuBbriqGO9kBkzIICASwSs8rtTu0gVFJW7ZEcu20a1pDCX7YntIBCiAjHtIlVSXqnyCusvFj8IIIBA6whER4arTVS4dhZXtM4C3BUBBBDYI9AlJlqFu8pUxb+14ZlAwBiB1LxcpW/PV3Kv3uoeE2Pb3NaLRLV/wqqrq133Lz3Bjj0JFLK+APOBJ17R9NuurPnCy9KyCr2w9FN9ujlF948+Tzccf6JtsCyEAAJmCFj/AbG0vMqMYRs5ZWVVtSLCab8bycblCAQViIoMV2Vltarc92/TSMzFAvzrsIvDcenWrP9i3/q/3eUV/Hsbl0bEtkJMgH8drj+wNlERKi2vDLFE2S4CCDRVIL9ol0ZNvVtbdxTq2mOP00MXXNTUWzX6c9b/Z5sny+8XvvhCqSnpeuv7b/XN9nxNOuUMXf/7kxsNxAcQQACB+gQ49oRnAwEE7BLg2BO7pFkHAbMFOPbE7PyZHgE7BTj2xE5t1kLAeYFL5z2pj9b+5NtI53bttPKu+xURHm7LxkL22JPFS5ZrUFKCBibG+6Cst8Otnwnjzvf9z9kLFmjzz5u0vCBfy/K2afwJp+rmk063BZVFEEDADAHKbzNyZkoE3CBA+e2GFNgDAt4XoPz2fsZMiIBbBCi/3ZIE+0Cg9QVe+voLTVz4T8VGt5HCwlRQWqKX/nKdjh0yrPUXl+Tq8vv195Zq8sx5NRC9e3XT0zNv8hXe33y/VpffOKPmz04//vCa876tX9764IMqrZBWV1dp8YZ1uvaYE3T76X+0BZVFEEDADAHKbzNyZkoE3CBA+e2GFNgDAt4XoPz2fsZMiIBbBCi/3ZIE+0CgdQU2bcvWCbOmq6yyQjcdeoS2VJTr1f9+o9EjD9MjF17auovvubury+/mCNw2a5Y69k7UivxcLVyxXFf87hhNPeu85tySzyKAAAJ1BCi/eSAQQMAuAcpvu6RZBwGzBSi/zc6f6RGwU4Dy205t1kLAGYHyigqdPOd+rduapSN79NQ1J5ymsjZtNOa5p9UmIlJr7nlAbSKjWn1zni2/H3/7bVW17aQvN67XK98s058PO0L3j7641UFZAAEEzBGg/DYnayZFwGkBym+nE2B9BMwQoPw2I2emRMANApTfbkiBPSDQugL3vPOGnlr6keI7dNTff/M7VVVUqu+gwbr13Te0Pnurnrh4jM46ZFTrbsLtx540Z/oXli1Twa5yLU/ZoBe//kKjR/1Gj1xwSXNuyWcRQACBOgKU3zwQCCBglwDlt13SrIOA2QKU32bnz/QI2ClA+W2nNmshYL/A1ykbdO6TsxUZFq5Hzv+z4mJilJmaovLSMv1QWqznvv5CJw47UM+NubrVN+fZN79fXLZM23eVa8WWzXruy091xsEj9dSfxrY6KAsggIA5ApTf5mTNpAg4LUD57XQCrI+AGQKU32bkzJQIuEGA8tsNKbAHBFpHoHD3bh3z4D3atmunrj7qOJ018jCpulrFu4uUlbpZ+Tt36s6vlio8LEwr77pfndu3b52N7Lmr58vvlRlpeuazj3XS8BF69vJxrYrJzRFAwCwBym+z8mZaBJwUoPx2Up+1ETBHgPLbnKyZFAGnBSi/nU6A9RFoPYFL5z2pj9b+pEMS+mn6uRf9b6E9Bbj1Bvij33yldQX5mn7Ohbr08CNbbzNePvbE/+b32q2ZemLJhzpmyDC9/JfrWhWTmyOAgFkClN9m5c20CDgpQPntpD5rI2COAOW3OVkzKQJOC1B+O50A6yPQOgIvff2FJi78pzq3baunL71SndsFvNW9pwB/48ulemH1Sv0maaBev2Z862xmz109/+b3hpxszfl4kQ4fMEgLr76xVTG5OQIImCVA+W1W3kyLgJMClN9O6rM2AuYIUH6bkzWTIuC0AOW30wmwPgItL7Ble56OnXmPSisrNO3sCzSyX//gi1RXa3vhdl32/P+pvLpa395+r3p3jm35DZlSfqfm5eqhD9/Vr/om6p3rb2k1SG6MAALmCVB+m5c5EyPglADlt1PyrIuAWQKU32blzbQIOClA+e2kPmsj0PICFZWVOv3RB7QqM11/OOhXuu64k/a7yNQ3X9Oy1E269dQz9dcGXL/fG9Zzgeff/M7Ynq/7F7+t4fEJ+vDGSU114nMIIIDAXgKU3zwUCCBglwDlt13SrIOA2QKU32bnz/QI2ClA+W2nNmsh0PoC0959U098+h/16tBRj118mTq271j/otbRJ0VFev+bL/XMj//VkJ699MnNk1ttk54vv7MLt2va+29pYI9eWnpL60G2WkLcGAEEXCtA+e3aaNgYAp4ToPz2XKQMhIArBSi/XRkLm0LAkwKU356MlaEMFfg6ZYPOfXK2wsPCdONBIzWodx/F909SdJu2e4vsKb4zUjeprKxcd331mXaVleo/42/VsN59WkXQ0+V3/s5SZWZl6v6lHymhS1d9fevUVkHkpgggYKYA5beZuTM1Ak4IUH47oc6aCJgnQPltXuZMjIBTApTfTsmzLgItK1C4e7eOefAebdu1U2OOOEanDk5W6s9r1TE2VvGJAQV4dbV2F+1SVupmVZSXqe/AIZq7/Eu9t+p7XXfsibrttLNadnN77ubZ8vuFL79URnq2Un5ep3+krFePmE76fvJ9rYLITRFAwEwBym8zc2dqBJwQoPx2Qp01ETBPgPLbvMyZGAGnBCi/nZJnXQRaVuDSeU/qo7U/aUR8gu4ffbHCwsK0s2D7LwV459j/vQHuL763bFZFWZkSBg5Wh5hOWpWRplsWvOz7wstvbrvH9/mW/vFs+f34229rw09rVVpRoSdTNqhT23ZaM/WBlvbjfgggYLAA5bfB4TM6AjYLUH7bDM5yCBgqQPltaPCMjYADApTfDqCzJAItLPDP5V/q5gUvq31UtJ657Ep17fC/c779BXiHTp0U33+AqioqlZma4nvj2198W9uprq6WVaDn7tqp16++Ub8ZMKiFdyl5tvy+7aGHtLu0UjFxvXXvF0vUJjJSm+6b3eKA3BABBMwVoPw2N3smR8BuAcpvu8VZDwEzBSi/zcydqRFwQoDy2wl11kSg5QS2bM/T8Q/eq93l5b7jSo4aPHSvm+8sLFDqujVq16Gjr+SurChX34GD1T6mU51rn2iieosAACAASURBVP3iU7367Ve65De/04xzL2q5Te65k2fL71sffFDtesQrtne8/vavF3zjZsx8rMUBuSECCJgrQPltbvZMjoDdApTfdouzHgJmClB+m5k7UyPghADltxPqrIlAywhUVFbq9Ecf0KrMdP0+ebhuOeWMem+8LTNDG1Z+r4ioKA068GB17dlrr2u35Odq3Atz1bldO/145wxFRkS0zEa9Xn7PXrBA4Z26KywsXDe9+oLKq6q0cdrDahsV1aKA3AwBBMwVoPw2N3smR8BuAcpvu8VZDwEzBSi/zcydqRFwQoDy2wl11kSgZQRmvP+WHv3kA/XoGKOnLrlC7aPbBL3x7l07lbZhvaqrqySFKapNtPr0H6C27Tvsdf21L81TSu42PXf5OJ04fETLbNTr5bf1hZcFRRW+Mf++8GUVl5dr9d0z1bld+xYF5GYIIGCuAOW3udkzOQJ2C1B+2y3OegiYKUD5bWbuTI2AEwKU306osyYCLSMw8LbxKqko1/SzRuuQ/gODF987dypt488KCw9XwoBBqqysVNbmTYqIjPqlAO9QtwBf8N1yzf38E/3x4FF6/E9jWmajXi+/X1y2TNt3lfvGvOPNf2lHSYn+e8c09ezUuUUBuRkCCJgrQPltbvZMjoDdApTfdouzHgJmClB+m5k7UyPghADltxPqrIlA8wVWZ6brxNkz1Kt9B0099kT16ttPbdq2q3Pjop07lLZxvSIjI9UnaZDadejgO/N7V2GBtm5JVXhEhO9LMK3f+3+sL7y8dO4Tio6I1MopM9ShTdvmb9ak8nvKWwuUv7tIX986VQldurYYHjdCAAGzBSi/zc6f6RGwU4Dy205t1kLAXAHKb3OzZ3IE7Bag/LZbnPUQaBmBV5Z/qZsWvKwjkwZqdOIAtWvfQXF9ExXd9pey2ld8b1ivqOhoxfdP8n3Zpf+nuqpKu3YUamtaqsLD6xbgxUVF+vuCl7W+IF+PXHCJRo/6TctsWJJnv/Cy9pvf0959Q9k7d2jpLZM1sMfeB6u3mCY3QgABowQov42Km2ERcFSA8ttRfhZHwBgBym9jomZQBBwXoPx2PAI2gECTBG59/RU9/9XnGnfU73VM30RlZ6SpfYeOiuuXqPKysl+K7zbRik9M8hXjCgurs05gAd4naYDvzzNSNunz9FS9svYnHTtkmF76y3VN2l+wDxlRft+/6C1lFGzXBzdO0gHxCS2Gx40QQMBsAcpvs/NnegTsFKD8tlObtRAwV4Dy29zsmRwBuwUov+0WZz0EWkbg9Dkz9X36Fj103p80tFdvFW7P8x1lEhUVrdKSYt9Z3vUV3/4d+AvwrC2bVVVZ6fu1dRRKl959NPaV+b4jUlZMvk/dO8a0yKaNKL9nffiuNufl6u2/3qyR/fq3CBw3QQABBCi/eQYQQMAuAcpvu6RZBwGzBSi/zc6f6RGwU4Dy205t1kKgZQQqKis18I4Jqqyq0pvXjld0ZJSsIjsnM11ZqSm+AjwxeZg6Wt+3GPDGd+AOqqurVLBtm9I2rff9Ud8BgxXbo4fuefdNLdu4XvecdZ7G/u6YFtm4EeX3ox8v0vqcbC0Y9zf9duDgFoHjJggggADlN88AAgjYJUD5bZc06yBgtgDlt9n5Mz0CdgpQftupzVoItIzAyvQtOmXOTPXv1l1P/vkK301379qpLevXqaK8XGWlJerRu496JyYpMipqn4uWFhcrPWWDdhUU+K7rGBurhKRBWp6eqvve+7dG9k3U29ff0iIbN6D8rtbjHy3Wum3ZeumKa3Vs8vAWgeMmCCCAAOU3zwACCNglQPltlzTrIGC2AOW32fkzPQJ2ClB+26nNWgi0jMCLX32uv7/+ik4aPkLjTzxNxUW7tGX9zwoLD1PfgYNVWlKizWtXq3vvePXu118RkZFBFy4rKVF6ykbf5xMHJ/uuSV2/zvflmFZx/qfnnlJxebm+/PtdSuzWo9mb93j5XabSoiI99fFibSzapXmXXaWTDzio2WjcAAEEELAEKL95DhBAwC4Bym+7pFkHAbMFKL/Nzp/pEbBTgPLbTm3WQqBlBCYu/Kde+voLXXfMCTp+cLLSNq73nc/db9AQX3Ft/RTm5WrTmlXqEZ/gO/vbOsu79o/1drj15ZZFOwrV3zoipXOs7493FRZo87o16tCpsxZu3qiP1q3WLSedrhtPOLXZm/d0+b01e7sy163ROxlbtL5ol568eIzOPGRUs9G4AQIIIED5zTOAAAJ2ClB+26nNWgiYK0D5bW72TI6A3QKU33aLsx4CzRc4+ZH7tSojTfefOVrti3apsqJSfQcNVvuAL6YsyMtVilWA9+mr+H79awpwq/jO3JziK7oThwxTTOwvxbf/Z2dhgVLXrVF6Rbke+WaZErt215eTpjR7454tv5/58EOtWfGjKsvLtWRnoX7MzdHs8/+s8359eLPRuAECCCBA+c0zgAACdgpQftupzVoImCtA+W1u9kyOgN0ClN92i7MeAs0TsL7sMum2G1UtafbvT1F1Rbn6Dhyi9jExQW9cU4DHJ6h3v0RVVlYqMzXFd8Z34pChiontEvRzOwu2+94Av2fF19pZVqZFN0zUiIR+zdq8Z8vv2x9+WLuKStWpVy99vC1bX25crxnnXKhLDj+yWWB8GAEEEPALcOwJzwICCNglQPltlzTrIGC2AOW32fkzPQJ2ClB+26nNWgg0X+C/aan6w6MPKCGmk24eeZjvjO/2MZ32eWN/Ad4tLl5VlZV73viuv/j238wqwB/74F0tzcrQVUf/Xnf94ZxmDeDZ8vvvM2eqTZce6p6YpNf/+60+/XmNpp45WlcceWyzwPgwAgggQPnNM4AAAnYLUH7bLc56CJgpQPltZu5MjYATApTfTqizJgJNF5j/5VLd9uarOrR7T9106pnq3LVbg262LTNDG1Z+r4ioKA068GB17dmrQZ/7bu1q3bH4bXXv0FHf3zldYWFhDfpcsIs8W37PfPFFte2ZoLCwcL31w3f6z5pVuv20s3TtsSc2GYsPIoAAArUFePOb5wEBBOwSoPy2S5p1EDBbgPLb7PyZHgE7BSi/7dRmLQSaLzDh1Rf1r2+/0uiBQ3TqiEPUs3cfRUZH7/PGpSXFe77cssDXz3bq2k1xffspuk3bfX7OOht8a9oW3fqf95RfWqp/XXW9jhyU3OQhPFt+v/DllyooqvDBvL/qe72/6gfdfOJpGn/iaU3G4oMIIIBAbYGI8DB16xStnIJSYBBAAIFWFaD8blVebo4AAnsEKL95FBBAwC4Bym+7pFkHgZYROGHWfVqzNVNTTzxVHUtK1blrd/WI76Ooegrw0uLdvuK7uGiX+g1OVmVFhe/M746dOiuub6Ki2wYvwMtKrOI7Vbt2FOrrHYV69ccVuvDQ3+qh8/7U5EE8W36/uGyZtu8q98F8uHql3v5xha4/7iRNOvXMJmPxQQQQQIDym2cAAQScEKD8dkKdNREwT4Dy27zMmRgBpwQov52SZ10EGi9QUl6mwXfcpPCwMC0Y9zftyN2mvOwsderSdU8B3qbOTUt271bm5o0qLSnxnQ3esXOsqquqVJif5yu223eM+eUN8Lbt6nyurKTY98b37l07fQV5eXS0Ln32KXWIbqPVd89UZERE4zcvyYjye8m61Xr9v9/oyqOO05Qzzm0SFB9CAAEEAgV485tnAgEE7BKg/LZLmnUQMFuA8tvs/JkeATsFKL/t1GYtBJon8O3mTTrriVka0itOj1x4me8t7vycbOXlbFWn2C51CvCS3UXK2LxJFWXl6pM0wFd8+3+qfAV4rnLS09SuQ0f16ttPbfYU4NYRKdlpW3xvivfs01edu3VXeHi4rONW1mRl6JlL/qLTRhzSpEGMKL8/37BOr377lS49/EhNP+fCJkHxIQQQQIDym2cAAQScEqD8dkqedREwS4Dy26y8mRYBJwUov53UZ20EGicw9/MluvOtBTp9xCH66+9P9n24sqJc+Tk5ewrwX94ArygvV+bmTaqsrFDvfv19xXfgF1VWVVb63gDPyUxXu/YdfAW49eMrvncXqWd8gu/LNMP3vOX99g8r9MSSD3XagQfrmUuvbNzG91xtRPn9dcoGvfT1F7rg14dr1vl/bhIUH0IAAQQov3kGEEDAKQHKb6fkWRcBswQov83Km2kRcFKA8ttJfdZGoHECf3vleS1YsVw3Hn+KTj7w4JoP17wBnp3le5PbenvbKrutI0s6du7s+5LLYD+1C/CoqCjfJeXl5XsV39bvd5WU6IKn5yg8Ilyrp9yvDvv5ssxg6xlRfn+Xuknzl32mPx48So//aUzjEuZqBBBAoB4Bjj3h0UAAAbsEKL/tkmYdBMwWoPw2O3+mR8BOAcpvO7VZC4HmCRz74L1an7NVT1w8Rkk9eta5mVWAZ6dv0bbMdIVHRKrfoCG+s8DDwoMX3/4PWwV4XvZWZaWm+H7VOzFJ3XrF1bzxXXuRu95aoOUpG/XQ6It14WFHNHoYI8rvH9JTZb2if+oBB+n/Lruq0Uh8AAEEEAgmQPnNc4EAAnYJUH7bJc06CJgtQPltdv5Mj4CdApTfdmqzFgJNF9hdVur7ssvoiEj9+6837XUj64zvtI0bZP3PSuvt7YR+6pXQVxGRkftctKy0RFmpm1WQt813XWy3Huqd2F/RQd7sXrJuje5f9JZOHj5C8y4f1+hhDCi/q/VDyibN/fpz/X7oAXph7DWNRuIDCCCAAOU3zwACCDgpQPntpD5rI2COAOW3OVkzKQJOC1B+O50A6yPQMIGvNm3QuU/N1rDeffY6Srpk925lbN6oyvIKxfXtp9KSEm1N26zuvfuoV5++Qd/itlYtLytV1pZU7Sos8B2RYv1sTUv1nRHeu1+ioqLb1Nlczo5CXfbsU+oT20XLb7unYRuvdZXny+/ykmJ9/d9v9WrqJv1u4BC9Ou6GRiPxAQQQQIDym2cAAQScFKD8dlKftREwR4Dy25ysmRQBpwUov51OgPURaJjAP5Z+rLvfeV1nHjxK1xx7Qs2HSouLlZGyUWVlperTf6DvjG9VVysvJ1vpG9crrl+irwAPPP6korzM98a39aWXCQMG+b7c0vqx/jl90wbfP1tvgEdGRdfZ4NmPP6SSigqtv/chtQ8ox/c3iafL7235u5Sx5ielFuRrQVaGfp2YpH9ft/cr+vtD4s8RQAABym+eAQQQcFKA8ttJfdZGwBwBym9zsmZSBJwWoPx2OgHWR6BhAte99Kze/OE73XTS6Tph2IG+D5WVFCs9ZaOsN7+tM747duoshYX5/qy6ulr5OVu1ee0aJQwc5CvA/X9WWVGuzNTN2p6TrX5DhirWKr73fM4qzgvy87Tl57Xq0rOX4hP7KyLyly/DtP7shpfmaX1ert68ZrwOTRrYsM3vucqz5fdzS5dq5dffqqy4WEXt2unZtT9pRJ++WvS3vzcKiIsRQACB+gQ485tnAwEE7BKg/LZLmnUQMFuA8tvs/JkeATsFKL/t1GYtBJoucNTMqdqUm6P7Tz1TBw0ZJuusbuuN76IdO9Q/eZjvqJJgP3k5W7Vx5Q9KHDrcV4BbX3CZmZri+2LMAcMOVOdu3YN+rjAvV5vWrFKP+ATFJyb5jk7JzkjTYx8v1rf5eZp+zoW69PAjGzWQZ8vvOx55RIWFuxRjYfaM0/RFb2lIzzh9cvMdjQLiYgQQQIDym2cAAQScFqD8djoB1kfADAHKbzNyZkoE3CBA+e2GFNgDAvsWKCkv08DbJyg6PEKTDx6phKSBvre9rbO6E5OHKaae4tt/17zsrdq46gffW94VFRXalpGmpGEHKrae4tv/uYK8XKVYBXifvoqMjPS9DZ4S3UbPrfhal/32KN139gWNis6z5ffEGTMUGdNFcYOSlV+8W3e/vVCJXbvpy0l3NwqIixFAAAHKb54BBBBwWoDy2+kEWB8BMwQov83ImSkRcIMA5bcbUmAPCOxb4IuNP+v8p+fowPgE3Xjob7Vl3Rq169jRV2D7z+ren+G2zAxtWPm9IqKiNOjAg9W1Z6/9fcT35/k52dqw6gdVlpdr0IhDlF1dpVsWvKzfJA3U69eMb9A9/Bd5tvyeNneuYhIG+g5WL9y9W5Pfek1xnTrruzumNQqIixFAAAHKb54BBBBwWoDy2+kEWB8BMwQov83ImSkRcIMA5bcbUmAPCOxb4MlP/6N7331TZ474lU5N6Ku8rVmKbtPW92WW3XrG+Y4k2ddPRXm5tqalKjt9iyIiItSrb6J6xicoIjJyn5+rrKhQTma6stNSVVlZqV4J/RQbF6/znnlU7aOitX7arEZF1+Dye3vhTl0z6WGtXLNJz82epEMPGdqohey++PkvvlDh7krfsrtLSzXpjVcU276Dfppyv91bYT0EEPCoAGd+ezRYxkLAhQKU3y4MhS0h4EEBym8PhspICLhUgPLbpcGwLQRqCVz90jy9/cMKjTlopIZ36KiEAYNUsrtIeTnZvhLbeou7viK7vKzMV3xbhbl1Nrh17EnW5k3q3ruPesT3UWTUni+zDBC3CvNtWRnKzcxQ7/4DfMeebF63Rt3ieuu2Tz5QbtEufXP7vYrfz5ErtW/b4PLb+lDtAtz659OPP1x33zJW7dpGu+7heHHZMm3fVe7bV1lFhW5e8JLaRUdrw72N+28HXDcYG0IAAdcIUH67Jgo2goDnBSi/PR8xAyLgCgHKb1fEwCYQMEKA8tuImBkyxAWOmHGXUvPzNPHgX+vXh4xUTGwX+cvpgtxt6h7Xe08BXrfILi8t9RXfBXnb1G9Qsu/LLaurqmSdAW69BW6V5j1691FkdN0+uaKszFd8W0eeWG97d+sV98uJHnm52rJhnZ7ftF6rcrL1wthr9PuhBzRYt1Hld+27fvP9Wl1+44yaX90zcazOOe3oBi/c2hfWLr+ttW54Zb5vyYyZj7X20twfAQQMEaD8NiRoxkTABQKU3y4IgS0gYIAA5bcBITMiAi4RoPx2SRBsA4F6BHaWlGjonTcrKixcL112ZZ0vt6woL9O2zEwV5ueqa684dfO9Af5LAV5WWqKtaVu0c/t29RkwQLHdetSsUFVZ6XtrfFtmumK79/AV4FF7CnDrTXGr+LZKdevN8MBjVawi/R8ff6BPMtN1+2ln6dpjT2xwdk0uv2uv8Pp7SzV55jzfr0YMG6AnZ4xXl84xDd5Ea1wYWH6Pf/UFVVZVafP0RxS1nzNpWmM/3BMBBLwnQPntvUyZCAG3ClB+uzUZ9oWAtwQov72VJ9Mg4GYBym83p8PeEJCW/rxGF/3f4zqwd7weOP+SvUj8b2kXbs9X1x69fAW4dT639cZ30c4d6t2vv++N77CwsDqftc7zzt+W7TsOpVOXbuoRH+/7c6tM37E9z3e8iXW/wONUqqur9c63X+mJL5fq3F8dqjkXXdbgmJpcfge++X3FRadpzIWn1pwL7nQJHlh+37LwZZWWl+vnqQ+qQ9u2DQbiQgQQQKA+Acpvng0EELBLgPLbLmnWQcBsAcpvs/NnegTsFKD8tlObtRBovMCjHy/WjEVv69yRh+kvRx0X9AbW29q5WRmyCvBOsV1UVlKikuJi9erbV7Fdu/uOLAn24yvAc7KVl7NVHTr+8vJ00a6dvre993WO+MbsrfrrK/M1PD5BH944qcFDNar83piaqXETH1JWdp5vgfoK7uKSMj05/01fGe7UG+CB5fdtr7+iXWWlWnnXDHXt0LHBQFyIAAIIUH7zDCCAgNMClN9OJ8D6CJghQPltRs5MiYAbBCi/3ZACe0CgfoErn39G7636QZNOOVPHJA+r90LfF1tu2ex7m9t6y7tP0iB16dFD4eER++S1CvBtmRnKyUjzXdezT1/fcSf1fYGmdU1FZaXOfPwhRYaHa9N9sxUe8FZ5fQs2uPyu/WWXz82epEMPGerqZ6Ru+V2tO998TQUlxY3+RlBXD8nmEEDAUQHe/HaUn8URMEqA8tuouBkWAccEKL8do2dhBIwToPw2LnIGDjGBw+6brIyC7Zp72VWKj+1S7+5LS4qVmbJJOwsLfF9qGdevv3r07q3wiMh9TmyV5taXX+Znb/VdZ50dbn3Jpf8M8Po+PO75Z7Rle74+uel2DenVu0GqDS6/G3Q3F130v/K7WuUlJbr3vX9re1mpPp94l5K6/++wdRdtma0ggECICVB+h1hgbBeBEBag/A7h8Ng6AiEkQPkdQmGxVQRCXIDyO8QDZPueFvB/2WX7qCgtvHZCvbNax5xYZ3wXFxWpW1yc79iT7bnb1LNPwl5fWFn7JtYXZuZkZqgwL9d3zIn1Yx2DYp0R3jO+jyKjooOuaX1h5tR/v6av01L15MVjdOYhoxqUQ4PLb/+b3zeNOz/oW9/Wl15+9d1q3X3LWLVrG3yTDdpRC13kL78rSkuUk7JRz/z0o/LKy/TRhNs0NO6Xw9T5QQABBJojQPndHD0+iwACjRGg/G6MFtcigEBTBSi/myrH5xBAoLEClN+NFeN6BOwT+HjtT7pk3pMaFNNZ95w1WrHduu+1eFlpibZuSdXuol3q1aevOnftpqqqKm3LylBuVqbvCy+79Yrb69zvyvJy5WSma/u2HPXok+D7ckvrxzo2ZVtGurr06Kme8QmKiIqqs6b1Vnle9la9uGypFqel6obfn6y/n3JGg1BarPy2vgDzoadf1ZMzxjt2znftia3yO3d7kbZu+FnFOwr12tZMZRXv1ns3TNTBCf0ahMNFCCCAwL4EKL95PhBAwC4Bym+7pFkHAbMFKL/Nzp/pEbBTgPLbTm3WQqBxArP/874e+OBdnTooWUd26qwBww9UbLf/naJRXlqqrLRUFe0oVFy/RHXu0k3hEb+c8e07yzsrQ9lpW9RnwEB1t44m2XM2t/VnVvGdtzVLcX0TfW99+z9nvdVtvf1tvUneLa73LwV45J6jU6qrlZudpYxNG5UZGaE5yz7TScNH6NnLxzVosBYrv2c9/aq25uS75s3v+Z99ptUrfvQV3+07x+q19C3alLdNb1wzXoclDWwQDhchgAAClN88Awgg4AYBym83pMAeEPC+AOW39zNmQgTcIkD57ZYk2AcCewuMee5pfbB6pW495QwNjG7jO5t7wLADFdu9h/xfcLmjYLv69B/ge+M7LDy8zk2sIts61iQzZaMSk4eqW6/e8v0uI13ZGWnqkzTA98a3v/j2f9hXgG/LVkbKJt/b5NbxKdY1edlZSl23VvFJA1XVsaOueP4Z9evaTcsm3d2g+PZbflvHmUyeOW+/N+vdq5uennmTBia640iRKU88obzc7b7iu/fgZD31+RKty87SK1f+VUcNdveXde4XmwsQQMAVArz57YoY2AQCRghQfhsRM0Mi4LgA5bfjEbABBIwRoPw2JmoGDUGBUfferq07CvXcmKvVo0NHZW1JVXZ6qvoNTvad712Qu019Bw1W567dFbbnre7AMa1jSqwCPPXnNb43xyvKK5S5eZMSByf73vgOLMz9n7c+Z70Bnrp+neL7D1BkVKQ2rV6lxCHDfOeBW587+/GHVFJRofX3PqT20W32K7zf8tt/h/2d+b3flWy+4Jbp0xXWtqP6DDvQ998SPP3pR/opK13zLx+nE4aPsHk3LIcAAl4UoPz2YqrMhIA7BSi/3ZkLu0LAawKU315LlHkQcK8A5bd7s2FnZgvk7tqpg6feqg7RbbTgmht9GNYb2VlbNmvL+nVq16GjkoYO973x7T/OpF6x6mpfAb7xpx8VGRWlAcNHqJv1BZf1FOY196muVl5OtjatXqmK8nINPOAgX/Ht/9z4f72gtVsz9dZ1N2lUYtJ+A2tw+b3fO7nsgimPP66ug4YrLPyXM2fmfb5E36en6uk/X6E/HPQrl+2W7SCAQCgKUH6HYmrsGYHQFKD8Ds3c2DUCoSZA+R1qibFfBEJXgPI7dLNj594W+HD1Sl3+3NP6dWKS7vnj+TXld2ZqitI3rlfbDh3Uf8iwX74Ecz8ldrVVfmekK2XNKkVERilp2AHq3ituv5+T74zvrdq89idf+Z007EDfESj+t8wf+WiRFq36Qfefc6H+fPiR+w3Es+X38198ocLdlTUALyz7TN+kbtKcCy/VuSMP2y8MFyCAAAL7E6D83p8Qf44AAi0lQPndUpLcBwEE9iVA+c3zgQACdglQftslzToINE7gwQ/e1cP/eV8XHfZbXfrbo31vfWdu2axtGWnqOyhZJUVF2p6bo4SBgxUb5Lxv/2pVVdYZ3xlKW79OScMPVGVFue/Yk76Dhqhbz7h9HnuSl7NVaRt+9h17YpXmKatXqe//s3ceYHKVZfu/t/feZ3Z2Zks22RQI8gcREJGiVEXESBEpAhGUTugYUUoEAlgQkfLRRIiAKE2qEEqACIS0TbbO7O7MbO9l2u78r+fdzLJldrMpzM6Zuc91fZ8me855n/f3HKP+8ni/8+YjV69HZGQU/v3Fp7j/nTdxzsGH4ZYdgn6mXYas/H5y3Tp09bvH9v73Tz7Eurpq3HXK6TjtwIN3rfO8mwRIgAT8EKD85mdBAiQQKAKU34EizXVIILwJUH6Hd/+5exIIJAHK70DS5lokMHsCP33kfry1bQt+dcLJONBYrOJO2mxNavpapr3VgZeNFvR2dUJnLEZaVjYiJx14OezxoM1uHc34Lq9AVl4+RmV4E1qbGlFgKlYC3N+BlyK+7eZ65BYakKvzHXjZrLLDdcYS5Oj02GK34prnn8Y3Ssrw7M9Ho1l2W377cr6XnXg4vn3Ifrjw2nuwqbJu2vctqSjB/asuR0Zays7W/cp/Pll+P/vpx1hbvQ23nrQMZx982Fe+PhcgARIIfQKU36HfY+6QBIKFAOV3sHSCdZBAaBOg/A7t/nJ3JBBMBCi/g6kbrIUEviSw783Xon2gH4/+9Dy4OjvRbreOiW/fXW6nUwnw/t4e5BuMKv/bJ7KH3W602q1otTaisLhMiW9fxHHd3QAAIABJREFUPIqS4jYr2pttyCssUgdfRkVHq9fKz+Sgy5amBmTn65Tk9v1MYlA6WprRVF+DXL0BiRlZOPWRPyMtIQFbb75zp+0Lm8nvFzb8D2/L31wc/wMs/9aROwXDG0iABEhgZwQov3dGiD8nARLYWwQov/cWSb6HBEhgJgKU3/w+SIAEAkWA8jtQpLkOCcyegK27CwfcdhPS4hNw51HHoLO1FabyBWq6e/LlcjrQ0tiAgf4+5OkLkZaZraa7RW6LqM4vMvqNN5H4EzkEs6utFTkFOmTm5qtXd7Y2o81uQ0ZOrjrcUuJOxl/ekRHIVHhzg0UJ9aveeAWdA/349MZbkZ+aNuMmw0Z+v7zxc7y2dSOu/u4JuPTIY2bfed5JAiRAAtMQoPzmp0ECJBAoApTfgSLNdUggvAlQfod3/7l7EggkAcrvQNLmWiQwOwKvbv4C5z3+IPbJycOZZfNHc739iG/f21wOB5qbGjDU34+svDw4HQ70dLSr6WyZ6p4ca+J7Tg6xFEne3dGmZLdcIsPTs3LUxHd0zETx7XtO8sdlOlymyh+pqsSWthb87WcX4fD5Cym/hcBrW77Ay5s2KPEtApwXCZAACewpAcrvPSXI50mABGZLgPJ7tqR4HwmQwJ4QoPzeE3p8lgRIYFcIUH7vCi3eSwKBIfC7/7yIP7z9Go7SGXDut49CRlbOWGTJdBWIALeaa9HX3QXviBcFRpOKLZlOfI8JcJdLRZzIlLhcMs0tUSjRsbEzblYEuMSmPPz+O1jbbMNNx5+En3/rqL0nv+9+YA0+2bBtLNe71mLD8qtXw97SgeOPPAg3rzgXCfEzFxmYdgGTM7/f2LwBL27+Aj8/7EjcdMIPAlUG1yEBEghhApTfIdxcbo0EgowA5XeQNYTlkECIEqD8DtHGclskEIQEKL+DsCksKewJnPHQfXinqhJnz1+IY79+CFLTM3Yqv90uJ+wWM7raWxGBCOiLS9U0987kty/+pM3apLjn6Av9xp1MborIb5kS//f6dVhTV41T9v86fv/jM/eO/B5yuLDyzkdw0P4LcfJxh2Hyr59/ZS3Mjc24YvmyoPhYxstvj8uJ1z/7BP8x1+Gcgw/DLScFR41BAYpFkAAJ7DYByu/dRscHSYAEdpEA5fcuAuPtJEACu0WA8nu3sPEhEiCB3SBA+b0b0PgICXzFBBb86ir0ORy4/bAjEQ8okZ0iAnyaS8S3xJf0dnchLSNTxZ44BgfUBLfEpURERvp9Ug63lPzuzpYWJKemqnv6e3uRmZencsLHDrqc9LTkfnd3tKuJ8TaPB7d9+C4W6w147dJrZiQz68zvrp4+XHjtPbhy+TIcsHQBfFPft193vvr1+g3bsPqBNWNT4V9xP3b6ep/89rhd6Gi04OO6WrzZ3oLTDzwYd55y+k6f5w0kQAIksDMClN87I8SfkwAJ7C0ClN97iyTfQwIkMBMBym9+HyRAAoEiQPkdKNJchwRmR6CxswMHrVqJ7OQUPHT62bCa6+EY6Idh3nykpKVPeYnb5dohvjuVsM7MzcWwZ1iJ6f6ebuQXmZCenYOIiIgJz4r4lsMt25ubkZ6VhewCvfp5u10ywDuQnS/vmirAvV4vutvb0NxgRnJaOrIK9Djl4fsQHRmJutvuReSkdcYvutvye7LsDkb53d49iHZLPfo62lHrcuHlJgt+uN8B+MNpZ82u87yLBEiABGYgQPnNz4MESCBQBCi/A0Wa65BAeBOg/A7v/nP3JBBIApTfgaTNtUhg5wRe2vg5lj/5ML5ROg+/OuFkOB1DsJnrMNDbA2N5xYQJcI/LhVa7Fb2dHcjKK1CHW/qmtV1OJ1qaLOjt7FST4yLAfZdElkjGd5vdiozsXOQU6MYyvuWdbXabik/JKdCrDPDx0Skivq31tUjNzEReoRGxcXG44PEH0djViXevuhFlufnTbnLW8lveIJnfJkO+ij2Rf97c2jmW8y2xJx99ujVocr8ff/99bN9Uif6ODsQlJcEeG4snP/sEJyxZigfOPG/nXecdJEACJLATApTf/ERIgAQCRYDyO1CkuQ4JhDcByu/w7j93TwKBJED5HUjaXIsEdk7gtlf+hfveeQNnfeObOPXAg9UDLqdDCfC+7m6Y5o8KcI/bjTZbk5rCztbpkZnzpfj2rSJxKM2NDSqbu2jefBWBIpEl7S12NRkuwlwEd3RMzITC1LvtVnS02FV0SnZegYpOkaiThurtKks831CEmNg49dxtr7yA96q34y9nnIsT9/3a3pHfvpzvl9/6CAV5WXjgjitRatSNRaBcdNb3lRgPhuvWhx9Gi61Vie+80nmo7urEX997G0dXLMaj5/w8GEpkDSRAAhonQPmt8QayfBLQEAHKbw01i6WSgIYJUH5ruHksnQQ0RoDyW2MNY7khT+DHf/0j3q/ZjltO+hH2N5aM7dftdMJmqUdvVycKS+fBMTCgYktyCw1+xbfvQYmhFgEumeCmBQshB1yKSM/VGZCj0yEqeqL49j0n97XZbGi1NUJnLEFUTAzM27YiR6dX4js6Jnastqc+/hBPfPQeLjvqWKz4zvF7R35rqdNXr1qFkZgEFMybj9iEBGxvtqu/wThs3gL8/fxfamkrrJUESCBICVB+B2ljWBYJhCAByu8QbCq3RAJBSIDyOwibwpJIIEQJUH6HaGO5Lc0S8B12+eyFlyFpx2S1bzM+AS653LFx8SgwFquok/GxJP42LiJbBLjkdEdGRaPAaFIT39MdaPmlAPeoCXC7xYyRYQ/yikwoMBRNEeYf1lbjty89j2MW7YOHz7og/OT3TX/4AzJLFiA6Ts4nBWrbWvD7t/6DrxeX4vkLL9fsx8jCSYAEgocA5Xfw9IKVkECoE6D8DvUOc38kEBwEKL+Dow+sggTCgQDldzh0mXvUCoH69jYcesfNyEtJxaPnXjilbIkssTWY0bC9EgnJySiuWIy0zKxZbU8mv2s2bVAT3GWL91XSfDZXZ2sLajZ/gWG3G2VLlqrJ78mXrbsLP3vsrzBlZeODa3699+S3ZH0//PdX/L5wSUUJ7l91OTLSUmazj6/0nkfXrkWf88slGjrbcdfrL2NpYRFevuTqr3RtvpwESCA8CFB+h0efuUsSCAYClN/B0AXWQAKhT4DyO/R7zB2SQLAQoPwOlk6wDhIA/rXhU1z01P/h0LL5uOH4kyYi8XrRYm1EU2019DtiT/q6u8YywGfiJ4dbivg2SuyJ263yvksWLkZ61peHYPp7XjK+67ZuUrnfIs0t27YqAS6HYE6+fnDfajg8HlTfshqJkybWfffu8oGXn2zYFjSCeybAT65bh65+99gttp4urHr136jI1+HNK67nt00CJEACe0yA8nuPEfIFJEACsyRA+T1LULyNBEhgjwhQfu8RPj5MAiSwCwQov3cBFm8lga+YwG9efB4PvPc2zjn4W1h2wEHjVhPx3aTkc+nifZV8lgiUpvpaDPT2wCiHYKal+61ODq2s3bwRpgWLkKsvxMjwMOwNZrRaG9XkuByC6e8S8V1fuRm5egMKikwqWqXV2gTzti0oXbyPOixz/HXZ049je4sdL128AvsZjH7fOWv53dXThwuvvQfLTjw8aA61nKn3k+V3W18vfvvyP1GcnYP3r175FX82fD0JkEA4EKD8Docuc48kEBwEKL+Dow+sggRCnQDld6h3mPsjgeAhQPkdPL1gJSRwyl/uxbq6Gtz+gx9jaZFJAZGok1ZbEyzbK8fEt4+Uy+GAtb4WjsEBdQhmclo6IiIixp7raG2BpaoShSXzkKcvBHb8bNjjUQK8s6UZRfPmIy0r+8vnvF70dLSjoWY7MnPzlfgeywZX0+dNaKqrhrG8Alm5eYiIjFTr3fvmq3hty0bcdcrpOO3Ag/eO/L5y+TIcsHRB0H8Zk+V39+AAfvXvZ6FLS8f6G24J+vpZIAmQQPAToPwO/h6xQhIIFQKU36HSSe6DBIKbAOV3cPeH1ZFAKBGg/A6lbnIvWidQev3lcHjceOLM85CdkYmRHeLbWlejJrf9xY04h4ZgNdfC5XRCbypBcmoavF4vJKvbWl+DPINJiW+fpPYx8rhdsDdY0NPZoZ7zTYDLxLfVXKeyxAuKjIiOiZ2AVWS8CPDmRjMKi8tUdrgI9zUfvY9H16/DeYcejpu/d8qeye8hhwsr73wEB+2/UJOT3/1OB67/5zPISkrGxpWrtP5dsn4SIIEgIED5HQRNYAkkECYEKL/DpNHcJgnMMQHK7zluAJcngTAiQPkdRs3mVoOaQE1rM7511y3ITkjErw85XOVs9/V0oaWxAYayeVNiRsZvxjE0CFt9HURoy3NOp0M9J4dT5uoKVWSJv8vtcqK5sQGSHZ5fWKRuaW5qQEp6BvINRYiZJrtbolNkGl0O0cwzFCEuLh7vbdqA+774FIeUlmPN8kv2TH7L03LYZXNrJ25ecS4S4ica+GDr5OTJb4fbjaufewrJcfHY/tu7gq1c1kMCJKBBApTfGmwaSyYBjRKg/NZo41g2CWiMAOW3xhrGcklAwwQovzXcPJYeUgSe++wTXPL04zi0pAwn6wxq6tvpGFKxJJKv7YszmW7TjsFBFUcyNNAPiTURCS553WORJdM8KBPjdks9ujva1B1yCGaBsRixcXEz8pU1JDdcDs+UNbyxcbhm7VtIS0jA1pvv3HP5XWux4YbbH8St152PUqMuqJs9WX67nA5c9c9nEBMVBfPtvw/q2lkcCZCANghQfmujT6ySBEKBAOV3KHSReyCB4CdA+R38PWKFJBAqBCi/Q6WT3IfWCaz897N46P13cO43DsMBaWnoamtDTGwsiisWISk5ZSyve7p9Dnvcaoq73W5FZFQ0DKXzVHTJ5LiTyc/LFLccimm3mNWPCowmJdunmxb3PS/xJxKZ0lhbjZFhD7IL9LjqzVfQPTiIDTfdhpyU1Cml7vKBl5sq66bt65KKEty/6nJkpKXMee/Hy+9htxvdLXbc/P5/VV3WO/405/WxABIgAe0ToPzWfg+5AxLQCgHKb610inWSgLYJUH5ru3+sngS0RIDyW0vdYq2hTOCkP9+N9eY6XH3o4chHBFIzs1QcSXRMDPSmUiQkJ0+7fRHfcrilHGCZmJwMp8MBeIF8gxHJaWnTCnAR392d7Sq+RES7XG6XS8WlpGdmTyvARXz39/agucECRABx8QkY7O/DQ9s2Y0trC54+/5f45ryp51TOWn5rrdE++S2N6G62odtux3311fCMjKDmlruRsAOu1vbFekmABIKHAOV38PSClZBAqBOg/A71DnN/JBAcBCi/g6MPrIIEwoEA5Xc4dJl7DHYCI14v5t1whTrs8o5DDke+vhCZOXkq9kQmqyXyRCa5E5KmCvAx8d3agrSMTDWBLb9nM9fD43arSe7ktPQpsSkivns629FqtSqxPj7ze6i/H7l6PdL8CHA5TLO/p1tNiouY15mKERUdoybOH1u/Du9aG7HyhJNxwWFHTMEe0vK7o2cIXTarkt8xcfH4c3UlBt1ubPn175CemBTs3yDrIwESCHIClN9B3iCWRwIhRIDyO4Saya2QQBAToPwO4uawNBIIMQKU3yHWUG5HkwS2Ndtw5N23ITcxEXcdfzIyc/PGsrplorqpthoinQ1l5UiUCJQdlz/x7ZvgdgwOKAHucjmhN5WoQyx9l+SJ93S0o8XaqN4n4js2Pl792OVwqEMvZd08vQFpWdmIjIwce1am0a3mOsTGxinxHb/D68rE+AsfvY9HPl+PZf/vINyz7Cd7Lr/Xb9iGsy9bpV70s9OOwxXLl0GywJdfvRoXnfV9nHzcYUHR8Mc/+AC122rR02xHdHwcsg0mrFr7FnqGBvHZDbcgLy09KOpkESRAAtolQPmt3d6xchLQGgHKb611jPWSgDYJUH5rs2+smgS0SIDyW4tdY82hRmDN/z7C5WuexMFFxbj+xJOnHFIph1jKBLjEjcgEeGJKqjrUsrO1GR0tzSrbWya+feLbx8cxNAibuQ7OwSEUls1DSlq6ekd3RzuaGy1ISk2bIL59z4kAl4MsJdpEolPSs7JVdEpfTzeaaqoRl5gAnakE8QmJE1qxtakRVz73FPbRG/Dqpdfsmfx+/pW1WPPiOyrX+78ffA5zY7OS33Ld/cAaNLd24uYV5yIhfjSvZS6vO558ElZLk5r4zjEWIzE9HTe/+Dw6Bvqx7tqbUZSZNZflcW0SIIEQIED5HQJN5BZIQCMEKL810iiWSQIaJ0D5rfEGsnwS0BABym8NNYulhiyBG15Yg0c/XIvzDz0cJ+//db/7HBoYgLW+Bh63B/riEjgGB9HebFNi2p/49r3EOTSkBPhAXy+M5Qvg8XhgN9epSfA8QxFi40YnvidfLqcDLY0NKne8wFSC6OhoWKq2ISklVYnvuISEKc94hodx4p/uQkxUFMy3/37Kz2cdezLkcGHlnY/gRycejgOWLoCI8PHye7wYD4YDL6+54w54IqKRW1yGxLQ0SBL6ba+8gObeHrxz1Y2Yl5sfsh8vN0YCJBAYApTfgeHMVUiABADKb34FJEACgSBA+R0IylyDBEhACFB+8zsggbkncOIf78RnjRbc9aMzsEhXOG1BMgEuUSYDfT0qZ1viUXIKdIiOmXn4WSa5Jaqkr7sTERGRSM/OURPfMXFxM27e7XSqCJTu9jZ4vSNISc9UESq+iBR/D5/32IOwdnfivatuQklu3oRbZi2/u3r6cN1tD2LFRaei1KibIr8lDmX1A2vUVHgwyO8b770XqUVlSEiRTJoItek7X3sRjV2deO3Sa7BYb5j7r4wVkAAJaJoA5bem28fiSUBTBCi/NdUuFksCmiVA+a3Z1rFwEtAcAcpvzbWMBYcYATnssvj6yzA8MoIXLrocsdEx0+5QIktsDWY0bK9Uh1QWVyxWkSezudpsVtRs2oComBiULd5XifPZXJ2tLajZ/AWG3W6ULVmKHJ1+xsduffkFvF+zHX898zwcv2TpVyO/ZfL7o0+3Bk3syYNvvAEH5G8gRsW3XPe88QrqO9rw719cif2NxbNhzXtIgARIYFoClN/8OEiABAJFgPI7UKS5DgmENwHK7/DuP3dPAoEkQPkdSNpciwSmEqi0W3HUPbejKCMTD/z0/BkRtTfbYa2rQWZePmQqW6JJ5BBMiSKZ6eruaEPd1s3I0RViZHgYvV2dMM2vmHAIpr/nJfLEvL0SqRmZiIyKQputCSULFyM9K2fa5Z76+AM88dH7uPI7x+OKo46dcN+sJ7/lKcn1Nhny1aGW42NPfJEo+bmZYxngc/1hPbluHbr63RPK+NPbr6GqtRlrll+CQ0rL57pErk8CJKBxApTfGm8gyycBDRGg/NZQs1gqCWiYAOW3hpvH0klAYwQovzXWMJYbcgT++fl6/PLvj2H//ALc+L1Tphwi6dtwR4tdiWh9cZmKOhHxLREobpcLRWWjh2D6uySypK5yM/IKi9ThlSK/bZb6nQrw8eJbZyxW8lsOyZSDMEsqFqvoFH/X25s+x51vv47jFu+LByfJ/F2S3xJ9cuG19+DK5cvQaGsdy/wWKf7Jhm1BE3kiEPzJ77+8+ya22q144twLccSCRSH34XJDJEACgSVA+R1Y3lyNBMKZAOV3OHefeyeBwBGg/A4ca65EAuFOgPI73L8A7n+uCdzx2kv4/Vv/wTHGYpxYvhD64tIph0l2tDSjdvNGGOdXIFenR0RkJOD1YmhQDsGsw7DHrSbAE5MlcvrLyzfxLeK7oMikBLZcMjU+kwCfLL592eAizu0NIsAtfgX4YH8fPtu4Abeu/xDF2Tl4/+qVE+rZJfktT/qmvF9+66OxFx1/5EFBE3fiK8qf/H7ovbex0dqIh8+6AMcs2meuvzOuTwIkoHEClN8abyDLJwENEaD81lCzWCoJaJgA5beGm8fSSUBjBCi/NdYwlhtyBM5//EG8svkLXPGto6DzeJCQlITC4rKxQyVFfEtWt+R7i/hGxJex0soPDwygqbYaIyPDKJo3HwlJyYpRd0c76rZuUhPf48W3D6AIcKu5Fv3d3TAuWIiUtHT1o76ebli2b0VyWjr0ptIph2KOCnDz6AT4wiVIz8pWz8lhnA3V2xERGYUr330DnpERmG+7FzHR0WM922X5rZVu+5Pfj334Lj5tMOPPp5+D7y/dXytbYZ0kQAJBSoDyO0gbw7JIIAQJUH6HYFO5JRIIQgKU30HYFJZEAiFKgPI7RBvLbWmGwOF33YLq1mbc/5NzkR0dA3PVNpXhrTcVo7e7G+ZtW2CYNx95esO0exLx3FhTpcR4YUkZXA4HLFWVyMrXKfEdNU5Aj3+JRKdY62sx2N+PorLRWOqGmiokJierCfTYuHi/aw57PEqAdzTbYCyvUKK+qa5GTaPLBPo1Lz6H6pZmvHLJ1di3sCg85fffPnoPH5vrcM+yn2DZ/ztIMx8kCyUBEghOApTfwdkXVkUCoUiA8jsUu8o9kUDwEaD8Dr6esCISCFUClN+h2lnuSwsEhkdGUHzdpeKM8eIlVyEyIlJNXpu3bVXCerCvV8nkXL0BEZMmvifvTyJHRIC7XXIQpgs5Or0S39ExMTOicDqGYK2rhUSdyJWSngF9SSni4hNmfM7jdisB3mazIjYuFjGxcWPRK/e88Qpe37oJd//oDPz4gG/sXH778r03VdbNum9LKkqCJvd78uS3jMc/9cE7+MTWhNtPPhU/PejQWe+LN5IACZCAPwKU3/wuSIAEAkWA8jtQpLkOCYQ3Acrv8O4/d08CgSRA+R1I2lyLBCYSqGltxrfuugX69Ew8dNb56ofiTa3mOrRZm1QESsnCxYhLSNwpupGREfWMvaEe0TGxMJYvUNElO5Pm3pERdLW3oamuWq0hk+MZ2bmjueIzXF6vF/0SkVK1DR63CwVFxcjRFyIyMhL//Gw9/vre2zj/m9/Gr0/84c7lt7915GBLua5YvmzCj0WUX3fbg1hx0akoNep2CiYQN4yX3yPDHvS1t+H5z9bj854uBUBA8CIBEiCBPSFA+b0n9PgsCZDArhCg/N4VWryXBEhgdwlQfu8uOT5HAiSwqwQov3eVGO8ngb1H4NXNX+C8xx/EN0rK8KsTfwiJE+lsbVF52smpaejt7kJqRiZ0puJpI0ikGhHmPZ0daG60qAlsl2NICfMCowmJkgE+zdS4iG8R2PZGC+SfyyXSu8BgHBXn0wlwrxeDA/2wW8xwDg0iNj5BTZznG4xIy8zCF9ZGXP/PZ/DNsvl4+oKLx4DNOvPbd9DlQfsvxMnHHTaF+HRifO+1Ztfe5JPf0oi+9lZ0NDbgw852fNLZjuuO/R5++e3v7NoLeTcJkAAJTCJA+c1PggRIIFAEKL8DRZrrkEB4E6D8Du/+c/ckEEgClN+BpM21SGAigT+8/Rp+958XVST0T79+CDpbm9FmtyEjJ1cdbilZ3DJZnZSaBr2pZOwQzPFvGRXf7WixNiExOQX5hiK4XS51CKZMgE8nwEV2S8RKS2ODilgRwS6XzVyvJHyeoUgdgjlFgI8T3zLxXVg6DzGxseo9A/19yNMXYiQ+AT955H7kpKRiw0237br89sWgXLl8GQ5YumDKd/P8K2ux5sV3gir2pLPXgd42Ed8WREZFY4PLgbfra3HF0cfhyqOP47dPAiRAAntEgPJ7j/DxYRIggV0gQPm9C7B4KwmQwG4ToPzebXR8kARIYBcJUH7vIjDeTgJ7kcAlf38Mz32+HpcfeQyWZmaho7kZ6VnZKq/bl9UtgloOrxSxrTeVIi7hyyxuEd/dne1os1qRkJyM/MKiMUEueeGNtTVKbIs4l5/7Lt/Ed/M48R2fmKR+7BgcGBPgItInT4AP9ffDaqnDsNsDQ2kZElNS1XNyyGZzUwPk5zl6PZY/93f0O53Y+us7kJY4Gtsy68lvn/xeduLhfie/12/YhtUPrAka+f3EBx/AXN80Jr6z9IX4pL0N/974GX5x+NG4/rjv78XPhq8iARIIRwKU3+HYde6ZBOaGAOX33HDnqiQQbgQov8Ot49wvCcwdAcrvuWPPlUng2N//DhutjVh55HeR7h5GWmYmcgr0iI6NnQBHZWtXb0dCYhJ0xSWIT0jcEXXSjlabFQlJE8W37+HBvj401lYjMipSZXnLfb6sbjmsMjo6Rk18+8S37zmfAPd43OrQTF92+NBAP5rqajAyPAJD6TwkpqRMqHNMgA/048HKTdjS0oxnLrgYh5bN3zX5LXdLtElzayduXnEuEuInApnpZ3PxWd377LMwV9UhMioKWYYipGbn4t3qbXjus09w3qGH4+bvnTIXZXFNEiCBECJA+R1CzeRWSCDICVB+B3mDWB4JhAgByu8QaSS3QQIaIED5rYEmscSQJWC67lK4h4ex6pDDkZuTi+wCvYoQ8Xf19/SgsbZKTXaLkHYODaHV2ogEiToZN/E9+dnB/lEBHiGHWZbOU5EmNks9YmJi/YrvyQLc7XZBZyxWE+QSpeIFRsV38kTx7XvOJ8Cf2vA/vGttxM0n/hDn7TjvcdaT3/Iy3/T3gUsXTDj0Uqa+z75sFR6991q/kShz8bVcd9ddcA4DWUUmpGblqJD1D2qq8Mz/1uHMrx+CVT88bS7K4pokQAIhRIDyO4Saya2QQJAToPwO8gaxPBIIEQKU3yHSSG6DBDRAgPJbA01iiSFJwNrViQNv/xXS4+Jw97Hfn1F8+wDIBLi1vg4jI8OIiIhQkSMziW/fcxJFIgJ8eNijnhOBrjOWIH5HHMl0gB2Dg7BZ6lSkiUyMR0VFK/E9PkLF37Ny/7Pr1uKJjZ/jtAMPxl2nnK5u2yX57XuxTHk//PdXxtZZUlESNHEnvqKuv/tuJOuMSMnMHjtd9OO6Gvztkw/wo/2/jnt/fGZIfsTcFAmQQOAIUH4HjjVXIoFwJ0D5He5fAPdPAoEhQPkdGM5chQRIAKD85ldAAnND4J2n3LgZAAAgAElEQVTtW3HGw39GeVoGbj35x0hOTdtpIZLVbWswo2F7pRLQxRWLkZaZtdPn5IY2mxU1mzYgKiYGZYv3RWZu3qye62xtQc3mLzDsdqNsyVKVRz6b69Oqbbjx1X9hP4MRL128Yvfl92wWm+t77nvxRYzES/i5DNiPXp9Z6vHourX4/tL98efTz5nrErk+CZCAxglQfmu8gSyfBDREgPJbQ81iqSSgYQKU3xpuHksnAY0RoPzWWMNYbsgQ+Ovat3HzS8/jML0Bp++7P+Rwybj4Lw+z9LfR7vY2WOtrVXa3THFHRkZCZypFQtLoYZXTXX3dXTsOzUyF1zsCt8sFQ1k5knYcVjndcwNyaGZNlYpiiYiIxGB/L4zlFUhJz5hxvaGBATTW1eDSt/+DmKgomG//vbp/tya/tdDxJ9atQ3e/e0KpG5sa8ND7/8Uxi/bBw2ddoIVtsEYSIIEgJkD5HcTNYWkkEGIEKL9DrKHcDgkEKQHK7yBtDMsigRAkQPkdgk3lljRB4Orn/o6/ffwBzj3gG9gnMWn00EqDUUWS+Lu6O9rRUL0NGTl5yNMb4HQMobnRgsjIKOhMJdMKcBHf5u2VSElPV1EnIs0l89vtdM4owMfEd1zcaOZ3VLSKQOnr7oZp/vQCXMS3zTwazXLr+nVo6evFB1evhCk7J3Tl95Pr1qFrkvyutFtx/7tv4tvzF+LJn12kiY+SRZIACQQvAcrv4O0NKyOBUCNA+R1qHeV+SCA4CVB+B2dfWBUJhCIByu9Q7Cr3pAUCP7j/HnxSX4vfnXwqDAmJaGm0qEMk84uMiI2bKMBFfNdXbkaOrlBNiEfHxEIiUPp7e9DcYEFkVBT0xZLhPXEC3Ce+UzMylcCOiYsDvF4MDQ7AbjHD5XT4FeA+8S11FBhNSJD3RkQoYS7ivLer068AdwwOjGaSDw+rfdzz3n+xrq5aDT7LAHTITn77k981rc34w9uv4eCSefjHzy/VwjfJGkmABIKYAOV3EDeHpZFAiBGg/A6xhnI7JBCkBCi/g7QxLIsEQpAA5XcINpVb0gSBxb++Gl2Dg/j7+RcjNT4evZ0dSiwnp6WjoMiImNg4tQ+JOqmr3Iy8wiIlvqOiY8b2NyrAe2G31CMqOhr64tKxQyz9im/fkzsEuL8J8MkT3z7x7Xt0OgEuh2NKJMuwx6OEuWSYP/nxB3jqkw+x4jvH47Kjjg0v+W3uaMPdb7yCrxWZ8OIvr9LER8kiSYAEgpcA5Xfw9oaVkUCoEaD8DrWOcj8kEJwEKL+Dsy+sigRCkQDldyh2lXsKdgId/X3Y5zfXISEmBs9fdIUqV0R2T2cHmupq1CGWBUUmNdntE9/ya5nwnnx5vV4M9Pagqb4WsbGxSoC7nE4VdTJh4nvqg2oCXCJK3C43isrK1R0NtVWIiYkZjVLZMfE9+dHJAjw2Lk6Jb5fLhcLiUiSlpiEiIgLvVVXitlf/jRP22Q8P/ORn4SW/rV0d+N1rL2GRrhCvX3ZtsH+TrI8ESCDICVB+B3mDWB4JhBAByu8Qaia3QgJBTIDyO4ibw9JIIMQIUH6HWEO5HU0Q+KiuBj/8y73Ki971ozO+rNnrRXdnBxqqtiEuIRF93Z0oMBYrEe5PfI896PUqUd5QU6ViTZwOBzJycqE3lYxGnUx3qQnwQSXcHQP96q74pGQUlpQhITFRRZ1Md4kAt5rr0NXWijjJKY+IUAJdJr59zzV2duCCJx5CWU4e3l1xUxjJb68X9U0NuOeDd8Y2r4kvk0WSAAkELQHK76BtDQsjgZAjQPkdci3lhkggKAlQfgdlW1gUCYQkAcrvkGwrNxXkBJ746H1c+/zTOGbxvrj0yGOmVCsxJjJJnZKegdJFS1TG92yudrsNjbVViItPQPGCRUhITp7NY2ri3FK1Td1rLF+gJs9ncw3196N+2xZ1+KahtBzZBboJj8lU+vf+dBdGvF7U3XoPjHkpE34e4ZU7QuAan/nt9Y5gsLsL1dsr8Yi5FoaMTHx03W9CYJfcAgmQwFwSoPyeS/pcmwTCiwDld3j1m7slgbkiQPk9V+S5LgmEHwHK7/DrOXc89wRW/vtZPPT+O7jgm0fgB187YKwgUcE9He1oqNmuDq/s6+pCnqFIZWhHRUVPW7g819/TjabaagARSkanZ2dDZyxBrExlT3fJ5PfAAJrqa+AcHFR3xSUmorC4DAlJo4dcTne5HA7YLHXobm9Xsh3worB0nsosl8gT33XxU4+ipq0F/7nkanx33/kTXjet/O7q6cOF196DTZV1ePTea3HA0gVz37UZKvDJb5/4bqmrwYDbjQfNtchNScXnN90W1PWzOBIggeAnQPkd/D1ihSQQKgQov0Olk9wHCQQ3Acrv4O4PqyOBUCJA+R1K3eRetELg9Ifuw7tVlfjt90/B/zOVqrIl87u7o11lcKeqzG+jOsyyvnIzcnSFKvpEDrWcfI0eetmjIkgke1tvGs38tlRVKhGtMxb7F+BeLwYH+mEz16tDKg1l89SrG2urlWjXmYqRmJTsV4CPiu96JdyN5RVqXau5Vq0rUSsSfRIRGanet/r1l/Fm5Wbcu+wnuPS7356d/Ja7xgtw+fXxRx6Em1eci4T42Y3B7+7HcPcDa2Ay5OPk4w6b8IrnX1mLm+54RP3e5FpEfnf2OdXEd0tdrcqeic/Jwap17yEtPgFbf3Pn7pbD50iABEhAEaD85odAAiQQKAKU34EizXVIILwJUH6Hd/+5exIIJAHK70DS5lokMErggFtvhK2nG4+e83PkpaZhZHhYRY/YG8xISU9HvsGImNjRrG4R4vWVW5BToEN+kQnRMTFjGH3i224xq9/XFZcgPiFR/byvu0tFmfgT4DIpPjTQD3nO43bDUDoPiSmjkSSDfX1KgMv7ZOI8ISl5wiT3RPG9QEWzyOUYGoStvk69T0R9ctqoAH/us0/w0Hv/xfJvHoG/nD0u31xm1Gcbe7J+wzacfdmqsY3/9upzp8jpPf24xsvtye+X9Vc/sAb3r7ocGWkpEEEu1xXLl6l/fOLDD2FtaoFMfMMLpBfokJyXj6uefQrxMTGovfWePS2Pz5MACYQ5AcrvMP8AuH0SCCAByu8AwuZSJBDGBCi/w7j53DoJBJgA5XeAgXO5sCcw4HSg/KarEB0ZiRcvXjEmvluaGpCUkoo8g1FNUo+/JAqlfttWZOUX7BDjsWpSvK+nGy2NDWoiXCa1JSpl/PWlAE+DzlSC2Lh4NZQsE9+j4tu1Q3ynTnhusK93hwCPVQLcNwHucjrUZHp/T4/KBveJb9/DjsFB9XOZJJe4lpS0dHzWaMGNL6zBt8or8M41V01YZ9bye/xT4yX1koqSMSG9t74sf5Pfk39vsgy/78UXUbNlm4KbXqBHhk6PiIhIXPL0Y6os6x1/2lvl8T0kQAJhSoDyO0wbz22TwBwQoPyeA+hckgTCkADldxg2nVsmgTkiQPk9R+C5bNgS2NBowfF/vBPGtHT8/tSfQkRzq7UJCckpyC8smjaj25cFnpaVg7xCA5xDQxBh7osomSy+fYD7urtVBIqIdZkMH/YMQw7UFPEtGd3y+/6ugb5elSEuh22qzPHoaDXZLb8vUScyoe7vcgwOjEapDHuQV1iEgZFhnPvkI8hLSUXzvRMHoGctvydPfv/stONwzqnHjuWC700JPll0DzlcWHnnIzho/4Vj0+a1FhtuuP1B3Hrd+Sg16nD96tUYdA4jU1+opr5FfMt1xZon4RkZRv1t9yLWT2ZN2P6rgBsnARLYZQKU37uMjA+QAAnsJgHK790Ex8dIgAR2iQDl9y7h4s0kQAJ7QIDyew/g8VES2A0C//j0Y1z2zBPYPycP5+y7Pzwet4oWmUl8+5aRCBRrfa2KNpGolOkmvieXJdncEoEiglzOZBQBbigtQ+I04tv3vC8CJSo6SvncocEBmMoXqCiVma4xAe7xIDIqCiv++zqGhj3wPvzwhMdmlN8imJdfvRr2lg710HSCW+T0/Y+9oGS4RJLs6TWd/P7RiYePHbw5WX5fd9ddyCkqQrZePxZ2LnX8/PHHMehyoeuPf0RqgpwKyosESCDUCEx/LnCo7TS49+Me9iImavQvHnmRAAnsGQE5uNwrr1D/jxcJzI6Ae3iEfw7PDhXv8hGIAOQ/R3n5Zw2/CRLYKwTcw8P8c3hakupPm73CmS8hgWAkEGxf9/XPP4/fvfIKli1ahP1iYpCRlYV5ixYhJS1tp/hGRkbQWF+Pmq1bkZScjPlLliAjO3unz8kN9qYmbP38c8TExKBi6VLk5OfP6rm25mZUbtgAt9uNhfvth4LCwlk919XRge0bN2Kgvx9P2mzY0to6e/k9/rDLR++9dkw6z2rlPbxpdya/7332WUSlZo9NfPtKuP6FNehzDGHjTbcheyd/07CHZfNxEiCBOSIQqH+T4eT3zA1WfwnBv4mYo38VcNlQI5CRHItBhwdOz0iobY37+QoJiMCUvzjhRQKzJRAfE4WEuCh09btm+wjvIwESmImAl3p3Ojyc/Oa/dEKdQLD9R7BzHn0Ar23dhHMX7YN9snLVf1dPTc9Ajk4/dsjldD2RDG+ruW70D7QIjE6MG4oQFz/zUPFgfx8aaqrGnouJiVURKAmTMsInryuT3hJ14na7xp4tKitHYvLMA9ZOxxCaGxvUoZpS63O12/GetXH28nsuP8rdyfyWAy+7BzxTyv71i8+hc6Afn1z3G+gzMudyW1ybBEhA4wQovzXeQJZPAhoiwNgTDTWLpZKAhgkw9kTDzWPpJKAxApTfGmsYy9U8gW/e8RvUtbfi5sOOwuJ58zHQ24PO1mZ1eORMAlwOt2yqqUJcYiLyDSY4HYMqKzxe/do4rQD3HV4ZERmJwpJ5GBn2qEzu0ciUEiQkTTwk0wd4aECyu0cPr5TDNCOjotFUV60O2jSUzps2MsUnviX6JFdfiLj4RDy3bi2e2rpp9vLbN/l95fJlfqe+5dDLjz7diptXnIuE+Ni9+lH4k9+TD7iUe+S6Yvky9Y9PrluHrn73lDpueeUFtPb24L2rbkJJbt5erZMvIwESCC8CkZFAWmKM3z9rwosEd0sCJPBVE5A/a4Zcw3Bx8vurRs33k0BYE4iLiYRMf/cMTv3vUWENhpsnARLY6wTkL/a7+1zg/6Ztr6PlC0lgCoHhkREUX3cpvF4vnlt+CeLjE5Rc7mxtQUeLHakZmcjRFSImdqLPlYlvyexWh1aaShCXkKAyv3s6O9Bqm16Ay+GUjTVyaGUM9MWlSnTL2v09PWhuMKs8bn8C3Ce+ZY38IqPK+I6IiID8vmSOe9xuGMqmHpY5QXzrCpGWmaXW2GiuwzX/+sfek9+TZfTe+NZEqN90xyNjryrIy8IDd1ypDrSUa/zPjz/yoAnifTr5/bv/vAhrdyfeuOxaLNTNLi9mb+yF7yABEgg9Apz8Dr2eckckEKwEOPkdrJ1hXSQQWgQ4+R1a/eRuSCCYCXDyO5i7w9pCjUBVSzO+vfoWGNIz8NezLhjbnhLgbS1ot9uQlpWNXJ0e0TGjAlzEt3l7pRLQelMJYuPjx54bL8AlwkQmwH0/HxXfVSpKRSa3JSLFd8n0dn9vD5obLYiMjITONCrG5RoT3yPD6n3JqWkTznCUKBOZHHe7nDCUlSshL5fL4VDvk6iU3HHiW73T5cKvXliDTbf8ZkJLpz3wcmeT3zJ53dza+ZVMfu/ORzed/F79+suwdLbjpYtXYD+DcXdezWdIgARIQBGg/OaHQAIkECgClN+BIs11SCC8CVB+h3f/uXsSCCQByu9A0uZa4U7gpY2fY/mTD+OQ0nLceMIPJuDwCfA2axMycnLVBLiIZhHfEoki4jsmLm4KQiXAuzrQ0tSIRJUBblQZ3SK+Y+PiUWA0jWZ7TzqAZqIAj4K+uES921pfh5FpxLe6wetVgttuMcPldCgBLhniIr4HB/qRV2hAWsboxPfk65h9ymeW35Onr6f7YCZPZc/1h+Vffntxz2svob6rE8/9/DIcVFI212VyfRIgAQ0ToPzWcPNYOglojADlt8YaxnJJQKMEKL812jiWTQIaJED5rcGmsWTNErj3zVdx5+sv49QDvoGzDj7Mr8iWCBQRyTJR3dvdifSsHOiMxX7Ft+8FIqt7OzthbzCriBOZwpZJ7+nEt+85nwCX50SiyyXSuqDINGXie0Kx4wS4CHqZNpcolPwiE9IyMxEZOVV8y/M7ld++RXY2+R1sX8BU+e3FYE8P7l/7FiwD/fj7eb/AYeUVwVY26yEBEtAQAcpvDTWLpZKAxglQfmu8gSyfBDRCgPJbI41imSQQAgQov0OgidyCZghc9NT/4V8bPsWK756AIxYs8lu3SGg5aLLF2ojE5BSULFw87WGW418gIlvyv+2WepUZbiyvUAJ78sT35EW93hF0t7Whsa5a/chQMg/pOTmIiIicmatkh/f2qCxyiUApMBaruBM5WHO6a9byWzMd3VHoRPntxVBfL1pqqvHPRjPqBwfw6NnLcfTCJVrbFuslARIIIgKU30HUDJZCAiFOgPI7xBvM7ZFAkBCg/A6SRrAMEggDApTfYdBkbjFoCBx97ypstTXhj6edhbLcfL91qYzvbVvVBHd/b686WDKvsEgdODnTNdjfh4bq7WoCW+JIcgr0SkjLe2a6nENDaKqvQX93t7otOT0dhcVl6lDNmS5ZR0R7m92q4lVknaJ585Wwn+4KA/nthaO/H/aqbRh2u/BmXw+2trfhL2ecixP3/VrQfIgshARIQHsEKL+11zNWTAJaJUD5rdXOsW4S0BYBym9t9YvVkoCWCVB+a7l7rF1rBEzXXQr38DBe/OVViPaTid3X0w3L9q07DrcsRW93F+q2blJSWQT4dJdEj4j4lqlrQ2k5XI4h1G/biuz8AiXAo6Kj/T4q8SgivuWQS+O8+eoeS/V2dfilCPDxh2uOf4Hkk4v4bm+2o3jBQsTGJ6CxthrekWFV6/jDNcc/N6P89kWdLDvxcHz7kP1w4bX3YFNl3bSbXlJRgvtXXY6MtOlte6A+kNHJbxecAwOwba9U4jstvwD/sVux3lyH3//4TJyy/9cDVQ7XIQESCEEClN8h2FRuiQSClADld5A2hmWRQIgRoPwOsYZyOyQQxAQov4O4OSwtpAhYOtpx8O9+jZzEJDx23i8mTnJ7vejr6UFjzXYkJCdDX1yqpqnl6mhtRu2mjTDOX4BcvWHKcyKuVWSJ16sOn/SJ556OdtRVbkGOTibATYiKmijAZTpcDrcc6OuBSSJS0tLVev093TBXbVOZ43IIpq8OXzNGhj2wWcxos1lRUrEIaVnZ6kci4OWQTYlZkegUEejjI1e8Xi+O3XdUsPuuCK/8bghcIr+bW7p2iG830vLykW004Zn1H+HDumrc8cPTcMbXDwmBnXILJEACc0WA8nuuyHNdEgg/ApTf4ddz7pgE5oIA5fdcUOeaJBCeBCi/w7Pv3HXgCbxZuRln/d9fUJ6Wjpu+eyKy8vLVpLboXxHO1vpaNUEtwjkufmLkiAjwui2blNyWXG05lFJk96AMGptrMTw8DEPpvCmRI90d7aiv3IwcXSF0RhMilQD3wuVwwmapV+sa51cgZYf49lEZnUCvVEJcDtuMjY8DEIEvxXcTiisWI32H+PY9J9ErMgEeFRUFnakEiUnJSoBLjrnkkZ99/NGhKb8ffOMNVH62EcNuEd95yDYWq9D05z79GO9Wb8Nvv/8jnHvItwL/1XFFEiCBkCFA+R0yreRGSCDoCVB+B32LWCAJhAQByu+QaCM3QQKaIED5rYk2scgQIPCXd9/Eb19+Ad8tW4AjMrNQYCpGZnYuBgf6lYiWQyr1phLEJST63W1HSzMsVZXQGUuQU6CD0+mA3WJWGd+SCz5d1vaoAN8xAW4wKlE+Jr7LFyAlPcPvepI9LodZ+gS4CG17owVtNv/ie4IAr6lGdEy0ilyJi4tHm92m1rz+FxeEpvy+4Z570D/gnCC+Zaf/2vA/vLVtC248/iRc+K2jQuAz5hZIgATmigDl91yR57okEH4EKL/Dr+fcMQnMBQHK77mgzjVJIDwJUH6HZ9+568ATuPIff8PT69fh4sOPxtcys9ButyE1MwuOwQFER8eoSen4RP/i21dtR4sdTXU1yMjJg9vphMftGp34TkmdcUM+AZ6VX6CmsNXE9wzi2/ey8QJcps07JOO7YtGUie/Jiw/2yQR4FaJjYhETF4euthYUlpThjKMnDj+HTOzJtXfcgdiMXBV1IhPfvuuVTZ/jP1s2YsV3jsdlRx0b+K+OK5IACYQMAcrvkGklN0ICQU+A8jvoW8QCSSAkCFB+h0QbuQkS0AQBym9NtIlFhgCB7923Gp9a6nHXKaejPCdPxZzYzXVKgEv0SHJq2k536R0Zga3BjIbtlSobXKJH0jKzdvqc3CAZ3TWbNiAqJgZli/dFZm7erJ7rbG1BzeYvVKJH2ZKlKkN8NldPZ4eKXBnq70fR/Aroikw4dumCCY+OyW/fYZczHXA5edFgOvDyjiefRHxu4QTxLfW+vnUjXtr4OS454ru45pgTZ8ON95AACZCAXwKU3/wwSIAEAkWA8jtQpLkOCYQ3Acrv8O4/d08CgSRA+R1I2lwrnAmU33glBlxOPLf8UgwPDaK5sQGOoUFEx8QgK68AWXl5iIqOmRGRiGSruU4dLikxJOk5ucgp0KvIlJku59AQrOZaDPT2qgMzRbjnG4qmHGY5+R1yKKbU2dvZobLJk1JToTeVIi5hYib55OfcLhfa7FZ0t7WqmBU5hFMiXX5w8Nf8y2+tfxhPfPghugc8U7bx321b8M8N/8MFhx2BlSecrPVtsn4SIIE5JED5PYfwuTQJhBkByu8wazi3SwJzRIDye47Ac1kSCEMClN9h2HRuOeAEWnt7sN8tNyA9IRF/XfYT2BvMKupEpqj7e3ogU9IyiS3/JzLc3yXCWyJPRoZHoDMVK3Eu0Sky+S3viYmVQymnXnKfrb4OQ4MDKCorx7DHo/K3ZdI832BEbHy83+dcDhHfFvT39qhDL6Oio9FQU4WExCToiksQP002udvlVFPmsqfsAp26T9aLjIzExWcsC035/eS6dejqd08B+X71Nqz59GOcffBhuPWkiZsP+FfIBUmABDRNgPJb0+1j8SSgKQKU35pqF4slAc0SoPzWbOtYOAlojgDlt+ZaxoI1SOD9mu348V//iIV5BbhgwWI1qS0COz4xCTIl3W63oqerE5k5eX4nwAf7JUO7Wu1cZXwnpyiJ3dnWonK4UzMy/QpwyROXSXGXw6meS05Lg0SniJgWsS3vyTMUIS5+4iS30zGElsYGyLoiyEWwR0RGKlEvdcTGx6lJbql//OUT371dnZB8cdmPSHNf/ZeeeWp4ye+Paqvx1PoPcdqBB6u8G14kQAIksLsEKL93lxyfIwES2FUClN+7Soz3kwAJ7A4Byu/docZnSIAEdocA5ffuUOMzJLBrBB79cC1ueGENDi7Q44wlS6EzTjzcckyAd3aq6e+svHwljeXyHR4p5yiKwJasb9+lBHhrCzpbm5GSnjFBgCvxXV8Hj8etRHVyWvrYcyM7BHhrUwPik5JVBIpPgPvEt0ya5xYakJaZraa2fZcclilCXSbX9TIBvkOA+8S3HJKZmZuv9uHbgzwrkS0zxp74cr+XnXg4vn3Ifrjw2nswUwZ4MGV+Tzf5/T9zLR7/6H2cvN8B+ONpZ+3aV8O7SYAESGAcAcpvfg4kQAKBIkD5HSjSXIcEwpsA5Xd495+7J4FAEqD8DiRtrhWuBER8iwA/Zf4i/ORbRyDOT2TIqAC3obujHVn5+cjKzVfRJjJpHRUVjcKSMiQkTZy0Fp4+Ad7R2oxUJcAL4XG7YTPXYXjYgwJjMVLkMM2IiAn4R4aH1QR4q60J8YmJasJbLpkIdwwOIldXqCa+I6OiJrbN60Vfbw/slnpVl85UoqJa2mxN6O3uUnVPFt++FxyzT/mEd40deKn1D8O//PZifVUlnvhsPY5fshR/PfM8rW+T9ZMACcwhAcrvOYTPpUkgzAhQfodZw7ldEpgjApTfcwSey5JAGBKg/A7DpnPLASew7IE/4IPaKtx8/Ek4sGz+tOt75KDIZhu62lpVlElfV6fK5NaZSv2Kb9+LxkegSCa30+FARGSEEtoSdSJT4/6u8QJcJrnlkknxacX3jpd4vSMqAkVEuXfEi7j4eJUpLgd3Tie+5dEwkt9eOPr78PGmL/CcpQ5HVizG4+f8POAfHhckARIIHQKU36HTS+6EBIKdAOV3sHeI9ZFAaBCg/A6NPnIXJKAFApTfWugSa9Q6ga/99nq09PXiiXMvQnZKyozbkalta12NyvOOjYtHccUiJCYlT5ncnvwSEeAtTQ1qAjsyKlodbikCXbK6Z7pEgHe0NKtJbrlkUlxiV6ZMfE96iWSHS7a3HII5MuxRE+d5hUUTok4mrxsm8tsLx0A/2sz1qGlrxT+brTi0bD6eueBirX/HrJ8ESGAOCVB+zyF8Lk0CYUaA8jvMGs7tksAcEaD8niPwXJYEwpAA5XcYNp1bDiiBAacD5TddhfjoaPzzF1fudO2Bvl5YtlfC6/XCOTQEw7xyZOfrEDEptmTyiyTjWyJSJLJEBHpeoWGnMlre4XI6lPiWuBW50rOylQAX8T7T5ZPtLU2NKvZEolMkk3zyIZjj37HL8tuXAz4++/tnpx2HK5Yv2ynIQN7wZeyJF87BQbTWVcM5MIie+Dg8VrkZB5hK8MJFVwSyJK5FAiQQYgQov0OsodwOCQQxAcrvIG4OSyOBECJA+R1CzeRWSCDICVB+B3mDWJ7mCXxqqcf37luNwsQk3PmDHyM9O2faPYn4bqypQkxcnIoskcMj7RYzDGUiwAumfU6Et7W+VuV/5xcZIYdWNlvMyNbpkac3TDvFLYdU2hsskEMsC4pGM7/l13I4poWldikAACAASURBVPw6JjbO75oyLd5ibUS7zYp8o0kdltncYFFT3/riUiXC/V27JL/Xb9iGsy9bhUfvvRYHLF0w9r7nX1mLNS++g/tXXY6MtJnH6AP19fjkt9sxBHvVNjiHBpGanQNHahpWv/Uf7KM34NVLrwlUOVyHBEggBAlQfodgU7klEghSApTfQdoYlkUCIUaA8jvEGsrtkEAQE6D8DuLmsLSQIPDM+nW44h9/w8EGI47PzkPJwsV+BfhgXx8aaqsQExOjDpGU7O6RkRG02a1KiEv8iWRqT77Es1rr6+ByOVFYXIokOdzS60VHawuaaquVDBcBPjn+xON2KbEuh17KYZpyuKVc8uumuhr164IiE6JjYycsKXEnIr5FdheWzkNWbp6KZBno7UFTfS1iY2OVAPd3qOes5feQw4WVdz6Cg/ZfiJOPO2zKpu9+YI36vWCZABf53dbZD2vlFriGBpGSlYPcklK09vfjtlf/hfl5BXj7yhtC4oPmJkiABOaGAOX33HDnqiQQjgQov8Ox69wzCQSeAOV34JlzRRIIVwKU3+Haee47UARuefkF3P/umzj7G9/Eobn5aGm0oKRiogAf7O9TgluyukVEJ8jk9I6YE4k/kRzv+sotKFuy7wQB7nIMoamuFo6hQZXxnSzie9xzna0tMG/bAn3pPOTrDWM/G/a4YbOY0dXagqLyBUgX8e2LVfF60d3ZgYaqbcjIzYPOaELUjsMwRaqL+BapblqwSB1uORbH4vWiv7dHZYDHJySisKQUsfEJY5g7Wuw44+hvTcAe4ZXd+bl8cSdXLl82Yerbd2uwTX8/unYtNn38P7iGhpCSlY38svnqbxva+/vwm5eehykrGx9c8+tAfXNchwRIIAQJUH6HYFO5JRIIUgKU30HaGJZFAiFGgPI7xBrK7ZBAEBOg/A7i5rC0kCBw1iP3481tW7DyxJNxoLEE9gYzWq2NapI7PTMbQ5LVXVMFIELFmyQkJfndd6utCebKLShdvA+ycvPVpLe1rhYD/X0wlVcgOS3N73Mdrc2o3bQRxvkVyNMXYmRkWInvNpsVJRWLkJaV7fe5ns521G3dghydXgnwyMgotFibVB556ZLRGvxd/T09sFRVIjE5BXoR4LFxUDVs3oRfXf7LXZPfy0483O/kt0SirH5gTdBEn9z4+9+jt2cAyVlZY+JbdtozNIib/vUPFKSm4X833hoSHzQ3QQIkMDcEKL/nhjtXJYFwJED5HY5d555JIPAEKL8Dz5wrkkC4EqD8DtfOc9+BInDwqpWwdHbgoZ+eD31GpsrlFgHe2dKMHL0B/T1dKt6kqLQcCcnJ05clU9e2JjV1rTOVwjk0ABHNpvkivtNn3I5PgBvmzYdMfcskebFMn08jvn0vk0MwZeJcBLhMfzdWb59RfPuekwxx8/ZKJeTjEpJgM9eisGQezjruyNnJb7lrpmgTmfz+6NOtuHnFuUiIn5jLEqjGjl/n6lWrEJ2SMUF8y8/ltNPr/vkMMpOSsWnlqrkojWuSAAmECAHK7xBpJLdBAhogQPmtgSaxRBIIAQKU3yHQRG6BBDRCgPJbI41imZok4PZ4YLr+MkRHRuJfv7wSkRGRah9ul0sdUGk31yE1M0tNZavIkp1ckrdtazCjYXulEuUisH1Z3Tt7Via9azZtQFRMDMoW76siS2ZzSXRKzeYvMOx2o2zJUiXCZ3NJdnh95WYM9fejaH4FdEUmHDvu3Ep5x7SxJ/LDWosNd/75adx+/flTDrYUMW4y5PudCp9NcXv7nlsffhgphaVTgtWdHjdWPPsUkmLjUHXL6r29LN9HAiQQRgQov8Oo2dwqCcwxAcrvOW4AlyeBMCFA+R0mjeY2SSAICFB+B0ETWELIEthia8J37l0FU1YO7v/JuWqfknI9NNA/ethkRzvik5LUwZIisSOjomZk4XI4YLPUq6nxmLg45BuMyMzLQ1RU9IzPedxuNKu4lSa1Rp6hCLm6QkRFz/ycTKlL3EpLYwNGhoeRqy9EvhyCGRMz43ojwx50tLSgudECt9OJzLx86IzF+N6B+0x4bkx++zK+N1XWzfpjWFJREjSxJ49/8AF6Bof91n7J04+pv/2wrPrDrPfGG0mABEhgMgHKb34TJEACgSJA+R0o0lyHBMKbAOV3ePefuyeBQBKg/A4kba4VbgT+teFTXPTU/+Gw8gW47tjvi/nG4A7x7XG7kFdYhL7uLgz09SK30KAywKcT4C6nAzZznYo6kUMxHYODKks7V6dHZm7+tCJbpsxFQnc021VEikdiV8x1yC7QIUdXOK3IFmEu0+LtdisKTCWIjo5WUSZZ+QVKusfE+k8bEWHe2dqMVptV5YLHJyaiqa5GRaD8/Ecn+ZffWv8wnly3Dl39br/buOyZxzHi9cJ6x5+0vk3WTwIkMIcEKL/nED6XJoEwI0D5HWYN53ZJYI4IUH7PEXguSwJhSIDyOwybzi0HjMBdr7+Me958FWd8/RD85OuHYHBgAHZLHUQsF5bOQ1JKKkRqy2T1YH+fktGSwz1ZgLscQ7DW1ylJbiyvQEp6unpHm92K7vY2JaSzcvNULvf4S6au7Y0WNWFeVFauDreU6BSR5rJmRm4ecgv0iJ4ksj0uF1rtVnS1tqgpcZHYEZGR6j0NNVXqPQUiwOPiJqwneeIdrS1KtKdn5yBH3h0Tg77ubnUI5lXnnRV+8nvFs3+D0+NB9W9XI3ESsIB9iVyIBEhA8wQovzXfQm6ABDRDgPJbM61ioSSgaQKU35puH4snAU0RoPzWVLtYrMYILH/yYby08XNce8z3cKDeAKu5FsOeYRhK5yExJWVsNxJn0tzUoOJQRBiPF+DOoUElvmVi3FS+YMLhljI93mazoaezXU1/KwG+I5JEvbPRgr6ebuiLSyccbikRJpLlLQdfpmXlqBxv3yS3TIrLxHdPR5uS8ZINPl7GyyGYkleekpauJsBj4+PVPiQTXMS3TH2nZWYjR6dDdMyX0+FyCOYp3zxw9vJ7yOHCyjsfwctvfeS37cEUezL95LcX1z3/NAZcLmxeuQoZSTOcaKqxj5vlkgAJBJYA5XdgeXM1EghnApTf4dx97p0EAkeA8jtwrLkSCYQ7AcrvcP8CuP+vksCRd9+Gbc023P2DHyOqu0vlfSvxnfyl+PatPybA+/uVjBYB7nI6YTPXwjE0hKKy+So6ZPIlU9ptdht6ujqQmZOnBPjw8LAS3zIprvLEs7IREREx4VEVT9I2OqWdmpE5dpCliO/erk41TS7vm5wLLnuQCXB7g1lNrosAj4qKGhXfbS1Ik3f5mSaXxY/Zp3z28vv5V9bio0+34rpLzsDtf/gbfnTi4Thg6QJ1EOYNtz+IW687H6VG3VfZv1m/27/89sI5OIDfvPoi+twu/O+GW1CQlj7rd/JGEiABEhhPgPKb3wMJkECgCFB+B4o01yGB8CZA+R3e/efuSSCQBCi/A0mba4UTgeGRERRfdymGvV6s/uYRiI6KUlEn/sT3ZAEuESgZ2TkqLsTjcaOwuHTCxPdkjjKtLdncPV2dSE3PgNPhgNMxpDLF0zOzVGSJv2tMgLc0I2mHkB/o71MxJzLxPd2BmBKd0tPZoabV4+ITEBcfj97uLiW+swu+nCKfvOas5bdv6vug/Rfi2CMOUhPgPvktL737gTXq3VcsXxYU39RU+S3iexCdTQ24f9Pn6Ha78cHVK2HKzgmKelkECZCA9ghQfmuvZ6yYBLRKgPJbq51j3SSgLQKU39rqF6slAS0ToPzWcvdYezATqGtrxTfv/A2y4uJwzX4HoGzxvkiYReqFTIA31lZDYkIiIyNhWrBQRYxg0uS2PwHe3GBW09cy5a0vLkNGTg4iI6NmxCQCXKa9W62N6r5cvUFNgU8nvn0vGxkZRldbG6z1NWqiXabE84tM0x6EKc/NWn539fThwmvvwZXLl6lpb5HdJkM+Tj7uMLW+byr85hXnIiHe/8mbgfw4JspvL1xDQ+hotGCwuxtP2RvRNjSEt6+4HvPzg2NSPZBsuBYJkMDeIUD5vXc48i0kQAI7J0D5vXNGvIMESGDPCVB+7zlDvoEESGB2BCi/Z8eJd5HArhJ4fesmnPPoA6hIz8SZpfOU/E5Jz9jpa4YGBtBQvV0dhCkHSMoBlzIFvjP5LZPetvo6lfHtHRlGflExsgsKEBUVPeOaMjXe0tSAjpZmSDBKZl6+mhj3ZYBP9/DIsAdtdjuaG+oRERmlBL2uuERNgk937TX5vX7DNqx+YA3uX3U5MtKmZsjslPJevuFL+e2F2+FAm6Uegz09SEpPxxN11Wjq7sKrF6/APgbjXl6ZryMBEggXApTf4dJp7pME5p4A5ffc94AVkEA4EKD8Docuc48kEBwEKL+Dow+sIvQI3Pff13Hbq//G9xbti2MKi9Qkt2l+xYwCXMS3zVwHmaqW3Oy+7i7IAZOSE54+Q2KG73DLocEBZOcVqMiTrvY25OoKkZWXP+HAyvGk5cDMVnW4pRyYmad+JAdhSkZ4rk4/4cDK8c/JgZkiy1ttTUrMi/Bub7EjITFpwiGYk7s6a/k9PvZEpr1Fdr/38caxmBOZ/F7z4jtBJ7/dTgfa6msx2NuDxLQMZBcZ8ecP34X8zwD+ddEV+H+mktD70rkjEiCBgBCg/A4IZi5CAiQgkxApsRhweOB0j5AHCZAACXxlBCi/vzK0fDEJkMAkApTf/CRI4KshcOkzT+DZTz/G5Ucdi2+XzYfVXKdk9nQC3DE4AGv9qPiWQySTU9Pg8XhGp7KbbTDOX6gOwZx8+cT34EA/8goNSMvIwsjICNrtNrTZrSqKJDsvf0rut8ftRputCV1trcjRF6rYEiW/21rQZm1CRk4ucnSFiI6JmbCk5H23tzRDIlZE0GcX6FQ8ixy42dLUiMSk5GkF+Kzlt6woUSfNrZ2QaBOH04nrbnsQKy46Fbq8bJUBnp+bGVSZ3+1dA2iuqcLQDvGdYypGTHw8/vTfN1DVYsczF1yMQ8vmfzVfG99KAiQQ8gQov0O+xdwgCQQNAcrvoGkFCyGBkCZA+R3S7eXmSCCoCFB+B1U7WEwIETj+D3dgQ1MD7l72E1QU6OF2OmGz1KO3qxPG+RXqYErf5RPfw8MeFBSZlPj2HVIpkrq50aIyuUsqFk+YAJd32hvMGOjrVc+lZmaOZXyrLG+7FS2NFuhLytREuC86RX4mU9sdzXYlqmXqOzJqNBtcprpl+lvWzMovUNPjY/nfXq+a8LbW1SDPYFTy2/czkfa9nZ2qnqSUVFVPTFzc2B6729tw6hGHTOhwhFfSwmd5yfT32ZetUncff+RBSooHQ9631PPYe+9h66dfYKivF4lp6cgrnYfo2NHNP7D2LWyxNeHxc36OIysWz3K3vI0ESIAEJhKg/OYXQQIkECgClN+BIs11SCC8CVB+h3f/uXsSCCQByu9A0uZa4USg/MYrMeBy4vkLL0dC7OiZjOMFuG8C3DE0CGt9LTwut8rMTk5NRURE5ARUIqtFRssUuE+AS1a3iGaZJtebSpCWmTVlultEtgjwproaNXGelVeg5HartQkt1gZ1KGZmTu6UWBQlwNta1WGWefoi5OoL1T0dLXaYt1eisKRMiW+fMPcVK1PhPZ0daspd8s2VAI+NhYjvusrNuP4Xyyfsa5fkdzB/PCvvuw+dHd1KfBeUL0BU9Jfj8g9/8A6+aLTgwTPPw3FLlgbzNlgbCZBAEBOg/A7i5rA0EggxApTfIdZQbocEgpQA5XeQNoZlkUAIEqD8DsGmcktzTsDW040Dbr0RWcnJePJnv5hQz3gBXmA0qWlpyeiWXG+Z+J7uYEsR0nYR4I0WFM2bD8kH725vhaFs/qj4jpDjKqdeIqQl19uyvRIlixZDJslt5noYy+erqBPfhPnkJ+U5iUCxVG2HzlSs4k/qtmxWU+uSBz7tc16vEuCNNVVqSj0hKUkd4CmT4j/73jGhKb9X3H47IuKToV+4eGz03rfTx9e9h/9Z6vCn087CD/Y7YM4/ThZAAiSgTQKU39rsG6smAS0SoPzWYtdYMwlojwDlt/Z6xopJQKsEKL+12jnWHcwE1lZV4rSH7sNSgxG3n3zqlFLdLqfK97Zb6pGamQXjvAVITkvb6ZaUAG8wK5mckJSM4gUL1eGUO728XiXAa7dsVBK7ZOESZOVJxrd/Yf7l+7zoaGlB3dZNSpqXLtpHie/pBP34OuQQzfptWzE00K9kvUyBH7dfxa7J766ePlx47T3YVFk39uDPTjsuaLK+fUX9+s9/RmZpBSIiR7Njxl9//+RDrKurxupTTsepBx68017xBhIgARLwR4Dym98FCZBAoAhQfgeKNNchgfAmQPkd3v3n7kkgkAQovwNJm2uFC4GH338Hv/r3szhxn6/hom8fPWXbLqdDye+WxgakZGSgqKwcKWnpO5XKkglut5jRVFuDhKREGMsrRg/BnGbq27ewJGtLZnh95VZEx0TDtGARsuQQzFk819HSDPO2LfC4PSiuWIhcvWGnz8HrRXdHOyxVlRgaGERhaRlkyv34/RbOXn77Mr4fvfdaHLB0wdiDz7+yFmtefAf3r7ocGWkpQfFNPf7BB+gZHPZbyz8+/RjvVW/DbSctw1kHHxYU9bIIEiAB7RGg/NZez1gxCWiVAOW3VjvHuklAWwQov7XVL1ZLAlomQPmt5e6x9mAlcO3zT+OJj97HLw4/Gifs+7VxZXrhcowefNnf062moeUATMfQEApLSpGclj6tWB4Z9sBmMaPN1oSisvkYGhxAV1urEsvpmdnTxpCojG9bk4ohkbxwj2c09kRiVpQAj5yYLz4mzEdGIOK7sbZ6NPYkOkbldhvKytUhmJPzvsc/193ZrgR9Rk4uEhKT0FCzHTm6Qpx30nGzk99DDhdW3vkIDtp/IU4+bqowvvuBNepFVyxfFhTfwJPr1qGr3+23lhc+X4+3t2/FyhNOxgWHHREU9bIIEiAB7RGg/NZez1gxCWiVAOW3VjvHuklAWwQov7XVL1ZLAlomQPmt5e6x9mAlcMpf7sW6uhqsOvlU7GswjpXpcjjGxLexfIE6FNIpB16a6+B2uqAzmkYF+CQhPexxw95gUeK7+P+zd97hkV7l3f6p9zajGU3RNHWttnlt416xjQvG4IBDCxDAMb3Y2BR/ISQQTAgtfIQSCOB8gBNaMGBTbHDv2OstWnVpNL33ppnRzHc9ZzRajTTSqthaledcly9Y6T3ve8593tk/7nn29/TvFdXeaWp4aZ4W8lylM6BJKl0SN02NMt02q3gmPY9kdyZDDS+tcFlNUOoMkMoVRRteel0OEcsip4aXqlxzS5Lh06PD4nkylRpl5eUFR0D3Dnq9Yl5DiwQKjS7X8JIiUIYG8cn33bw6+Z2PO7ntlpsKqr7zs7da9fdK8vu3R1/AH08cw8evvh4fuvxVW/Wd5XUxASawxQmw/N7iB8TLYwI7iADL7x10mLwVJrCFCbD83sKHw0tjAjuMAMvvHXagvJ0tQeDAP30SnkgYP37X+yCpzyVzUNQJVVxTxXdefOcXm4jFYDNOiqpsEsYUgZIX4HnJ7bHbYOgfyMWczA1qnumwTCMSDEKh0aJJ0jovsimj220nyW0RVeUkufPxKEKK262ge7a1ayGRt82LbPqdz+WE02JCq1IFmXKB5M5mQVLcMjkBubpd/I4yxGlQhXnQ54HDbBKNO4X4rqqaXysJ8DdeVhh5XZKlQJYiIy+/b7r+0qKV3xSJ8uXv/HTLRJ8sL7+zuP/IC/j90HF85IprcPtV122JF5QXwQSYwPYjwPJ7+50Zr5gJbFcCLL+368nxupnA9iLA8nt7nRevlglsZwIsv7fz6fHatyKB6EwCPX//MVSVleEn77gFtXX1SM7MiOruaCi4RHyfFOBRIcdJPrdptEKAkwx3mKZFvAkJ82LNLUmqU3Z4NBIWcSQkx6kCmyq+qVJbodUJ8V2smpyaYNK9SXILOQ7A53LAbbeJyBKq+C4rz8nt/MhSHIrLCYfJKCrJqQK8tLRMVHdTvEpdfYNYf2VV9ZLjuXp/T8HPlpXfdNVK0SZU+f308yfwj7e/EzXVlaf9PSguv7NIzSRw/1+ewZ/M03jfJVfgzutem4Mci8ITCiGdzWCPUn3a188LYAJMYOsTYPm99c+IV8gEdgoBlt875SR5H0xgaxNg+b21z4dXxwR2EgGW3zvpNHkvW4HAs1MTeN23vgp9YxNuO/t8USHtcdgQi4RFg0rR2HKZkYidFOCtSiVCgQDCfh/aO7sLKr4XT6c4FarUjkUikLS1gf4c9HpEc0qq6l4unztfHR7weNAik4nb+t1uNLe2FlR1L34eVXlTdTg10SQhX1ldDZ/TiZr6eijateLPxcaa5PfEtA3/+s3/xl2funlJY0sS43qNomhV+Ol4CX7w+OOYdgcRTiQQmUkgnIgjSILb44bR74VrZgYtdXUoLy2DOxIuWOIhrV7EoVy5Z9/pWDo/kwkwgW1CgOX3NjkoXiYT2AEEWH7vgEPkLTCBbUCA5fc2OCReIhPYIQRYfu+Qg+RtbBkCP37mCdzxi3tweXcfrpW1IZPJgDK7u/YeEHnepxokwE1joyILfHZ2FrrefrRQ1ElJyYpTSXhTdXk44EM2kxV53q0K5bLiO38zilVxWszwOu3iR9I2JdraNSivXLmgmgS4x2EX+d4lpSVoaJZAre9YVnzTvZeV3/mYk2NDk6fiM//7ff0dWyb2pORd71r1upe7sF+hwgdf+SrccODMDd+Lb8AEmMDOI8Dye+edKe+ICWxVAiy/t+rJ8LqYwM4iwPJ7Z50n74YJbGUCLL+38unw2rYjgc/85hf47mMP4e2vOB8HqqpFFTZFjnTt3Y/aufzvlfY1k4jDMj6GSDiIkpIS6Hv3oLG55ZTyO5WcgX3aiIDHLW6vNnSK6JLlqr7zayAxT/EnbqtF/Eimbi8ad7J4zSS/KTLFOjUhftXcKoNSp0dF5cmc78Vz1lT5vZ0Ov+4970F1ZSUaqmpQX1WJ6tIyVKRSaKqrRygWxYjJCE2bEm+46DI01NejBLlvMmLJGTw0PIhHR4cQT6XEz/RSGT5w2ZV4w5nnoLysbDth4LUyASbwMhJg+f0ywuVbMwEmUECA5Te/EEyACWwGAZbfm0GZn8EEmAARYPnN7wETeGkJvPU/v4mHRk7gvQfPQm9zC2QKlaiQzmYz0HT2oLYh1wCz2CDxTfnd8WgEElkbQgE/qKmluqMTDSTAlxkkvinjOxzwo7FFimQijngsKppZUgb44rzv/G0oX5xywSnCpL6xUfw4EgqJqBTK8y4rLy/6RMr9poxvilqpqa1DZXUNQn6vWCNlgC8nwNcsv4tVhG+liu88nXzmN4GJ+L0IOh2obWpGk7wNRy1m/OLxh7CnqRnXnnMBGltlKF0UpJ5IzeC3Tz6O5+wWxOd6gCoam/DeS6/AW8+5ANUVpz/X/KX9mPDdmAATWCsBlt9rJcbXMwEmsF4CLL/XS47nMQEmsBYCLL/XQouvZQJMYCMEWH5vhB7PZQJLCZxz16dh8fvw6XMvwt7ePahvakIiFoNlclw0s9R0daOuISeaFw4S3w7ztLiWGlc2SaQgqU1NMGPRCLTdvUXzwlPJJNw2ixDl1LSSxPXsbFpI9HAwAKVWL6qyqYp84aC1UHNLEvPNUploeknDY7ch4HVDqlCK+y0W4NlsVlSX201GsR5qbllWVi4EutflEFXqMlU7KorEpqxJflPm9y13fBnve/sNBdne1Ozym3ffi+988TZ06nKLPt1DyO/wDMI+HwIOG+qaW4T4LquoxHGrGd977M840CLBlVoD6iVSNIqS/Nw3C9nsLEzDQ7CPjaCioRGBlhY8YTLCE42I30tq6/Duiy7DOy+4FA3LhKmf7v3z85kAE3j5CbD8fvkZ8xOYABPIEWD5zW8CE2ACm0GA5fdmUOZnMAEmQARYfvN7wAReOgKpdBr6T30EZSUluOdtNwvxXVJSKh4Qj1IzywmQrNZ09RQI8PmK71h0Xnzn40rodyTAI8EA9L39BRXglNdNkSVUdU1Z3SS+87KaKsYdFhOCPm8uAqU119CSBkWWUMW3224V0ShUnZ7P+KZ7uh02EWkiU6pFBfjC6BS/xy2iTkjOU3PLiqpczImQ6W4nvA67qD6Xq9QFueFUlf6Gi88pgF2SJZVeZMQTSfzDv34fCrkEt95y05IrqOGlw+XDP97+TtRUn/6qaJLfZpMdPosZ9dJWNImy+Qqx7mGHFd98+EH0tynx5oH9CLldaJDJ0dgqB70b00MnYB8dRnVjEzoPHhLwsiXAYZMRDwwegzXgE/epr6rC2867CO+55ApI6+pfureW78QEmMC2IMDye1scEy+SCewIAiy/d8Qx8iaYwJYnwPJ7yx8RL5AJ7BgCLL93zFHyRrYAgWMWE67++hehb5Him299Z2HcSDYrokhs00akZhIiAqWusVFkglPFN0WdyNUaIZUX53QnZxJCgJNAzgvwdIqyui0IetxoValFTMriKm2qHKcKcJLSVDlOFd6UzOFx2sXPqbqbBHd5Rc7T5gfdm8Q4iWyq7G5tU4q9UEW4aWxEPIt+vjjeJC/APTYrmlplQuTTvWndxpEh3H7zOwqes6z8zsed3HbLTTj7YN+So33uxWF8+Ts/3TINL//9t7/F5NAomuQKIb7zVd208Am3E//2p9+jS67ABy69AmGPB0GnHbUSCUJ+P5wTY0J8dx86C/VNS8PdT9iteOD4EUx4XPMc3nbuhbj1qusgW0WI/Bb4XPASmAATeAkIsPx+CSDyLZgAE1gVAZbfq8LEFzEBJrBBAiy/NwiQpzMBJrBqAiy/V42KL2QCpyTwy8PP4YP33I1LuvvwiWtvWHr9nACnxpQktEkgh/1+xCJh8f+bWpaK7/xN8hEoIb8P7Z1dSERjIraEcr2penu5fO50JAWbLgAAIABJREFUKgmH2SSiUfR9ezCbSsNmnIS8XQOZUjVfoLx4sdQI0223wWUxQ6XvQFlFOYzDJ0SkiUKjRfkyMdQkwKlqnPLAJXIFqutqYZkYR2OLBLe8/jU7U35/6itfQXWrUsjvxd9cmLwefOmB+6CTtuK2q16NbGYWPrsVxmNHkYhGUNsiQe/Z5+a6oS7KpllIa8rtxP2Hn8OI1yN+rGmR4Ofv+QjaWySnfDH5AibABLY/AZbf2/8MeQdMYLsQYPm9XU6K18kEtjcBlt/b+/x49UxgOxFg+b2dTovXutUJ/Mvvf4Ov//kP+JtzL8Kbzzm/+HIXCHCqyCbnqdIZ0EgV36W5iJTlBkWZ2KanRFV2VVU1lHqDqMJe7FuXiuy0qC6nnO6ysjIodR1z4rt4Q8v8fBLZJMDt05OYnZ0V+eEKjW5Z0Z6fR7EqtDe7cQozMwlRXU57vP7sfQVL2zGxJ7ffdRdaDD1okJ7Mlsnv1Bbw4wu//zVUzS34xDU3iIzvqePH4RgbAjJZdJ11DuQ6w4riW9wrm4FlYgyDx4/gmUQCnmwGbY1N+NktH0anTL7VPxu8PibABDZIgOX3BgHydCbABFZNgOX3qlHxhUyACWyAAMvvDcDjqUyACayJAMvvNeHii5nAigRu/q/v4v7jR/Cpa2/ARd1L0zrykyn3m3Kz7cZJIb11vf2ob2w6JV2KLLGZjDCNDKGmvh6G/r0iJmU1w22zYvzYiyirqEDX3gMiH3w1gxpZjh8/gtlUCl37DkKmUq9mmsganxo6jngkAm1vP1RaPa5ZlGCyrPymJ2ynhpdf+/nPMTUyAUV3D+pbCg/EHQ7is/f9CvLGJtx57Q1zGd9DIupE3dmFkN0GeWc3GmUrHEg2A9vUJMwnjqGssgpyvQH/M3QM5lgMLbW1+OV7b0VPm2JVB8MXMQEmsD0JsPzenufGq2YC25EAy+/teGq8Ziaw/Qiw/N5+Z8YrZgLblQDL7+16crzurUjgkn/9LMbdTnz7Le+EbkGDyYVrpTgRyv0mqUzxIRT7nJlNiyaYIvliuZHNwmk1i+Lf9s5u0UBzYQb4Sjy8TjvGjx0RsSfpdBpO8zQ6+veieZk15u9FGd+TJ46jrV2H8rnYk659B0RzzZVGPuO7obkFNXV182t++7VXFExbUX7TlfnGl/f96en5ifv6O7ZM1nd+UdTwcnJ8Gj6zCW1d3QUCPBCL4tO//jkkdfX42+4+2Ki5ZUMjes46R3Q9DXvdsI8MQ9HTi0ZRwV1SAIm+8XBMTwnxXVpRgc4Dh9AiV4Dyb7732J9hjEXRWF2N//m7D2F/u3Yrfi54TUyACbwEBFh+vwQQ+RZMgAmsigDL71Vh4ouYABPYIAGW3xsEyNOZABNYNQGW36tGxRcygRUJzGYyMHzyw8hms/jF330I1TU1S64nyU3im6qwO/oH0CRtFRLbPDEq5mk7e0RF95IhxLcF0yND6Ny3H1K5AhSBYpmaQDQUFJXjDU3NRed5XQ5MHD8mxLdc3Q6KJKH4E5fVDEP/AJqlrUt8K5BFwOvB1NCgaMJJcScUreKyWkTud+fefWINxSKqw8GAWGddYxPaDZ2oqKqCWMOxo/j0Rz9QsMZTyu/t8s6R/PaFZxBw2MV/Mp0+J8BLShBJxHHnr34KSWkpXlVbj6q6enSdcSYamiXzAMMeF5wT45AZOoQALynJ5d/QYTnNRphPDKK0vBwG+uZBoTo5z+vGfz7+MCZjUdRWVOJH734fzjF0bRdsvE4mwATWQIDl9xpg8aVMgAlsiADL7w3h48lMgAmskgDL71WC4suYABPYMAGW3xtGyDdgAoLAmMuBS7/0Ociqa/BPl14Bla4DldXV83ROim+LiCvJSefciEcjMI+PoqS0FGpDJ2rr6uf9JhX+umwkvofnxXd+XjKRgNU4gUQ0KqrB65uaUTLXM5HmkXSeHh1Ge0c32tTt8/ekLG8S4NQwU9PVK9YyPy+bE9/m8RHRsJLE93wzzTkJb5kcg66nTwhwWjMNkveRYEBUeVfX1UGt7yzYP63lLVdcXPC2LCu//cEw3vuJr+Km6y/FjdcWTtqK7xvJb38khUxmFkGHHSGPGxK1BvUSCRLJFD7z8x+jNZnElYYudBw4iMaW1iXfHITcTnhN05C0a9EokyGTycBtMcM8PIjS0jLoBvahVXXyEPMcIn4v7n7iEYyEQ6gsK8f/e9f7cGFXz1bExGtiAkxgAwRYfm8AHk9lAkxgTQRYfq8JF1/MBJjAOgmw/F4nOJ7GBJjAmgmw/F4zMp7ABIoSuP/Yi7j5/30PZ2v1uEmtFSKamjySAM/LZrdtqfjO3ywWCcM8MYaysnKo9AYhwMl/kvi2To5D3z+Qq7ZeNGbicViNk0jOJKDWd4jscBLRXpcTtqkJKLQ6yFXt85I6Pz2dSsJhmkbA5xXz8jKexDfdr1kiFXPLKyoLnpiX8TRXZeiEVN4mxHkkFBTzKquqxf2qilS+X72/0MmeUn7fdstNOHtRUPhWfP/y8pvWRt9yBJx2RH0+NCuUyJSU4N/v/Tlmy8rwwetel8uamfuGYhFZhNxu+G0WNMjbMEPfbIwOo6SsFNr+vZCJby+Kd0SN+Lz48VOPYjAURHlZGf7jre/Cqwb2b0VUvCYmwATWSYDl9zrB8TQmwATWTIDl95qR8QQmwATWQYDl9zqg8RQmwATWRYDl97qw8SQmsITAv/3p9/jiH36Lvz7rXPzVwH5RcU0CvK1dC4/DBo/dtiBmpDjAWDgnwMsrKtDWrkE4EIDTYhJ54NIV+hkm4jHYjJNIJ5PieeRNaR41pyTxTZElxUYqOQOH2SSyw2keDZpHWd2UR15RWVV0HqVxkJSn+BaaV1VdLeaVV1ZCpe9AdU1t0Xmrlt/5rO9zz9yzrSq/87umYHeKP6E4E4owufvwcwhUVeErb3pHcfE9N5G+WSBxbh0dQjQcFt88aAb2iuyZ5cR3/pkRrwc/fvxhDMYiKC0pwdff+Ha87oyz+KPKBJjADiHA8nuHHCRvgwlsAwIsv7fBIfESmcAOIMDyewccIm+BCWwTAiy/t8lB8TK3PIEP3vND/PLwX3D7Vdfh8v69QihPDh1HRUUV4tEwuvYeEBnfpxokwKdHh0SCBklsbXevaDCZjyVZbn4iFgPFkVCEClWak5QmZzofWbLMRMoOt01PgZpb0miWykTFOmV1rzToGZQbTtKbnlFTVy/iVapri4tvuteq5Tdd/Mv7H4XR7MCtt9x0Kman/fcLK79pMSSxo34fvFYTkMnih4NH4C8rw5dueivKy8qXXa+AajbCNHiMgmQg1xmg7R9A2aLy+yU3oFJ/px0Tzz+Lw7EoBtMp0TbzS294C9549nmnnQ8vgAkwgY0TYPm9cYZ8BybABFZHgOX36jjxVUyACWyMAMvvjfHj2UyACayeAMvv1bPiK5nASgQu+9LnMOpy4Jtv/lsYZHLRkNI4cgLUALKqphZde/ejqnppE8zF96TqbcvUOAJut6ikpqaUdfUNKxYM0z2o2JiquD12K0rLyqHp7EaTRLok7mTx86iKm7ypfdoofqXU6YVsX65aPD+f/G7Q5xWV6pT00apUi2rxsvKKZTGtSX5T7vcnP/9d3P6+N6JTp9rSb99C+Z3NZhAPBRFwOATEsvIy3P3oQ/CVluDO178ZdcuUxYtyevM0zMMnROW2VKVGeWkp6qWtaGiVLQ82m4HXYcPU0SPIpFOQaXQ44vPiz3aLYPaPr/krvPvCy7Y0P14cE2ACpybA8vvUjPgKJsAEXhoCLL9fGo58FybABFYmwPKb3xAmwAQ2iwDL780izc/ZyQRS6TQ67vyocJa//sDHhPh2mKeF+G5tU8DjsIvKaLWBsrCXr4xOJZMiSiTodaNRIhXV4xSBQs0ja+rrl0U4m0qJjG9qYFlb34CZRFzkfis0OjRQE8y5ppTFxDdlfLvtVlRWUrZ3CZLJGciUapEBvpwAJ/FNe6M9UkU6SX3KLKcGmZQBXlZRXICvWn7nG14eG5pcdtP7+jvwrS98FC1NDaf93crL75Pi246Kqmo0K1UoLS3Fl35xD9KxGN559avRplAvBZvNwD49BcvQCZSWl4lqb0mbEpTlTf/VtUiKC/BsBh6bFcbjJL7T0OzZizatHrFAAA+fOIo/WkyCzYcvfxXuuPr6086JF8AEmMD6CbD8Xj87nskEmMDaCLD8XhsvvpoJMIH1EWD5vT5uPIsJMIG1E2D5vXZmPIMJLCZwxGLCtV//Ijpkcnz1xjcJKRwNh6DU6kXUSTQUgml8RDSBJJFdLBqE8rdJfIf8PkgVSkhk1PMwDsvEmKj61nR0FxXg8+Lb7URTi0SI63Q6BZtxCtTUUqkziOzxxbEpVGgsxLfNKu6rmMv8dlhMiEciIi+8mAAnqR4JBoSrpUhqas5ZXl4Bt92GoN8r1r2cAF+1/N5ur5iQ3+EkYqEA/HYbKqtrhPgmAU7jc7/+OZIBP95y4BBU7VrUi5L8uSB2Et/GKZiHjov8GO3APshUueaWVMkd9noQ8flQ19JSKMCzGbitZpgGj2N2Ng3tnn1Q6PRiXjYzK2JXHhsaxO/NRmQBvO3cC3HXjW/cbmh5vUyACcwRYPnNrwITYAKbRYDl92aR5ucwgd1NgOX37j5/3j0T2EwCLL83kzY/a6cSuOfZJ/Gxn/8El/f046+7ehGLRkTmdvOC2BESxpapCVRUVIoK8Oraunkc8+I74IdUroCEqqfLc9HQsUhECHAqKqbGl1TZnR8UdeJ1OuGbE98UPVIhKrgBygC3TU8imZgRz6MmlvlBeeJBrwdOq0Xcj8R3ZXXO0ybnmmVGI2G0qduFvC/Ne1pAVKNbpyZRWV0FlY72katkp6p1ilwJ+n05Ad5GezhZAU6V4Teef2bBK1CSJZW+AwbJb6vVDZ/VjKraOrQoVSifE9+0vc//7l64A368/8xzUTM7i0Z5G+olEvGNhG1qAuYTgyirrIB+736RH7OwueVJAZ6rAG9slYnKcZfFBNOJQZEvrhUV37qCeSTAI34fnhsdxr3GCSHA33jWuSIH/FQB8jvgSHgLTGDHEWD5veOOlDfEBLYsAZbfW/ZoeGFMYEcRYPm9o46TN8MEtjQBlt9b+nh4cduEwN/f+zN8/4lH8Pr+vbiwTQk5SWOJtEAaU//CSCgoKrIpBlpFUSZ1dciLb5LKFBuyUHznt09NLC0T45idnYWmqxt1DY2iqaXX5YDP6RDPWii+8/MS8Zh4XiIWFeKcIlDIlVLFN1Wn1zc2CUmfF9/5eXkBTuul6BSqAKfoFIo6MY+PCnFPFd/ViyJccgLchqDPA0kbRaAohMSnKnjz+Bg+8vY3nVp+P/fiMN7xkS/MX/jZO96JG6+9eEu/Ct/+3e8wOTyO6oYGtCjVKK8s7Bb6xT/8Fha/F7dfcQ3qZmYQCwZElnc4HIJtZFjkxBj2nyFK/qnMf/GYF+BeL2qaGpFIzMA+Piqybdr7B9Cm0RXNtsnOziIS8OH5sRH8cmpc3PZ1Z5yFb7zpHVuaJy+OCTCBpQRYfvNbwQSYwGYRYPm9WaT5OUxgdxNg+b27z593zwQ2kwDL782kzc/aqQRu/NZX8czUBN534BAuHDiQE99lc6kWCzYtIkNCQThMRhEFLVNrEAn4c1Enbcqi4nteZMeisExOiCgTlaETM7GoyBJvlsogo0LjuYrvxYxn4nFRAU7RK9qePtEYk4R4Y3ML2jRaVC4oUF44NzmTgNNiQsjvF6KbqrhNo8Ooa2wUFd8U4VJsUMNOikAJeN1oVShFITQVN1NEygfe/PqCKUsqv/Pi+4df+wTOPtiHfPb3TddfuqUF+Ke/8Q2gugEt1KSyIld6v3B89cH7MeVx49arroOmsQk+mwX2iXHEwmGU19agc/8htMjbVuxqSpneAZddzKOXpqyyCpr+PZCptSt2JyUBHvJ68PTxF3Gf0y6W9Znrb8TNF12+Uz+PvC8msCMJsPzekcfKm2ICW5IAy+8teSy8KCaw4wiw/N5xR8obYgJblgDL7y17NLywbUSg685bEU8l8b3XvwVKhXJlF5nJIBIKwWE2imztiqoqtCpVIiokH3Wy3Nbj0WhOZAeDoliYqsSF+C7iWwtEdiIBq3ESYb9PFAg3t8pE1Ak9e6UhGndaTAh43KJivKFFArW+Y0ml+OJ7kKAnAe5zOUGZ5HVNTUKYv+68MwouXSK/v/Kdn4oLbr3lpvkLSYh/+Ts/3TLNLYsBu/2uu9Bi6EGDVFaU5//98x8w5nLgQ6+8Gp0yOUwjQ7AOHQeJacOBM6Hq6llRfIubZjOwTU3CPHgMqUQc6t5+aPr2LKkyX7KAbBYeuwXGY0dgDAbx6GwK5aWl+OV7P4ozdYZt9DHjpTKB3U2A5ffuPn/ePRPYTAIsvzeTNj+LCexeAiy/d+/Z886ZwGYTYPm92cT5eTuNgMnnxXlf+Ac0V1XjB297d0GW93J7pXgQ69QE7MZJNEqk0PX2iwiSUw0S0DaTUbhTalJp6N8rqsxXM6ix5fixF4U079p7QIjz1QwS2OPHjwiJ3bXvoGiEuZoR9HkxNXRcCH5tbz9UWj2uOdhXMLVAfi9X5Z3/+W233CSqwbfi+NI998BusUNu6EJtU/OSJX77kQdxwm7Fey+5Ao2xGKwjJ0Tltrxdg1Q0CnlnF+pbVjjIbAYuixnmE8eRRRat1BAznRaV5pQfXlJSWhxLNouA2wnj4FEk43FIlCo843HjGY8LsvoGPHTb/0FL3cnw+a3IltfEBJhAjgDLb34TmAAT2CwCLL83izQ/hwnsbgIsv3f3+fPumcBmEmD5vZm0+Vk7kcDvB4/iXXf/B/ZIpPjwuRdBqdWvWFFNWd0umwVeh100k6Q877Ky8iVNMIux8jhssEyOi4gUqsqmaBLK8qYM8JUGVW5PDh2HTNWODKVg+H1CuFP0yUojFPBjemQIjS0SUc3utlnQ0b9XVI6vNHIZ36MiUoWqy71OO9o7uvDWqy4tmFZUfi+W3PFEEv/wr9/HuWfu2bLRJ3c/9himxowIe92Qd3ShtrFQgH/v8Ydw1GLC67t6UO1yCfHdceAM8c1F0O2C1zwNRVcv6ot9k5HNwG21YHrwmKj+1uzZC6lShZjfD6/FBEm7Fk3im4xFWeHZLIJ08MdeRDIeg6q7FwpdBxLRMP790T/DFo/hvI5u/PSWD6G0SM74Tvyw8p6YwHYmwPJ7O58er50JbC8CLL+313nxapnAdiXA8nu7nhyvmwlsPwIsv7ffmfGKtxaBLz9wP77ywP147cB+XNgsQUNzS06AF8ngJvHsslrgtJqgNnShpVUm5DdFkpSXV0Dd0bmkiWR+tySQjSNDQiK3KlRCfNump4QEX0mA58U3Nbak5pW0BppHAlzf2y/WW2xQA056Holvlc4g5Dc1yaQc8JUEeF58V1RWiaxwEuB5aX/nB96zM+X3j556Ct5gHH6btagA/+FTj2JwagIXV9VA1dSEzgOH0NQqFxk02WwGQYcdnmICnCJLbBYYjx8RuTOaPfsgb5/L+M5mEPK44Z6ahMzQgUbZglL+bBYhvxcTLz6PZDQKZU8f1J09uVydbBYOpx1fe/TPiM2m8aHLX4WPX3391vpU8WqYABNYQoDlN78UTIAJbBYBlt+bRZqfwwR2NwGW37v7/Hn3TGAzCbD83kza/KydSICqvqn6+5NXvwb7W2Wi4rlZ2gqlzoDyior5LVOzS6fFDJtxArqePpHxTe6TXCQ1wbRMjIssbbWhc0kzSRLfE8ePQte7B3KVen5enBI0pqgJZgra7h7U1jcUIJ4X3xodlBrdfBY5CfOVBPhi8Z3PBidxbicBbp4uKsBjkTBMY6Ni37SPmtpaEWVN3tZlt+Lt17xy58pvfySFzGwaPqsFEZ8XbR1dqJnLsvnJYw9hemxY/POAi8+/pEhzyywCJMBNxpMV4NksvA4bpo4eFt9Y6Ab2o02jA+ilOflaCQHuGB2Gors3J8DphQr6Mfr8c5iJhKHu3QNNTy9KShd2YM1iaGoS3376MXGnH7/7A7ikZ2tGyuzEvzR4T0xgPQRYfq+HGs9hAkxgPQRYfq+HGs9hAkxgrQRYfq+VGF/PBJjAegmw/F4vOZ7HBHIEKO+bcr+/+zfvRjulWIis60FIFUpRMZ1vYkni2zQ6jI6BfZC2KZbgIwE+PTqMmro6tBu65ptKkvgeP3YEhj17IVeql/RFTMSiMI+PIZOZhbarV2SB0wh4PZg8cQxU8U2V6FS5vXCkkjNCnIcDAej79qBhLqo6HAzAOHwCDc3NUOs7l0S4CAFuMuYqwPfsE6KfBmV7m8ZHUFpaBk1X99Ls82wWVx/oLVhD0diTY0OTq3q39vV3bJkmmFT5TfKbxmw6Bb/NglgggFYqmS8vw32P/AknnA6cd+AQrjj0iuLNLbMZ+B12MVem60AylcLUscPIpNLQDOwV36ZgmWzvsMcFx/ioEO6llVUYe+FZJMJhqHr7ReD6cpng9z3/NP4wOozG6mqR/60okle+qsPgi5gAE3jZCbD8ftkR8wOYABOYI8Dym18FJsAENoMAy+/NoMzPYAJMgAiw/Ob3gAmsn0A8lUTXnbeiqrwcv3r/bfM3CpJ4HhoUzSGVWh08DjumR4bRuW8/pPKl4js/MRIMCAFe29AoIkNITBuHB6Ht7oVcrVl2oRSdQgKcUp8pFmUmkRCinQQ8ie+8gF98A4pOsU5Ngiq2tV094tem8VFRQa42dIjIkmKDcstJgFNuubanD1XV1SKLHFkI8V1TlxPwi8fV+3PPyI8C+b3+Yzj9MxfKb1rNbCoJn82CqM+LkrIyvGC34XGfB9cfegUu7RtYdsHZzCx8diucE+OIhEPiuvY9e6HSdywrvvM3C7mdsA6fQDQaQSoxA2VvH3R9e5Zvhjk38f/+8T6Med3Yr9bgNx/4GMoXfUty+unyCpgAEyACLL/5PWACTGCzCLD83izS/BwmsLsJsPze3efPu2cCm0mA5fdm0uZn7TQCz0yO48Zvfw19ChW++td/U7C9fOU1NaOk/9+178CK4js/OV95TcI6Fg6JPG8S3yWn6EkYi5AAHwFVdKdmkmgV4l1fEL1SjP9MIg7rJFWA+8WvKQOcsserqmtWPC6KWiEB7rFZUVFVCcr41nT1onau8rzY5F0jvyl6JBYKwDNtRCaTwbFoBA+ajbj+wJm4Ys++ZcHStVT9PXH4L8ikU2gzdEC3Zz9KKat7pSGycwIYfupxJGMxSNUadJ15NsrKT+buFJ2ezcIX8OOLf/wtYpkM3n7eRfj86/56p31OeT9MYEcQYPm9I46RN8EEtgUBlt/b4ph4kUxg2xNg+b3tj5A3wAS2DQGW39vmqHihW5DA9594BH9/789w7d6D+OArX1WwQqqOpipur9OBxpYWdO3df2oXCYh4Z2qA6bZaRARKx569qKqpPeXuKfaE5pCQLq+oFLni9U3Np5TmlMft97hyldtUaNxBjThzvRhX1q0ULZ2rVE+nkkK0y9TtIvZkubE75Hc2i0Q0Ar/dJgQ25c0cnp7CIy4HLjtwCFfvO6O4h6aDcDkwdewI0jMJtLQpUVNTg2aFCvUSyaLM7gW3yGbFNxfjh59DIhSGRKVCdVU1mhVKNLTKUFq2jDjPZhENBzFx5DBMLgceTCWRyWbxH3/zLly3zBpP+RbyBUyACbxsBFh+v2xo+cZMgAksIsDym18JJsAENoMAy+/NoMzPYAJMgAiw/Ob3gAmsn8DHfv4T3PPsk/jA5VcV+EKqinbbrXBZLZDI5CL2pFWpEk0nyysrl30gCXOfywmn1YT6hibhNBtaJCI7nJphLjdImAd9HjjMJlGBnUzEhTBX6vSopQiSZarGSXxTpbnDPI1sJituX1JaAoVGJzLAlxXgVNgcjcA+bcRMPCaqxJPJGSg0WjRJWpfki+fXvfPl95z4DthtyCILabsWpaWl+NMzT+AvE2PY378Xrz7ngqVgqQLbacfU0RdFZjg1qWzTaEFRJvFgEI3yNtS1SJeCzWYR8nkw/uILormlqqcP7d19iPg8CLmcQn43tsqXVo7PNcWcOn4EEa8XMn0HbNXV+PkLz6KmohK/+/DH0S1vW/8ng2cyASbwkhNg+f2SI+UbMgEmsAwBlt/8ajABJrAZBFh+bwZlfgYTYAIsv/kdYAIbI3DNv/0LjlrN+MpNb0U/NaMERBW022YVFd8KrU5EnYQCfkyPDKFFJhdiuaKqasmDc+LbAbfdJq6Tq9SIRaKYHh1CXWMT1PqOogKcxDfFqrhsFtTVNwhnmk4mYZ4YF5EnywnwvPh2mk0iE5wyxmnYjFOgtdB9igrwBeKbJL+ms0sIfbpPNBKGXNUummAubrBJ997h8juZq/i2WQVIEt+VcyX7Dx0/gkf/8jQOKFW46tyLUNPYdFKAz4vvw5hNpdHevwcqQ6fI+Kbs8KDTgXg4hEaZHHUtkpOV3NksAh63aIo5E4lA2dM339wyM5tG2ONG2OtBvUSKRqoAz0egiEpxH4yDxxD1+yDT6aHv34eyigp8/7E/40WLCXqpDA/e+kkhwnkwASawNQiw/N4a58CrYAK7gQDL791wyrxHJnD6CbD8Pv1nwCtgAruFAFd+75aT5n2+1AQoIaLjUx9BanZWNLukppepZFJUfAfcLpHTLZG3zUtgaoJpnhhDY4tESPGFzSSp2NfrdAph3tzaCplSPZ/VTZXZ1Lyypr4ean0nqmpOZnHnxTfJdvq9gnzrXIV4LBwWz8uLbWpimR/FxHd1bZ34dSIWXVGAU3PMvCDXdHajtiF332QiAYfFhHgkIhp9LhbgM/E4bjjnQMEx7KiGlw6nHz6rWTSYlLRr5sU37fjx8RH88rmncL5UhvP1HWimSJOmJmpQCo/dCuPRIyLvpr1/ACpDYXPLvABPRMKiklsI8NIy+F1OTA8exUwsCmVCeIH6AAAgAElEQVR3LzQ9fQXNLfMCPOLzijk0t6ysHCG/F6YTg4gG/JBpddD09aOiMvfPCpKzaXzh/nvhiYRx3d6D+I+3vful/tzw/ZgAE1gnAZbf6wTH05gAE1gzAZbfa0bGE5gAE1gHAZbf64DGU5gAE1gXAZbf68LGk5gARp12XPblf4aqqRn/+Y5bRKNJktBBn1dEnFDFd0H1MxXq+rywGSdR39gkKsBJVM+mUvC6nCLupEkihUypWhKNIrK1x0ZQU1sHlb4D1bW1wpVSxTfJ9pq6QvGdPx4hwCfHRPIGZXnTdVlKvAgEYDcbUV5eISq+8+I7Py8vwNPplIhqqW9uEdnh8WhEZINTX0ZNx0nxnZ83L8CjESHw8wI8EY/BNjWJ973xxp0pv7/7wAOYHJkQUnqx+KYdP2OcwI+ffhznafW4Qq1BKpFAg6xNZMeYh46LUnvtwD4odQZR8b14zFeAR8Kob5EimU7BOjqEZCwORVeP6IpaUrY0bJ0yx6n6O+LzobapCdmSEtgmxhALBdGq0aG9pxeVVYWdTZ2hIP7ld/cincng86+9CW8//2L+uDMBJrAFCLD83gKHwEtgAruEAMvvXXLQvE0mcJoJsPw+zQfAj2cCu4gAy+9ddNi81ZeUwP8efg4fuOdunKVU45PX3ICA142Q3wepQgmJrE1UXC8eVHFNcpwytmvqGyBTqBAJBeFzO9HUIkGrUo2KZTLB6TrLxJjI9KbmkjOJmMgUp/ssrPhe/Eyq1KZ5lOhNwnp2Ni0qt+k5xcT3YgFO1ex0HRUNk0inYuV2qvheUEm+8JknK8DDogFmdXWtaMJJXw585O1v3pny+5++8x3MZKjim0rvC2Uy7fgF0xR++OSjOFNnwFvOPAceiwk+ux3RUBDZEkC7Zy8UWn1R8Z0nRgLcb7fCa7WIoHb6BkLZ1QNVR9eKnVRJgAfdLnjMJoQCPiHaWzVaqLt65/4ZAR1p4fiLcQL/9dRjKC8rw2/efxv2t2tf0g8P34wJMIG1E2D5vXZmPIMJMIH1EWD5vT5uPIsJMIG1EWD5vTZefDUTYALrJ8Dye/3seObuJvDP9/0K33zkQVyr78AVGr2orpbIFSLqpJj4ztPKC3CnxST8JVVUU8X3SuI7P5cqwK3GSVH1TfPqGhrRtiDqZLkToYptikAh7wmUoKqmGipdroJ8pZGIxWCbnsRMPAEgK/ZFUSdUQb7SIAFO+4uGQ6LSnCrgKbP89Re9omDajok9uf2uu9Bi6EGDVFaUy1GrCd977CEhkd994aWwjI/CdPwoMuk0NAP7oOsfWFF8i5tms3CajJg+fgTJWAyKzm7oBvaiYlHl9pIFzGWKG4+9iFjAL7LI9XsPiG9NluuESve455kn8NTkGBSNTXjotv+DxgV5O7v7o8+7ZwKnhwDL79PDnZ/KBHYjAZbfu/HUec9MYPMJsPzefOb8RCawWwmw/N6tJ8/73iiBN3/v3/HI6BD+bt8ZUKRSkCpV0Hb1LIkQKfYcqqa2Tk3AbpxEo0QKXW+/iEI51SBxbjMZYRoZEhnfhv69QpyvZlAky/ixF0Vfw669B4SkX82gOJbx40dEPEvXvoMiz3s1gyrcp4aOiwxwbW8/VFo9rjnYVzB1x8jvL9x9N3z+MGQ6A6qLlMQP2a341iMPYo+yHa/r6IJleFB8K0CdTcvLyiE3dKCmsXl5rkJg22AaOiEiU5paW1FVWSUiVhroBSgSlSJuls3OZXwfF1EnDS0S1NbWoUmuQKNcfrJ55uInU1PMcAhfeeA+eJNJXNLThx+/6/3iGxceTIAJnB4CLL9PD3d+KhPYjQRYfu/GU+c9M4HNJ8Dye/OZ8xOZwG4lwPJ7t54873ujBPo//TGEEgl8+hUXoK2pGcmZhGhmKVe1L8nsXvgsqtqmxpaU1V1dU4tUKin+l5pgVhVJzFg41+9xwzo1jtq6BhFfQtXmKn0naupyzSqXG+GAH8aRIVEpTs6VIkgoJpr+vNKgym3z+KiISKE+jvRnfW8/GppbVpwXj1LTzAlR2U5xKRRtrTZ04k2XX1Awb8fI7+8//DCmRqhEPlZUgI+7HPj6n/+AroYmXFBZSU4amv4BtMjlCDmdoKaU8o4u1DYVEeBzldumoeNIJWag6OyCTK0RVdwRr0cI8HrxDcgiMU0CO+DD9OCxXMZ3uxZKQyeS0ShCHhcaZHI0tpIAX5QVns0iEY/CePwobE477otGkcpmcMerXo0Pv/LqjX5ueD4TYALrJMDye53geBoTYAJrJsDye83IeAITYALrIMDyex3QeAoTYALrIsDye13YeNIuJ+AKBXHG5+5ETVkZvvNXb0JTi1TkfbttFjS1ynICvKJiCSWq3PY47XCaTSIbnJpiRiMhuCxmVNfVi+aS1ASz2KBMcdPoiKjYlqs1mEnERXb4qQR4XnyTsFbpDEKa26eNQtZrOntQ11hcgM+L7yqKSNELiW2bngLdbyUBvlB8U1NPEvouq1k09LzjlnfuTPn9o6eegssbht9mxUwsukSAGz0ufOOP90GfzeJcmUKI71aVWmR1z6ZTYh6J7CUCPJuF3+XA9IljSMYTUHV1o03fIYLfKTIl6HIg6HSgVWeYE+BzfKmraSiAqWNHhCSX6fRQd/eiqqoGmcwswh4Pgk47mtoUaJTJUVJ6UoBTmPzk0RcRdNjRolQjIpHg7mefFDf+1fs+irP1nbv848/bZwKnhwDL79PDnZ/KBHYjAZbfu/HUec9MYPMJsPzefOb8RCawWwmw/N6tJ8/73giBh0dO4C3/+U3skSvwxZveIsQwSWW/yyWyrvOCemH2N1Vcex122IyTkLdrIFOqhPukSnAS5ySyqYkkVYBXVhUKcBLfU0ODkKnaodBoUV5RCRLpkVAIDrNRCHCqrK6uLawADwX8mB4ZEhXpJL4rqqpEEkY8Fj0pwItUgOfFN61DqdOjhu5bUiIqxqlZJq2XoloaF1WAJ2JRWKcmhV8l8U1RLiWlpUinknCYTXj3a6/dufLbH0kiNTNTVIAbHVb86He/QWNFBf76kivQqmovCIbPzKbhs1kQ8SwQ4NksAm4XjJTxnYiL5pZKQwfKK6rmIdI8kt9+qwXyzu6cAM9mEQuHMHHkBUSF+DZA09uHygXZ4NnMLEIet5jXom5Hk0wuolPSySTGDj+HgN0mfm7Ye0B8e/Gz55/BY2PD0Etl+NOtn0R1ReVGPj88lwkwgXUQYPm9Dmg8hQkwgXURYPm9Lmw8iQkwgTUSYPm9RmB8ORNgAusmwPJ73eh44i4m8M2HH8A/338vbjhwJt5z6RULXOQsfG4n7MYpUdjbptbMp0p4HHaYx0eg1HXMie/y+Xn5JphUWU3CWKnV50Q1gIDHjcmh46KxJQnlAqFOAjwcEs+jn+cEeK6JZb7iu0B85584J8DpeeRrF0agnKz4rhLCPC++81PpeppHAnxhBTg1x6Qcc2qqqdQbUN/QKMR3ftDPrzu0p+Ct2TGxJ1T57Y+kRFfQnAC3YCYWg0xvQGlpGSZGh/CLF55DeXML7rjh9UWztqmS22+3iKpseUcnUuk0Jo8cRjIWhbK7D+rOLvFtyeJBIjvgdMBrnoaiqwdlVdUYe+E5RClKxdABXd8AyitPCvP5dyCTQdjrhmfaiFatHvWtUgw/+7RYu6Rdi64DZ8w305xJpXDX734FXzSKmy+6DJ+5/q928ceft84ETg8Blt+nhzs/lQnsRgIsv3fjqfOemcDmE2D5vfnM+YlMYLcSYPm9W0+e970RAu//8Q/wqyPP49Yrr8WVe/YV3IpENkV8mCfGhKxua9cIIT55YhDa7h7RMJJ86FKHmUHQ74NlYkw0sSQBHgkF58S3Dkqtbmk8s2hpmEU0FIRlakJkc7dTrPPMjMj4Liq+Fwtw4yRSyZRo1knDJDK+K6DSdywR38sJ8MqqKvF8auRJz6+jiu8ivRGv3p97Rn7sQPmd21p6JgGv1Yx4KISysjLEMxn8x+ARNDQ04h9e8/pl3z1RAW61wGOeFt9qUCW2urcf6q7eooc/fyOqEqc8nYkxRGMxJMJhyDs70TFwAKXlJ79lWfrWZUUFuGN8BLF4XESvSLV69Bw6W3RGXTgm3S587cH7RbL4bz94Ow5qdBv5DPFcJsAE1kiA5fcagfHlTIAJrJsAy+91o+OJTIAJrIEAy+81wOJLmQAT2BABlt8bwseTdymBy770OYy6HPjGm96BTnnbUgoUceJywjg8iCapDB6HDR39AyK2pJgUXugwgz4vpkeHUVVTI6q3qVJ8OfG9cB6JchLXlHpBeeAtsjaoKR56roK86FGJCvAYLJPjiEcj4pKaunq0d3ShhirIiwjs/H2owNlqnITf7cw16iwpEQKdKteXm7dr5DdBSkTCcE1NgIR2tVyBzz/6JzTV1uKzN9y0/MdmrknlyNNPIBmPo62zCx37zigooV9uciqZwNGH/4R4KAhpuxZ9rzivIMt7uXm0vmOPPoSQy4FGuQL7Lr58WdH+P88+iScmRkX8ycO33YmKlcT6Lv3LgbfNBF4uAiy/Xy6yfF8mwAQWE2D5ze8EE2ACm0GA5fdmUOZnMAEmQARYfvN7wATWRoDSKDru/CiyAH79/ttQXra0ilvcMZvF9NgIHCajaG7ZNbB/RZm8UGTbTUYRIUJNKjsH9omM79UMj90G88SokNGGvj2oqW9YzTTkhTtdrOvpE5XnqxnxSBhTwyeEbKfmma1K1YrTdon8ziKVSIgKbhLgVHmdzmbxzaMvoLymBnfd+KbikEQJfwCjzz+LRDCIJpkM9Y3Nopll7QrfKNDN6Hknnn0SEZcTTfI21NXVQ2boQH2LRGR5LzfoG4yxw3+BzzKNhlY5aqtrROSKaIJZZB7Fn/zzfb9EIB7Hey5+Jf7+1a9bzXvC1zABJvASEGD5/RJA5FswASawKgIsv1eFiS9iAkxggwRYfm8QIE9nAkxg1QRYfq8aFV/IBASBIxYTrv36F6GXtuJbb31XUSoUfeJ1OWAaHUFzays8dju0PX1oU7evWMRLESYBrwfm8VGR3R32+9Gm0YoIlIVZ34sfSvMiwYCITKGqa5LRzdJWqHQdqKymuGfKqigyqDdiNCJE+0w8Li6ginPKDq+tq19R1icTCdimJ8V6ReV3Not26rnY1LxsdfsukN9z4ttmRSoRF80mS8vK4Jyewg+ffBSxmlp8/o1vWwqWDjAUwNjzzyERDkHZ0wd1R5doPDkTjUDSrkGNyJJZJLKzWSTiUYz85VlE3C5RKW4Y2I+Q2yX+o3n1LdKlL93cPw+YPHo41/SyXYPes84RsSde07TI/G6UyYpWjg9apvGdxx7i+BP+C5EJbDIBlt+bDJwfxwR2MQGW37v48HnrTGATCbD83kTY/CgmsMsJsPze5S8Ab3/NBH7yzBO4/Rf34PLePbj96uuXzM/MzorIE9vUBBRaHeSqdvg9LkwNDUJt6IJc3V48uzuTESLZZpxEo8j81iESCol5lBO+nAAn0U6RJxRBUllVLaJOkskZTI8MCRFNTSsrq6uX7nNOfNuMU5idTUPT2S2uoazysrJyqPQGEYFSLKYlJ76nhHDX9fajsrJKPD85kxDPp+iThc0u8w/f4fI7mav4nhPfVLFdTd8gAEjGY/jif/+X+P8fu+mtqK6rO1mRPS++nxVZ3SS+dX17hOhOJ6l5plXMb1GqcwI830WUDjASxviLzwvxLe/oQuf+g0JYU/NMygCP+n1oVqpEBTj9XAwS5rEopo4fFXK9RaVG18EzUV5ZCWQzCLndouklzWtolZ1szknCfCYOy8gwfjs6hIl0iuNP1vzXB09gAusnwPJ7/ex4JhNgAmsjwPJ7bbz4aibABNZHgOX3+rjxLCbABNZOgOX32pnxjN1N4P/86qf4wZOP4k37D+EtF18mRHF+kET2OZ1wmKeFsCbxTYW/NLxOh6jopkpu+vnCSm4S5hQ9QnEnFHWi0GhRUUkV2xBCnAQ4RYqQAC9f0IeQxHc4GIDDNI3yuSaV1TW1Yh7lhVN2eDEBTpXilPFtnzYinUoJ8V3bkItIiYXDQoDTc5Q6/RIBXiC+e/rEemkk4jEh7tPJlJD+DVQBnve01AMylcKrzxwoeHl2VMNLlye0QHzrUV1XmDnz8f++Gw3xOP72gkshVbfPi/GQ34uJw8+LiJSF4jtPippn+u1USZ5As0I1VwFeIirFp46+iIjXC5nBgM59OfE9/zKmUwg6HYgFA2iSK+YEeCkoq2Z6aBABhx3NSiU69h1EJZXuz41sZlY0waS5FH9C/1GH1pl4DOaxYXjNZlQ2NeMXbgdCMwm875IrcOd1r93dfyvw7pnAJhBg+b0JkPkRTIAJCAIsv/lFYAJMYDMIsPzeDMr8DCbABIgAy29+D5jA2gjc+K2v4pmpCfzdwH5csGcfpHKFENmz6TR8LgdcNqv4GcnvgqgSaoLpdAhBTCKbml+SYCbxHfB54LKYUdfQiDaNDpWLmlQGSYAPn4C0TQGFVo+KykrMi2+zCeXlVKndIaJSFo6TArxpLgKlWhT+UtTJSfHdhdqGxoJ5iwV4PgKFKrtp/ZFgUGSD58V3fnIiNifA02kh8PMCPJVMiuzzm298dcFzdoz8/v5DD2FyZBKpmQRadUvFN+36jl/8BJmZGXzo0CtQWV6OxjYFkjMzmDr2oqj4VvX2Q9vbXzRrm+4boIry5AwaZW2YzWRgGh5E1OeDTKeHYe/+kxXaCxDPppJCYsfDIVHFXVJeDuvYCIIuJ5rblNAN7Jt7aQpzcbKzJMBdCHvcqJdIUVFbC4dxCl6rGXVNzWKeLZHANx76I8pKSvC7D38cA6r2tX2S+GomwATWRIDl95pw8cVMgAlsgADL7w3A46lMgAmsmgDL71Wj4guZABPYIAGW3xsEyNN3HYGuO29FPJXEN179OiSDQUjblKJBZNDvhZeKaVtlkCnVBRXaeUj5LHCn2YQWeZuQ5NFwCG6bBbX1DaIqnKJLig2qDDeNjaBJ2oo2tUbketN9SLBTREl1bV3ReVQZThXgdfUNQpBTdbp9egrpFEWdLBXf+ZvEwiGYJ8ZRXlEOpc4gKtxJfEcj4Zz4bmou+jxK1BBRKum02A/lgTutZpDAv/3md+xM+X3XD36AQCgmMr6r5qJOFtO581f/g3Aigc9c/RoknA5Ew0FRnk+l9KqePmh6+oqK7/x9SID7rGaEfT5R7k9RKK1aPXT9Ayt2RCUB7nfYEHS5EAmHkIhG0NymgLZvL2pE/ErxQPjMbFrkhvvsVsTCEcQiIdQ1t0DbP4CGZmqkWQLKAHp6cgw98jb88SOfREX5yX8Gsev+ZuANM4GXmQDL75cZMN+eCTCBeQIsv/llYAJMYDMIsPzeDMr8DCbABIgAy29+D5jA6gmYfF6c94V/gLS+Hj98281w221C6lIlNlU3N0laIVOpVnSRVOntczmF8KYs7nQ6LaJFFO3a4tncC5ZHESjUnLK6pgazs7MoL69YUXznp1I2NwlwqgynyBOaq+k4GXWyHAFRAT5JGeBlIvubKrtJfFOUykojL8DT6ZSYm4jHRRPNN152/s6U37ffdRdaDD1okMqW5fKZ3/wCvmgE/3TD6xF3OGA8ehgkplU9/TBQVvfiZpaL75TNwm0zw3jkRcxEwiLqRL/3DNGhdMVBXVTdLkwdPYyoz4tmlQqGfWegrrFpxY6m9E8EonPRKgG7FfVSGfT7D6K5VT4/L55K4a77folAPI4PXnYVPnHNa1b/aeIrmQATWBMBlt9rwsUXMwEmsAECLL83AI+nMgEmsGoCLL9XjYovZAJMYIMEWH5vECBP31UEfnf8CN79X9/FWfoOfPaGN4i+gebxMXjsVkiVKmi7epatwF4IikQ5SWz7XHNLahpJTSJPNahy3GYywjQyhJr6ehj694qq89UMt82K8WMvoqyiAl17D0Aib1vNNCHqx48fwWwqha59B0Wcy2oGVapPDR1HPBIRaR4qrR7XHOwrmLpjYk8++93vIp7MQkql+3Oh64shfe6+/4UrHMKHzrkQkelJJONxUT5P2TEyfceyFePiPtksQj4PTEODiIWCIh+H5rVqdahtbF5eYpPADgdhGR5C0ONCTW0dGlokkKraUS+VFmSEF6yXmlvGY7CMjYioE/rnCE0SicgcpwzwsvKK+ctHnXZ8489/4PiT1Xwq+BomsAECLL83AI+nMgEmsCYCLL/XhIsvZgJMYJ0EWH6vExxPYwJMYM0EWH6vGRlP2MUEvvzA/fjKA/fjprPOxdvOOR9epxM+txOUG5Gl/kCyNkjb2grc4GJcmUwGQa8bTotFBE7QvEbynyr1fJPL5RBTSoZ1anJ+HqVWKDQ6ES2y0ohFwqLZZn6UV1RCbaCM8OJRKfnrSO7T89Kp5PxcTVePiGhZaVAkCzX9jEejOTZZiOe94eJzCqbtGPn9vQcfxOTIhNiclELbiwjwL/z+13D7fXitVIaqTAbKzm60KtUIOu1Iz8yglbJrFjXJFDdcJL5bNVq0afSI+X1CUEvUGtQ20Tcni+JLKNw9HIR5ZAhBtwvNcgWUhk6k4jHEQyE0yttQL5EUFeDJRBymkRPwURB9iwTq7l5gdhZRv0/8ubFVhtIFAvxHTz+GZ6cmRPzJAx/9FMrnurzu4r8reOtM4CUnwPL7JUfKN2QCTGAZAiy/+dVgAkxgMwiw/N4MyvwMJsAEiADLb34PmMDqCbzzh9/BH04cwx1XXYeBpmb4nA5Red0slYEiSYI+DyRyhWhMWdDscu4RVLlN15EYpkrvVoUKkXBQ3EcUAK8gwCnmmQQ2CWulRodEIg6X1YzqmlootMsLcMoUp+p0ih9p7+gSmd+UyV1WXgaVvjMX+1xkkLimjG/K7qZMccr8tkyO5yJTurpF8XGxIcS3aRqJeAxytQbV1TWwm6dFlfytf/vWnSm/f/TUU3C4AvBZLUA2Ayll2Cz6ZuFrv/81Qg47zpfK0Ne3Bwp9B8orq5BKxOG1mJEWzTINqF74zYIQ316Yho6Liu9WjQ7qzm5U1dSKbyT8NisSkTCk+QrwPF4S35GwqBQPuZ1oalNA09uP2vpGzKZTCLociAUCaFIoRUPLhZErlC1OzTQ9ZjPqW1qg3bNXZHxTBnjY60HE60WdhAS4HKVzGd8Uf/K53/wC4ZkEPvzKq3HHqwo7m67+I8ZXMgEmsBwBlt/8bjABJrBZBFh+bxZpfg4T2N0EWH7v7vPn3TOBzSTA8nszafOztjuBc+/6NMx+H77wqlejMhqba26pQnllJdLJJNwOGwIeN6QKZU6Aly3o/5fNwu91C/Hc2NKCNvKjVdVCLlP1ODXLbGyRQKZqFxniCwdVfIumlY2NUOk6RMwzZYdTk02X1bKsAM+J71GRQd5u6ER1XZ3I/I6EgnCYjCgtLS0qwHPiewJUpa7Q6oWoz2V+R2GZnBDelSrAFwvwQvHdjqYWKUrLyjATj8M2PYn33vS6nSu//ZEkZmJRIaTpW46FApyE8g/vvxfOgB9XHTiEM/YdLCjzJ/FN8SLJWExEoAgBns0iHPBhevDYnPjWQt3Zm8v4nmtSmU7OwG+3IRbwQ2boyEWgZLOi5N544ihCLieaFUpoevfkyvXn5lGGDQnwiM8LCUWgUHZOSYnItpkaPAqPaVrEougH9qG+qWV+XiZNAtyNsMeNemmriEApLStHNjuLh599Cv87Oc7xJ9v9bzle/5YlwPJ7yx4NL4wJ7DgCLL933JHyhpjAliTA8ntLHgsvignsSAIsv3fksfKmXgYC8VQSXXfeivKSEtx1/iWQytsgUxY2tyQpTE0wKSdbrmoXApzkLw2S4uaJMSHMqbllRVXV/CrzAtxjt4mmmXK1er5pJolv48iQaDKp1ncUNMUsEOC1taIivHIuAiUvvuk5JMwXVniTm42EQnCYlwrwAvGt0eXEd2np/FrF76cnkZqZKRDglJSRq/Cmiu+T4js/MZlI4DWv2L+T5XdKpN/MRKPw2+cEuEYrYkX8NgvuO/w8huNRvO3SKzDQrlvyipIAp8pxEugynQHp2TSMx48iGgxAptFD3d2Ty7eZE9j5G1DTTBLuJLLlHV0oq6zA1NEjCDgdaFGpoO0bEB1VF8/LpFPimrDbJSrH65pbMH7kMDwmIxpaZTDsO4C6hqVNMUUFuMctxLqITpG2wjwyDPvYMJ7NZjCRiHP8ycvwFxDfkgmw/OZ3gAkwgc0iwPJ7s0jzc5jA7ibA8nt3nz/vnglsJgGW35tJm5+1nQk8PTmOv/r216Cpb8A/XXkdWoX4Ptn3L7+3dCoFkthuu1XEkbS2KRH0+2AcOSFiTkh8U6X44kEC3O92iSiTZplcyPN4NCLEN0WikPheKMzz83MC3AenxYTaunqRAZ5KJUXFN1WWK3V60edwsfvMCfCgiGDJV4DTPecrvouIb/FMKiyORWGfNiI5kxACvKKiUtwnFo2IivamFsm89F+4z6v39+x0+S0IzQtwyvIW0SDZLH5nmcZRjxs3X/xK7FVrinwWsuIbBb/VgpDXg2gkhEQ0CplWj/aePnGYiw9x/iVIp+CzWUV+eCwRR8TnQ4uqXVRuUy7OsvNm0wg6HULOJ1IpBOx2NMjl6DxwJmrrlwrzhS8dVYCLeYkEfHYbapqaoT1wCF955EERf/LRK67Bx666bjt/5nntTGBLEWD5vaWOgxfDBHY0AZbfO/p4eXNMYMsQYPm9ZY6CF8IEdjwBlt87/oh5gy8Rge8/8Qj+/t6f4RJ9J26/7rVFM73zjyKRTfKbhDA1wSQZLm/XQqHRFhXmC50iRaBQZnZtQwPCfr+oFFfpDEXF9/y8zCxCPh/sJqO4P1VZU7HvcuI7Py9fAW43TYkYFRpUqa7UGlDf2FhQ8V2AcYEAj0XDoiCZpL9Sq0ejRILS0ly1++KxS+Q3bTuLWDAIz/SUyI6Rtmvw85ETOGyexjPQS/AAACAASURBVDsvvBQHNfrir2U2Iw597LmnRAk9ZXxTBXYFie9TDMoOH3z8EVEpThnf3We9AlVVSyvFF9+Gok5OPPmoiEGpa5Gi//yLVhTm8y/5bApjf3lW5JVX1dVhzwUXi0zxQbsV33nkQZSXluL+D92BAVX7qZbOv2cCTGAVBFh+rwISX8IEmMBLQoDl90uCkW/CBJjAKQiw/OZXhAkwgc0iwPJ7s0jzc7Y7gdt+9mP893NP4b0XvxKvOeOsU26HZDLldHscFGUiRefe/YUZ4MvcIZOZFbngopK7vgEde/bm0i5OMUhku2wW2KenRJy0rqdPRJYsV/Sbvx1lgAc8LhHJQkPT2Y3mVrnI+F5xzGWH0x5TyRkodQZRrb4wImXx/F0jvymKhDK8o36f+DaBsmj+7HLgGYsJbzv3Ipxl6CzKlkLVR59/FmGXEw0SicjAaevsLmyCWWRmJpPG0DNPw28xoV4iQUNTM5Tdfahtal75DDOzGDvyAlzjY+Lauvp6qPsGchngKwzK+J4+cQK2sSGxt7q6eqh7+9EoV4hZdz/5CJ6fnuL4k1N9avn3TGANBFh+rwEWX8oEmMCGCLD83hA+nswEmMAqCbD8XiUovowJMIENE2D5vWGEfINdQuCaf/sXHLWa8Zkrr8U5e/adcteU8T0xeAwNzc0izqRr3wFI25SnnEcZ31PDJ1BRUSFyuTVd3SJK5FQyOhYJwzQ2IiqwKY5EplQLIV0smmXhIqgZpWVyHJFgQPyYssXbO7pyfRVXGPQcEu1U4U6JHPQcbXdvrq/iMmNXyO9ZiiCxmkXlt9zQIRpCUgX4k8ZJPB3w4fXnXIDzOgvzX4gXRZ4MPfOEyOBu6+qGtqdfRKBQs0xqgllFud1FRk58PwWfaRpSvQE9B89CwGlHxOtBW2cXaqgJZpGRzcxi/MgLcE6MobFNiYHzL0TY5YbHbISiq3dZAZ7NZjA9dAL20SFUNzah9+xzkU7E4RgbgaK7F42yNsSSM/jn3/6viD/52JXX4qNXXnvKF58vYAJMYGUCLL/5DWECTGCzCLD83izS/BwmsLsJsPze3efPu2cCm0mA5fdm0uZnbVcCmWwWHZ/6CFKzs/jMgbPQu28/mqWyZbcT8HoweeKYkNYUBeJx2jF54ji6TyHAw8EAjMMnhDBX6zsRDvqFQCepTPdabsQjEZjGR0RvRarcJvk9NTQIqUIpIlPKKHa6yKB4FMvUOKiJpa67DyiBqFan5pjthq6C5poLp1Osi216Cl6HHYb+PaisqhGV4+RTtV29qKG46CJjx8tvEt+Ugx31+yHv6EQNNYwERBPL+x5+EIMuBy4++zxcspc6f54srU8nZzD49BOIkPju7Ebn/oPiMEl8e83ToGiSVq1exIssnEcV5iPPPwsviW+tHn2vOFdkzoh1WC2IBQNo1RlQ20TrOPk8ut/k4BG4JifQKJOj/xXno7yqCiS2Aw672IPc0In6FmnBPx3IpNMwjw3DNjaC6oYGdB86G/Uk10tKEPa44BgfFetvbJUXxJ888NFPoactVxXOgwkwgfURYPm9Pm48iwkwgbUTYPm9dmY8gwkwgbUTYPm9dmY8gwkwgfURYPm9Pm48a3cRGHHYcPlXPg9FYxM+d+mV8Nit0PX0o1naWhgrQhEiXo8QyCSeSXznxbPLaoFpbBj6vgFI2xSFldzZLEh8U5NKEsdqQ2euvyEAn8uB8eNHRYyJXK1ZMo/EtXlyjFKmRZU4ZX3TCJKAHxqETKUuWEf+5Eh8W42TiIVDuYiUuYQMqgCn9dc2NIomm5XVhXHTJL4pW9xts6KjfwBNxAAQzTnN42NCsWo6aB2FTTYpXuWaA70FL05Jln66A8aPnnoKnkAMfptVRJ2QOK6hzJkF495nn8Tg8SM4q6sHl51zASoIbBaYScQw/OwziHhckHd2oWv/GUJ85wdleXvNJlAejkStQTUdcAlEsDtVbvstZrS0a9F39jkFYeskxn3UkDIchlSjRa3IwClFKpmA8cQgPMZJ1LfK0HPm2aiqIameG/QNBgnwkMsJqUaHOokEJSWlSKeSsE6MwjE+JqrQOw8eQkOzpOADEHK74JmeFCKeBPjdTz+GF6anMKBU43cf/jjKSkt3wGnzFpjA6SHA8vv0cOenMoHdSIDl9248dd4zE9h8Aiy/N585P5EJ7FYCLL9368nzvtdC4H8PP4cP3HM3LujswSde9WrRyJKiTCgehAQ45VxT5nbA54FlYhwtMjkUGl1B5AhpXhLgNuOkqM6WtClQSvMoOzsYgHVqQmR7qwwdSzK+SYBTBbimq0fkalOMNLJZxKIRcb/Z2Vlxz8WRIyTiqQK8QIBns0jOzIjKbXqurrdfREQvHCTip0eGhBCnyvHKqirhOBeKb0P/QE7+LxixSATmiVGUlZVBpe9ArfC0JaKZJuWRv+O6Kwuu3zHy+4ePPoqpMeOy4pt2ff/xF/HQ0cO4XNaGQ109aFGokJ6dxfjhv+SiThZUfC9+OZPxGHwWk3hZWpRqoLQEU8ePiQrtFrUGPYfOQll5xZJ3mirKScgnY1E0q9Qoq6yChYLoTdOok0rRdeBQ7tuSRQHvmdm0EOARnxctShUq6+rhnJ6CY2IMlXV1MOw7KPLIlwbKZ0EC3EdCntZZV4vP//43iKfTuOOq6/DhK65Zy+eOr2UCTGABAZbf/DowASawWQRYfm8WaX4OE9jdBFh+7+7z590zgc0kwPJ7M2nzs7Yrgc/d9yt865EH8dZzL8Rbzrng/7N3HtCxr2W5f9L7TGYmyfSSXnZ2O51epBw4gEgTARURBAWUrgLiVcEDci+IiKioF7006QhIlaJw+jm7ZKcnk+m9ZPpMpvzvet/JZGeSmexNy04m37fWWay9M197vi/DOb//839eFLa24HXaEY9GGA739StAWd2Ugd2nUDL4bmtv37ddMu8G3G4E3A5oTcMMyTPJBDwOG3+enNYdXd01ZSIAbltegtZs4Txvijah+QqFQk3wXRlkNwCndRGI3gHfE1O89lotsUkO8KsAnIA7QX9yfNcC35UxKHucIlBaW1s5c5wc7JQL7rXb8PbX/k5jwu/3f/KT8HuDNR3flR1/e2EOX7v8CJ4+PokzXd0oFkuIRcJlYD4yitHT5aiTeo0AOEWgZDMZJOMxJKNhKDR6jJ49j7bt1wRq9SUAThnkqVgMmXQaiUgIPQolA+yePlndiqilQp4BeCwYQC6/hXgoiI7ubphPneGKqPUqqVJ0SjwQ4DkLUglzbhd+kEqgtbkZIv7kuH4FinUfBQUE/D4KpyDWIBQ4GQoI+H0yzlnsUihwoxUQ8PtGn4CYXyhwchQQ8PvknLXY6U+vwEv+6SP44coi3vWs5+FRo+M8ENUn9Lkc7J4mhphKxNErk5fBNzml67RiscAAOeT1QKZQIptJo7W1jZ3Snd21wXdlqLDfC5d1HYqBQeS3tri4JTu+++oXmaS+lQgUilsplUplx/cB4LsyHwF9ikAhBzi51MN+X1XUSb09phPbALytjaF+NBSEYWQUL33qE44n/F63e/Dqt/0feP3hnQ2cnh7BR9/7RijkfXjr3XdDMTyBvgOC4L+/PI8vXXgIT546hUerBmG98BAKVMxyZJyd2weBb55UkhDxe2C98DAyiTiUBhPGzt2Mju6rkSU1D0SSEI+EsXHpEcRDAciGNBg5c56f0tQD2JVxaJ6NuYsIuxzo6VfCfIaqtuqu2Y+yyu1XLsO7vsIRKQ+1tWIpHBLxJz/9d5DoKRSAgN/iEggFhAKHpYCA34eltJhHKHCyFRDw+2Sfv9i9UOAwFRDw+zDVFnMdVwWm3/UWxLNZfPy3XgP1rijnbDrFOdeUAa7S6mAam0DntVgkgfOtLY458dqskClVHD1C4PxajaJVyCXuWF7kbPDh6VnIlaprdeOfE3Bfm7uIlrY2jM2ehXJIfV39IgE/1q5c4pqLY6fPcYTK9TQyNW8sXgEV4zRNTkNnsuAZ56aOL/x+x90fw3v++FUYNev27f9PP/IRSO3dUOgMaG2v/eTjf9aW8LmH7sejTRackoB0NMKXZdBowqDJgrbOrvq6UsZNIsYHH/P7OYdmQKfHoNmCzl568nG1mGXVIJKEbDoN99oywm4n2/EVQ1qozRZ0yfs5r6deI4Dt3ViHf2Odg+bJ7T1kHkavUonmltoVVGksikwJOOxwLS/yawZylQp9egP+5oF7kN7awh/d+Wy8/slPv547JD4jFBAK7FJAwG9xHYQCQoHDUkDA78NSWswjFDjZCgj4fbLPX+xeKHCYCgj4fZhqi7mOowKBeAzn3/0OdLS24suvffPOFojrUaQIQWWKIKF4DwLDlIPNmdx1GgFsytT2Ox1l13dbOxfAVA2pGUwf1ChSxGPb4OKSlKtNPJLmrBWxsnucXCYDt20dqXicOSY5zjUm805RzXpz0r58jnK8C8VN98ioCOYoOroO4LTbcJ902QwFOI+cYqV1lmE879E3V011bDK/yfl9EPz+h29+E9alNbR390Cp06O1RgzJfdZV/Pv9P8bZzi5Mt3di0GTGkNGETa+HD36AXhmoBcAlCalEDK6lRcRCAciH1NBYhpGJRCFBglJvYHf1PgC+B3z39CugHRlDMZPmpy/9ai265HIuZrm35bdy8FrX4KMg+q5u6Mcm0AQJuWQSfQODHJtSC4BTsUyfwwbX0gL/EhgmptDR0cnRLhv5LXx2/jLaWlrw7Tf8MSbUmuP4fSDWLBS4YQoI+H3DpBcTCwVOnAICfp+4IxcbFgrcEAUE/L4hsotJhQInUgEBv0/ksYtN/wQKfH9pHi/7l4/itN6Iv3rBS7jnDvj2uhnsUnb3ZjAAKvh4EADn4pabm/A6bRx1Mqg3cARJLBxmJzb901oHgBPwdlnXOLaEIlJy6TRnaZPzuwzAaxuOyfhLRTEz6RRM45NctJL+XIloae/srKnGVjbLGd8UL03gmuopOlaX0dXdc2BEC3FTAt/k/KZscoqJpvkoNuX1L33R8YXfu2NPdkee0I4+ce+98HhCnHNNAFtBB7IHgD+wvoKv/+gHMLd34Imnz8EwMYn2ji7kUkmE7DY0t7ZCZTShfXfo+z7wrYFxcporm25lM1wEky6jymjeBuDb+koScpk0XKtlxzeBb9PUDPoUKtABbXrdyGez6Nfq0E2vHOwC4IV8Dp71Nfis63x4pulTUAxpUCzkEfP7OKRexgBcVf2URyrxqwzOxQW0tLbCNDPLF5zWlwiHkIxE8FWXHQuhgIg/+Qm+gMRHhQIVBQT8FndBKCAUOCwFBPw+LKXFPEKBk62AgN8n+/zF7oUCh6mAgN+HqbaY6zgq8JHvfxt/+Y3/wC+fvRmveeJTmOXFIiEE3C509fZBYzCBADLBYr/LAXJnD+oM+x3gksSOb3Juk1ObgDKlXpAJl/K/Y9EwlIPqmg7wShFJyrYwUMZ3bx9D7EjQj7DPy07uWgCcYlncG1bmndSPgDc5zwlME9jm9RtN6NhjOM5lM/A5Hcw5KcOcADslZBAId62vMmjXD1NGeXXcdAV8k1NcpdHyfoiD0vqp3+//+ouPJ/zee3E/8A+fhS8QwZ+99RXo6mxn+J3NF5GOxRB2uzn0XaU3oL2r/GSBAuLvv3gR33j4QajVarz6mc/ats+X40rooAI2G5qamzBkMm/neNOFicG+sIBo0A+lWgPz9Ax6ZbIdlzcB7qDDgWJ+C0OWYT5QQOKimLbFBQSdTs72tpw6xfEjTdvxKBRpQuukJygqgwE9/f38M6qeal9egmdtFZ09PRiePQOVWs2vC1CjSq9RvxfpeBz9Q2r0qVRobm5BSSrBvb4O2/wcv8owcuYMhvSGHVc5g/NgEMFAAB+5chnpfB5//su/gjc97c7j+J2wb811QmcaYm9iE0dHAfo17GhrQXareHQWdYRWUpKAA5KcjtBKxVKEAkdfgY7WFhSKJRQl6egvVqzwyChQKonv4SNzGMdkIfRgv7W5GbmC+HebY3JkYplHXAH+Hhb/cVrzlLo6WpHdKlApNdGEAkKBGgr81r/8Ez778IP4o2fchWeePoNoMAiPw4FeuQw64pS7nNO5bBYeB7ml49AaTVAODrLjmVo8GoV9bZWZp3FkFF27ilsSAPe73RyjQhEogxrNjgOcxrKtrPA45okJ9PRSwkW5EaukIpRBnw9yhQJq4q3bxTbTqRSc62v8GZpPJu/fCcYoFUuIhkPwOh3o7umBjqKjt6NMiJt67DZQf9qDgmNctpMxJCAe24TTus7x0cbRMe5PbSuXg9/tQiwa5fWrhmgPV6OhU8kknnb+TJXCxyb2ZO+9oBiU9//dZ3D321/FBS8Jfqdz9EUqMRiObkeZEACnpwabPi9WnA58YWUZIwYTXvfU/ZnX2VQKIZeTC1sOmMwoFAuwz89jM+iHQqNh53ZvH4Hv6kZPXUJOO/LZHIaGhzlCZWNhHiGnk/O5LTOzkCkVO+C70puAfMTjRjaZxIDJhC6ZHLbFeXhWV9HZ24uR02f4lYYK+N65dPktbPp8SMVivC6KQPFsrMO+MM/ge/TsOQxodfv60dOaeCiI+1ZX8GWbFe0tLbj37X+KkYHBY//FI/7/89gf4bHYQHNTE3q7WhBPF47Feg99kRK9xCL+bf/QdRcTNqQCPZ2t2MoXkS+K/4dryAP+BW2KgMK2X+IXNIMYttEUaGtpRntbM1JZ8e82jXa2Yj83RgHiEaLVVkDe045EagslIZBQQChQU4FH/eWfYdnvw0df+psYbG1lMNwn74fWZKqZmU052QSVE5ubDJUVA4PsmLYtL7Fjmx3TNTKz8/ktBD0eRENBDGi0GNBouFahfXWlnCIxNs6RI3sbMcVwwI/QtgOcAHghn4drY53ztvWWYfTJqZhmNROg+BSKW/G5nejq6obWbOahvQ47Muk0NHoD5AS+9znpyoZkt22Dc8cNw6MM6gl8k+Ob1s755a37ayI+aXqsavkNBb+jyTxvTpJKyMTjiPm9/F8ALS2tbL2PNDfjnx95AOMaLV77pFoFHyXkUilEPS52ZKdSSSQiEfRrKlEnsrr/RUFObopAoeqiuVwOm34velQDDL575Yq6/QpbOUS9bqQ3N5EvlRiid/bJMHz6LOSqwbr9yGkeC/iRjIRRKBURdDrQ0t6BkTPn2aFe7798SoU8R6B8/MF7sZ6I45zRjK+97i37QLn4LhIKCAX2KyBiT8StEAoIBQ5LARF7clhKi3mEAidbARF7crLPX+xeKHCYCojYk8NUW8x13BTIFwoYeccb2dD7D895IWJBPwNhijqhZIt6jUy1PpeD40XIAR3yedAr7+eok70RI7vHKBAA93oQDQYg61cgsRlFe2cXZ2x3bTusa825OwKFADk50MkApzFa2KFeq6YhjcMRLtEwR7hQBjm1QiHPiRXyvZHOuybm7PJYDD6njWNUaE+UKb476qTWOu88M3E84fe3fvAAxoYNGDXreAMUe0LtTa8uh5iT87sCv+nPBMCpyGPE5WSBKFs7BOBD3/82RgfV+IOnPKP23ZFKiIfDWL/wELKpJORqDYZPn+Ng+WtZaXLpFJbv+zGHyJMbe+z8zeiRkd3/YCckgfOV++9FLOTn3PDxW++ATKG6Zj8C59aLDyPscbPje/zW29E/qL5mPwLnS3OX8C8rC8hLEv7krufiNU94ynH7bhDrFQocugICfh+65GJCocCJVUDA7xN79GLjQoFDVUDA70OVW0wmFDjRCgj4faKPX2z+GgpcdNpx14ffD013D14/SfUClbBMznBm97UaRZnYlheQiEbQ2dOLsdkzNZ3ie8ch17Z7Yw2RgJ8/Pzx9Ct3XwT4JgFPmeNDjQnMLOcUnOAucUjcOagTAwwEfvLYN/pjWMszAvrml5cB+xHTJ6e1YW0GpWOCcc7XBVNPxXRno2MLvBy8u4eVveO+OIHf90h07ed+14DdlXG96PUiEgnwAnb19yPR04wM/+C5MqgG85WnPqiluLpuG9dIFRD1udPf1caFJ7dgE2mtY/ncPIJWKWLv0CILWdZ6LQtr1UzPs4j6oSVIRtoUFeJcXuNBmn0wO4+xpdJNb/IBGcJ9ywV1L85z53dPXB+OpM+hTDRz8eyGVEHA54Jifw1omjXuyGbS1tOAHb3knLOQ0F00oIBSoq4CA3+JyCAWEAoelgIDfh6W0mEcocLIVEPD7ZJ+/2L1Q4DAVEPD7MNUWcx03BT51/4/x1i98Gmf6FXj57HlQIcgRilBWKK+5lfhmFNaFOXR0dCKViGNs9iz6ryPemD5rX15ktznVMzSOT2JAsz9Cee8CqGaic32Vo1IIoKsNxmvCaBqDY1psG9iMkDUZ6FcOMAAn8H5Qq8B2v8vJsSed3d0wjo7vK4K5e4xjC7+vddq7nd/0JGDT50EqGkW/Vo+W1hZEPR4kigX849wFDCkU+KNnPHffkFRMcvXCgwzNFXoD9CPjSIVDkCBBZTQznK7VKuA7YF2HbEjDRSrT0QjICT5oGWEYXrMfg+95+FaX0SmXY+KmW5GJxZAMhzA0MoZuComvPSHc62twL82jpaMTI2fOQioUselxY4iqqipVdfsFXE44Fq5wUU7D5Aw+v7yAlUhIxJ9c64KJnwsFAAj4La6BUEAocFgKCPh9WEqLeYQCJ1sBAb9P9vmL3QsFDlMBAb8PU20x13FT4B1f/iw+fs9/4wUzp/Gyxz6Ro0zikTDMEzOQKeqbYymuxLa8yJBcYzRxHrff6WBwfhAAJ/DtXFvhSBWN0cyxJ177BoxjBMC1deUj4O2mjO9CARqTmSG9z27DgE4Ptd5Y18VNUdReh40jTLQmC49Pf+6VyfnP9aJdyC3udzsR8rihMVs49sTnsLPrWz88yiC8Vmt4+E3CEPgmx7fKZEZPf7nQZCYRh211GZ+du4A21QDe/pwXVOlTKhWw9MB9nPetNJgwdvYmFp8ywCNuJ3+2FgAn8L168REErKuQqbWYuvV2tHd2Ip/bQtRdzg4ftAzvA+AVx7dvdYnB9+Qtd3AgPa0/6nUhEaoDwKUS3NY1uJYW0NregdGz5yEfGGKYven3Iey0QzM2uR+ASyV+JcF+ZY4jYUwzsxjUm5DayuEvvvZFZAsF/OmznoffefyTj9t3hFivUODQFBDw+9CkFhMJBU68AgJ+n/grIAQQChyKAgJ+H4rMYhKhgFAAgIDf4hoIBeor8Csf/SAe2FjHXzznBbhleBSU5e2xb3Dch2VyGn39+wH4bvCtMw8zwySm6HXa4XfY6wLwdCLBESJt7W3ljO/uHpSYGXrgXFvm+BOVej8AJ3c4FbekmBUqPtkjk1PmNMemkBOcYDgB8L3xJ2Q0JtBNueSG0XHIt93ssWgErvVVTs4gAN66J+KF4k4IfPscNhhHJ6AcKsc8p+IxXgdFwtA6OmoYlRsafkfiOUR9HsR8XgzRQfDTkUretgRfwI+Pf/WLaOvpwRte8BK0tJWzcwh8L95/L6IuJ1QmCyZuvhUt2wHsBJUJYIcdNjQ1t2DAZEZbZxf3qzi+/etl8D1zx2M4e7vcJBRyOYRdTuSzGXaAU543/0Qqwr64AO/KEjplckzeWgbflWxwcq5H3K6yA3x0DN2UG16eEJ6NdTgXrnBxy7FzN0E+OHQ1UF4iAO5FyGGrBuCShJDXDdvcRf5FMJ86gyGjeedCPmBdwyfu/xE6W9vwX29+u4g/Ed/IQoE6Cgj4La6GUEAocFgKCPh9WEqLeYQCJ1sBAb9P9vmL3QsFDlMBAb8PU20x13FTYOwdb0Imv4XPv+YP0LMdA0JuabfNikQ0ug+AV8A3QXG9ZaTKOV0qFeF11Abg6WSCHd+U1W0YGUMXOae36xRS/EnQ44Z18QrGT5+tAuBb2Qxc1nVkM2nO+CbH9k59Q0lCOOCHbWmeEzQ0BuPOzyiS2mO3MSC3TEwx6N7dj4C4bWWJwbbObLnKYiUJPpcTLusqhqdOQbUNvrehKpLxGAP8zq5u6EdGq4p7hv1evPSpT6i6Ak0S7a4B2v+75x5srNnZpa0Zm0BP//5cnGQuhz///Cehyxfw0ic/FUo9HQiw9OD9iNhtUJmHMXXbHZyhvbdRhEnIZmVgrjKa0NLWhrXLFzjju29IjVOPeuwuYH61NxWzJDc2PekYpCcxnV1wrizAs7LMeeATt9yOHsoF31MUs1TII+JxIRWJYHBkFJ29MvjtG3AuzKG5rQ2jZ2+GYvfhV6aUJH4AQIU+1aPj7HyPBrycY14qFGCaPQMNvWLQVB1E/w8//C7mPS4Rf9IAvwtiC784BQT8/sVpK0YWCggFqhUQ8FvcCKGAUOAwFBDw+zBUFnMIBYQCpICA3+IeCAVqK2APh/Do9/0vKLp78KlXva7qQ+QAp5gRgr3miSn0yfuRiMdgX1lET5+cnc+1IkPYAe6wIeB2MjzuVw0gk6Ks7hXmj+Sk7urpqbmggMcF2+ICRk6dxoBag63tNRA4N09Mo1cur9kvEvBh7cplXic5wIvbayCgTjEsDL5rNALg1oUrGNTp2QHe0tICv9vFe6TincohTc1+FKFCnyEzMUWgtHd0IOT3wTo/h3e9sVrHhoHfH/zc52Bf24BmdAI9dQLhc4UtvPXzn4a8qQmvnJpFa1cXoqEgNr1uKI1mTN1aG3xXVM6lkgjaNiA1AclEgiNSegeHMHULRZ2U3eC1Gjm/CYDnslnktrbY1d3R14ux87egjwpb7gHflTGK+fJnU5tRFJuaEHY7GbBb6AmMRle3H70aQNEvVLSzuasLIZeTK6Iap2c5TH4v+Kb5EtkM3v21LyKTz+PPnv18vPJxTxLfS0IBocAeBQT8FldCKCAUOCwFBPw+LKXFPEKBk62AgN8n+/zF7oUCh6mAgN+HqbaY6zgp8I0rl/DKf/sYbjYN492/8qJ9S9/KZuG2rTO8VgwOYTMY5KxrBr6d9YtF9UAYRgAAIABJREFUUi43AXCC0oM6A5KxTRAvZPDdW06mqNkkCX6PC+71VWgtI1wMMxmPs3O7t15twu2BKgDcODbBueAMvqdPQa4aOPBIYuEQrIvzDMApz5vc6aOzZ6CqA74rg9GeyDneK5Nx/AkV1NSPjuE3n/FLVfM1DPx+6913QzE8gT7VYF1Byfr/hs9+Ai3NLXjnY5+EtYfvx1YmA6XZgunbHlXT8b13sM2AD+sXHkJ6cxNyrQ4TN9+Gzu04k4NOMrkZgfXiI4j5fegdGMQIRZYoB+oC7MpY2VQCtrlLCNpt6JLLYT59FoO6q68Q1JuzsJWDY/EK3MuLXKjTMD3LF6AW+K6Mcb91DZ/cjj/54Vv/BIbrqCp7nL5QxFqFAj+rAgJ+/6wKiv5CAaHA9Sog4Pf1KiU+JxQQCvwsCgj4/bOoJ/oKBYQCP4kCAn7/JGqJz54kBf73t7+OD373G3jhzbfhFY+tbUTNplNwrq1ypLFKq+Pokc7u2s7t3dpRPjc5x702K2RKFcyT0+XIkms0guQehw2O5UUG5cPT9Z3be4ci4L02d5ETM8Zmz5azuq+jUTTK2pVLKObzGDt9jkH49TRyjm8sXkEmmYRpcho6kwXPODdV1bVh4Pc7PvhBtCuG0K/RcnZNvfb7n/lXUODHq0cmsOn1cMC7cWoGA2St38n5rtFbkpDLZeBaXkLQYUNLUzO0o2NQU7ZOF7m+K9ni+/vmt7LwWtfhs64BxSIGjWZoR8fRSU9a9sSP7O5N2ThBlwOupUUUt3JQaLTQT0xxBvjeAPnd/eiS0tMWguZbqSTkA4MwTs6gV6Xi3PK6TZLwoe98HevhEG6zjOKLv/sGNNVxpV/PBRSfEQo0mgICfjfaiYr9CAWOrgICfh/dsxErEwo0kgICfjfSaYq9CAWOtgICfh/t8xGru3EKvOLj/4BvLczhD+98Np44ObNvIcT4ErFN+Bx2dm9T7AjFGVMEyoFsUJKQSSXhtdtAzurOnh5oTWY24ja3HMAGAZDbnApuRvw+jlXRGM1QqtVoOYC30sIL+Ty7zYNuF8+hNpowxG7utgMFJv4Z8Ljhdzq4VuGg3lAugtl2jX5UM9Hvh89p5yKhSrUGVPzzObedaUz4/Xdf/zqsiyvoGxiCXK2pK+zbPvcJtGezeIZcCZVOxxb+TY8L3XIFlHrDThHMKpUIfFNV09UlhJxO9CiVXBE1HY0w+FbqDGjjVw32A3DK/PZuEPheR0d3N7QjYyhmMwyV+7X6smu8BmDeDb6bWpqhGx1HS1MTCrktBvxdMnnNS34VfF/kpyXasQl0d3Ujk4hDPqRBr0KJplqXXJIQj4Zx+aEH8MVwAAUAf/HLL8QrHlMdEn/jvg7EzEKBG6+AgN83/gzECoQCJ0UBAb9PykmLfQoFbqwCAn7fWP3F7EKBk6SAgN8n6bTFXn8SBW6/+11wRSP4+5f9Nsx74kF2wLfTgdbWVgbQ5JAmyExAui4AlySkt8E3fVZtNIKKZKbicQzpjZwBXg+Ab+Wy8GxYOWfcMDqGbCqNMEen6DmGhGJJajVymfscNoT9PlimplHMF+CxWzGg0XHsSj2QTesLelwI+TzQmUfQ0tYK29IiVGoNQ/629vaa81GsCq2LnOa0rs6ebrjW19jZ/poXPbcx4fcn7r0XTqePCz1S5nc/AfC2aoGo4OPdn/8kmtNp3HXqDCbOnOecnEw8jsDGOrrlcijoQNo7rookScim03CvLXPmdo+8H+ZTp9ErVyCbSiLksPFTECqeScUsd7cd8L2xztkzpulZLlJJVVLDLgej8loAfC/4Nk6dwpDBCLpImx43qOJrv7oGAJckRPwebFy+BBrDMDUD3fAo5+xQ3AoBcNngEOtT5Y6XJMTCQVgvX0A2kUB4YADfdtjQ2doGEX/yk3xlic82ugICfjf6CYv9CQWOjgICfh+dsxArEQo0sgICfjfy6Yq9CQWOlgICfh+t8xCrORoKZPJbGHvHm9Da3Iz/eO2bq0yuFfBNbmgCzjrLMEedUASKx7bBrI+c1fsA+A743kAhX4BxdAzdfTIQ1KaxqHAlwehaADyXzcC9YeXPVApsMpz2urEZCkKl1kJFDvA9Tm4qiknua3KYm8Yn2F1O6yc4TXMSCx3S6tG6B2QXtrYQ8LoRDfh5LwSxyc1OUSaO1WXOCifIT8UsdzdinmG/H2G/F/0Dgxiksdva2CFvX1nCW377NxoXfkcTW0hGI1zAskveXwXASZhEKIiPf/cbCEoS/uCZv4whygffdl1nEjGE7DZ09PRCqdOjtaMT2Au++xUwTZ9CX79yp18uleA8bjpAlcG0A8ArUSf+jXXO3KZ+Cgpq355vK5NmAA4JUOj05QgUNLG93++wwbW8iOaWZhinT/FTmUo8CgH1mgBcKiHs9WBj7hIXt6yA70o/Kp7JADyZgGxg8CoAlyRsBv3YuHIZVNBTNzEF48QUPvL972DF7+X4ky/93huPxreCWIVQ4AYrIOD3DT4AMb1Q4AQpIOD3CTpssVWhwA1UQMDvGyi+mFoocMIUEPD7hB242O51KXCfdQ3P//u/hkkmxwdf+FJ09/Zxv6uObztaW9t2wHdl0AoALxT2O8Ap+5oKZBaLRRhHxtHdVx6TGsWZ+F0EwJPs5N4NwCnxgsA3RaUQ+N5d3LKQ30LQ62G4rRzScI53xclNYxL4JvBMRThpzEojxklOdXJ2E8gm6F5xcpPBl/6exqS/pzF3u9E3wyHOKye4zwB8u7gnwXgak+KeeUytDq27zM8UDfOCx93WwPA7mYcklZCKRhj0dvb1Qa7WcsQIge/UZhSfvnIJrkIef/Ls50O1fakqimTiMQbS7V1dUGj1KBZLVx3fBL6nTqGPikDuiSkhaByyb6C5tQ0qo4kPy2Nd24k62Qu+dy5dJo2Iy4FSqcTgnGJRqDKpa2keza2tDMwHd4HvSr8dAJ7LlSNQ+voQ9nlgu3IZ5G43zsxynMvePPEKAM8mE+gjAN6vZMe3fX4OuXQauvEJGCam0NTUjFg6jXd//YvIFQr4y+e+CL/56Mdf1y+u+JBQoJEVEPC7kU9X7E0ocLQUEPD7aJ2HWI1QoFEVEPC7UU9W7EsocPQUEPD76J2JWNGNV+Cff/QDvOs/Po87tHr82tQphtWUzU0A12vfYKhbcXzvXS0DcPsGyD3NGeD9lFCRgtO6CkmSYBwd34Hpu/vWAuDk3CZgvpXJwDg+WbMoJs3DADwahnJQzbCazLc+pwOpRJwzuglG760dWKRc7oAfYZ8XMoVyp5AlxZXEoxGoNFoea2+eOO2BwDhliPf0yaBh3tpaBt9BP+QKVRl814hFufPMRGPDb9qdVCoy6I4F/AyySRwCvpR3/dGH7ocnEcPb73ouNLL+PXdHAgHwiNvFgDudSiHq96KHwfcM+hSqmvncNEguTREodr5g+UIBQacdHd09+xzfey8rOcApqoXAdKmlBd71VX59wHRqlp981CuIyQDc68ZWOg2ptQW+DSu7xk0zp6ExW+r223GAJ+KQmlu4oCaNRdng+pFxhu6Vds/6Cj7zwD3oae/A9978DhgI/IsmFDjBCgj4fYIPX2xdKHDICgj4fciCi+mEAidUAQG/T+jBi20LBW6AAgJ+3wDRxZRHXoE3f+6T+MyD9+K3H/U4nOnsYnPsoEbHkLm9s4MzsCmuuV6jmGbK1d7K5jCo1SLk87Kh1cDgmxImarcKAE8lElAMDnIeOMWokHN7t+N7b29ya4e2AbisX4FcNguKStEYTJArVXULcNLYBKwpD7xn24icSiY415tAer0ccXLAUwSKz+VAR2cnOjq7EN+MMvge0Orq5oGfCPhNh0MAPBEOIepx05+4ECblZH/ge9+EIxLG2+58NgwEs/c2qYRYMAjb3EWOCKF8bMvps1VRJ3UvXSKO1YfvRyoWQ0dPD4bP3IT+waG6wLwyzlY6hbVHHkQsFEJLextGzt3Mh1gPfFf65bMZXmfE5+W/spw5D7XJfM1+ha0cXEsLCDod/BqEfnKKC3Hufk2gMsfffu9bIv7kyH9digUelgICfh+W0mIeoYBQQMBvcQeEAkKBw1BAwO/DUFnMIRQQCpACAn6LeyAU2K/AnR96H+bcTrz/BS/BaL8Ca1cuM4Qm4D08NcP1A6/VKK5kY2mB6xUSRB6bPYOunvrge4dFZrNwrq+yy7y5uRkWMv3K+6/JMCuFLQlmk8tbPzzGAL25ueXApdK+KDs84HLy56i2IWV11wPflcFKpSKiwSDcG2tsOCZYflAhTOp3YuA3We8p+oTc33QY3f39XMzyb3/4XVhDQbzpqc+EZWBo38GQC9q+eAVB2wY6urqg0uqhnZhC+55ilns7UtyKY2kBnuVFtLV3oH9oCMbpWc4QP7BJJbjX1+Ccv8xxKfQKgPnMeXT1ya7Zj0LjqR+9QtDbJ4fl7E3sUj94PgkRnwf2hTlspdKc/WOcOQU5hco3Ne/rujv+5O7nvRi/ccdjr/V7J34uFGhYBQT8btijFRsTChw5BQT8PnJHIhYkFGhIBQT8bshjFZsSChxJBQT8PpLHIhZ1AxUoSRJG3v4G5ItFfPm1b8ZWMoG1K5eYKVINwuGZWY77uFajyJGNxXn+WH4rh7FZMvBegw0CyKRSXFSSCmFSnUTK+VYQJ90T9bx3fnJ6ezasnPFNxmMC0WTg3RtbsrcfQXPimFQEk5pqSA210VzXvV3pT8wz5PXC59hAU3MLeuVydqiTC7xeOxHwm8B3PBREMhxCr1LFUJlc4FRU8jNLC1gOBfD6Jz8d42ptlU7FfB4b85c5vqRXqYTGMoJ8KomWtnYuStlWR1hJKsK+uADv6jK6ZHIuGElubpQkzgBv7+6peR4EzD3rq3AvL6KlvR2WU2dQyGRAUSiDlhF07skk3xlEKsHvtLN7W5IA/cQUWkCRLXEMDo+ge1+cy3ZPSULE74Vj8QryuRzUNEdnF7KJOJQ6A2tV65L/aHUJn33oPo4/+e+3/gk09CRINKHACVRAwO8TeOhiy0KBG6SAgN83SHgxrVDghCkg4PcJO3CxXaHADVRAwO8bKL6Y+kgqsOTz4Jc+8JdQ98nw4ee9GLblRY4cGdRo4fe4mNsZRyfQI6sPwAl8O9dW0NbRgSGdgWNPyMltmZw+EIAT+PbY1ssxK1o9x55QgUnKCe8fGKyr11Y2A6/Tzi7zAbWWI0+ioSDPTREmuwtW7h6ECmYG3G7EIuWCmdS4YKVyAEN6fc0kCvoMxTtTVErA44JiYJCBd8jvZWe8lotg1gbgDQ+/6alDPBjgf2RDavRth61TBvimz4fvWFdxORHDq570VMxoDbt4chFrly4g5LBxMcjh02c5GD6TSGDT5+GDUOgNaOvorLoEDL4XCHwvoVMmx9j5m/mCUQHJqNcNqViqCcAZfK8R+F5AS0cnRs+eR/+gGhRJQpnjuXSqNgBn8O3gopgEvo3TpzCgNwClEke8JCNhDI2MoXsvoJYkzi+3LxD4zkI7OgG1ZRgtzc3Y9PuQCAagMpnRq7xalZU3KklIxqL4m+99C75cDo8dm8C//87vH8kvDrEoocAvWgEBv3/RCovxhQJCgYoCAn6LuyAUEAochgICfh+GymIOoYBQgBQQ8FvcA6FAtQJfvPAgXv/pf8WtJgteqDMyS9RbRtgJnUmnueAlubLrAfAK+G7v6ITWbEFXdw/IXe22W5GIRmGemIZMsd8Bvht8a4xmLm5JkSSUqx3yeRic96v2A3DKCfc57UinklBTxrdCyfCcMsApzkRjMjMQb2quTpUo5PMMrzeDAQzpjVBQPDSAaDCAgNvJcdEEz1vb2qp5K43tJ8e3nQE9ucspniUWjcDvcqC7pxe0/vbOak5LgzQ0/I4kcgy9N70e9Gt1DLErmTMUkp7ajOArP/welhMxPP8JT8FZy0iZ75YIfD+C4IYVfUNqjJ29GV0UDN/UBILU5Kim4pKtHR3skG7dBuAEvm0L8/CtLjP4nrj59vITGXpFQJIYYBOQpjHYAd617QDnqJNVuJeugm/5wND2BZH46U7U40IutQeASyUEXA44FsqvMzD41hl28nFKhTwiBMDDoWoATuA76If9ymXQUxrd2CQ0lmG00qsU/CSlHBFDug2OjKK3koUuSUjFN2Gdu4RgNIyvp1PIl0r4q+f/Gl56+2PE95ZQ4MQpIOD3iTtysWGhwA1TQMDvGya9mFgocKIUEPD7RB232KxQ4IYqIOD3DZVfTH4EFXj317+Mj/7wu3iqwYTnnz4PnXmYHdxlUCkhk07Ba7eVAfjYRFUESi3wXUlyoOgTj20D8Wh4G4Ard3afTafg3rByfLLWNIxemWwHVhOkJqhMhtuRmdkqBzhxSq/DBppXa7JAplTu8NZKljeBccPIGAPwylroZwG3C2G/l+E45XVX3OHk6qbccILbKrUWQ/qrfJP2T+DbZV1jwL07G5wywOORCK+HYmFoPTu6AdgMBfHiJ1czyyaJ0sIboH3i3nthszoRcTkZNPepBvc9bSAI/anvfweujXU8/vwtuP3czZwHvnrpEQTWVyFXazF+823opED53Rk3BMATcYRdTrR3dUNJB9LWehV8y+WYvOUOdopX9ysDcHJyU9FN1fYTCcr4Zsd3ewc7vq+C78pB1ADgPT0Iup2wz8/xL4Fx5jQ7vvdm6hDIJnCeCG0DcJkcsVAQ1rmLHKeiG5+Ednh03ysF9ACAHOBhpx2asUn0KpRIJxNYv/gwktEIhiwjcLa14IsXHxHxJw3w+yK28NMpIOD3T6eb6CUUEAr85AoI+P2TayZ6CAWEAj+5AgJ+/+SaiR5CAaHAT6eAgN8/nW6iV+Mq8Gsf+1v89+oSXn3+Vtx1+2OqAO5VAJ6Gx24tR6BsA/B0Ig4HRZ20d0BnGWbH994IY/q8x7GBeCQMy+QMu8qzmTTcG+sobOWhHx5Bj0zOTHR3IyjucxAAt+8AcHKTE2imaBRypsuVqn28lUA2ub8JVlsmpqHSaDmyxO92srubimIqh4b2FcUkkB0JBLiYJbnC1Xojw/GwzwvbyiLDdALfe+NUyOAci4Thtll5bwzA29sZfFsXruDtr3t11b4aBn7/zZe/DOvCMgYto5BRPk2dgPZP3f9jXF5dwp0aPabHJhANBxGyWSEb0mL69kfvv2w7PFpiAE6xKOT8TiYTCNk30FkPfO/IXAbgYaeDXwegIPuAzcou8tGzN9UA31cBeCGXQ9jtRC6VBNraEbBtsIvcNHMagwZT3SydUqGAiNfFUSYdsn746VWJdAq6yWnoR8bR3Npa89uDxo75fOXoF40GfrsNqe0YFcv0LFra2vDX3/1PWIMBEX/SuN+/YmcHKCDgt7geQgGhwGEpIOD3YSkt5hEKnGwFBPw+2ecvdi8UOEwFBPw+TLXFXMdBgWd9+P244LTjn1/6Cujq5WyzA3wbWue3OPqDcr1bW9u46GNX9x7z7q6NMwC3kwM8wrEo5JamjG7K9aaok3rclIC012GH32GHaWISmVSSobJxbLIMvuvwVgLSAa8b9qUFjJw6DXKSe2xWLqSpHFKjqak6DuUqbi0xALevLEJnGeH4E+v8HMxTMxjS6veB9qv9JAbgzrVljmmhBA/HyjLUJjN++zl3Nib8ftt734t+8zhHnRzUPvfQ/fiftSU8d3wKPV4Pg+l+rQGzj3kcmltqQ+Gr40lIhMNYffh+pKJR9A4OYfLWGo7vGgtIU3zIxUcQ9XnQJVdg9PzNUAyqr11FNZ2Cff4y/Bvr6Ojtg3n2DFdDRZ1LU5m6mN+Cc3kRzoUrDNr1UzMwjk9yZdSDmwTv+hrWH34ATS0tUI9NYPT02Z1+kVQK7/n6Fxni/58XvAQvvu3Rx+E7RaxRKPBzUUDA75+LjGIQoYBQ4DoUEPD7OkQSHxEKCAV+ZgUE/P6ZJRQDCAWEAtepgIDf1ymU+NiJUOCK24mnf+h9UPX04hOvfO0190xxJc61Vc7kJle1aWwCneT4vkajCBSKOaH8cJlCBfPkVBl8X6MxALfb4VhdQldPL4anTzH4vp5G+d7rVy4zoB+dPb1T4PJafakA5vqVORQKeYzOnuEc8OtpBMA3FucZ0pvGp6A1m/HMc9NVXRvG+f2H73sfZMYRyAaGDgTKX774EL63NI8nD6oxGI+juamJo04GjKZrAmVyVDtXl+BZXQYKBZhOnYZmZIwd0UD1qwK7VWarv2MDzsV5FDIZaEbHYZicRnsXVSWt34+emkQDPlgvX0AuHseA3sjwu7Ov78B+XKQyvonVhx9AKhyGfGAQI+dvQU9//8H9AH6VYuH+HyPh86JbJsf4LbdxhMzuJ0I/XFnEFx6+H32dnfjBm98Jzd7imtdzO8VnhALHUAEBv4/hoYklCwWOqQICfh/TgxPLFgocMwUE/D5mByaWKxQ4xgoI+H2MD08s/eeuwIe/9y2895tfxdOmZ/HGp9118Pjk/k6l4LSuIhLws4ua4kCo4GM993ZlQCpSSdEglOVN8SAEzfuI4dVxb1f6UVY3RZ1QjAnFqpB7W64aqOv6rvSjRAnK+N5YWkBrayssU6egUmuuo5+EsN8H29I8CoUChsn1rTfUdYtfnU9CLByCfWWJM9JJF4pAueummcaE3x/+yldgXViBymRmAL63umhl11+79DB+PHcR51vaMG0yQz86hqjLxTne/RqqSlrbGV3Ib3GRSt/aCjp6eqEbHUcmEkaPUgkFF52srkq6+8IEXHYG35TPrR0dQymbRVtnF8/ZxlVJ9wNwikgh8G27fBHFQp4he1tzMyiiXak3orPeJd8FvnOJBNQjY+jp7ePoFMpCJ6Bd0zVOBTqzaSw9cB+SoSCGhkehGlIjEQpyVjnts/KKAq3hQ//1DRF/8nP/+hMDHnUFBPw+6ick1icUaBwFBPxunLMUOxEKHGUFBPw+yqcj1iYUaCwFBPxurPMUu/nZFHj+3/817rOu4XfO3cJ53+1U6LIWkJYkpFNJjg8pFosY0Gg5D5sysCkipC4AlyRsbceeJGObO7En2UwGhpFR9Mr76wLpCvgOetwwjU8weI8GAwyW+wmAN9eOLyHjL7m+nWsrnBdeyBd43RSzolRr0FyvX6mEiN8H5/rqduxJK+d2U8Y5ub/35n3vgO9SCZvhEAN6xeAQunp64FhdwaBOj1c+95mNCb+p4KV9w8UFLxU6PWSDBMCrQTY5qb/54L24dOUShtUaPOdJT2P7fmozylCb+hEA3xt/Qq8JeK1r8K2vor2nB8Onz0GuHEAmEUPAul4XgBO0DroccC4t8GGZqUilTg96XSFktzH4Vur2A/Ad8D13EcV8HoapGeiGR0FPbCIuBwNwAu77APge8K2ZmOKMHBoj6nFjK52GQq9HF4fa77qs/BQpidVHHuSccPXoOEbPnON5Nn1eJCNh1oaKYFY03R1/8sEXvQwvuuWOn+03X/QWChwDBQT8PgaHJJYoFGgQBQT8bpCDFNsQChxxBQT8PuIHJJYnFGggBQT8bqDDFFv5mRRIb+Uw/a63MnP789seA6VCCZ15GO1sjr3a6OfE6iiyhNzQBJG7e/uQTiYYFJOzWmseZq65N4eb+CHlfRP4Jtc2ub5zmQy7wCnxgTLAyQG+F2QTP/Q67SDwTVEnBLsLVPDSaUeCs8OHIVep9hWuJGBO4Ntnt8E0OQXVkAYUnRJwuxFwO6A1DbMDfC/IJmBOjm+vYwNDehOG9HoeOxzwwbG8BI3ZwgC8ZU/tQho7Fg6zNn0KJbRGM1qp4GU4xBEof/x7r2pc+B1J5NipvOn1QKbWcOHLCsiWSkUkoxHc88hD+LHXhXNTp/A8yqvefrKSikYQtK1DNqRGv1qL5m0ndz6XhXdjHT7rOjq6u2A+dQb9u6JVMvFNBuDdCiWUOj1a2tpZ4GJhC0GXE66lRTS1NMM0PYtBvWHHdZ2lgpmO/QCcAD3l3NjmLoFyuyvgu+LW3sqkEXY5eA6FVo/OHqrq2gyKOklsRrB24SGQ47sCviuQu7CVQ9TjQj6bRb9GVwbg9NRFkpBKxLB+6ULZ8T0yitHT53Ygd6mQx6bfh/RmFHK1Fr3kAKeHCpKE78xdwFfnL3P8yY/e9qcY6KU4FtGEAo2rgIDfjXu2YmdCgaOmgIDfR+1ExHqEAo2pgIDfjXmuYldCgaOogIDfR/FUxJpuhALfuHIJr/y3j+GUzoA/fepdsK8ucQ53FQDfdnx77TYuHMngmyOQyy2dSHAMCuVqE8jeDcBrge9Kv2w6DY/dymNqjOYqAF6B3CGvByOU8a0a2JmPgLnP5WCYrjaYGIpXQDaNRbA86HFBP0IpEpod1kpQPOh1c1a5Wm/k/O8KyKafEf/0u13saB/U6q9CbkliAO62rmNQZ2A3NxXCpEbAfDMSgt/pYAe7xmBCGznntxvFoPzqk6rrEzZM5jc5v6PJPAhyx0NBxAN+Ln5JDnCKFSG4HQ/6sRzbxFc31vC4qRk876bbq+55KhpG2GlHr3IAcjU9pSiVwTcVm+zqhmlmtmaRykw8hsDGGrrlCnZIE1Qmx3cFfBunT2FIb9wXN7IDwDs6yxEoHZ0I+707USd7wXdlsRUATmEp/Vo9Orp7EI+GsX7xEeSSCegmpmGamt6XjVPIZRH1uvkpDwH+rj4Zg++NuUtIRsMYsoxgZPZqccvKfPTkJxbwIhOL8cOBHoWS3ev2hSv4rM2KcKmIX5o6hX97xe/eiO8NMadQ4NAUEPD70KQWEwkFTrwCAn6f+CsgBBAKHIoCAn4fisxiEqGAUACAgN/iGggFygr84ec/hU88cA9+81GPw4tvezQSsU04VpYYbustoxyBQlEnV8H3GLr7ZPvk2wvAKQKFok7I3Z2Kx2CemEYf1/6rbgzAKUalUIDaaGIATgDb57RzvIl5crpmccutXJaBcyqZYDc2AXB2d3vcHFuiMVk4Pnmfm5xSMegzwQDbuaG4AAAgAElEQVQGtDr+DLVwwA8C7crBIYbbe+OkyRxMn/E5bBybMqQru8LJ3U0uc4p4pvW3d1Q75mnsO89MVG264eA37Y6eAiTCQXaB9/Qr2P1NcJdg72IqgX9/5EE8ZmwSv3rro6pvAMWGRCPskCagnMmkEXDY0E7ge/oUFLueXuy9PATAgzYrx6KUJMCztsKOb+PUKQwZ9oPvSv9sKsERKGTPb+7ohHPxCl/AeuC70m/HAS5JaO3qgmt1GblkEtqJKZgm94PvSj9ysm96ygC8rbsbPvsGu7oHzMOwzMzWzy7PbyHm9yGTiHM/yhiKB4NoUqnw7w4b8qUiPvSrv44X3Fz9QEF8uQkFGkkBAb8b6TTFXoQCR1sBAb+P9vmI1QkFGkUBAb8b5STFPoQCR18BAb+P/hmJFR6OAre8553wxjbxNy/+DYyrtTwpOaqpaCM5uAkQU9FIYoN7Hd97V1gB4FRjkOBwyOflqBQTRZ1QYcs6jQytHtsGz0Gu6/hmFIlYFMaR8SrH997u5Cqn4pnpZJILb9KfY5EwF6ekP9fL52Z3uNeNzVAIioFBHjYaCqJ/YIAd3xVX9975CK5Tkc+AywW5Uon2zi7+c3dvLzvQ90bFVPqfCPhNmy0VC+z+JmBL0SbkVlZodXjY7cQn7vsRbhsew8vueOy+a0CVSWMBP5wLV/hpBsWKUNTJQeC7MkgqFoXt4iNIxmNoaWuDefYMBms4vvdOmk3GsXHpAuKRCGh+0+mzHPJeszDlrs65dArO+TlEg37O4NFPn4JxYuqa1VDz2QzcK0sIe1z8VIgc3wT329qvviZQ6/ejuJWDb8OKgH2Di2OS69w8PYt7XQ58+cKDIv7kcL4nxSw3UAEBv2+g+GJqocAJU0DA7xN24GK7QoEbpICA3zdIeDGtUOAEKiDg9wk8dLHlfQqsBXx4wv9+N3raO/D5331D1c8JgK9ducSm1ObmJgxPz3LG97UaZYBTzjWlV1DtwbHZsxwHcq1GAJwKROYyaS6mSY5vBUWd1Cq8uWswAt7kLqfoZakkcQ44AfR64LvSlbil3+1kMy01lUbLUShkBj6okcGZoD7lezc1N6GvXwm9ZaQu+KaxTg78LhV38r8BCX2qQcg1Wlz2uvF/f/xD3GSy4OWPeeI+fQv5LbjXVuBdXeasmUGDCYbJabTWsNFXdZZK8NqssM9dYvis1GgZfpNr/MAmlRB0u7Bx6RGUCgXIVAMYvekWdHT3XqOfhAhFpMxdBLnAe2T9GLv5VnT1ya/ZLx4OwTZ/GenYJleGNZ8+CznFw+wugrl3FMoGj8fgWLzCDwc6u7qhpxB7vZEzwD/w7a/DHgmJ+JNrfbuInx9rBQT8PtbHJxYvFDhWCgj4fayOSyxWKHBsFRDw+9genVi4UODYKSDg97E7MrHgX4ACH/uf7+N/ffULeNLUDN729GdXzUAQm+A3AWWK8hienkFnd881V0EQe2NpgV3YBIcJfl8PNM9lM3CurXIcchOaYJmagaxfcU34nd/KcSTLZijIa9MPj0IxOHRN+E2RyhSRQtng1CjLm9zqZB4+qBH8pjgW98Y6f6x/YJBzzg8y8J4I+M3FLSOU8R1AR08PHwDFdVAEimNrC/90zw9xxmDEKx/3S1X6Enx2rS3Dt76K9u4eDBlMkAp5dPb2cQZ4az1ntFSCZ8MK1+IVPjTt8BikYh5t7Z2cAd7W2VX7HKUSAi4nHAtz/ITGMDZJlTI5H0dFuTVddS65RODbA8fCPLayGagtw2hraeW4l0HzMDp66oBzSQKBb8fSPNLxGBfo7O7ugVQsQKEzoJufDFGS+J62XRTTubSIeCgAmWoQMoUSEsH6ITUXwQyl07j7a19CQSrhw7/2m3je+Vuv+QsqPiAUOG4KCPh93E5MrFcocHwVEPD7+J6dWLlQ4DgpIOD3cTotsVahwPFWQMDv431+YvU/HwVe+k8fwQ9WFvHWpz0LT54+tTMox5esrzAPHNDoOCKktbUVOssounrqA/BMiuJLrCgU8hjU6tghXSqWYBqbqCqQuXf1BL59Djso/1s5NMSxJwTPDSNj6CMAXqcR+Kb87sRmFDKlipkkrUFtMKJfNbgv77syDMWrhP0+LnBZcaWT050KYKrUV4tg7sORpRI2w0H4XU7WgWJP4pEwr5FywusB8IaH3xSITvneFHdCMFdOYetNzZwBnoyEESwV8fHLFzClM+A1T3zqjq4UN+JYWmDw3dHbB8vMachUKs7DLkP03toAXCpx9VEC32TVt5w+x0HsmUQCmz4PWtvaawNwAt9OBxyL8+Wok+lZqE1mft0g4qKnIBJUlF+z9ykPgW+fhwF2PpuDdnQcmuERSMUiwi4HCrkc53cTsK9qBL4jIZ6PwPeA0Qz92ARampsR9XqQTSV5vjIA39WowmwiztoQ+O4f0sAwOYWOjk52gNNY9GCgV6HC95YX8JWLD4n4k5/Pd6IY5QgqIOD3ETwUsSShQIMqIOB3gx6s2JZQ4IgpIOD3ETsQsRyhQAMrIOB3Ax+u2Np1KbBVLGDynW8B/e9nfuf1kG8nRaQScXZgE+zWj4yhq7ub45TJXd3c0syxyJQFvreVwfc6isUSdGYLemVyZNJpuDfWuIClcWwCPTUKZe6A70yas7rlChXyW1sM0anQpmlssmahTPoMubYJlBOwVg6qUSwWOAM8sbkJrcnCruymPbEpDL4DPo47oZ8T3CfbbdDnYfc4xZ+ohvYDcEmS+Odeh43zy6m4JWWbR4J+BunkUif3eFuN2JTGht+JHBKRCDa9bs74lpN42/Z5ygCnAphrG1Z8aXURGp0Br3vKM/juSFIR9sVF+NaW0dknw/Dpc+WA96YmhsqpzQhiwQA6e3rRr9Gipa2cR0PQ2rO+BtfSAlra2zFy5jyDb+4nlZCJxxHzeXkNVQ5wqcQVUl1LBL4lGKdPYUhvQlNLC0PvXCqFqMcNAvnsAK8A8Irje3GeC1ZqR8agtozsPOmgYpYRl4Of1pADfAeAE/iOhuFYuHIVfI9OoKOri9da2Moh6nUjE4th0DKMLtk2AJckDsq3L8whFgigX6OBcXKm/PpEUxOKVAQz4EcqGkG/Vseaf/A73xDxJ9f1tSc+dBwVEPD7OJ6aWLNQ4HgqIOD38Tw3sWqhwHFTQMDv43ZiYr1CgeOrgIDfx/fsxMp/Pgp8f2keL/uXj2JsUI0Pv+TlPGgZfK8w1ytD7rLLm1ghRQ8T+G1u3g/AK+CbUiQ0Rgt65bKd+n8Ug+LesIJc2sbRCfTIZDsbYPDtLDu+K+C7ktVNP6MimOTItkxOVznAKa87QOA7GmFYTeCboqKpEZ/0uRyIhUMM7ysFLelnlFAR9nsR9Ho4GoXc6WQSpkax0/T3FGlCf69SV+eGU0FMt3WN+azGYEJbR7lOIcF0BuA+L6dSDOkMVbnh5Ep/4eNvrzq0JokUbYD2iXvvhdPhRcTlRO/AIDu+KSR+dyMAvmJdw5f++3uQDQ7hd5/1PI65ti8swLu6hE65HKNnb4JMoarKuKEYlVQ0iljAx0CZAHhzays8a6twLy+ipaOD+/VzbvbV2JAKAN9xgOvLTySugm8w+B7UG9DcUr4027ccVMySgLRU3AbgXd2c8U0Am8H3aDX4rnQtEAB3u7j/oGWEgT2F0Nvn56oc3x0UxbJrrQSyCbiTO35oZAzdMjk4N2j+MhcO7dfoYJqaKT9t2t2vkGeXfTIchNJgQqq1Fe/5+pd5OR996W/hOWdvboDbJbYgFCgrIOC3uAlCAaHAYSkg4PdhKS3mEQqcbAUE/D7Z5y92LxQ4TAUE/D5MtcVcR1EByvqmzO8Xnr8Vr3j8k3fAN+V7U4Z1FxlfdzNFSrZIxDmehApgViJQqsG3mR3fFJeymymSA5wKRG7lsjsAnIyyBL7J5DpkMLLje2+RSvo8AXACyFQAk9zV5CIn8E0ubIoa2Q2+K3OSK5wc4BG/D6bxSXZ4k6E35PcyAyW39wCD72pOS2OHvB6EfB6oDSYunEl7obkcq8tsMKa/3+vuJgBO0JzWRXMxAG9r43Xblhfx1leVHy5UWsPA74989auwLq5yBAf9UwWTd23YHQ7i7/7zKzC3tuF5j38S4pEo/NZVdMrkGL/p1nL2TI3KphUATiCbnNjpbAaB9VW0dHRi9Ox59A+qa/fbdoBvej1obm1BoVSCb8PKKyLwPaAz7DwtqToZSdoB4MV8AU0d7QjYyhdXNzpRzvmumUEuMRyPelzIJpO8L7/TzvEt5AY3jE+gvaMafFfmpaqwDMDDQfSpNXxBCWwrtXqYZ2bLQfs1tKGsdHowEPN7Idfo8V8Lc/jvgBddbe34z99/GybIDS+aUKABFBDwuwEOUWxBKHBMFBDw+5gclFimUOCYKyDg9zE/QLF8ocAxUkDA72N0WGKpvxAFnvD+v8Ba0I+33PFY3DQyzrC4HviuLICjnRmAlx3glJEdCfjZUa0x1QDfOx0lZNIpjk4hjkgAmcAwFdXUGM3smN4LvitdyTFOAJwSJAwj42yMpTlpDMXQEEeP1GoEsgmuUzSKZXKGHdoUpUKgnZzdew3Ku1kkOcCpJiK538lRblte4EgTWuteYL7Tr1hANBBgHZVDamaWLusqG5pf/YLnVC2xYeD32z/wAXQOaDnqpN4B0s4DiRg7k03t7Xhij4yzrruVSkzecsdOnEe9W06XjvK/7fOXkdyMoqNPhtFz5yFXDdUNdaexyAFOznHH4hVs+n1o7+mBcXq2PvjefVmTcbiWFxFyOthhrh2bgHZ4BK1tZbt/7SYhn8nAvbYC7/oqx6kMEfienOZfrIMaueMp97ycRS5BoTdgePYs9jrF945B/WiNG5cv8FOhe5ub4MhmYFEN4rtv+mMG4aIJBY67AgJ+H/cTFOsXChwfBQT8Pj5nJVYqFDjOCgj4fZxPT6xdKHC8FBDw+3idl1jtz1cBb2wTt7znnehoacG773gssskUg2SdeXif43vvzMQiKR6lDKQjDK61lmH09skOZJGgKONtAE7wuruvj+eTK1UH99uOMvE4NhB0u9He2QmdZZgd3wfxVlo3AW8C4ATdW1pboDOPYECnqwvMK3ul7PCQxwOP3YpiochOeALflWiVeqdBDwEoAsVr20COIqD1euhMw3j2raerujQM/H7r3XdDMTyBPtXggTc0kkqCXjVQN7fgSWS3L0kYu+V2hsO1XM1Vg0kluNZX4Vq4guJWDqaZM9CNT+7kitedmIpbupywX7mEXDIJzegYF7hs3w63r99PQiwcwPrFR5CORqDUGTB85hy6+uTX+C2UkEkmsfLw/YhTCLxqAKPkaqc4l2s0gtgL99+DqNPBES8Tt90BObnarzVjqYiVRx5iN3xrexuGb7kDH7v4EILJBO6aPYd//I1XXmsI8XOhwJFXQMDvI39EYoFCgYZRQMDvhjlKsRGhwJFWQMDvI308YnFCgYZSQMDvhjpOsZmfUIH/d9+P8Edf/AxuN1nwQqMF8XAIWssI9MNX6/gdNCS5r6koZsjrhkqrg2lsopzOcI1GcSTujXV4bVbIlCqOMqGYlGs1Au4ehw2O5UV09fZieHqWofn1tKDHjbW5i8xKx2bPsiv7ehoB+rUrl1DM5zF2+hxHrFxPi0XC2Fi8whzUNDkNncmCZ5ybquraMPD7r7/wBWwsrUIzPnkg5E1kM3j3Fz4NbTaHJ4yMQT86jpjXDfXoOGQHQV4qbrmxDufCFbRQEP3IGLKxKBd6VGj09Z+aSBLCXjc25i6WX0sYHoWUz3OmtlJv2Cmeue9AJYmzutceeQg5yuOxjKCjtRXNrW0YMJnRRpndddpWNo3FB+5DKhTCgNmCPpkMxa0tzgDvqFEhtjJMqVTA4v33IupyQmk0YUCt5biUoVHKAN8uglljToqEWb34CAL0eoFaC/3wKMeutGj1+PA9P+Sol/c890V4+aMffz33VnxGKHBkFRDw+8gejViYUKDhFBDwu+GOVGxIKHAkFRDw+0gei1iUUKAhFRDwuyGPVWzqOhX47X/9R3xz/jJeND6FxxotkCkUHDWsGFJDZ7bUjQSh4beyGbis68hm0lCpNQj7fejs6oZ+ZLSc0lCnUbSxx27jyBKN0YR4NMrObNP4RDn5ol6TJPhcTo4QMY6Os3s8EY3uK4JZqzsVt1ybuwTL1AwKhQL8DjtGZmY5l/ugRhnf1oUrUJvMaG1txcbSAsZPn+UimAe1SsZ3X7+Ci4U611c5quXldz2lqlvDwG8qeLmxZkfY6WCQ3atUArhafLKy62g4iH/80meRb+/AG3/lRejpkyERDsK7vATNxCQXwtzbj554+OwbcC7MobmtDaNnb+YLmtqMwre2whBbodWBq2fubqUSIgEvrJcugHKxTbNnoDFZkEkkENhYQ3e/Akq9cf8llySurrr68APIJhPQT83AODGFrUwGIZuVgbnKaEJbJ0WYVO+xkMth/r4fIxkKQD02jtHT5ziGJOy0g6qzUu53B1ePre5XLOax9OD9iNhtUFmGMXXrHQCt3+NCKhrB4PAoA/u9/cgpvnb5AgLWdciG1Dj1qMfy6wxRn4eLj3q7uvDZuQtobWnBV1/7ZpwxmK7zq0F8TChw9BQQ8PvonYlYkVCgURUQ8LtRT1bsSyhwtBQQ8PtonYdYjVCgkRUQ8LuRT1fs7SAFCsUipt/1VqTzW/izRz0Bp0+dZlBbcSwPaPXQmgiA78/SpiKV5NymrG7zxDR65XIk4zHY2ZHdB8PwKMeS7G0Eub0OG8iFTfCZXNtUKNO5vsIRx6bRCXZ072uSBL/bBfvKIsZmz3DGONUVdG2sIxWPwTwxhb5+Msfu4a2ShJDfB+vCHINvKkBJBmBaQ8DtwvDUDPpVA/sTNyQJm+EQw+4hvYF1oGgVKmRpW1rAyMxpDFAdwX31B8kwvAn7yhJ6ZHLWoa2jA5GAD2tXLuNdb3hd48LvSCKHTZ+X/xk0W8oO8IpAkoR0PIaAfQMfv/AgUp1deP+v/vrOzxOhAPzWNXZHEwBv2gbZdFh+pw3OhXm+iBZ68qAh0F0+aALDvrVlhtj9Gt2OA5yAOYluu3wR9LSFMr4pk6cCyDO0FusaehRKztUuX/ImCghHMl4G37lEAtrJabbtV9ZDLvCgfYMPlebcDcDpaRA5txl8j45j9Mw5NDW38Drz2Qw/GCBYTeC87AAv7yGfy2LlwsOIuuxQGs0Mvpu3+xXzW4h43MjGY1CZLGUAvr13gum2+csI2KzoGxzC5C23o337qRPtn4qDUhHM/0km8KDLAY1Mju+/+Z2QddV/MiW+MoUCR1kBAb+P8umItQkFGksBAb8b6zzFboQCR1UBAb+P6smIdQkFGk8BAb8b70zFjq5Pgfusa3j+3/811F3d+OhLfqsKOsfCIVgX5znioxqAS9jK5jgDOxmPwzIxhV751UQGMswS+O3uk0FvGUF7R8cOq6sC39OnICfovN0yqSTHpzQ1N3FqQzexwW3GRxyPwLdjdQmjs2egGtLs9GMIb1tHNpWCgQzH8n407epHbnTH6jL0o2NQ6wz71kJ81Dg2wQC8wjepPiKBb1oPRaNU7Z8gvMcF9/oaTOOT7Hhvai4bjgne0/4plrqzpwd6S/UDAJrrJU+pTp5oKOd3NJlHqVREzOdFPBRkOFx2gAMEmyNuF0Pfv7znhyg2NeFvfu3lVTc1HvQj7LBDaTAyAC+VSgg6HXAuLzAMNs+exoD26iFWOpcB+ApD7H6y5DcB0YAftrmLnFVjmDoF3fDIPmf4DgBXKqHQGdgxvRt8ayamYJ6a2bkYlfl2AHhnJ+eAEwjPZNJYeegBJIP7wXelXz6bZgDOhSx1Bs4HyuWy7EynmBKFwcgAuwK+K/0KWzlEPW7k0il2uXfJ5KDqr1QUM2i3oW9gEGPnb0Znd/VTIwLtMb+PtfiM0wZfMoEnTEzhU6+sfgJzfV8X4lNCgRuvgIDfN/4MxAqEAidFAQG/T8pJi30KBW6sAgJ+31j9xexCgZOkgIDfJ+m0xV53K/Deb/wHPvz9b+NZp87itU+5c584tQA4wWaPfYMhLzm+y27r6pbYBuCU4U2FLNs7O7hYZMXxPTx9quy23tPIRU7guLmllQtZdvX0gsA3ObTJZT48PcOO770tl8nAY7MyR6T5+uT9zBfDAR88G1ZoTGZ2fFcg9Q5TzG/B57Cz011nGdlZE4FvGo9c6dS3ta29akpek8fFfYmpEown4E77Jm06OqgQ5wg6ahhs7zwzUTVWw8Fv2h1B102/D6lIGHKNFi0tLfzn9q4uKLR6/OFXPod8sYgP/OrL0Nq867UCqcTQPOp2sZM5l8vBvbKEppZmLlA5qCfwvSfaZFtOAuDk5KboD6m5GXYqipnfgmFqBrrh0br9MvFNjgzpUSjQ3ivD+qWH2fFdD3xXTo/iUEIOG9o6OtEl74dtYQ7JUJDzuSnqpOL43ntZtzJpRFxlAN6tUMJjXcOm1wuFXo/xczfXzSCvAHDq36NUcch+yOlAr1KFkTPny3lB+15DAMe9bPq98AZ8+L+rS9gqFvHHz3gOXvekp4lvQ6HAsVNAwO9jd2RiwUKBY6uAgN/H9ujEwoUCx0oBAb+P1XGJxQoFjrUCAn4f6+MTi/8ZFHj6h96HK24n3v3cF+Jm80jNkSoAfECrw4BGC7/LuQ2+KWZEUXd2jv5YXeIilmqDESGfFyGvB/XAd2UgAuCUj93a2sb9KDub5iR3Nrms67VcJg23zcqxymqDCblsFn6Xg53rBL4psqRWIwOtz+ngeagfNepHe6M88rb2jpr9KI2DADjFt9A6KeOc+rW2t7PjvaOru2a/EwG/aecUNULxJxRnQpb6rj4ZO7pb2zvwR1/4NGft/NULXoLOGk8WCNa6VxaRSiT4yYPpFIFvY12AXVE6GQ7BMX8ZyUQCZN+nqBPdSH3wvXPpYptwXLmERDyGQjYL3dQMTDUc33tPNJuMw7W0gFg4XC6KeQ3wXem/lU7Bu7aCiN+LbDLJju+R0+d2IkvqXfJCLssRJ0GXk/OGyPE9PHuW83Vqge/KOHQW5Dh/cGke39qMoLmpCV/+vTfhZvPwz/D1IboKBQ5fAQG/D19zMaNQ4KQqIOD3ST15sW+hwOEqIOD34eotZhMKnGQFBPw+yad/cvceTiVx5s/+CG0tLfjC776R/7dei0VCXCySnNj5rS3O6j4IfFfGIQBuXZxDW1s7KNZkbPZsVdRJvfnSiQRnexeLRWzlstvxItqdOJN6/bLp9P9n7zzAZM3KOv/vnCvn7qquzvGmmXsnkQQUGGERkCwCIqJIEFZhdRdxVcLu6roK6woiIoqAgIqAzsKMQ3CYfGPnVF0559ypap/3ra6+Vd1V1VeW6dtdfc7zzDNOd5/vfOf/flU8/s7/+7/cDJPWoogVgtka7md4MLO89BqUHe62r4OaW9KgJpgG0wCnWdQatAa50n1OG69B+lBTy/bOyuCbrnVq4DfZ41OREEIuB5DLswNcotbyKcSHvv4VxLMZfOyVr0P3vs6oLKrDCvvcDBry4Oxw08RUVUf0XoHI6u9zY+3yU+x2Vuh7MXjuDjQfUkTK+I6FAlh5+klsZlKQqjQYvXQPWmp0bOU18xTuHobl2mWkozF0SaUYu/u+3SzvGo8NZZ8nYrDO3kDM7+OHZvDCnZAo1TUBNq1HD7hjcQ4hlx2tbe0wTZ6Bkl5pqPHhpTuhTHH36jI8llVc39rE3EYW6u4ePPgf/zP/WwyhwElRQMDvk1IpcZ9CgZOvgIDfJ7+GYgdCgZOggIDfJ6FK4h6FAvWhgIDf9VFHsYt/nwJfvfwE3vd3f4M7TQP4yCtfW3PyRjbDzRrJXU2Z2uaxyUKW9yFjc2MD1qV5JGMxjgChRpXkkD5skHvbSWkQwQA7qckt3lUl1aH0WmRwJRc3OcyJsRqHRji6ZH/cyf71ycUd8no4loWGzmRml3s1t3hxPvFdikwhpzpdg9zx5BZvam6pusVTAb/JdZ2JxTjqpKm5iXNsqBmkRKVGl1yJ3/uXryOcSuJ3X/5qyLnxY2Fwc0u7Fc6lBXYnKw29aG5sRLdSxS7nqsLmcwh53FifuY7c9hbURjOaGxvQKZVBRrEr+9zlewtSV9OAD+v0cJNzu38AzQ0NaO/ugYLWbjvYsZXn5vOIR0Kwz88iFY1ArjegvbUVre2d3MyyKjjP55FKxOBYXADlm/coVOjs7uYPE2eAc6fXfR1bd9fLplNwrS7zYQK56CUyOZ8q0f4oA7zaQ761mYXHsgbv+hoDc6lKjb+zrsKdSrHzmxzgpLUYQoGToICA3yehSuIehQL1oYCA3/VRR7ELocBxV0DA7+NeIXF/QoH6UUDA7/qppdjJrSvwrr/9HL5+/TLe/qzn4Wcv3lN1IseJrFvYTa3SGRD0eThTW2fsR2t7FTYIgLLBvQ4b52CrtHoEvW42ufYOVI8EoZsgZ3nA7eQkCYlCwXEkzS0tnKHNscZVxvbWFsJ+H6ipJP0dAXuKVab7pPutxgaJt1LGN8WXFIE+QXuKS6Fc8moAnMA37Y32SHnfBPUpiYIyyalJJt1zpVH38JvBdzzGkSeUhy3TG9DY2Mgu52wizhD7k0/8EN5EHB966SugkeyGxudz8FjX4VycQ2NzM7u9FVo9kuEQ/9MlU6BHXQGA53P8wNhmb7Dj2zg5Da3JjHQ0ipjfyyBbqtVx3ErZyOcR8Xthm5vhUx3D8Cj6RseRTSQQctoL+eTczHLfQ07gOxyCfWEWaXq4Tf0wjk7w2kHbOhqbWxiAt+7PvSHwHY9x807KNZdqdDCNTXAeetjl4Oaeyj7TQef4ruPbtbrE4Jt0ME1Mor2jE1GPG/TaAgNwqfRAY07K9CG3t9eyhrbOTta0R66Ax+XA/37qMWR2dvCe578Iv3n/y2/9m0P8pVDgNiog4PdtFF8sLRQ4ZQoI+H3KCi62KzkStcwAACAASURBVBS4TQoI+H2bhBfLCgVOoQICfp/Cop/yLRMUnvydDyCezeIjL3gxzo5NVMy2ppQFl3UNm5ksjCOj6OqRgCJQPDYrOnt6GCxXcnKTyZcc2KlEHHqTmaNO6P92rCwzMCcA3t7ZdaAKxOoIQscjYSh1eijUWobY1ASTIo0pUoSMsvvHHvgO+CCVK6HWG7C9vcXNJ8lFTvfQLZMfiE0pBd903dLM73QyWRWAk37JaBQe+zo706nJJmWUBzxuxCIhvu9qALy+4XdiE+l4FBGPm/OrCXwX4TE1nyQAnknE8bWleaxn0vjgS14Og1wBMPi2wLEwx+5uzvg2FJpbkpM7EQoiGQ6jSyYvB+B56obqgH1ulptsmqbOsG2f5uVzO0hFIogFfGjv6i4H4Pk8522Tc5seVv3wKHoHRxi6A3mG92G3iz8UckPvTSc3gW/KFV+cQzoeg8rYj76Rsb2s7o10EkG7jWG/kk6HigB8z/FdAN8yjQ59Y+Po7Jbwg11ogungnHSVyXwTgOfzDOadK0XwLYdpvACwaR7FmUQ9LmxmMnyfnXSQsOvipg8FRZ1411fR1tnFDUPlGi3/nmpxfWkBn5+5ijyAL7793Xje6Pgp/1oU2z8JCgj4fRKqJO5RKFAfCgj4XR91FLsQChx3BQT8Pu4VEvcnFKgfBQT8rp9aip3cmgLXHDa89JN/AEVHJ377rvs4QYGczqXNHTllYd2C7a1N9A4McdwJjWLUBzV3JICtM5UDcILV5IbOplIMk0tjRyj+xLW+yj0M9wPwPfAdjXBjSwLIxazuTDIJh2WF16bGl6UOcO7l5/MhvAu+KXqkpbWV75XgvdtmwWZ2g9crzSnP5QqOb7/Tia6eHr7XopOdXOu0P+q3qOnrKzjAG29mopMbnbRpbW+DoZ9AfiHjm1zrFLlSBOBKLe3hpgOcnOGvuu/OsiI15Aml18H4wmOPweUKsIu5rasLcn3vAbd1EYD//Q+/j/XNDbzjJS+HWaWC27IGx8IsnyT0T5/j/BgC2MVxE4CH0CVXcHwKWfL9TjsD7Hwuz8Bca+wvm1cA4GHEA34GyuwAb2lF2OeGfWGOX08wDI1ANzDEP98b+RzS8TiiXjf/nAF4W/sB8N07PFo4/SmJDdlIpxB22vlS5OQmAE4Z33aKOgn6D4Dv4ppb2Qw7zrc3NqAyD6C9i15foIzvBdaU9s3ObVkBfBcHNcGkwwZaV9FrRKdUyvExjuVF+NZW0dbdjf7JM5CpNWXzqBbfevpx/KvVAkl7O7776x+CbvdDXgePo9hCnSog4HedFlZsSyhwDBUQ8PsYFkXcklCgDhUQ8LsOiyq2JBQ4pgoI+H1MCyNu6xlT4I8fegB/8J1/xksmz+CN0+cQ9nkZDBcBeCaVgtu6xg0nydXcLZGWcTMCx/FwGD6Xg9MX2AHe0cEuba/dhmwmzY0mpQpFGTSmqORkPMaObEp7MJiH0NHVhSL4Jqis2Ae+iyJQ7IpzbRU7O9sMwMmFTr0RQz4vR51IFSpmpkXwXZxHxlm3dR2ZdIozwGmfBNEJfBOkp72Vgu/ivCIAp/ul/REAp+gUauLpWFtGR2cXDOYBtO1Lt9gD4OEgR6AQyCeIz8731WW87y1vLKtr3cDvTz3wACyLq2jvkXAG9oGYkd1tE3T97APfQCgYwMvuey5kTc1wLy9wLvfguQscdVIKdw8A8FAIHVIJstkNdjbTQ2WcnIKmr79itk1+ZwepaAGAt3R0YAeAd22V40L0DL4H0NxyMMC+EN8SR8zrQSPllre1w2e17Dm+e4dG+aE/eK95bKRSCLudyO/k0C6Vwu+w8fpSrR7GEsf3/k/41kYGIYcD29kMujVaBN0uBuLdCmVF8L0HwDc3EHG7OFZGqu/lD4R3bYUjXwaoy6yqcjPN7c0N/OnD38ZaJIyzvUZ8892/geZDmmc+Y99K4sJCgVtQQMDvWxBJ/IlQQCjwY1FAwO8fi4ziIkIBocAhCgj4LR4RoYBQ4KgUEPD7qJQW6xwXBX7mT/8nnrat47df+krcbR5k1zQ1fJTIFezwpghliiCmBAmCw5RpvX+QuZTiSSh1ggCwXK1BJODfBd99HD9SKS+bfM4UfUzNJSkdgtItkrFoWdRJ0fG9f01yozsta+xGpwxwAttBjwcytRpqHfHWEvNuyeSNTIYd4Kl4HKaRMYbmBOBpv9o+I/cBrDQo+5sc4LRPOgSg+7KvLKFLImHHN7PPCoOiVgJeN6KBAJR6PR8QuK0WNhG/+42vLptRN/D7w5/8JBo6JJBRo8hqDSZ3t/6ph78Nt9OO56nU6NzOobWzA4Pn7oBcXYjlqDYoVzvq98CztloIg29tg3FiCupeY83upATAKTrFbVnh2JGGpmboh4ahNQ9WzPsprk8AnLLDPWsriPg8yDc0cNRJJcd3+T3nkU0m4bWsIOhy8imSTGfgjO+OQzq3kpPba1mFz7qOra1NbvZpnjpbePWihjYEsgN2K2d80wNPTTAHz56HRKGqOS+ZTuHjD/wTEpubeOt9z8VHX1G7++1x+RIT93E6FRDw+3TWXexaKHA7FBDw+3aoLtYUCpw+BQT8Pn01FzsWCtwuBQT8vl3Ki3VvhwLxTIbzvhsbGvC1d74f7S0tDIMJXAc8LjbEdnR3s9uZwXfjzfSJagCcHOAb6TT31NP0Vgffe0wxl0MyEWeXeCaZQEtbG7u2S6NOqmnDrnQC2bEYw2hyilPG92G8lZzcBKAJZNOeZCo1dEZTTfZJ90CudJ/DjkgwwI5xAuYE3ms1+6R5BOgpA5xc9aRvl1TKwPyV916oT/j9gY9/HPKBUfQo1Yc+13/xyMNYtVnx7OYWyJubMXDuTm44WQvu8kXzObjXLXDMzYBiQnrHJ2Acn6zo3C67iXweQbcT1tnryMbj0PQPcD44ZYHXHLvNLS3XryBJWd06PQbOXkDXISCarplNJbFy9WlE3U50yxUYPH+xqgO79B4oqmXx6ScQXLegvasLQ3feBYWOYmCqHwqwNPkdrF2/Bg+56JuaMXzpbmiMlH9+2LwcnrryFL64vIAcgD//+V/ES8+UP6SHFlT8gVDgiBQQ8PuIhBbLCAWEAhDwWzwEQgGhwFEoIOD3Uags1hAKCAVIAQG/xXNwmhT45vUr+JW//UtMG/rwB6/5ub2tkxvburzIscZ68yBnZJdmgFfTiNzYjtUVBD0uKPUGmIZHKzaz3D+f4kFc62vc51CiUKJ/bKIQr3LIIADttlthX1pgSD8wMc254rcyqJnm6sw1NLW0YHj6HDelvJUR9vuwOnsdO1tbGD5znuNhbmXEwiGsL8yCMsvJ9GswmXH/+fK+gnXj/P7DL30JHocHmsFhdB6SHf3X33sQrrUVnNFocW5kHFupFM+jeI+qg5pbcsb3HDelVFFDzO1tzuOWaLRoKMkIL7tGPo9IwAfb7A1ubqmkLPLGRnZUE8wuDWXfPy8Vj8Iycx3paAQyrQ4d7Z1o7+6CwtCH5iqvC9A1qBHl6rXLiNLrFGotJDIZx4koTdQE82Cn1+K6BL5Xrl9h8N2tVkOp1oLc7mrzIEeYVBsEvq3zc/CuLKGdcnyMJmwmE9BQh9gatSBnu2t1Be6leazlc3gsmUBnSyse+63fharGerfy8Iu/EQo8EwoI+P1MqCquKRQQClRSQMBv8VwIBYQCR6GAgN9HobJYQyggFCAFBPwWz8FpUuA3vvZFfOnJR/GW+56L11+6l7debG5JedodXd2IhYKcVU253dUiSAqMb4PjSyjPmlIZKL6EsrgpLqW17WCMclFnckL7XU6EfB5IlSqQm7upqZEba1ITzeojj6DXw9nfSp2e19/cyO5lgNeqYzQYgGV+FurePu4HGI+E0D86wU7uWoOc4rblBUh2Y1wCLicGJ6fZOV5rFDO+KVKFnO20177BYbzpRT9RNq1u4PfnH3kE68vrSAQDNQF4NpnAPz38HSyGg3j+HZfw7KmziAX8CNlt0I2MVQbg+RwCLgdsczO7Gd9n+KQlHYkg5LRBQZ1V+SRjn8s5n0eMCj9zDZuZNAwjY9D1D2IjlUDY6UC3UslxJI1NzeW1zOdB3UkJYFPDTI15EKaxcW5GGXI6uImlorevYq45dWBdevoJRD1uKPqMGJw+B4LaYZeLob3SSAC80CG1dDD4vnYFfssKpDo9Ru64C02NjZzlTc0sqwHwMvAtlWLs4j1o7+hAxONCIhisXgsC32urcC3OoamtHUPn78A/Lc3jssOGQZUG33jXr0PeVevDeJq+NsVej4sCAn4fl0qI+xAK1L8CAn7Xf43FDoUCx0EBAb+PQxXEPQgFTocCAn6fjjqLXRYUOPtf/xNC6RQ++Ya3YFij44xucmBvb26x25vgN4Fi5/oqw29tlThlcm4T+E5EwgytqZFkIhaBa92CHpkMetPAgeaTtD6BZ4pJ8Tsd6B0chlylBjWzdFEmdnPLLgA/yAZpLuWSW5cXGCKrdAZQJjdFoBAELzbBrFTnIvjWGvs56oTuwW1fRzwcgnlsku+90qBYaevSPDvTDaYBjpX2Ou3w2W01AXgRfBP0pqgTOggIet1wWlbxX979K2VL1Q38/sJjjyEUyzCsZQA+NIxOiaxss9lUAgHrOp5w2vFoOIhX33Uf7hseAzmQYz4vgjbrQQBeEllCtn/T5Bmo+0yFjO98jjO8A+sWqAcG2WW9NyiyJBLC2tXL2EynYBibQO/gCBqbmxmgJ6NhBK3r7BqnBp0NjU17U+k0aPnyE0iGQtAODsE8cYZfF6B5mUQcQbsV7d3dUNDpUEm+eS63jYUnHkfE5WCX98j5i7tB9HkG2CGHnQP0VSYzWtpvBsaXgm+JVo+Ju+7jExOC5QzcXQ5sZTJQmQfQ3nXTAV4A3/PwrixyY82xi/eis7ubo07IMR72OJGsBMApPsayBsfCHJrbWjF07g5IVRps5/P4xEMPwBYO8qsh//ir70dna/VTLPGlKhQ4agUE/D5qxcV6QoHTq4CA36e39mLnQoGjVEDA76NUW6wlFDjdCgj4fbrrf5p2v+h144V/9DFI2zvw5V9+L/fFI/C9kc3AODRSiB1paGAWGfb72fFM+dbaPlNZ08vtrS147Ovc0NE4MsaxI8T0qJklAWX76jJkShX0/QNoJma4O+j31ECSsrfJda3QaAppFcQi4zF2dLe0t6FvYPhAM0lyTq/O3oB5fBIafW8hi5xYZHoX3m9tcjPLzn1pDXvg29QPvakfjbuMk4A5Nb0kZ7d5bOIAAC+Ab3J8K7jZZYFFArncDjx2W1UAToZh+8oy75sOBTo6Owua5nLwe1x4y/0vrF/4HUluIbezjbDLiWSYXMcj6NzNstlIJRGwWtDS3o4fhoP43toKXn3xbjx3ZKL4eHBMSBkAz+cR8rqxfv0qC98/dRZaUz9QFnGSZ9juWV5kcM4AnB6oWATLl5/CRjKB3vFJGEfH90Wj5JGKROBbW4bc0McAnK5LD8b8E48gGQhAOzyKoTPnysA43WwmEYPfssaRIuTupuiUAvh+DGG7DUrzAMYv3Y3GxnJHOQHwoG2dATw1ziQATuB79foV+NZWQOB7+r7nHHCiUxPMoMMO+jc5wNu6uvlDaluY44zvdokMY5fuKTz8JRnfe7UIBaEdGkYHHUbkc/CsW2Cfn0FTayuGz1+ETK3Zm5fZ3MQfP/Qv8MSieNbQCL749ndzZIsYQoHjoEBjYwPUklb4ohvH4XbEPQgFhAJ1rICA33VcXLE1ocAxUkDA72NUDHErQoE6V0DA7zovsNjengKf+v5D+P1//jpeMDaJX/uJn2J3N+VRV8vbpqzrtbkbDJUJgNOgyBKCxsQkq+VtF7Ku5ziahMBxMTqFwLdteQnD02eg0OgOVIYAuG15ER2dXezuLjaVZPA9cx0Dk9PQUNTzvlHMHSc+ahoe4yxwGtFQAJa5WZDjW99/E3wXp1MzS3KqE+guOMALRuVENMqOb3KEV8o+ZwBus8FHCRFT05Dt9ngkLe2rSwzYjcMjFSNcXnJ2tOzu68r5TfC78JBsIeJ2Ih2NQtU/gMbmJoTsdnZPK40mPLA4h4cWZvEz5y/ihRPTNwXJ5xDxeniuun8Qm1ubWJ+5htzWNkxT09D1D+wD3zenJoJ+eFeXoR0cRmNrG1auPIlsIsGObwpcr5YJTrEmNI9iTLqUKiw88SiSAT+0QyMYOnv+APgurpiJx+BfX0WXTIEetRZrN65wdIuy34zxS/fsnbLsf1j5EMC2zpEplDnuWFmCf32Nof3E3fdWjFKha1COeMhh4+B5gvWUG+RZXUJHjwTDd1zaO7navx7XwuVEOhZl7WPRCJwLc/yhHDh7B3eM3d8UM5HN4g+//U1E0im87MwFfOpNbys7/RLfqUKB26WAgN+3S3mxrlDg9Ckg4Pfpq7nYsVDgdigg4PftUF2sKRQ4nQoI+H06634ad/26P/8kHlldwvtf8GKMtLQinYijf3Sc87qrjWKzR/o7lU7PrmdqHDk4McV53dVGLByEZX6Om0Pqjf0I+jwMtoenz1YE38XrUG44/V1nj4TBOUWpWBfnGcBTDEu1QdEp1HiTUp8JnG9ks7AvL3I0NK1fLbucMsMJgJNjm5p10nCsLqOju4fBN2V2Vxp0COBx2BDyuGEaHUNbewfHmiAPBt8UH1NpnAr4TRvf2dpE2O1EKhxmm35rZ+ee2/mB2et4YPYafvrMBbxk+lyZTpyP7XGzEzqZiHOOt3Fyiruwlju+D8obD/jgWpxHKpVkB7dhdBym8cnqzTB3L5EKh+BcnEMymUA2Hi84vmuA7+LKmXgU7qVFxGNRpKJhKExmjF8kx3dtpzQBcO/aMucLpaJR9Gi0GL3zEtpqNMOkNbeyGfitFtaHPigdUhlndffIFAcAdqk6VIugw8bu8UQ8hpa2dpinz3Lzz/3guzgvmIjjf37nW0htbuKt9z0XH33Fa0/jd6bY8zFTQMDvY1YQcTtCgTpWQMDvOi6u2JpQ4BgpIOD3MSqGuBWhQJ0rIOB3nRdYbI8VSG9uYOLDH8BOLoffv+c5aAU4QqSnBvguSkcAfGXmGkeZpOJxDE6d4f/7sEGNM9fmZ7gJZjQUxMiZczXBd/F6xPXWF+cZWBOgpzxvAt8UrVJrpJMEwJeYe1ImuYrAu8lcFr1SaT7FvlD8SyIS4V/3yMnxPcRAu9ag+Bev3cqHAS1trWhpbYNxmKJXKoNvutapgd8UPUJuY8rHzuVy7KzuUakZRD+0MINvXL+CF02dxcvO3lGmMf1t2OuG5epl5La3oDUPctwJZ3XXGhx1EsXiY49wc0vK4x658xJHkhw2jyz7C48/gnQsAqlai8n7nlOW5V1xfj7Pgfmrl59AzO9Hl0yGyWc9D62HPDSkC524kKOdmm62dXVh5OLd6KHOq2VxLgdXpVcVnEsL8FlWOUvcfOY8lIa+QgZQjUHub591HY6FWf4Q9Y5OwDA8UtXVXryUPRzAJx58AJu5HH7r/pfj3c9/0WGfefF7ocAzqoCA38+ovOLiQgGhQIkCAn6Lx0EoIBQ4CgUE/D4KlcUaQgGhACkg4Ld4Dk6DAg/Nz+Atf/Vp9HX34J0jE+zIJsDLfQMPGZS0sDp3g+GwQqvlvO5qTurSS5E7mnLDCZ5ThMjw1NlC38BDBjWkJBhNULm9qwtDk9No66jcBLP0UhRHQmkQBKSbW1r3XO2HQXPK444E/BwDQ4Myx+VqzaFMkTLMi0717a1N6ExmaHr7ahp/Twf8JjCcSiLicTPAbmxq5mxrmc6ADqkU319ewD9cfRovGJ/CKy5c2qshFSLs98I6c53zrRVaPdo7Onhet0JRHdbm80hEw1i9+jSy8QQUhl60t7VBqtVDolYfyNC+uWAeqXgMazeuIhkM8Ly25hZIdTrItHo0VgPnFDafSsI2P8MxLT1KFTrb2tGj1vA1Sptglj3r+TwH7TuWFxBy2vn1gq7uHnTLFXw4QHno/O5ChUGxJ571NXgta9xJViKXo7NHCjnttaurKjjf2d5EwOmAc3GBrypTqdHR1QW5vhcdEmnVh5xr4fPi8atP4sFYFDkAn3z9W/CqO27W67APsvi9UODHrYCA3z9uRcX1hAJCgWoKCPgtng2hgFDgKBQQ8PsoVBZrCAWEAqSAgN/iOTgNCnzo61/B5x79AV5g6MNrzl5AMhaDps8IpUZXE2Rvb25yvEfQ44ZKb2CQrTH0Qm3oq+moJlc0weuA2wm5Rrs3nyJIyLRabRAwJ/7pcznRLZEwcCcntqF/cC8DvNJcAubRcBA+hx2tbW3MGAmY6/vNHEFSDYAT40vEovA6bMjn8nzphsYG6Iz97IqvZqol8E3802OzYiOT5gadmxsbnI1Orvhqhwr1D793wXfU42YxqSFkY2Mjg3ACuASVL/u9+OqVJ/GckXG85uI9hXpSc0ufB9Yb1zgzvI86m/aZEA/4kYlFIdFo0SVXHATZ+TwoY2ft2hVubmkYnUDfyBg33IzTqYtKDYlKfRBk7zbFXJ+5jmQkBI15EIPT55CKRRF22NGtUEKq1R0E2eRoT8ZhX5hDzOdlMG8+cxa5zS3OAO+UyhlIU6Z32SBdqDvr6hKDb9pL/9QZbiYZtNs4iqQAwA++brAHvtfX+KE2TU5zc8uwy8GoXKYnAN59IMKEdAw47OwWb2hqhGliCjKVBlEv1WKDa1ERgHMt3LDeuM61SKo1+KfVZTQ2AH/9tnfiJ8YmT8N3ptjjMVRAwO9jWBRxS0KBOlVAwO86LazYllDgmCkg4PcxK4i4HaFAHSsg4HcdF1dsbU+BZ/+P38V6MIDfe8nLccfQMAJuN8IBH1Q6A5RabcV0COJjBL6jAT83xZTI5Ay/PXYr98kjCE4O6/2DXNB+t4uNo+SGVmq0iEcjsC0tQKbWcAZ3S9s+NrjbJzHk9zEoV6g17E5Pp1Kc3d3Z04Ne81BFAM7gOxSE3+1kI63WaML25hYclhU0N7cwAO+swAaL4JuAOTnZDeYB3orbus6NPek6FQE48c9d8L29vQXj4AiaW1sYvKeSCW7KWQ2A1zn83kQ2SY5vFxrQwOC7ddeyTwCXgDg9VOubG/jK3HXcPTiMN9797AL49rphnSHwvc3g2zAwxG5myqsmyJxJxCFRa8oBeD7PD+f67DVsJJPQU8b3bnPL3M42EsEAEqEgg2yC4HsRKLtOcevcDNKRMDflNE9MF15LICgeCXPTzU6ZjAHxnpM7n0cqEYNjcQExvw8ynQ79E9OFzqYNDaAmmAGrhZtQynv7bgLwUvDtcqBLJmeA3SOV87xsKoGgzcp/r+wzlgHwIvj2ra+xlgSw5dQttqGB410IpNMgJ3c75+0UnOO0f5/dBlcJ+FZTaH5DIx9CRN0uUIzKAQC+WwtuNFpSi8fX1/DFJ36ItqZm/MOvvh/njf3i61UocOQKCPh95JKLBYUCp1YBAb9PbenFxoUCR6qAgN9HKrdYTChwqhUQ8PtUl/9UbN4Ti+LiRz/E3Orvf/X9aGpsBDuzPS5Eg0EotTooNNoyJzfFEnvtNobWxsHhveaWFC1CANzvdHCCAjnAKYWhOChrmxzf0VCAITBdt+iCpgxwAtISmQI6U39ZM0mKViHwHSIzrUoFtZ7AeiEipRgtQg5uzuLuuGmOLYJvWpOytsl53crpEUA6keD1mpoKYJvMssVRCXwzwwSQTadqAnBqjsmAfGebwTeBeRqb2Sx8Tjsoe5zA/X4ATm70n7m7vL9jQ5485HUwvvDYY/D4woi4nJzrXQq+9x6OXQC+5LTjmzYLpoaG8eZ7noOgx8UuY3q4jBMHm1vuAfBkgl3c7ABvbELE74VtbgYb6RQMI2PoGx0va25ZBODJcIjnMABvakY8HIJ9YZabTapN/TCOT6Cl9WZn03w+h1QkjKjXwyCbHOB0ykMRKY6lBcSDfkg1WpjGpwqdTUvC6AmAhxw2tHZ2sQOcguD3HN9F8D0xdaBJJTXBDNjWGcCr6HSovQNbm1l4LGvwFh3fJeC7qCkB8LDTDnqMyDne1tWN/E6Os3+cS/P84SNgXgTfZbUoBeBSKWPzoNvFsTOVavHAzDVuVCppb8e33vNBDKk1dfDkii2cJAUE/D5J1RL3KhQ42QoI+H2y6yfuXihwUhQQ8PukVErcp1Dg5Csg4PfJr6HYQW0F/urRH+C/fP0reNbQKD70slfu/TE5tAMeN2KhEBQaDTejJOBMEJdiQJLxGENjmUJVxvcIOBMAJ3guVSgZ9BLjIyMpQehYOMTwuhR886Jk1A2H4LZa0C2RcrQIgWoC8XQ9+keqVEKtMxyIRiEAbl9ZQltnJzvA2zs7UQt8FzdJoNq5tsLxJZTl3dHdzZwwEY3wHskZTnssgu/ivCIAJ2c3R6DI5BydQr0RKRuc4Hnf0EgZUK8FwJl/Wtfwrtf/bFmx6gZ+f+bBB2FZWmPYSs0mi47v/Y8muY6vzFzDQzeuwmAy46fHJrkR4872DkxT09D3D1TMry4F4N1yJTa3N+FaWsRmNgP90Cj6hkfRUCHAntzLiVAAyXCY88YJVLvXVpCOxxgy942OobXtYNQIZZSnIhHE/F5uStnc3gGv1YJ4MACZRoe+sYlC8Q90Yc2zAzzscqK5rQ0dEhkCLgdCDL4VME1MHgDfRY0IgFODUNKQ8sPDXm8BfHeWO773a1oE4PSBkOoNiIdCcFDH2JZmdpjTCVWlZpoFN74LW9ksetRafp3BMT/L4Jvm6SrUgtzfj1tWoJVI8cB7P8j/FkMocFQKCPh9VEqLdYQCQgEBv8UzIBQQChyFAgJ+H4XKYg2hgFCAFBDwWzwH9a7AW/7yz/DQ4hze+8KX4P7pcucxZXoHvG4G1hQ10k2szutGJplg6Etwu1LuNaVTUJPIoNfDvfdkSjW7veORCJQ6HRRqilJpPiAtQWNai8AzmWYJkhNkpwgWqVzJueKlqooX6wAAIABJREFUTvLSC9DfEcgm0K43mZHNpDlTnBhkqeN7/6IFAL7K0Ns4NMKObQLwFL1CWeIE0isNAtZum4WTOgzmQTYNOwikNzSgb2j4APguXuOmAzzB3LG9o5OjYuhw4H1veWN9wu/f+/SnsZFrhLLPVDG3unTXs7Z1/P13v4O+jk6clciQbwD6J89Aa+qv2riR5hMAp0iVoMvJrwPkcnnoh0dgGByumNtTXJOabsboYXXYEY+GOVpFZTShd2QMbZyxXbnJJAHwRDiEgM2KeCQEeq2hAL7H0dktqQC+d1ekXJx4FD7rOmLBAOg1Co46qeD43v/gkYvdZ1nlOJdMOsVZ3gSi5Wpt9fX4tYM0AtZ1zhqiB56C9SlTXKXvrakpNRYNOu0Ie9z8QSSYX6sWeeTxmR88jFmXg53f33r3ByApeRWj3r9Mxf5urwICft9e/cXqQoHTpICA36ep2mKvQoHbp4CA37dPe7GyUOC0KSDg92mr+Ona7/bODiY+/AGktzbxN7/4q1CVRH8UlSCmFyQAHgoyIKZECW2fERKFknsVVhvcnDLgY96Wy+X4bykLvBr4Ll6nCMB9TgebTAkmSxWqmuC7OJeYp8tqYdc3zevqkdQE38V51JySwDXdMw3qG2joJ8d3ZfBdnEeAnSJOqKklDQL6BNA57aLGKALwVCJe0LSpCb3mQbz6OXeVzaob5/cHPv5xyAdG0aNUH/oJW/F78dkH/wVDW9uY6O6Bceos+icma0Javmg+D5/dCtvsdWym09ANjzCopWaRNUc+j/BuM810LMKA3jx9Dh0VndslV6L872gElhtXEPf5uOmm+ex5SOTKmiCarrCRSXETTopA6ZLKYT53AQqt/tB5+fwOVq5ehm9lGa2dnRg4dwc0lK99wGG+b8f5HCjDnJzbTU1NMJ+/kw8FbmWec2UZ9rkbnPFtmj4L03jtWuzkdvBn330Qy34vZ3//wzvfh7bmQkaRGEKBZ1IBAb+fSXXFtYUCQoFSBQT8Fs+DUEAocBQKCPh9FCqLNYQCQgFSQMBv8RzUswKPrC7hdX/+SZgUSnz6599edasUZ2xdXkQ8FITePIjegUF2WB82KB7EsbrCsc1KvQGm4dEDESKVrkHA3bW+Bo/VwpCdGmpSFMphg8C5226FfWmBI0wGJqbZnX4rgyJZVmeucazy8PQ5jmW5lUFxLKuz10G55MNnznPMy60McrivL8xyVAr1YaSUj/vPj5dNrRv4/d8+/3mEIwmo6UShwglL6a5XnTZ8+cEHIGttw/2TZ9Dc1ATNwCBHhFQdDLDdsC/MsRVfqlShrbWNs8V76AFoqHJKk8+za9s+P8tRJz1yJTo7Ozmzm2B2Y9PB1xP4HvJ50ImJbX4GMb8fXTIZunsk6FEoINMZbjbBrHDD25sbsM7PIOSwo0Mi5U6xFAwvp4B8dppXHgS+bQsL8K4ucXa3XKXmXCCKZ6EM8erzchzl4lxcQFNrK4f4k6Zq82DtWuRz8DlscC7Mgxzd5C5vbmqEZmDo0Fr4XA586rF/Q2h7Cz8xOoG/fts7uZmAGEKBZ1IBAb+fSXXFtYUCQoFSBQT8Fs+DUEAocBQKCPh9FCqLNYQCQgFSQMBv8RzUswIf+eev48++/xBeeeEi3vHcF1bc6kY2wzEkFPNBkSP0b7XeAKVWv9esstJEikzxu52IR8LM6MjtLJEruNElpS5UG+TapsaWlBlOzmsC4RQNQk0wCykU1UckGIDLssoskVzcFMlCjurDnNiU8W1dWkCXRIJ8Ls8RJMahUf7vWiMVj8OxtswHAQ2NDaD/No9NcAZ4rUHclKJVyBFPbnFqvtk7OIw3vOBZZdPqBn7/5fe+h/VlCzbo4akBwDfTKSwtzuPr1y+jQ6HCr73kZYj5vKCmlJrBYXRKKwDwXec2AWwC3/qhYaj6TEhHwkiGAlD0mtCtpBOQffElHO4e5qaY6VgMKlM/n+zQPcQDfm6AKVHf7Mi6V5l8nrueWuduIOb3MeymbPD81hb/N8F9mU5fEYCTe3pt9hqCdht6lCqYJ8+gsaEBUZ+Hm2bKe/sqOtUZfM/Pw7OyiHapDENnz3NH2KjXzQ0slUZTRQBOzTldqytwL82jqa0dQ+fu4Ic64nZxI9CqALwMfAPGySl+ZePfU4tkNoPvZNOIbmzgVRcu4pNveGs9f5eKvR0DBQT8PgZFELcgFDglCgj4fUoKLbYpFLjNCgj4fZsLIJYXCpwiBQT8PkXFPoVb/ck/+hgWvG585BWvxZ3Uv27fKDa3JFir6TNyjEjY5+MYFMrRVur0FaNPqEklge9oMMBOaHJfx8NhzuCWKtXQ9PZx88z9g5zbQZ8HPocdKp0BCq2WwbDPaWfHOGV5E0ivNGgtanpJ0Sp0/Q1qzGm3gXiIwTyEjq7K5tgi+CZgTc0tqbeix7bOUcy1AHgRfBODpD6MTc1NHIFC1yOnOhl6K41MKgW3dY0jqQtAvx1+l5PjYT74y2+rT/j9hcceQyCUQLgIXSsA8M1Mit3Q0WwWn529BoVMjv/80ldiZ3uLYW0yFDwIwPN5RPxeBtj0sBqGR6E1D/BpBIFmakgZ83mg6h9AN3VmLQ6KLIlFsT57HelohIF83wg1t2znrJ1EKIiY1wOpVgeJWoOGxqa9qRvZNCzXrzGwVuh70T85zQ8ngWZqgklAukMqKwDwkrgPyghfvX4FQds6ulVaDJ27wMHw5KrOxOOIetxobmstOMBLoloIfFvn5+BdWUK7RIqROy6he/cQgAA2aUMfnP0A/AD4Pn8BMhVlg4MPCSJuJzZSFQB4Pge/w84uehqmySko9X18SnPLtdjIwjA0iha1Bp/83ncQz2bxGy96Kd7/k/efwq9ZseWjUkDA76NSWqwjFBAKCPgtngGhgFDgKBQQ8PsoVBZrCAWEAqSAgN/iOahXBUKpJM7+7m+iuaEBf/n6t0C9L+aD4C/BY+qPR80tybVN2dTkqCZXtt/pYKOsSqfnfO3ioN/7XQ5QHAgBcrlGw80gczuUAe5nsC3XaKHtJZ52E4BT9nXI62FHNIF2cpfT78kJTu5xcp8TKyRgTIyydBD4Xl+Yg7q3j++VwDrxwGQiDq/dyoC+d2DoQOQKXde2vMAxzQS+OcqFEi3SKXhs1gIAHx5l6F86KKvbsbrM96HvN6ODUicaGtgxTgCckjT6RydYs9JBhmGKcyHHt85k5qQMcqfTYQHt7+2v+Omyv68b5zfB70hyE9sbGxUB+GYmzfnXDQ2NyMtk+Pi//l8OoP/wf/hZFoQeHoK1iWAJAM/nufGjlTK+sxnoh0ehHxhEc8vNPB6aR27lsMsJ7dAIuikChRpOJuJYu36FYbXGPIC+sYmyh4qbWQYDPI/c2FK1hqNT6HWG5atPIeZx888Hps8VXkfY/QDQQ5eKhnlet7wQgdLY3Ay63sq1Kwisr0Gi1WH4wsW9h4b2R6A6k4gj4nJy9ImCToda21AGvqVSjF28p9BJtfiBy+fZwR12O3lfSopA6egEyPG9tgLX4jya29oxeP4OPnW62Z02XxmAE/h2OmCfn2HdjZPTUBn6+ANcHPxBdjuRrFELOoTQ7dbCG4vijx/6F6Q3N/GGS/fiD1/zc/X6nSr2dZsVEPD7NhdALC8UOEUKCPh9ioottioUuI0KCPh9G8UXSwsFTpkCAn6fsoKfou1++clH8etf+yKmNVq8obcfg5PTkKkK/QgJ4nrsViRjMW78SM7tm9yswCIDHjeDaoLD5NIuMModUNwv5WcTTKakBALmN7nZDgNwyvJWGXqh7TXu/T7o9cCxugRD/yDUBkNZ3HKxCaabTLMSKTvAW9oKjJPAt2V+FlqjicE3GVSLg1lkIs5Amn5eAOCFJpbxaAS2pXnOFDeYBvaux7+sAcCrge/immSqddvXEQ8TAJ+ERF5wgFNcDIFvOhwgbQiol2pKP3/pHZNlT2Cdwe8tUnYXgDv3IlDoASHHNw3K6M6iAb/9ja9C1tGJ33vFa0seHgLgLobS6sEhbG9vw3L9Cje3NIyMwzA0XHaaUvoQkPubokZ0I6Mc/7Fy+UmkImHOEu8fn2LQvH8QkKa1yKmtopMKlQqLTz7OEF7R14/hcxcqN9PM55CMRBCyW9Gj1nB++NrMdfgtK5Do9Bi/eDdaOb/nYAxLJhFjLSjDW24wwLm6UnB8VwLfNx9zdnCHXQ7+CTXspA+gc3GOwffQAfC9p0wBgLuc3LFV3W9GIhqFbe4Gd2E1TZ6BuuQDWqoPueojnuJhxBC2tra58SfXYnScm2mWnmz5EzH874e/jWg6jfuGRjgDvKOlevbRKfoeFlv9MSog4PePUUxxKaGAUKCmAgJ+iwdEKCAUOAoFBPw+CpXFGkIBoQApIOC3eA7qVYFf/sJn8a0bV/GOZz8fdytV7PImAN4tlbLrmRoy9g2NQCpXlEHaoh7kXibGRlEjg7uRwAS+yWlNcSHUMLIU7payyHDAx85pndEMbZ8R9N+W+TmYRsY4JoWc2gdYZC6HWCQM59rKLrA2IxmPFcA3xTUb+ytmkBPHo4adzvU1tLS0om9wCJsbG5zxTc5sgvtFkF62JgPwNAN+OgwwDY/xr+2rS5x9zlEqBNJLXO/F+QzAbeQAD3MGeGtbG69P+eV9A0PokkjL3PLFeS85O1p2C3UIvwv7Iwd4yGVHJh7jUw7Ku1ZSBkxnJzuEf/MfvoyutjZ8/FVvKBOEXccuJ4NssvVvb22id2wCfcNjaCg5ZTn49OQ5psS3toJUOoVsIgnN0DAGp86yM7v6yCMeDDCATmcyHL2iNJkxeueliqD95nXyDNd9a6tIJhOcIU7ge/KeZ/Fea61HESh+6xqDaFq7Qy4/6Pg+uEE+TCBQHwsG+OSlubMTw+fuhFStZkd95VE4jAg67Ih43ZzZg8ZG9E+fg6bPVPEDvPcFwLVw8Nxk/PBaxDMZ/OnD34YnHsWEzoAvveM9UB/S/LRev3zFvp4ZBQT8fmZ0FVcVCggFDiog4Ld4KoQCQoGjUEDA76NQWawhFBAKkAICfovnoB4VICA8+Tsf4Cjez7z57TBI5QytXesWdipnM2mYRyfY8V0J7hY1oesQALfMz0Cl72UX9sDEFJQUoVIBCu9pSREnfh/WF+cgU6pAru/BiWkG36URKpUYJkF56/Ii2js6mNVR9Ire1I/GkljmSvOIlRKoJ1c3NfGUq7XoHRgsRJ3UGBRV4lhbBeWe06Dmmcah4QMRKvsvQcCc9IwEfHvJGATQu6mJZhVtTg38JrGyyTj86xZ+jUBlokxuakoJbG5v4ze+9rdoa27BH+yPyKAmlZEwlp74ITYzGeiGRjBw5nxNSFsszNZGFje+/68M3MkdPX7p3trAfHfizs4WZn/wPcT9Po4sOfOc59fs9Fpcj/a1+ORjDIg7JTKcff5PHgK+CzPzOzuwzFyFz7LGESbj9zwL3RQgX+sDRfNyOThXluBanOMDhcELd3JkyWHzkMtxTtH69Su8dt/kNHqHRg/XlGsRwuITj2LrFmuxsb2Fv/jBw1jyeaCTSPGlX3oPRrW6evyOFXu6DQoI+H0bRBdLCgVOqQICfp/SwottCwWOWAEBv49YcLGcUOAUKyDg9ykufh1v/Z9nruIdf/NZaHok+Pzb3sk7JRPt2twMA2WDeZAd0YdyM4Z1eazO3eC8bsrj7h8Zv+V5tpUlhu5KrR7D02dveZ7bZuWmkdSkcmjqzC0xRbpPjlZZW+bUiYHxyUJ88i2MWCgIulca/SNjkCpLeifWmJ9JJmBZnOdIauPQSCEepgbDPCXwO4+tbJYd3NlkgvNoCNYqjCa0c1fSBrz3y59n+/8fv+7NN+WlJpXxKEeWZGNxdjRTBg41s+yUSGsKSwVYeOIxJAM+jiHp6uqG2jyIboWCs7yrDQLmK1efRthp58aXHW0d0AwOFZpg1phH2eDWuRvwWy3olEjQ2dEFtXmAM8ArvQ5RXJ8aShLA9qwu86kMhcIre/s4X7yQ57MvKmV3IoF2n90Gx8IcGpDnD4ZMo4Oyz4gW7hBbeR4B87DfC+uNq+wApwwg+kdFLvyu7qrz6MNEDUNXrjyJbDwOqerWa0Ena5/+9rewlkmjq7UVX3j7u3CXeegWPobiT4QCtRUQ8Fs8IUIBocBRKSDg91EpLdYRCpxuBQT8Pt31F7sXChylAgJ+H6XaYq2jUGAnl8Oz//vvwh4J4a33PRevu3Qv51BTxrePGJ9MgUw6ydEl5MquxeqInflcTtiXF6HSG9j5TdElSq3u0Hkhn5ed2JQzHvS6eR5lgB+2XjQchGN1hSNHKLebmmpSBnhp1vd+HcmhTqyOIlMIPhMLlSpUDPkpkqQqkKbeiKkkZ3VvZDJ82baODs4O7yQ2WA1k5/McrUKRKbFwsBDxnM9zjEy3VFbV3X4K4Pcu+HY7GYCr+wfYRR1y2tm5LDf0ob2rG+//6t9iJ7eDT7zhrYValoDvjUQCutFx9A4OI+p1YyOZgqKvDx2cJbMPZO+Gty9ffhLJgJ+bXg5MneEYEvqHMsa75eWB9sX16PUAy42rnIkt7zNi7OLdHHsSstt4HgPwCq8bbG5kYF+YQ8BmRY9KjeELd2JnYxPe1WWG2DKtvqJzfJu6pVpW4VldQVtXFwYpU7ypGf71NXQpFKxNaY52KTD3O+xwLs3z6w/902fQLZEhaLcy+FYY+ioC8FxuBxGfD9aZayDo3jcxBZVWz051+sAUa3HgIecPUwQrV57CRjIBPeWtUy08bm6+Sc06b6UWa5IePB0MoLmpCZ94/ZvxM+fuPIrvP7FGHSsg4HcdF1dsTShwzBQQ8PuYFUTcjlCgThUQ8LtOCyu2JRQ4hgoI+H0MiyJu6f9Lgb9+7N/wW//4d5B1duLzv/BOUDtKAt8UX0KRJWSm9TpsiIaC6DUPssu5UgY3mU39LheD4YGJSchVGvjdTs4ONwwMQqnRVWR81BQz5PfCvW5hp7jG0IdIMID1hTkYBoag7e0ta3ZZ3CyxUbonAsoUx0JzU/E4LAtzHJdSDYDTvEQsyhncbW3tDLw3NzdgW17kvZLDvbWdok/KzbHE/yjqhJpl0l4JXNMggE5GZWpaSREoB2Na8tjMFjK/KZO8f3Qcra1tfN8bG1ler4cAeIVc8zqH35sFx7fbha1shh3bBLppbGbSCDsdyCMPub4Xv/PtbyKztYU/fM3PobWpec9lXATf/eOTDLoJGFMTTJpP8xi6FoWlk4tEHKvXriAZ9HPG9xBHpDSBGjZSBjjlcpMbmxzgeyCbC5+Cde46oh4P5L29GDl3J5paWylbBPFAgJteyvQGhtv0MJQCc8fSAoIOG8e4DJ69UHi9oKGB1/JbViHV6QsAvCRrfGszC49lDV7LKto6u2CePgupUs3zMvEo/JY1dMkVuw7wlr0vgJ3tTQQcDjiXFtDQ1AjTJGUHUdRJI7vqqwFwdnz7vLDOXsPO1hb6xif5w0fzCrWwIw+wpuzGLx4qVADfpn9XLS4jGQzs1eKJdQu+9OSjXPcPvvhl+LUXvuT/68tNTD7dCgj4fbrrL3YvFDhKBQT8Pkq1xVpCgdOrgIDfp7f2YudCgaNWQMDvo1ZcrPdMKkCRu3d/7MMIJBN47wtejJ8an2LwHfS4GXyT05sGNWYkAE4RKDpjP/+cDLrFQUZRv9sFn8MO4/AoO71pENimnwfcTuiMJig0ujJHNjnMw34fX5uANYHv4nXJCU5NMMnJrentLTO50nXJQU1gneKP6drFrG6KJCEATs5zAuDNLTfZYBF8U7RKMzepHER7RyffK/UTtK2UAnBKhyhizAL4psaf29tbHFlSjEhJJxNwrK2gubkF+n7zAQC+mc3ugu8o+kcm0COT8UU3Mmm4rBZQIobOZD4AwLe3tvCyO6fKyl9XDS/9wTjCu47vUvBd3HERgNN/f+ra04jsbOOjr3wdcukUVq9eZpexYXQcRdhanLe9kUXEQ0A9yyC74Dpu4IiU9RvXkAyFoB4YxNCZc2VObXqIYz4v0rFoIQpFruRTHiqwbWEWMa+XAffgmXMF637x4cjtcCNKmkvub4lKww8xFdixsoiQw8FObXKYd0lkZa8HpCIhBHcd4QTByclN0SqedQLfa9zws3/yDGRqTdk8yin3r6+iUypnZ3VTSysYfDsdcC7ugu+JKah7jWUxLpUAeD6Xrwq+S2tBbnw6D5IxAC8cUsQjIa7FZjIJPddiosxtf7MWG5Dp9LdUi3mPC5/9wb9iK5fDq++8C3/0mjehqcLJ0DP5xSiuXR8KCPhdH3UUuxAKnAQFBPw+CVUS9ygUOPkKCPh98msodiAUOCkKCPh9Uiol7vNWFPiThx7A//jOP3OvuU+98a2gtARyYQ+MTR7Isd7a2IDXaUcqHoOm17gHwAnSEtym/GxyMSso4qQk/oMAd8DjAsFsAtzkAKdIEvo5rUUOc/oZ/a4sqoSbYHrZIa3UGRiME8gm8E2Ob+rJ19UjYRjfQlElJYOaYJJznCA8OcIJjO+Bb4eNQTWD784C+C6OIgCn65LLvZXikXejTvbA9+AIOnvKs8HTiQQclpsAvBiBQuCbAHcqEefs8yL4Lq6XTafhtllAGtI+ig5wao5JYP+XXvWysvurG/j9l9/9LixLFga9lcB3KXQlB/iXnnoUbgDvee4LEFpeYhezYWwCprFy2FqcR9eNEgCn3Gq1Bju5POyLc0iFw1D3mzEwfbbi6wQ7W5uI+b3IxOPoVqnR0NwM98oSYn4fw9v+qTNo76Ac8vJBjSEJgCeCfnQplNyY0mtbR4geUpkc/ZPT6JZWalKZRzIc5mgR+rsOqQxBel1ivQC+TePTkFfpFlsA4GvolErRo9Yg4vfBtbRYcHxXAN97D13RAd7WxocD9DqCdeZ6IeqkxPG9f490GFEE4BKNDhubWVhvXL+1WpC7f5NqoQXlLNkXZpGKRDj3nA4F9tzyu4vawyH8n+9+G+nNTdw3NIK/eusvo6vt5mnUrXy5ib8RCgj4LZ4BoYBQ4KgUEPD7qJQW6wgFTrcCAn6f7vqL3QsFjlIBAb+PUm2x1jOpQDSdxqWPfgjprU188Cfvx1BbO8g1bRoerdrAcXMjy+5uMsNSmgJBYgLUxN20RhND7ErxHQR3gx4Xx5lQM0uKKSFAHfJ5OONbre8tc2gX903AOuT3weewQa7WMswmkEywnZzXtGZrFSZG16cMcalSCW2vCRTZTPdOgJ0iSto7DzJMWpciUSizvKO7hwH4zs42O7cJ1hsrgO/ivRYBOF+/fwBNTc0MvqnJpWl0nMF2pZFNpzhKha5P+2lr74DPZUcsFMIHfmk34np3Yt3A74997nOIJTJQm8y7jRSrP+oEXT/19a8ins3geXoDWrZ32PFtHB2v2WSSAHjE5UA8HOai0nVUJjP6J6ZqdkQlAE7Z4VG/H8lEHNlUkmNJTONT6ODIj+pNJik3POxxIZVIcOEJaBOI7pFRI83K8yg6hQB4wG5FOpVCKhFDW0cnz5NrdDUbd2YSMfjWVpHJZDh3mxzntcB3UeWNVAI+yxoy6TQS0TCfKFHGN50I1Wr4SRqSU53ukV4DodOdW60FAf5EOIRELMa1UJsGYJqYrFqLYCKOTz78bUTSKYxqtPjKr7wP6lvsSPtMfnGKa58cBQT8Pjm1EncqFDjpCgj4fdIrKO5fKHAyFBDw+2TUSdylUKAeFBDwux6qKPZACvzXb/49PvNv34WxuwcfvOfZ2MxkOOZXplDW5G3Eu6gRZjqZRFNLM7ayG+zaVmi0FTO9i2pvb20i4HEzYKfIEYr7oPxwtd5Qk0USl6NoFHKIt7S3YWdrG53d3RyHws7sGoMc4pRBTk0p6ToFx3d18F28FDXDpAxwMt8il+dei7XA9wEATn0PGxuwkU5zxjc1taw1igCcIlUKiRkZbqL5+uffVzatbuD3Bz7+ccgHRtFDOda3MP7oG19FzufDuR4phqamMUBZ3fubWe6/Tj6PgNsB6/Wr2EgmOepkYPo8WjtuRpZUXDqfRzTgx/qNq0iFQ5AZenm9Lom05geDXhFI7UarkOu8W6mG+ex5yFTlkSWV1qQP3/rMVfitFnT0SNF/5txuZEkVYF68SD4Hy8w1uBbm0dLewfP0A7UBNk/N52BfWoDtxjWOdjFOn2UXfS3wXZiXh2d9FdYblA2+CcPYJAYoPuZWauFywHqjpBZnzpfFx1TSJZnN4BMP/gu8yQS/nvKlX3oPRnczlW7hsRF/csoVEPD7lD8AYvtCgSNUQMDvIxRbLCUUOMUKCPh9iosvti4UOGIFBPw+YsHFcs+IAt5YFHf/t9/B9s4OfmVsCpqGBphGJzizulIzy/03QdEn1uVFxENB6M2D6B0Y3MvcrnXDBHkdqyvsAlfqDewyr+bALr0OZY4TxPZYLZAolOgfm+DmlIcNco677VbmfB3d3RiYmGbX+a0Mgu2rM9fQ1NKC4elzDPdvZRCoX529zn0Dh8+c54OBWxmFqJZZZJJJ5pAGkxn3nx8vm1o38Psjn/kM0pt5KMm6vxu6Xk0kcnD/xbf+EeFYFC8wD8Go00NtHqztGM/n+eGkqJN0PMavKPTI5FCZ+tG5L3e7bF0C2IkYHIvzHGPS0dmFHrkCSkMfupXKsozw/fMo49u5ssRRJ/Q6Aj1oFJVCsSuU5V1t0IPiWl2Gd32VX3+gB1ym1vLc5tbyPJ/yNXP8gXAszKGxsYlfcZAoVVAY+hiEVx35HPxOB+zzM3wiRCdQBW3MtWuRp2xwN+zzc9jMZngO5fio+w+vBZ14OX6UWsRjWF+cwzds6/DubKOrtRVfePu7cJd56FY+U+JvTrkCAn6f8gdAbF8ocIQKCPh9hGKLpYQCp1gBAb9PcfHF1oUCR6yAgN9HLLhY7hlR4H1/9zf46uUnMKlS4x1T53iNfD7PbmNiWrUGRfcSGI5HI9z/Lp8HNL19kKlUzOAGub3mAAAgAElEQVSqMr7tLYR8PnZxUwBEHoBCreEok1psMJfbzfh2OvfmSWRyhsrFJpfV1qRkBoLmxQxyAu2UAU7RIrUGN7FcXd77k+aWVgb8h4F6gvuudcrw3ixoCjDgLzbHrLYmRbJQxjfNL63Fa557d9mUuoHff/HQQ7AsrfHmCgC8cgbNVjbDzSu/ceUprGQz+IVnPx+y7S1sb2wUssIrxWDsA98qYz+0xn6ko2G24lODyE624u9zVVO4eyIG++IC4kE/ZBod9IND2EqnQfnalHPdrVBUBOCb2TTP4+xuuQK9I2PAzg5SkTD/t0SlRmMFAE7w2bG8wNElbd3dMI5PoqW5hbPD27q6IdXqKgPwfA5uyxocC7P8e8oip9chol4Pv0Yhpw9HpYecwbcd9vlZUKNL09Q0ZAoVNx7lWtDrFJXygAh8e92wL8xxTrueutrqDIj5PIVa0OsUXeVB+LtPctkhBNfC1I90OMwNQRW9Rs4sr1SL0kMImVaHx1NJPO1yQN7Zhfe84EX45ee+8Bn5chQXrR8FBPyun1qKnQgFjrsCAn4f9wqJ+xMK1IcCAn7XRx3FLoQCJ0EBAb9PQpXEPdZSwBLw4Xl/+BHk8nn8p0v34tzoBNo7Ohi+ZtIpGIdGqgLwIvgmqEyNLcl9TY0uKSZEZzRBplRXzPzm5pY+L8J+L6QKFYNyiiQhQ6hCo9sF4M0Hbpuc2/R3XoeN11LpC/35wj4v32MtAE7NKx1ry2zeJeBNUSI+lwPtHZ3cXJKiUCoNyhQn8E3Z3X2Dw5zFTZnfTU1NMJiHCrHPFUYmRdnda9jZ2Slkfjc3w2lZLWSFD4+y+bjSoPui/WUzaWh7jXxfxVr8x194U33C7y889hi8/igiLify+VxF6Mrg2+3iRozfWF/DfCSEd73gxRiQyRFy2EG/Jwd4GQAn8E1h7wuz7Pgm2No7NMqi0okEXS+biENpMu8C8F19CXwnEwx34wEfpFo9jGPj6OyW8PrU8DIdjUCq06NboSyL+SAYbFuY42aQ9DvTxDQ/nLmdbSRCQSRDQW6CKVFp0Nh88yHP53cYmHtWl3kPA9PnIFWpuTNrKhoG5YdXAuCkl3ttFc7FOTS1tmLw7AUotHrkkedGnTGvh19XOADA8zkOz3cszPORlXFyCpq+fjRQPk8qVQDguV03fikAL4LvRQLfG9APjkA3MIDmljYG4VSL7WLj0tLDiEq1GB7lk6eyWvSbC2784uBaxHdr4ee89b7dWjw4ex3fnL3Gf0nu70+84c0wym/tVQ7xPwunTwEBv09fzcWOhQK3SwEBv2+X8mJdocDpUkDA79NVb7FbocDtVEDA79upvlj7x6HAWz/3KTy4MIs7NTr8+k/dD6lcWciZzma48SJFmlBO9X4HOEWPUKPJeCQMpU4PhVrLgHdzY4MzwOnnBH3lKnVZNDIxQALfQY8HMrUaap1hL/M7QH0FAwEo9foCAG8qAeD5PDfIJPAskSsKGd9tbQyTwwEfQl4P/5wab7a0tpZJQ3CeMru7JBIYKJVhN/Ob7tHvcnA/wUoO8CL4JvNs3+AQO73JEU+aeOxWjoShnoAdXd1l62VSSbitFuRyOehNZo6HJrc5ObmdljVmfZUAeNHxTSZYda8RUrliL/Ob9v3O176ifuF3JLmJjXSKgTQBX0WfCW270JWbVbqdnB1DwPkLV5/GrMeFX3neT2LS0MewleJFNtPpmwA8n0ciEoZtfuYm+N6FrcVmkxQ0T3ncBJfVA0MF6JrPg04urPM3EPf7INMZOHeGOp4W59F9xPxeJMMhKAy96Fao+Hf0c8vcDYTsNo5FMU+dLQS87za3zG0TAA8gEQygW6niCJTGpmYQ+LYtzMOzsoQOiRSD5y5AQhB3d14+V3CNE3QnME4RKE0trXxQ4F5dgXNpHs1tbRg8dwd3gt2bl89VBuC74Nu5MM+vIxD4VhuMJSH9eQbgxVqwG59qURJ1QidfBL615oGyVy6q1SIeCbHDfO8Q4kAtNhDxuNmRX16LJKxzM3wIUakW9oAfn3vkuwhlMxyD8uGXvQpvuufZP47vRnGNOlNAwO86K6jYjlDgGCsg4PcxLo64NaFAHSkg4HcdFVNsRShwzBUQ8PuYF0jcXk0FnrKu4RX/53+hqaEBf/Qzr8ZwX39Zk0pqZum2WUCuafPYxB4AJ3jrd7kQCwfZfV0E38XFiIv5HHaG1X1DIwUADnCkMIFvAs7kFN/f3HJ7awtBj5v/hqJTCIATiKcRDQbgWFuBTKVmV3lpxAkB8EjAj4DHxdHKNJeANQ0C39alBfRIZQyqS5ti0v0QAN9zgJdEoKTicXaKt7S1MTAvdXgTm00m4uzIJp5S6gAvOr5zuTwD9e4eSZn7nX9vs7Bp1jg0ykCeBsUmeyjqJJOGpgR8FzWlWrz8rrP1DL+3OBmmAMDdIOBLsRsNTU0Mvrc3tyDT69HRI8HnHv0Brjls+MVn/wTOGc0sCkFXcisTtFX3D2B7ZxvrszeQjkWhNpnRuw+2FpWkRo0UpZIMhaAZHEZTawssN64h5vNBbjDAND5dKP4uiC7Oy7ED3Iu43w+lqR9dMjlWr19F0G5Fj0rNjR+7eg42xWQHeDDIc6UaLUNwCqH3riyhXSLF8IU70SNTHFivAMAjiPo86JBIINXo4LVZ4V6aR1NbO4bO3QGZ+mAzTQLk5ACPet2FCBS9AeGAH86FuUIOz+QUZ5iXnTTRJvO7tfC4kN/JQWE0gj4UBLA56mRo9AD4LmrDtXA5uZZUi62dbVh/hFo0trZgnWrh9/F9V6vF5kYWX3n8ETy5G9dy7+AI/vSNb4X2FhoBiP+NOD0KCPh9emotdioUuN0KCPh9uysg1hcKnA4FBPw+HXUWuxQKHAcFBPw+DlUQ9/CjKnD/n/x33HA58OKxSbz3p366DHwXr0mQllzHlB5BjSW7unvgczsRDfgZ0sq5f9/BiBIy1XqddobZBM4JSgd9HgbGFE+iIsd3y8G+fwzAvW7OESd4rNLqEYuEYF1cYNCu6zOxU3z/KAJwAuvEADWGPqSTSdiWFyCRyxlgE8jeP4oAnO6VHNx6Yz/I1U7gm/oU6vsH0NHZWYFFFgF40QFe6LlHUSfk+NaZzAfAN/8BGYvTaXhs6yBmRwCcnOoehw3kGKf9kYO9CP1L7/clZ0fLbr9uMr8p9iSSJPjNCu05wCk/mqNB8nmO7Wink4SGRvzN4/+Gp6wWvPne5+DiXrPDPOdNE3Sl5pSpZIKt9gS++0bHd0899uV6765IIDvsdjFYzmQySEbCkBv6YJ46w7k4+8F3sQoEsmM+L8P57Ba5yD2QaLQYOn9n4XWAfcC8OC9Ppy6hQGFeNouwx40OqQyjF+8u5OFUm0cAPBrhPVImUdTv4yzvwfN3QFolY6jwzBUAOK1HrzPEgkE+VGDwre+r+AEuPqwEsOlQIRmJ8EnS9vYWDCNj0JkLUSeVR55PdyjGhvaZTCR2QfhuLdraD+Z616pFbx/Mk4fX4urSAr42ew2pnR1I2trx0Ve+Dq+649KP+v0o5tWZAgJ+11lBxXaEAsdYAQG/j3FxxK0JBepIAQG/66iYYitCgWOugIDfx7xA4vaqKvCd+Rn8wl99Gm1NTfj8234VUgK8VQY5uQmAUyRJj1yOdCLOcJcc35UgbfEylAJBUJmihVX6Xm5uSUBbre+tztsAjjIJeNzwOqzcBJMiUrRGE4Nhii+uNghkUwQKAXZqKkmsjpzihn3JDPvnE6wmuE9RJs3NLRz5QvP1/WbOCK/OInPMEkmb3PYOX7axuYnjXohhNjQ2VkGDBMBT8NisHC3NscfbWxyRIlEoOU6l0jgl8Ju2TnnVMQRI2B3KADeiR3kzP+fLTz2KR9dW8Ma77sM9QyUnAvkcR50sP/U4N7OkjO+Bs+fQ0kqwtfbYymYx98j3kIpFubEkgejCawKVgXnpQz7/6A/YyU1Z3hP3PQft7dWB+d68nS2sPP0kQk4H2rq6MPms5xU6oVYB38V5eXK0z92Az7LGTu6hi3dx1EnVh213IgF399oynEsL/BPT9FloTWaOXak1CJwHXU5Yb1wFnUwZhkfROzq+92pF1bn7a2HqZzf8rdUig7lHvv8j1eLaI9/Fv/o8cFLrXQAvmjyD//Xan4esxhfcYc+G+H19KCDgd33UUexCKHASFBDw+yRUSdyjUODkKyDg98mvodiBUOCkKCDg90mplLjPUgWoueXz/uD3YQn68XN33Yc33fucQwWi2I01ik9OJKDtM8IwMFQV0pattbON1dkbiIVC7Nym/PBawLw4l0A25XSTc1yqVGJ4+uyhnI7mEsimvG2KXens6cHQ5DRa2ys3syy9T4oyIbc5RZJQpArdJzXVPJRF5vO7kSzLfDlychNwp4zvQ6AiN+ukPdLhAjnTyRFfi2GeGvhNUSSU4U051/SwUAGpKWWxkF+7/AR+sLKI1168B88eGd/TmZzey5efQMLvR49Cwd1UtUMj5U0wK1Qll9vGwhOPI8JNKhXokcigHx0vb4JZYR5FkaxcuwL/2gr/bVd3N3rHp7jRZa1BGd/Wecr4XuA9dXV1o3dsAhKN7pCHJge3ZQ2OhVl+wChTRzs4zLnjDY2FfKCKI59H0O2EdfY6tjc20SOTQtVn4sMByg6vNY+yuteuXubGoN0yORQ6PTTmQXac1xpci6efQDLoR7dcCamSajGM9q6emvPKa6FEj1QK/cit1uIy/Gur6JTJ4Abwg2gY2e1tKDu78CdveAuePzZ56Bed+IP6VUDA7/qtrdiZUOC4KSDg93GriLgfoUB9KiDgd33WVexKKHAcFRDw+zhWRdzTYQp85enH8f6vfAGdzS34ize+FXK54hBWl+cmlo7VZe7fR7EgA+OTB5pgVrpIyOfByo3rUGg0nB0+NHWG4fBhgzK+1+Zm0COTcUTxyPQ5bqx52CC39/riPFpaWhguU2NJao55GIwmB7Z9ZYnNrRRHQk51cnBXimYpvYeNTAZOyyqSsSj/mPTpGxzmppq1Bq1DjvGgx8XxKrSOaWSsYP6tMk4F/N6hCBKXA+lYDBo6YWlqQtC2zvEnKlM/Wto68PVrT+PhxTm88sIlPH98iuWimI2FJx5BIhCAdngUptFxjt2gfGq1eRBt+7qSFjUuwNbHELbboDQPYPTCRUS9HiRDQWiGhgtNMCsMAt+r16/At7YCiVaP6fueg3jAj6DNCt3IWFUATk5qbm65PI92iQxjl+7BTjYLz8oiz5NQw8rKC8JjtcA+N4Om1lYMn7+I5pZm+FdXIO/t40xsNFR4ZSCfR8jrhuX6Vc5R758+ix6pHAGrhYG9os+IpuYKr1Pk80jGIli+/CQ2kkn0jk9yzlHIYSvUwthfFYCT5vNP/BDJklpQVAtlgf+otSBw3lGjFsVDCIlutxZ+P6zrq3g4HoU1EmZFf/aOS/jYK1+P7gr5R4d9sYjfn3wFBPw++TUUOxAKnBQFBPw+KZUS9ykUONkKCPh9susn7l4ocJIU+PfA7xmXA5FUCtntLY6HJUNadpP+Tf+9hczGBjboZ/Tf/PPt3b/bwtbODrrb2tHV1sb/7qF/t3fw/w9f/Le0owsdLS17f9fT1l4zyuIk6Szu9cerwKWPfgjuWBSvHpnAswy9MA0TdO2uugiBb3Iok/u6RyaHa52aYEbKmmBWmkzge3XmOgYmpznjm2JFfHYbBienawLwaCgAy9wsR51Q9EjQ+//YexPo1rbzvu/PeR7BCSTBeb688xslWZKt8VmTpTqyFafy1NR1mjqpHXfZVuzYq03kOE2dpra6FNeqXUuNYzeOJ9mWNfpJevO77w68nAcQEwGCxECCJECCQNf/OzggAB6ABO+7fPcS+7x1F/lI7HP2+X97HxC//e3/t4bl6SkMX74KU3t2AL4dDMA6Oy197OofENi+NHUXPSOjAsCzHXuhEGyLc5I82zM0jEg4jJWZ+wLbCcCNPM15LmbDE3zTwoSZ4jyoE61SCMBTi2umXpu2LgTfm+419I9fQkVlJeyLC4jFDiUWVVliceHhN8E3gTV9rdsGBlHFgpGA+EUTgDNLmRYof7swi6/cv4sPX72B909cEfCtwdZ1yfQevHJNgkkIS1hL/x2Ccw2AH6Xk05h+/tYr2CT47u3D2JPPoLi4BHo/WCyzpbcf1Q3sx1E7nm956g7WV5ZQ39qG8affhtLyCiAeg9+9hoDLgdb+Qcl4Tt06EItGYV+YhWthTgp3Dt14ArUEukVF2N5Yh3txXjK5BYCnbB3gNgiPbQX2mfsyGPuv3JCKsXwNs+PZrtkAgHM7g299TYpG8to9E5fR0dsnkJy2Musri6hpbBZ4rg3yxD0mwPfCrVcR2Q7BPDqGntFx8VuP7ITEjob3y1iUZVjDSCxe+q5kfLcPDWPwsh6LPWzabYlY9InVy/FYvIxNmw2m3n6MPfn0GWLRjvGnn5W+cZGBixgBpwMLJcX4yvwMDmIxKYL525/6MTw7OPzmPlXV2R55BRT8fuRDpDqoFLgwCij4fWFCqW5EKfBIK6Dg9yMdHtU5pcCFUiATfntD21j2erDgcWNh3YMlrweL627YE4lnb8XNt9XVo9/Uit6WFvSZWtHX0ore5hYMtrajTriFOgpJgd/59jfwq3/xJ2itrcPnf/jTsC8tyO0T1lZn1OgjO1t3OZLguznhysDMaAJwZkv3DI2grkHjd/oRZ7KpZ02KVPYMj0jCKI/Dw6j4cdPKhIm5jaaWtIxstgtubsj1TB2dMPf0JsHzutMB28Is+sYmBICnZXLH4yD4ZmZ6VW2dgG9mU/Ogz/ji1B2B0yyCmWYrEo9jdyckABtxwDI0rNUpBBD0bWB5+r5YkdCLOxOAE3w7rcvify4WKdQAkAxw9r+6rh5dfQPHADjBNxcBaLEyMHFJnDl4sNglATjxY7ZYPHftyOGDbS5UwcuNwC78LqfAXGZ8V9FzJuXQoKsVZZUVuL29hS/PTOGDk1fxfUMjmHvlJYQ2vGngW296ENagK1cWmrssqJRBrq1cMHPb77CjydKDsSc02KoftF5hocfw9jZMlh5UiwdOsQB168x9bFhXUNvSgpGbT6KiiiBXO5hdTei6te6RdvQBJzSOHuzDuTgP99ICKmprMXj1Buoam9MmztbGOjasy2LxUk/vHAHxUazbV2GfvY+SklL0TV6BydyV1m7Hvwn34oIA8MYOs7Sj/4/f44b13m2B+ZbxSzD3DaRlhwsAX15ETXOzFPiUDHAB3wEs3GLG9zbMw+PoGdPAt37oALysolKuKQA8DoTDu0exSAHfp4rF7VvwO+1otvRgNFssQiEB7umxmErEohUjN59CBQuUGsQi1mzCH92/A2fAL7/90We/B//q4z+UNsbU/1xsBRT8vtjxVXenFHiUFFDw+1GKhuqLUuDiKqDg98WNrbozpcCjosDiugfWTS/swXXcXXVgZWMD02tO7OxHsnaxo64B7Q0NKC8tRdHhIaJ7e6itqkZjYxMqKypQVpLgLvG4FNHbCvhR39QsGbnkDgSDhI7bfr+AuJqGRuwdHmLvYF+yxncP9rG9s4PgzjYOmaB3eCg/y3WwBpiA8eYW9BOKm1rR36r9f2td/aMit+rHm6RAKBLBM5/9Zfh3d/ELz30U7xoZB7OeCcCLS4rR2TeQBOBMNiX4JpAdvDQJHXwn+Vd4T7y1w7t7AptpT8JxSubm87jlnCw0SfCdCqpp9+G2r8LvXRfIKwC8uBgE7YHNDTiXF9HY2oYOS2+a5QjHPwE4r9k9OCQAnIUhmeAZCgbhXFmSwpGd/QPyNfUgAF+6f1csUAjAxXM8Ab55Pt5r9+DIsex3gvjlmQwALvNQKwBKW5W+FPCtX1MH4DX1DZI5Xk6XhaIi4ZhJ8D1+SWyQU4/dUAiOpXnpn1EsfuxD70t7/YWB37/3/PNYWVjBjt9vCL6Tgy6RdTztXcdXnDa8bWgUw5EItjMyvjPny/7eLnwOmzxExR6kuBgrU3fhX3OiqdOCkRtPGFp/RPcjAuT3d3fQ2NmFkrIKOBZmsWFbRa3JJABbVksyDN5jh1EEPW5sb27I9cprauGxrsC9vCDfs/CjrHocM4aPi3WKj0De3InqxiZsrrlgn5uWQdE7cRktnd2GRvRcNPAszks/61paseXzwTp1WzKtu8cuycQwskXZ2wpgfXlJAHhjRyfo1S0Z3wK+x9AzNpEGvnVtwzvbYvFC8N3U0Ykozf3feF2LhQH41tulx6ILKC7C8tRdBFxONHVZMHrzSUNz/6NY7KKxszMlFlbUmlpyxkJsbHybouk3Vlfw9Xmt6GdLbR3+0bvfi59653vepEesOs2jrICC349ydFTflAIXSwEFvy9WPNXdKAUeVQUU/H5UI6P6pRR4fBVwBfz42swUvj4zhW8vzCFyGDW8mYrSUliamtHd1AxLcwu66htQEQmjLnoo2aOE2bSLWFu1oq6pSQBfWfnxemN6xi2L9tH2oam1XTJDCdzKysoFNqYmuGWCPuvcjLRrNXfBtenF7NIivKEtHFbXwBcJY30rCM9WUKwvsh0NlVV4qn8QT/QO4Im+flzv6UOFkTXs4xvWguv5v/7rP8e//+bfYqClDb/9Iz+evH9mcDsIwEtLE7C2Et41J9w2q2Rom7LU4aPfNeExYTDHG/2qCbUJeAm92zq7DItb0m2CAHzL75N2TIDV5sUK6pqas84LJu8yY5o2LOaefjS1tkn2OedTWUUFuvr6c8wLN1bnZsX1gfOCC0m8XjQahWVwOKvXdhKAmzvR0dMnoFwD3wH0Do8L9Dc6mInODHAWzSQAJ7uknt41FwYMwLd+Dt4PFw5KS0thFnCeiMWqFb/43/+3FxN+/5svfQmeNW9O8H0EXUP4zsvfxQs2K/oaGjFUVCwWKbq9RrZZTehKC5Tw3p6sWoT8PoGhg1eugxnM2Q5CV3qQ7wSD2N3dEYha09SM/svXUMMVwiyVTWPRA8kAD3rXEdnfx9amFxXVNei9dEXz/MnSjqs5BMibDjui8RiCXi+KSorRMz6J1i6CbwNf70TnBYAvLSBeWoKAdx2xgwPx6mZ12lztmAEu7UpK4Pd6sL+zA/PwaFbwnYxFaBve1WVEDw8FtkvW/sAQBi9fzVmA0zgWXRi8el2qzWaNRSQCnys9FrWJWHCrRa5Y0I6GCwuMxbJnDa/th7FxcCCX4jaYn3nPB/ATb393wb0pFNINK/hdSNFW96oUeGsVUPD7rdVfXV0pUCgKKPhdKJFW96kUeLgKvLa6jK9O38M3Zqclqzv1qC+vQGtlJYY62tHb3oXeljYB3rQYyTwO9iMgxCYMIyvZ3d5GTX29Bvhy1N3SMm+dUhCP0Dy8t4vS0jLJCK2sPtrZbaTCpsctVg5NLa1SnJA77gXwGfTPx2TK7S2B4TaPG4v2VewAWPJvYi+aDvmvdvfgZk8/nhoYxHVLn9yzOh4PBWjJ88y/+hXxlP+XH/8h3OjpS+v4EXQtkwUZFpzsGhjUwHcWTscTcFy6rCsyxiqrqmXHQkuHWQBzNq9stuO8cNtt4rDAecHdDrQO6ejuyTkvaJ1CAE4f8PrGJm1elJWhs/d080Iyy/V5QTeIAc6L7EUm2VcC8JXZ+5L9TgAf2tpC7/BYVvCtC0vP8dUFAvB6cdTwrbvRP3Y84ztzBPEZYV8mAE+NxRB+5H3vTHvphcn8/vnPfhZN/SOoM51cCZUKfOfuLbz08gvoKCvDU1euY/j6Ezlhq6gWj8PncWH5jdext70FU3cPBq/dFCCd84jHseXbxMqdW6AtSUNbB/qvXj9mWWJ0Dl5n5d5tbDps4q3de+WaZlqfY0LJ5KC1ytRduJfmxaecRSrbOWFzgG/9Hlenp2C7f0d8r7snJmEZHj1VO+fSAlbeeFV8uDvHJtA/ecUw4zvtPrkdw76K5TdeRTQSQdvg8OljwSKct1Nicf1mmn2MYUwkFhtYufNG3rGgP5H17hvYdNpl8aLv8jW4Dw/xV1O3YfNtyuXMDY34me/7AP7+U29Dqb4V6/F4vqtenkIBBb9PIZJ6iVJAKfCmKKDg95siozqJUkApcIICCn6rIaIUUAqcRYHtcBjfmLuPr03fwzfnpsUaQj9KiopwqbMb1zq7YY4eomJvFx29/bhydQI7+0AsnvuK4d1d2JfmseFywmTuFJ/kypOYiwDCfTitS1hbWUZ9swm9o+OSSXrSwcxxZt+uzs2IxS0LDDY0m05qJr8nWFy8dxslZWWotPTAtreLu3Yb7rnsCKRowtd21DdIZviT/QPydbKzWzGDU6l8/i/6hT/5Q/zBS9/BhLkL//aT/8CwA0Eyvpn72KOX98i4ZGXTWuSkY2crCOv8LLY2N8RWmDsTciVw6uejwwJtVbjAk/e8WFnCmjX/eeGyWWGbm5Gikv3jZ5sXQ5NX0dzWfpIs8nvdc5zuE0OXr4mH+GkOLRZTYkvDWoOdPX24sJ7f/+K3fxux8mo08wGSI/OXwtGL+6U7t/D8nVvorq3He64/gdbePpRleN2kiSxeUkHYZ2cQXPegorJCfLNbe/pQWVuXHUbH4+DD27k4J9CU6fhN7WYB0VUNjekG8hlRJcBeW1mCZ2VJfH8aW9rQ1tuH2maToa2H3pyWKawK65ybkZUWPrjbevpR39ZmaM2SvCyN9t0uge2HkX3ZWsR+NpppEXJ8e1FqO2aJsx29vOnV09bTJ97aOWNBo32/D9b7d7Eb8MsbTWu3RTTNLxaVMvkZQ4lFSmHRzBjygUHfdD0Wze1m6etpY+FeWUJxMhb9qG1ulljcd9rxV/duw+7XIHhXYxP+6XufwydvPq3e0E7ztHpMXqPg92MSKNVNpcAFUEDB7wsQRHULSoHHQAEFvx+DIKkuKgUeEQXm3Gv4+qwGvF+2LqX1qqa8As8MDuOpPtp+DKCiuBib6x7xMyaUrqiqwvj4MA5Lq80e6BEAACAASURBVHMm1jGDO+DbgNfpFKsF+v8SgDWaWg0tIfROEGDTy5j2EHp2q6m9Q7JPmema6yAwYzE+WqWUlJRIpmtrZ7ehxUrqeWhjQdi+s7UlvIYZ58xQL08Uxlzd3MA9hw33XQ7cc9qxuRM61o2n+4fwwckr+NjVm2g/Bah/RIbChe4G/enf/q9/Te7x//jhH8VQe8ex++WY5sJHYNMr3tS0MqZnN61Mch2Eusl5ccB5UY0OS48UwUwrLplxEpkXmxtyTW1eVCbmRcuJ84K7KLibQpsX5dDmRfuJ84LZ7cxS1+ZFKRpbWk4/L1aWJDud98SM846e3mRRzWz68L5Y4JPZ8JzPzHDv6h+UZ0euQ4uFQ/RJjcUn3nYzrdmFyfz+/N/8DZZnF1FeXYOmzq6sNiTcXhB0r2HWuoy/XF3GaKcF7zN3ori0DC09PSirNNgSQ/C9FYR9biaRLdyOjr4B7Pl8iCMuhR4ra1nl9Khiq6icAb5rGptgHhjC4d6ebFtobDejqqHBMDv6YD+MteUlELZyQnQNj6CIBSFD21LIkpnHhK6ZB4tluletcCQ8vrtHxlBRUSl2ImxDL28pSnm8oaysWu/dEWDePTohEzC47kZVXT0a2juMQXY8Dv+6WwD2/u4uOodHpdIs/dFzxiKRDW+bmcJOIIDW3l60dfcisOaUVdMWbmsyWoxIxmIaWxteyaLv6OtPxoLFM5npbhwLgm8uQjhQ29iMjoFBHO7typvxSbFwLWuLEBXV1egaYiziiIRComdqLKacdvz1vTeSFap7mkz4J+/9IH7wxlMKgl+At0gFvy9AENUtKAUeEwUU/H5MAqW6qRR4zBVQ8PsxD6DqvlLgISvg9PvwxZe+g/9y+7XkZ1z9kr2mFhDe0uuamd76IYDPS/DtQUNzM2obm4Q1VJbGUdvSKXYNRqCPgC/o2xD7EsJEehTTToK2Bq2dnVkBOOuy0Q6C2du0PqDV604wIDCMkC8XACfYo+UJCw/SIiWytyuAsb7JhLaurqwZuUxw1AoY7shO+Vg0KgCdwM5M0GfAMqjlLesy3liaxyJBZngvLXo3e/vx3OQ1fPTKdXQpi5SHPLKzn/6nv/gF/PndW/ieoVH80od+4NgLyfI4RphtTLsSMiJmVXNMd/UPHSsEqZ+AxSuZ2cx/DSaTzANC2+j+gcDhusamtGKXertU8M2CrixwyeRTFnzUFoaMATjnBb3BuSCkzwvOk+DmJprb2nLPCxaTXFkUCM3s9MjurviaM7GW18yWqS6Jv9YleT3nBWE05wl3YKQuDGWKuh8OSz9pL815SAsY+8Kcxt/6BrNaF+WKxf/wI5+8mPD7iy++CJdrAz6nA2WVFQKkM3246b3NIpLhnRDWEcfv3X4dk90WfPrG09iwWWXFxMSVuqoUAJ4BWxvbOtA9Oi4rOvvhPSksyUxrttOga+Ig+N7bhXNBy/imZUnP+IRYnTBAhLwH4bAUiKxuaEhb/YweROBaXNTAd3U1esYvoamtA4fRA+k/t1VoAJwZ4Ikqx7xsPCaTzj4zjZKyUvRMTMrKTOwwhu1NL0I+Hwjg61ozAHg8Bq/TjtWpewK+2Y7bkjhZWECUAJwZ1ccAuNjArME2PSVamIdG0E0wXFwMeoBrsag8HguC780N2GbvY3crKKC7e2QU5RVVkjl+9ljYxFDfMBYp2feE1SzCeSwWLBDK1dYUaxgtFgtwryyjoqYGPWOMRfuxWNQ2mVCUEosphw1/9vrL8OzSAQxSAfpn3/f9+Pj1J1Byiq0wb9mTXl04pwIKfqsBohRQCpyXAgp+n5fS6jpKgcJWQMHvwo6/unulQDYF/ub+XYHetDRJPa52WTBUU4PJ5lZcuXT5WKYrmYVkthLwNTWjxUxQVi674UNeB3yBbXRwV3pjU9rueXIIQrl1px1VtXXiZcwMakIxj9MOWpCSbRwDfQR8wYAANgI5Zt/SIoVFAr1ulwDK5lZj0Ce+zYsL4ijbnSjiR1jHIoT0SGZxvjbhSuk1xWQ3uXUZB5EIugeGBGKy7lrQ55MifQT3BH2ZGauR8J5k4PK6/H2sslIWFF5bWsDz8zNY3zuyjrlm6cWHr9zAh69cg6XpdBYsajQ/uAJTLgc+8O9+XU70uU/+A/Sb0203dNi65ffD1NGB5tZ2AbVSBHOZsDgOy9DxgpDJjG8v54UJLebO5LxgQUi6Pph7B1DPgpApFsdH4Nshc609dV44tLF04ryoqEh6fOc3L4rQPUiYXycQW58X9U1NhgBc5sXKsvBOzicCb8JzzkGCbZkXPb2oyFgY4rxgxjcXojgvCNjJFAnCWViU85rWMJnWR6mxaOnokEK3yVgsLeJn/usfurjw27+9L17c/jUnSsvL06CrDr4jOzti/+EIh/G557+OsY4u/KPvfR8iuztSzJLbVejlzaxlZm7rVif06tbA9xiqa48KIx6E98SPm4OIthsVNdzmEAe3wNjnZwQAEzgTYBO26gM5GgnDv+aSbOmmri5UN7DqaZGsGNoXZ+FZWhSYThDNIOrtaNkiAHx7C/WtbWKBUlRcIuDbtbIEx8x9lJSXo/fSZXmj0UEui2dub25oALyp6SgDPB7DusMmAJurnWzXbulNtmMmObPGWeiR/UkCcIJvtwu2mfvyhmQeGkbnwPCRSX88jt3tIAIuVyIWXVomdzwuBvj2FPDNrHZtAmiZ82mxsPSgvCo1FlrGd2N7B5jVnh4LFiS1S/GA1t7+xGJEeiyY8W1JLEKkx8KJ/d29tFhwgjsWZuFZPk0s2sUCJTMWLPUxcxiFO7HFiZWCCcE/du2m2Keo4/FSQMHvxyteqrdKgcdZAQW/H+foqb4rBR4fBRT8fnxipXqqFHjYCriDAfE5/o+vvigFHfXjkrkLH7p6A28bHEFFaalAKsfSIlhMzzI0ItnOPPj5mUXqWECSAEsH3/p5qksPMT01i73dXYHGzHTlQUDGLG2PwyZFJnXwrbejHYLHYZfd+G1dFrEl0b2VCb4JyAiaM4v4JUFfIgOcdg/6Lngpkrc0L7vwCSsJ5vRDB32bnjUB26kAPLyjge9o9ABdfQOap3jic70O+thXFtlMBeAC+Gg9sbODtu5uNDS3pPlDE/S9PnUH9zY3cNe3AXvAn+wPC2d++PJ1YQgqI/zhzoK/9/n/HS8sLeBt5i78/UtX0Nk3iKoarcafDluZTd1M65AEbNV7xHlhX1qQhEz61OsFUzmeOCc4Nxh3HXzr7Zg0u2ZdkeTZbPOCc0wH38l5wYUhh03sRdq6LWgytSZ3VLCPhPF0kZAFoZQEXzofbHBhSOZFB0zthMaaOwQXmWyLCyguKZair5nzwic7Otwyd1MzwPd2duCyLiEajWrzQvimduScF3ucF6uyONbebUmCb70tM9U532gfnW8sPv7sjbTBcmFsT5j57Q8dyIobwXDAvSYeNk3mLhkABMY6+CaMXvFt4N997W8w1NaBn3nPB0UUQldmchPQ0q86GjuEbYaw1Rh860omAXgkgpbefhSXlUq7TYddgGgm+NbbEcj7XU7JRCdwr6qvg212Bm4+vGvr0Hfpsvh8Zxa3FAC+7sZuMCi2H4TZzPgm+KbHdt/lq2I9ktnuCIBvahYophZsrLlgn7kv8NwyQfDdc8yDywiAS+b2zH1Z7ST4pg0M/YNSD4nFFmPhkt81dnYiHNpJy/imhYiA7wwQHNkNwedwyEKCxCJ6CNtsIhYG4DtrLEpLpd2JsYhEZNEkHArBZOlBVV0dVmdn4FlekKx3LgpkjYXHLRnsXBjg2GKBDcdseizuOGxih+IKBqSr1y29sqXpk088jVaDKtIP95Guzn5WBRT8Pqtyqp1SQCmQrwIKfuermHq9UkApcBYFFPw+i2qqjVLgYinwlUSW9zdSsrxry8rwzoFhfOKpZ9HV3HLshpnlSbhGywYCcMJeZnsTqjE7OxN88wSm+gq41wNwWFckY5WAkJCMvslrq1axXSWPoJ9x5qEDcEI9Zo8S9IUI6uZnJTOVgI+gL/MgAGef/Bte8To2tZsFMjLju7SsVGwqdLiZ2jaZ6epZQ11Dk1igRA80C4fDw0OYe/pQKxa26QltzGDf8vkkg13zc2ZiIZKAjyCdCwNpO/h5YVq3bAVFB/Kr4uZmfNe6jOdnp+HYPlqIYJHMD1+9IdYovabWizUQ3+K7+er0PfzY730e5SUl+K3/6lMIe70JKxONddGihH7U4pmdAb71rifnxUFiXlRVY5MLQu41zUu+o1OSQzMPJs+6VpfFyiQ5Lza8YuXDHQgCvk+YFxyT9OWm971tYS4xLwYMPbP1hSHaCnFO8J60eTEvHJUQ3qjIrCxweT0C87l7gwCcdi6cF3ScYNHP1AUh/T65ILDl98kuDoJ4mRdIzIu9XbR3WcQzP9e8IJCnJcppY/HBKyNpMl84+K09NzQATm9vQlWas3OVpqGtXeAks3Ntvk38r3/7l6BP1c+9/8MJUeICyP0uh6w87O5sY9vnR2NHByyjE9qWnizZutymQHDO60Zoa+Jxo8bUgr6JSdQ2pG/pSY2AAPA1pxR8PIjFsWFfRWVdPfqvXJNVoWzX0wC4ByHfJqKHh/A6bCgpr8Dg1etikZKtHTPLaYGyveHFfvQAvjWXvNYyPimrqKnWHan9jB8eYifgk2typYhbHrjaaR4g+O7PWtgyFYAzQ5wPC8J+Wp1kA9/addNjsRPaRsjPWJhhSdjOnBiL0DYikfADxaKqvh59l/OMhd2GkgrG4oZYpKT28459FV+dvivjTz/eO3YJn3r67fjgpStv8eNeXf4kBRT8Pkkh9XulgFLgzVJAwe83S0l1HqWAUiCXAgp+q/GhFChMBfQs7z989UW4U7K8J0yteKqtA983eVX8smkjkO3QbQ4I7giutvybsmu91WwM+Ai//dsRhPfCAvq2/X60dHYJGGwwtUjGd6bFSOq1mXhHeEZYbmrrEGsSAmgCsUwrhTTmcrCPjbU1gXbMWA0F/OLJTWCemtmaeZ9HVg8ugfv74QiKiosE3BHwZStQqIM+AnBNvyJhJ1nBt06jEpa7a7ZVsaOtrKzC3u4O9mtqcHdzA99ZmgeLaOoHQTgLZX78xpMwp2TaFuaIfrC7/g/f/gZ+7S/+RE7yQ08+gx999p2y04CxYDIoxwvHu6nDnBV86z1IzovwngBiWqQ0tbVp8yIjYTS117QSdlpXxL++pcOs7aA45bxwO2ySyU2Irc2LRnT19Rt6z+vXpGOCd80lbE/6GfDLPOJ8MloQ0tslAbh7TQA5+8250MEFIc6LLMxUPP392sIQM7mT86LLIhZJx8D3sXlhlSzy08aiIOA3NSJ0pV81Cy9SoEZzp9iEiC0FgLWgH5/96z9HZ2MTfuG5jx2NuXhM/KiX3nhdIC0LITKTWh6KJ9hUMHN87qXvymBlZvXQ9ZuoqU/37DGakgTn86+8KGC5orYWw08+IwUWTroewfny7dex6XLKJBp+8mk0plikZJv+BOcsNLnOVcWiIvRevorW7h7DApqp56C3+drSIlwLc7KVwzwyKgU8s5nd6235sNhwOmC7fw8s5NnS0yeLCUYZ32l9fpNiUdvUjME8YjH38ovY8jIWdRh56pk0u5psmjIWS7dfhy8Zi2ekEEG2GLoCfrywNI/XWR16f19O21pbhx+8+RQ+9dTbMci26njkFFDw+5ELieqQUuDCKqDg94UNrboxpcAjpYCC349UOFRnlAIPXYFvzN7H77/wPL42ez95rZbaOryrfxBjZeWoLS4RSMsM7FzgW29Mq4dl1gCLhAV8M2OUmaNGhw6/Y3FgPxLB0tQd7O6EUN/YjL6xCfFAPulgIt7q/Ay2fJuorKnF0OQVw4zYzPMwO9W5siTWE8yg7R+7pBUmPIHxEPQR1vFfcUmpZOUS9GcD3/p1yUuYCc+MWB7m3n4Bk9kA3xE7iQmEZLE/Wki0dXVL1q8eCxbNfH5hFt9emMXKhjd5m9xZ/tFrN/GRKzcUCD9pEKX8PhSJ4J/84e+DHvc8PnT5Gv7x931AvidHzBWL7JeJSwb3Ci2CI2GB5V055kXqeTgvFqfuiLUQx1nfaB7zYm5GFqDynxeLMlZlXoxfQvUp2CfnBS1X1l0OSTbOb1644bKuyG1zAYrWK6eaF34fbIvzYrckz6iUeWEUi4KB3yy0EFhzSYYzH0y0rmjutiSLYHq3g/ifv/ynaKtrwD//8MeTWkXCu1i+/YZkY1fX1UkWNW09yqtTilkaKEvAu3DnFjaWl1BZVydbWbpGJySLO9cRjx/COn0fa3MzUmizrr4BFhaOSPhfZWtLuO9cXIBz9r4MlJraOlguXRErk9wXjGHdTo/ve+IvLtWIh0fR1GFOLgwYto/H4V93wzp1V7Lja+rq0N43IBYhuj9QtnahoB8r9+4g5NsQ36PWLot4cosHeI4jPRb1kkXNoprix57jSIsFC3WazhCL6pRYMHM/1/WMYjF5BXUG28PSTsMCpbZVvHDndSyEw1g7jCKeeMETPf344affJtuZagy2t+TxPFcvfRMVUPD7TRRTnUopoBTIqYCC32qAKAWUAuehgILf56GyuoZS4K1VwLu9hT94+bv4jy9/N2nDWVpcjKf7h/DByau41mURiMVijATX9M+2DI7kzP6UO4rHJct0dWE26SncNzqOGvpgGxyp8JvZ2wt370jmdmRvFwMTlwX2nXTQ9oSwvbyiQryOhyavip3ESQdfuzo/K0CTmeq0aqH3crYsVf18zOK1Ly1K1i+LFpJldFgsuRkINLi/troC2krQ9oS7+jt7mYl73NIlte8aVLQLWGQsaBHB4oFGmbh2/ya+MT2Fv1uYxVrCXpUmLE/2DeKjV2/gY9efQPMJ7OQk3S7y7xfWPfj0734ONv8myktK8fMf+DDeMTyavGUd8DIeJ8UiVae4zAuXWI+I13ZREfpGOC9ys0Geg+Nl8d4d1Mi82MPAxOSp5gUtRTgvmGDKuoV5zYu5GbDPnIeW4VG0dJx2XiyIYwYXlujXfRKM5v1xMYDgO+jTdjDIvGCG+gnM61gsqqvFk9zImkWPRUHAb0Jd+kzvBPzi+V1cWgK/y4Wyyko0d3WLRUdgdwe/8uf/H5pravGrH/1B0Ye+N/NvvIrgmgtNXd3oGhjGzuaGDARTT6/AaaNDYOvtW/CuLKG+vQP9k1ew6/OJh3hr34CAd8N2CfDt5qRoaMDIjacQDgakMGXbwFCiCKZBS8LWJYLvaZRydebKNcRZfdXlRDurqjZnqQYsxS3tAr55dI9dQkVFOYJra3K/DdmyxuNxBLzrsE7dkS0N5sFhmYD0UWdWdWNHJ4qNtkNJwdAtLN+5JbFo6+0X76/tjXUB33osjLRhJvX8rdcQdB/FIiRbfOIwWR5SLO7fx9riHKoSsdgLBsBr5opFchFiblrGV//lfGKhFRrlYRm7hDBieHlhHtOhbfgSlZ6ry8pk9fZTT79N3sTU8dYqoOD3W6u/urpSoJAUUPC7kKKt7lUp8NYpoOD3W6e9urJS4GEqEIvH8c25aXzxpe/g6zNTOIxraVadDY147vI1vP/SFdRXVsmO7nWnA+suu2QnE9bRZ7i4uATdA4M54RILQq7Ozwm8YvY2C9exsGPP0Kgh6NPht8/rxfLMlMAygjaCXha8JDjPBcAJvq1zM/KaDksPNjxuuG1WAedNOQA4mQQ9vssqysWyJBQIwLW6IvCMADzbQbDntC4J9KalA21c12wr0mcWGGTGq9FBy10mufE69EDmQU1pCUFf5mzWLowFbV28Lqe0o+3Jmn0VJSUl6OrPHYtXpqfwlduvYXo7iEA4LNcsLirCswND+Ni1J6RgZkO1Mc96mOPwUT33f3njNfyzP/4SwtEDmRO/+rEfhIXuC4kjNRb6ogXH92liwQUhZu6bZV40SaFTQt/U4rBGuhB8E2Bz1wXHGK1M6ErRe8K8YHb66tw06ptNYh3E63Mhi+A818KQNi/mBTxzPm0FAlhbXdYWhlhDMMsh82JlSQrc0n+f84Lzif7f9O7OlsVN2yLOA3rbcx6cZV4kY2Fbld0Q2rwwHtcXHn5zkBJ8M+ObwLpWMqiLxIt702FDeXU1mju7EY7F8Ut/+p/kgf+/fPyHEItFMfvKS/A7HWi29GLo6nV5KCWLYLJAgwF01cH3+vIC6tvNGHvyGZRXViAa2YfP6cgKwPWMbx18jz7xrGy7obcTITb7bwhdBXwvagUVKyoxeO06GkyaRUbQs4YN2yo6hkePA/B4DF6nA6v37wrM75mYRGtXj3hW8VobqytiR1JPv/DUIx4X76Dlu7ewv7uLzpExdA4MyaSnB/cmDfhb2zQAXqJZysgRj2NvN4SF11/Fjt+Htv4B9I5NyorZ3nYQm3bGosYQgNNeZfbVl8R7vbk7JRY7O/A57XL67LF4HetLi6g3mzH2hBaLg8i+xJUrWcw4z1yMSGbfLxB8N0oMaXPDseRfc2B7IwsAPxaLG2hIFJ0IeNawaV9Fx9BpYnFZVpBTYxGqb8Q93wZu2VZwcHgo9zzQ0orLXT242duHd41MYIh+4uo4VwUU/D5XudXFlAIFrYCC3wUdfnXzSoFzU0DB73OTWl1IKXAuCjDL+0uvvID/9+XvwhnwyzXLiorx9qERfP/VG7jcZTn6yB6LCWxlkUUCL1OiXhWhmHN5UT67syCkEVyiH/Hy9D30DI+itbNbQCsL5jmtyzgIR2AZHpFd5qkH4ffyigNLBHzdPQLAyBBoZSJZ0jkAeCr4JgAjq+HndQJJArVsAJyFNWmVIPdCL+PqGnBhYGPNKZm5fWOXxF8582DWLQEfoSWtXCSbPR6Hz7suwJCAkvdQXFyc1pQ+ytQz6NtE9+AQGsTOFlIE005m1NgsiwyZFi/MSNdjQQsJ+q0zY3hnawvOFcaiHF1cjDBIyOQiBKFpz/CYwPwppx1fm76HF5YWsBs9kP4x0/8dgyP42I0n8dylq6g7IQP9XAbrW3CRg2gUn/nTP5I5wuPtA0P4Zx/8KCpTrHr0WHBhhfOCtiVaLIIyJhgLLgwZFVhNjQVhMOfF3u6u2N9wUYSxpRtC5pEE3z29MFt6E/MiIlB5a3NTbIHoV5955JoXbttqVgC+u815MSfjsLNvEFXV1TIvuPDCeTEwcUkKYR6fF7twrCzJnO3uH0yZFx6ZFx2WPskCz7QFYqKxy2YVuyLuZKDHNw96gDuWFgTcd/b0HSsGKrFw2OG2H48F+8H+sx9GsbjQ8Nu3FYHf7ZJCl20MRJMGvrUjLgDca11BVV09qts78It/9seoKi/HZz/+Scy8/CL8DjtMPX0YuflkyjaWOCK7uwJ56Rfe0tObtOvIBN+Xnnk7SpIG9nFEIxFsOuw4CO+hldWHa7QMcMLW1ZlprM3PSsb36BPPpBXTJPwlOD+WdRyPwbWyBPv0lBS3HLp2Ew2trSgqSjxwmaFNAL5qTQfg8nB3wHr3jsD13smraOsm+NYf1HFsbXjh4UOcWd2c3FpHsR3wYeHWa9jfCaFrdBzdQ6MpRTHjArbXl5fQYO5EE7dHJM65v7eLmVdfwg7B8eAQBiavpHiKx7G3xVgso6q+QQC4rhsXIaZffhEBxqK3DyM3jsdiI7ESbRgLTpwOM4xjYcNBOCzZ+BX0MdJjMT0N1/wsqhobMPbks2n+7mmxGBxCNT3cpWEMruUl2GempLjl0FXGou1o25QeC5s1HYCnxSKG3skrx2Ph9cKzpMWiorEZb9iteHFxHiubR55e7EJPkwnvHZ/E94yM4XuGR1GVo3jCW/C+ciEvqeD3hQyruimlwCOpgILfj2RYVKeUAhdOAQW/L1xI1Q0VoAJMbvvW/Az+4MVv42spWd79pla8e2AIfbE4OjrMYruR6sfNjGsCq/7xyST41jkAATihMbNCCX9phaIfBN+L926LPzC9d1N9s2kP4lheFCsEgvHqlF3wRZEt3Hrldfn8q4Nv/ZyEaQSEhGOZoG87EIB1blrgHwF2auY04RizrJmRnQnA6btsX5wTkNg9kGEdEo9jfc2J5fv3MHT5WhoAZyarY4VWJ7sCK5mxnbxHAeAe8XOmjzMzbfXfMROWsNLncUsWO61wU9sR9K3OzaCptU0A+GljEWKG7sI8yqsSsUixjyVspU0GY9jW2ZUWC7b76usv41WnA9MBHyLRqMhdVlKCd4+MS0b4B2i5W15RELOGfuk/8fv/AVP0qS4uxoctffjQ5FWZFyUp8JsZ147FBRnf+oKQPi+0WMyhvKpKmxenjIXMi6VF8XHvGR5Jmxdp4LunV3ZdHM2LiDYv/H4ZU6kAXAffMi/6B9Jq8cViMdkVYQTA9QUh7lywDHJxK8VWmPPC5ZSdGcOTV6XAp35wV4dzeUkWubi7o5Y2LrpnfjyOzXUPVmbvy1zr6LakzIsDuFat4iveNzJ2fF74NmGdn5UFn87eviMWG4/D7bDDsbwgHv1GsdCtZbgwlBmLH3nfu9LGdVGcT8oLcPzBCy9gZcEKn8uBjqER1DQa+0URgK8vL6KyvgG//tK3UVRaip/s6Ydv1QpTX79k/aYOtmSgd3ewYV2RSaH7XC/eewPe5SXUtbXj0rPvMPR9ikbC2LCviqWK7nNtnydsnRM/8JEnntZWRDMKLcSiB3IvOz4fWpnKX1cHj3VFg61l5Ri4ekM8sI8VaCB0dbsEurcPDqGmsUkevit330AseoieycuyZQc6ME+JPe1ICOSZOV7X0oqdYEAyt8OhbXSNTcAyMnYE2lPaEYC7F+cFYhOAHxwcYPql7yC04UX70DAGL18z9BPf2wpifWUR1Y3N0pYHM759tlWY+gYw9uTTWWIRSsSi/CgWd9/AOm1ncsSChUWZjZ0aC9vcNNZoO1NXj9EnntZW4Yxi4XSIdUtrv2ZjI7GQRYjcseBiDBdV2gaHUdPYqMXizhvaIsSlK2jv6T11LF57EavNgwAAIABJREFU5UUsbwXhq6yEbXvr2Kx9dmAY7xmfxDuHR3GJf4So401XQMHvN11SdUKlgFIgiwIKfquhoRRQCpyHAgp+n4fK6hpKgYejwEZoG196+bv40ssvwBnwyUWY3Peu4XE8d/kqRhKZm8xCJqwlyBLQV1ICj8uB1dlpDBJwtWfs/k50l5muhFL0m2Z2JUH45roby/en0Ds6hraULPLUOxSf7MUF+czLzFkW0Av4NuC1zqOmuUN4hJE1AjNjnSvLCAUD6B0ZQ11DI7a3grDNz8rndFoc0Os782AGOO1B1h02yeRuMrVgL9EHvtYyRPBtXMONma4rM1MYuHQZLe1m7EsflrCzvS2grrYhkfyWcVGCvKWpu+KRTNDHeyXg4/kGxi+hIUstNsNYcIf+3AwGL1+BKXMnfuK6tIqgZ7kWiyHRgYsQS9P3pCgiC2MaHXoswgcHcJUW4wXrMl63WXEYi8nLK0pK8Z6JSXzs6g28b+IyKkqNi5U+nBF8fmelBdBPf+kL2A6HYaqpxS9/5BPoKCuX2Js6Oo/mBWMxPyOFVFmI0eiQWMzNoKq2LjEvKsSChzshuHAjC0IGB2PBBSUiWFruyLzY3MDK7LTEL3NBSD8F7UJovxMKBo/mRTCA1YU5YYmcm0ZWOjIvbFaxNeofm0Aj58XODmxL85K0mcvXnzUArLPTsqDU0t4hHvacFwTntGGRBSGDg/OCBTs5f2mBcpjow4bLif6JSQ18GxzavJgSm2TqIM8op13GPP3LZSeEwaHHgots+vNBj8Wv/NN/nNbiwsDv3/zjP8bq4go6BkdQc0KhBNpuMFv5/779Gg6Li/GB6lo0W3qygm9dschOCN7VFSlKGNreFlsOWn4QmpbnKN7IzG9C10g4jMh+BD6nU2D24PWbqGMxxSwVhg8PNLuOUMCHw6JibDrtAtj7LnMFpjNrO65+Bjwu+J1OFFdVYcNhBzOYLROTssJoBL71eyQA9ywtoKKxCV6HXTK+zSNj6BkdNwTfejsNgM+hqqlZ7FVOAt96OwJwz/Iiyqqq4N/wIrDmRLOlLyv4TouFdRnxoiJw9Y1WMYwFrU7ovZ3t0GPB1dywxMIh4Hvo+k3UnhALvnYnNRZlZeifvIZmroZliSF3BwTca9K/fGOxtbGO9SyxiB7GsLDuxozLgRn3Gta3g2m33FZXj3ePjuPdoxP43pEJ1Kes1J/fW8zFu5KC3xcvpuqOlAKPqgIKfj+qkVH9UgpcLAUU/L5Y8VR3c/EVuOOw4bbNKpYWf3nvjeQNj7ab8dzkVbybdb0M6nHp0JUWH0zoY/ZqLvCtn5jAjTCQ8Jn2J7QnIWQi2Mr2GZht93ZCsC8toAhFqG1sBOFXb183altYLyw7YJWCeCvL2N0JSYY0s2Jp9cHM1lzMhVnXtEDZdK+htatbQKHA90Fm2RqDb/0eCQftS/Po7BuQIoMC35llmwV86+10AN49NCz+x16XQzKwCRlzHamgj77FzOrOBb6PYhEQGJgeiyG0E3xn4RFpsSgqEphvs61iYT+M2xte3F9zJrtaWVqG7798FR+5ehPvn7h8YSbTZ//6z/Bb3/yq3M+Nnj78wnMfS9q+sPAiF4YIXSUWi/MYnMy+CJE1FtYVdA0OoT1jJ0SmiDIvFhfE8pax4GIJwa65pzdnEVXyK1oKhXdCaOS88HpRWVONrr7BnEVUOS4JwH3rbrEn4tiOx+I5F4Skz5IB7pBsdXqX0w2Du0EItbMtCKXOCwJwLnxp8yL3gpDeTuyWZ+6Ld7gei1yLEJmx4EJABZ9R1hWxHPr0c+9Jk//CwO+f/+xn0dQ/grqE5/JJM5UQ83f+8x8C0Sjed+0mxp961jDLOP08cQTWPbj3youwrnvQ3tWFd77je1GZZRUxtS0B9vLtW1qRyJZWDFy7IZVNcz2k2D68sw3rvTvwrlqlEGPv5ato7cz9RsN2LBhpm5mCc25GCnV2T0zKtpxc4Fsf5I6FWazcfl3eFDtHx9E7PpkTfOvtPKsrWHj1JZkobcMjGL56wzDjO01Tbo9wObDw2stiSdLc25dXLJZuvYbdYEBsV0ZuPnW6WLAS7p3XEfR4HjAW1+QBclIMGYvV6Sm45rVYcBGCvumnisX8LFbuMBbliVhcMoyFb2cH0y47ZtdcmHU7sZ/wCde1ft/4pPi7dTebJCt8UmWGn/SIMPy9gt9nkk01UgooBc6ggILfZxBNNVEKKAXyVkDB77wlUw2UAueqwN7BPv5uflY8nL86fQ8bO6Hk9SuLS/CuoRF84um3oYds4YRDYO39u7ITevDy1awZqpmnoRUJodReaBs9I2NZM1Qz29GvmuCcUKujtx9Xrk5gZx+IneA9QLsRwmgCc5O5U6xH0qwZstwnrVOYIbu2siwewrkyVFNPoVmnWCWbl2yHhQKzZahmXppgjxYwZCenAXV6+7PGQl/ESMait+8UHAviV80sfhZQJMzkAkZZeQU2Q9v41twMvjV3H4ve9eTtVZeV4/uvXMNHr97Ee8YunTS0Hsnfb+6E8N998XdloYjHp5/9Hnzqqbcd66u+iEG/9nzmRXosxqVIaaYHvJEw6bEYOGZZkk1MPYuffvV5z4uVJaxZ858X9Om2SZZ7rSzsnG1eZM/czrxXPXOcRWZpR0QQfppDX1DaC4UkcZf+4c9dG0tremHg92d+8zdR3sTCi+YUb2ljmZgFTY/r3/vrPxcvqk++672ySsOs6qwHIW3Qjy9/93m41pwojcWwW1aGli4LPvbkM+hKqQybeY6D/TDWlpfgXl4EDg/RaulFx+CwDKBcAPQwug+v3Q7H3AwO9yNo6jCja2QU1fVNxwzkMx/etNewTt3G/s4OGlpa0c2VS1NLbhgdjyMU9GPh1qvYCwZlRcfCLTtt7bk1jcexu72FxduvS8Z3ZU0Nellx2dyFYoNV52RfWRRzZwfW+3cQWFsTs3rL2LgU3jwpFvQbss/NiKUM/ZrMA0Nop/+XZDjrPu/HoymxWFqEe2UpGQvz4DAqTxkLXjO2H5Fsbxb/pAd4ppl/6lXpteT3rME6dQcHO7uob2mBZXQCtSZT/rHgm3Br26li8Z2XX8CKfxOeImAj4e2VqcaVLosGwrssmOzqlu+Vb3juR6uC36d561GvUQooBd4MBRT8fjNUVOdQCigFTlJAwe+TFFK/VwqcvwIOvw9/O3MPX79/D99amE3rALO6x02tGK6qwo2WdikuR8uEnJ+fARxGD8TLl9YgtCJopb1Ab58U78t1HLIemccD+oMzK1uyVHv70/x1jdrTcoFAitnYzHYljL50aRT7KEc8x+d1gmhmbRNGh7YCUlCPNgjMws71uZtWEryOVmxyQ2B5h6VXsrCNLFZS+8ysWvHqXncLEGYxS9qPMPs010GWxH4y45vWufnGgppSJybUMfP3xFhEo+Kb7HGsig1F3rGwrWJvNyQA09zTLzyK9hf64Qr68a3ZadAihGNQP+oqKiQb/L95x/di1KA46PnPkJOv+Kp1Cf/w//m/4A1to76yUrK9r9P+N+PQ54XHbpOdAvnGguObdj20SKGlUPkJhUS1ebEhXty05skWi8x+cl5sBwPSjvOCtiO0DzrPedFh6ZH7PHle7IsP/9G86EFbF7O5c1vqSCycTnnW5B8LN9x2W1osPvrUlTQZLwz8/tyXv4zlmQUBvA3cypNFWAHf3nX596WZKQQP9vHjY5fQ3NKWVngxVaXIwT6+cvcWXp2eQvX+PvZKS9HR2oY97zp2YjEEy8txuX9QHgj0D0o96DO9tkLwvSQp+IS0h+GwJAs3mrsEFBsBcAHfNHefnUFRSTE6B4dRUlQkRTQbOzqlUKTRw5+Tgg9t673b4GpJ59CIVDSmvQghdk2TyfjhH49jy7+JxTdex34ohI7hEXmj2Fr3oL61DfUtbcYgW4B5ACv3biO0uSme2Hzo++w28Q3PGgsC89C2ZEQzG77R3CkrkAGXA9UNTVljwaxyGuw75mfF17ymuRmd/YPY9W0K+G7u7E7YnhwH4IwFC4Z60mKxJw98LRZcjDjeLnURgm+chOUlRUA0si+LLTljQfB97w5i0SjM9BqrqpbCqw1tHWLPY/hGbBSL5hZsez1i7cJ4FJcYvBHrsbh7GyHfUSy47WOzrBSBoiK4t4JYC/jlq9Ex3NaOCXM3rnT3CAwnIG+orj753aVAXqHgd4EEWt2mUuARUEDB70cgCKoLSoECUEDB7wIIsrrFx0KBV6xLUqyS/+bca2l97qhvwNMDQ7jR3QuWn2OiG7OapcDiypJYohIuZYOnhLTMUN5wu5KFFunn29zeIdCVwNfo4PkJWwmxWG+MvtnO5UXNf7uPoO+oCGZqex3wefh5va4edU3NWHfY0VhfibpWfu6uS4Ouelsd8BFEErCxf/51Dw4O9gVkZwV9ZAsJ8M3s3XZLL1gMkBm29CXPBcDFZsVKn/EgugeHwexaemlzcYBe6NlAH4EnwScXBvKPhQMb7rUzxMKdtMkguziKBS1hjK1fGQv6rVP/o1ho+hKAiyWMAQNZ8Kzha/du4/nFOQQikbThccncJbyAO8tv9PbL10fhuOe049XVZaysr+MLL/yddGm0vQP//MOfQEtK4VW9r9q80GKhF7087byg9z3nFBdJyPROHYvNDaw7j2JB0FtaWiYLUfQAN4pFEnzbV+W1nBdkfuz/qedF9ADt3T2nnxcJmxVanbCwZ17zwrYqtQHoRU+g7bKuSL0BeqGnFnlNHTO8F9qs0Laos69feC6L3FLfjhOeUclYtHfIohcL7nKs//Qnf+Biwu8vvvgi7HY3fJzUTc1o5IMqYxWTRSSZ8R3a3BCI+O9f/i68OyH84ve+H/seN6obGtDEgCQe/ofxGL4zP4O/nbqD+M4Oag8O0NvVjfc/8w60NjQhyJWxF76NqXU3fOXliJWU4O1DI3hu8hpqKiqRBN8rGvjuGZuUN4398B58Dpt4hzM7OhO6coB47TbJ+Cb47hm/hNYuC7iNh57YNLxvbDeArsxOd7sEtvIc3WMTAob5phVcd2Nva0vAqQZdU+BpPI7ghhfLd9+Q4pa0OuFWAe5Hol70Aa81taC+pTXdnysex3bAB+vUXez4/Wjt60f/pcsCdEM+H3yc1EaxkEzxIGyz0wiuewQg9126jIoqDdKzcGVmLGTUEnzv7sC5OC/+5yzm2TsxKV7d9D7asFnF6L+5y4KyjDfi9FjUiKZNrVosNh02WXs2AuCy+mRfhXNuFsUlxZIJn4yFyykrS7ljcVv0T4uFxy0APJ9Y0JeJcdje8J4qFm19/eibvCLbbhgLv9OO6oxYcDXXHfTDtu7GCv8YCu9hJ6P+LQtgXO7qRmlJKZpqatBvaoG5sQl9plZ0NDSiz9RSMNWhOQQV/H4U/qxRfVAKFIYCCn4XRpzVXSoF3moFFPx+qyOgrl/ICtDO5D+9+iK+OXcfW+FwmhSEi0/1DeKpgUFYmkzCAAhbWSCPXroEupL45vVINij9sZm1yt3UaVBpfx/eNSd83nXx6SY442dEZmXbFuYk85RwicUsUw9+Dib4JhhsbGkVGExwxcQ3KbxYWyt+wxUZtaV08M0MTr6mo7tHwCwT34JrVuzuxw2hq5bxHYDbYUNJSakAMIIsWqDQZzwXAN8NMeN7WWAgATbBF6E24Tt3qNM6odHUeizxjLvJWWCTr+kdGUddY6NwFO+aC37vusBvZrpmAjtmXTMWtHOhJQuLW2pJiB75ea5YrK855dz5xmJz3SNgMGss+gePZeML+N7cEMDLgoCEnxKL7W04lheECVHnTOiauQgRqKzAt5eX8MbqMjyhbcMp+2TvgADxJ/sHxGK1v6XtoU5tFq583baCV5YX5eutVSt2D/bTrvmOjk78+NNvzzovkrHotghkZXLpaebFpseDTc8DxsLSI3MuGYvSUgHwJ8XiaF7syG6Fw4Oo7FQ4tjCUWBCS10SjsAwMo7quTpsXdpvMRz4vjBaG9HmhW+vw3JxbtFthnT5Tuxmmtnax+kk9tHlhRXBzEz3Do/Js4Vji2PXIvGiXuZj5jCLn5EKC3+uRhSueOy0WJpNAfqNnlB6LppZW8W3nXGWGPIvk/txPfvrxhd9/8lfP45d/4wtyAx96zzP4tZ//CVRVag93wm//9j5Cfh8Cbheq6usFSuoAnA8xgkMWZiTIZYb4r3/ly3BvBfCZD/0A6ouKsLFqRUVNLZrMnbjrWcNf3r0FfyiE6oMDDFZV4x2TVzHErN8UqM4imKyy+prDhlvbQewXFaGirAzfNzyGsbJyKZBZUVWtwVZWi02squ3v7WoAPB4X4C62GyiSbS8emxWOuWl5OOvgW88OJ8Q1BODxGDbXXJKBzXN0j1+Sgg16OxbPZIY1BzAhdhKAx+MyyGjLEdnZESsPy8hY0leamfLUjQsGNc0myeaWrPpEdrJtego7AT9ae/rRMz5xtNocj2mxWGMsGgRwi27xOHa2g7DPTkv2fUO7Gb3jlzQPr4Q2LEiqx6K5swulfCNOgu85bDodAr6pTV1jc7JdZGdbvNG54m2y9CQBeDLjO7kIcTwWBOC8RvZYlMr9EXynxcIIgMdj2FjjIoQWCwJz82ljse4RG5jcsdiUjPe0WPg2sTozhV3GorcfPWOXkm/S8XhMxr3EoqHhaF4wFltB2OcSsegwwzw0go3IvmSGuwI+OLlKvBXE9sFB1jev2ooK+YOsu6lZ/lmate8/dPn6Q33DeytOruD3W6G6uqZSoDAVUPC7MOOu7lopcN4KKPh93oqr6xWaAoR002sOqc20uO7BfZcD99ccCGVk09ZVVOJyewdGauvw9NAYurstyc9ztOVwO1YRCgTkM74UVEx8dubnTYJtr9OO+uYW1La2oqi0FAfRKHbDYay7XQiQgTSbUF3fgHhKli89uQnGuVOcoLc0Ac65a3kr4McW29XXS60ygq7S4mKUlpTgYHdXYFZ1dQ26evtQU12D0uISFCMu9bj8HrdkievgW495ZdE+7t25L5+nWcCSQJYHP6/qVifMbNUBn94uFwCn1YlzZQmHURa31ACffhwBcIK+zjQAHtnbFfDN9plF/DTQ50Jg0yvWIqkAXGJhXxVQz0TDxmZTRiw88DodAsQ10Kdl1euAj5YXXEjgeVN3gROkO1aWUNvQALOlL5nJzd38hIfM9GUceB+pGf6yGLEwJ8VI6ePN4qA8kuCb8TWIBeEnixkSMmbGYjsQkHs0ioUv4MdLU7ex7PPBfbCPxQ0vguG9Y9OaVinMCr9u6cO7RsdlIedBDs6dW3YrXrcu4zXrMmY96bsjeG76lI+ZOzHR2Y1rXT1oLy2B1+lEg8mUEYuIwFaC7lyxIPQV6JrIque44AKHxILxNRvEYn5WMsENY+FySqa9vgih66HFgkUwS9JjoVudZIkFE0MJt40ywLkgxHkhRV8T4Ds5L8JcGCIADyUWho6sgXLPCy6kuWTR58R5kVL0VZ5RsoMkRyzoItF5fF5w8Ya7W2jJfDwWbjlvtlj84Pc8lTbkHhvbk1dvz+Lffv6P8H/++v+IpoY6/G+f/yO5kZ/9qU/KV4HfoQN5cBL0EfRW1tYJXGUlVQHfAT9qmwhwGdxS/MZX/hIO/yb+pw9+BN1NJsk6nrp/F684bFg62EesqAj9VdV4e3snBiw9YhuSmU3OaxOAM+s4EA7j6+trWPL7UHl4iJZoFCOmVrz9yWfQ0m4+toVBB+D0hTZ1W1BRXSMm9I7Zacmw1sA3CyoWpwUtCcDDtEAxo6quTrYwMQM7zof+xKRYiGS2OwbAG5sR3FgX6xEO8s7hUXQPjx4rqMg3v+1Nr1hp1DQSurYINLXN3Jc3N3p0E5iXZawWc5VHYrGux6JDrkPfbGaUN7Z1wDI2IQ/jzO0djAWBdHlVlWTHHx7G4Fwk+NayyXvGJtLAty6QxGJ1RfQjAC8qKYFreQGe5WVU1NRIu9RFiOQDILEYocWiRzL1uf2JseBDX8v4zhILAnCxo2Es6mVFTGLBBw1j0Zs9Fsy0J8TmPQW86+Biwqlj0dQsizg7QWbRa7Fo7elD95sai7jsGGAsthBHtKYWbq6kcXvQ1hZCRcBWFk/xzDe31to6NNfWijVQU1WNfN/C72tq0FxTJ1uRGqqq5PddTc0P8t740Noq+P3QpFUnVgooBTIUUPBbDQmlgFLgPBRQ8Ps8VFbXuGgKRKIH2I8eYv8wiv0o/x0gEj3EzJoDS+seLHNXtdcDm38T/t1dw9svKSpGU3U1Wuvq0VbXgLqqSkQODrATCmE3vCcAu7isTCB2eG8PLHzJn5FR8GfRWAwHh1EcHB5iL0ei0lupfXlJCUpKSlBWXCx1uuhXzu3v8cNDAemVlZUoLy1DcTyO6H4EZSWlqKmpQXl5hQbai4tRxnMUl6AoHkN4extF8TgampoFuLOe2rZvQ+xhyVvYVgf0WvsSudb25gYO9nbR0taOJlMr4tEoNpx2xA4O0DMwjIbGRlRlZswf7CcA+Caa29oEgDMxkL7CtIKgDzmhalEGq9FBH/kME/XaWLCvCAL+uJhA+4fm1vZjdipMiiSMZZY7FwWYjc/d1wK+vR65Z2a2ZmbNMr4hJrQtzktmLEE2v2oZ3+nZ95ljQaAr69IBYm3BrGNmzRKolpWVH1uE0NtzMYKv4S546rBfWooZ+ypenZ+BjaxgJ3SqMUlATscEJtPVVlZpX/n/lfyZ9nNaANHKJGAwj7pq62CprcPVvgFcGxxBX0tr2i0yXr71dWFltN5pM589FtyNIOBbYmHSwHfGmDkpFkbgW++wvhjBscJYkJFxsctlW5GYMyvcqOirDsC5uCLe+I1NUlePmf1M7uROCH2RKVUcLuJoAPwoA5yLRVwQ4lfuLqGveObBYrlet0vGanOrNi9YF4CLJcxip30LF2lSveR5Dr7Gn4hFfVNzspClPi9aOjrR1NYmuz5SD21ebIiXPxe2CMC1WLhl0Y/Z5a0dxrH44JWRtHM9NvCbsLvP0oFPfP875QYyYbgOv/k7QkeCblpq0IeKRRcJGWsJC2ndkRD0N7/2V1jZ8OLnPvBhlBYV4T+//gocbhcaIhHUVFXjmbEJWCqrJHM5G/jW1YzQG8pmpS8CPAcHeOHuG9iIhBGkDUd9g/iBX7X0Hhs8GgC3g2CatilrSwuSWd176TJa5EGZDr71E+gAfH93F/GSErhXlmVVp+fSZTG+z9YuCcC3txAvLhZfcZ6LGb9dg8NZiynSMoZvGgTgbMfVXGaRt1h6BZhn8/uSWPgZC7f0KejflIxw2tIQ0lbX1hv6GnGiMgPc53TIm8Xuzo5ck/CdGdipGd+ZouqxiMXj8oeB174qCws945rtjJGPEs9hGIuyMinemV8suMIWe0RjwcUIj2gQ9PtSYjGuPRQN/L4YC9rU+J0OyRSgn1rA45b5xMULxoL2QZvbW1JQgl8921vY2tvDdngXO5EIDmKxvP/uqqSflYDxWu1rNb/WoqWuDk3V/HkNTDV1GjyvrkGbwcM574ue0EDB7zdbUXU+pYBSIJsCCn6rsaEUUAqchwIKfp+HyuoaZ1UgfLAvkDlCyEvITNh8EMV+7BD7Bwfy/4TOhMCE0JFoFAcGvxOAzHMdxgRUC7CWNgmAzXNJO/3n/Kr9jkBa+xpFOJplNyytI40+R6VTnJNfc1ahUtpVlpZKdjaBMkkC4XJVRQXKy8qTQDnbZfgZlpYHzCSlJ3RFZWUajKK2hO7Rw0McCnw/+n/GI0oNz/C570247Tf1FDXlFSgvJbQvEbBeEouhsqICxHIlKEJdbR1qq6tRXlYG2oSWl5WivKQ0Ad5LJQOenIa8pKqyCqUlxVrttsZmNDY1y7mKi4oEzuuwnosDvBbtUf1uFyorqySzfjcYhKmlJSv41m+cAJy+02Rd9U1N8Hu9GixMWJ1kE4iZ7/alBa3wprlLdgIw07mzd0CyybMdejY+xwvBJW1AuBCgwdZauAJ+LHk9mF1zYtG7jlA4LAs4u5EIdvfz5wM15eUY4G7zyirJ7O6qrkZxNCpZ1ASg2Yqh0vKDNjMbnrWkpQiBr1jaGCxC6PfLRE4CXgJiLibQ3mfL75drtZg7DRchMmNBSFuXiEVN3ZHtTNZYhEKwLzMWMbSYzbL4kncszJ1iVURrI2Z803oo26ED8J3tbTS1toofOPXq6h+SHQjZDoJ2LijQ3oRjjWOA5zpNLLh4QE998ZpHkcD3vGJRWSn2PhILk0nGntGCEPv+WMLvvfA+/sW/+QKeuTmRhN9Lqy585rO/g3/5i/8Qg72dyczvo8GqrfD5XU7icNS1tIndA0G4fvzWN7+CeY8bfS0tsG5syI85qT4wMIz+4mLQZ7mmsVE8pI0yvjMHA6GrZ3FeIHRFdS1W4jH8xfQ97EQ0/65eUwt+4PoTGGztSGu6v7uDxVuvIrixgZLyMgxeuwmTuTMrwNYbH4T3xFrDlyiI0XflOtp7ek9sx1VVZjTTV5yVnrtGx2EeGDy5uvDBATwri1hbXpRtO7TXIMDm4Mv1Zh8/1FZW6WEe2duTDGlmtWcF30dBRNC7Lh7mfOOg7Qp9rHOBb70pwfni669iJxiQjO/+KzfQ2Np24h8cDxKLlbu34U9sv+m7ekO8l7ItQuj9PBaLsXF09g8d80/KHGvc/uReXoR75YyxmJ2Rh9RZY8Ftc72njcVWEIu3XoE3EECssgpNtICprMTOfgShSFjeCPk9IXkovCdbALcMtk6d9BcNMydG2zuzvqyspBiVZeWJf6Xa19IyWVF++9DoSaeX33MtqrG6THaZZDv4dy/fbEqLtAwH+V7+mEl8X5L4mvr7tNcWSd/Ukb8CzMIxOrhinHkc/wkXx41+avzzbFXqs53j1P3K1geDExje1/GavdLS8LV5XIuLYKe+hyyhezhxML5YXKpqpB/Gd6DVkzj22jy0yU/b4wHKNmbqa8qwF+GTvGwtAAAbL0lEQVQH86P+ZR1fpxzjMhaMtHnQ+80n5nlcK+u4O+V8yDr2jdob6JJP+2yvzfYkMx43+T/3VAulwIMqUF5WjIqyYmzvRh/0VAXbnn9/MOmGj7dYPIYY4ojF+P8xllASz9NDPn3j/Dl/z5/F5bV8whMisvEhf8+fyXm01/Nn/I/tkufnucHfpb+WbbR2MRwmXqOfR/olfYlr/ZO+HMrPtD7p/dN+n/46XifRRv9dSv+0PuvXTtx7Rv8IS/k6glNeT/uq3QOBKb+Pso+HMYQP38KxmAqx9ferk6B2ysjn3/zMbiY8rSpnVmsFqoqLJeuYMLquvgH1dQ0oLy1FGf8xK7pE/0pLkVLJki6lbUkoJHW5DiMRtLa1o62zE9WVVdKOnzP09gTdhLQ8JweJQNCVJQFZTPxixihtTXLCeVqMig3IkoBCZo/StkEyP0+4f4JyZg9z9zNrmVkGh1DfxIzoIlmMYHwZf/6rqy7F5tZeYhEiCrfTjnWXE0WlJWg2d6Kytj4xJjTAroP29K9RBJjo6PfJ75moWFZZiSjnCxdJON90MM9xF4vJQsZh7BDh/X2EI2FtzpH3MIv+UBuD7OvjcDBDXT5bMiuecD5hRcOfMSv+MLKPkiKgrKwMtbV12nghZJcMeu1zKb/XM+s55phBT+7C9lzwaO8wo6KiMpF1n9pGO4eWjV8smfPrNquAfY6/gbFLqKmtTZxbe01mRj01ZmYxbT7WNzZwEI/B1NuH4opKhKNRYQL07t7b3xdIzl3ho+RHzS1g1vGazSrZ1xxfhLSEtsXFJTlDR6BLqM+inzzaui0C+rMVM9VPxrET2FiX8c1nIq0+mGiaDbYmO8HaeMEAWDyT56BlBy15shUlTe08s7YXp1jDLyqLD/1jE2KjfNJB94CV2WnxyOd9DU1e0RwWTjj0WNDqhtyij8mNDY0nznvyQHdKLLr7h9D4UGNxiIDXC8fKorzfcOHipFg81vD7733k3Xjy2piELxN+j3/mM2mfkSgIt2FE9zUYwgHAYoicJPHEZ09XICCTiwd/xAxSAjTafNDGQn7ONxK2Kz7KwM6CAMRnigUUeQ3+ExuQIiCwtyfbNPQPOvQET9sGcHiIosTDVvpXWnrkxZXtzYZ/cMRiKD48TPafmeN8iKcehn2Nx7Xr8Suvl2iXFQzoJ+QfAOyr/ocA3zAyrmdYnZbXYT9jMe2+E+0Mr5d6v/IXXgxF+uox+8oHm84OsmQps7uiTVq74mMT2PD6sTiKYkeaUhvxRcvyYT15v6n95PWpS2b/DPrLfur3x9vS250YC94k26b8UXYsFtkedIk/sLWBU2T8YMvoq/Qn43psm7Wfqe0T7fja5D2m9i3LGBdt5A/+xAxlGAzuSeZVjrFwrMlp/4A9KeZpE+1UEdNanPb6J71Tqd8rBZQCSgGlgFJAKaAUUAooBZQCD10BZuTyUzZhHjN8y8vLBDzqEJGAsaqsTLJ5kx+dQR6xL8lfhPuVVVUaVzjhswA//RAoR/bCkqhWXlkhIJJg6qSDwIwWKdHogQA6JqnRduSkgwsh4d09KSpJy0/29SQwyHPycxihOQvd0b+6qqoaJWWlKEp+YE+/sv6xmvdIXSLhsGQLV9VUi795tnapmu6HI5LExY9qVdXVKKsoP1W7g8i+tDspFkcLRtrizAFjEWYsYnJvelKkLEjxI3JiUUuWpPRFMPHcjiIa1RZ9yJKKizTYrr1O0y61zdH3RwtJ8hH8pOCp3+elABehkp/HT/G5XGZ0KhfQ+UmOxbFkm8RrhIFkcpfEtVN5jtwI2Rl5TWKypHIlwxwn/R50rqRPslQeles+E9fTz528nt4m894TarPf0k+9rzobzGyXeZ/EIYl2OhsyYmdG98p2wjGF6RYBqdw0wZpSB8P25z6XNjYeC9uT02R+F/3kT+Y16NWLlQJKAaWAUqCAFci2uGEkSY5FyGMvP8UfUUefigwWTc7zWuxIPgtHp9Umn4WjbEPQ6Bz5aJPtvPncbz6vfdy1yUfbBx3j+Y67014vn3H3OM3/fO7rcZtPD9rf847jg14vn+eakTb5jIUH7Wvmh329P6edj/m2f5y0yaWtDh1Sv542lvk8hx/0z7ds/XvQcZPPGD2tLvm+Z5z2/dhojKZCm3zG+oPGQ7VXCjxsBTKTxbIlj+nzwgh85ppbuZLR1Fx62NFV58+iQPx3fzftN48F/GaPT/L8/tbsLLYytutlW1XVf/61mfu4ZO6CubExy9okucDxNYeiLEmehtfLaO8O+uHd3jYMj+G1smxhN3z2ZFthzeOPAMM+ZMnvPWll9ujvZOObOGnVO7Xbhis/eTxIs44F40hkic/xH+dcfct4eX5j6fTPMONxk837wOAejMZ4tpxuo9dmiYPhPMn22jz6YBhLQ4aYz7gzntSZ12I3aytKEdoz2BaXjzbGE/jYT5lZwoO+hPo2WW7ZY8YCswhke2za99zSmtg2m9jyl9zmGld5A6efVeqVSoG3XoGKshJED7Wt6+pQCigFlAIPS4HSkiLJZo0caDsfL8RBj17azSV24+pfmb3Lv+2Ofk4rOmb0FslX/mf4/4lzia2EOpQCSoEzK1BfXYrtvWjWTdVnPrFqqBQwUIBe/XIk/pRO/Ys6aT+XWLTT3SHSbek0nqD/LPm7FMyQ/F2CxWWeV9onXn/smin8LvPcx66Zcn/6OqNhn/X7Sbz+aE0yxUYx+bv0zxip95756SNnfxIC67agaRpm9sfQfjERpowF1FSrxqNzZsREv5fU8ybO80sfeS5tVDw28DuzwCVhOI+f/alPJm/ItbmnJr1SQCmgFHhoCqiClw9NWnVipYBSIEMBVfBSDQmlgFLgPBRQBS/PQ2V1DaWAUoAKdDRXYd2/J17z6lAKKAWUAg9TgU5T1eMJv9nrP/mr5/HLv/EFuYEPvecZ/NrP/wSqKo8Kwyn4/TCHjjq3UkApoOC3GgNKAaXAeSmg4Pd5Ka2uoxQobAUU/C7s+Ku7VwqcpwIKfp+n2upaSoHCVuCxht8nhU7B75MUUr9XCigFHkQBBb8fRD3VVimgFMhHAQW/81FLvVYpoBQ4qwIKfp9VOdVOKaAUyFcBBb/zVUy9XimgFDirAgp+n1U51U4poBQoeAUU/C74IaAEUAqcmwIKfp+b1OpCSoGCVkDB74IOv7p5pcC5KqDg97nKrS6mFChoBRT8Lujwq5tXCigFHkQBBb8fRD3VVimgFMhHAQW/81FLvVYpoBQ4qwIKfp9VOdVOKaAUyFcBBb/zVUy9XimgFDirAgp+n1U51U4poBQoeAUU/C74IaAEUAqcmwIKfp+b1OpCSoGCVkDB74IOv7p5pcC5KqDg97nKrS6mFChoBRT8Lujwq5tXCigFHkQBBb8fRD3VVimgFMhHAQW/81FLvVYpoBQ4qwIKfp9VOdVOKaAUyFcBBb/zVUy9XimgFDirAgp+n1U51U4poBQoeAUU/C74IaAEUAqcmwIKfp+b1OpCSoGCVkDB74IOv7p5pcC5KqDg97nKrS6mFChoBRT8Lujwq5tXCigFHkQBBb8fRD3VVimgFMhHAQW/81FLvVYpoBQ4qwIKfp9VOdVOKaAUyFcBBb/zVUy9XimgFDirAgp+n1U51U4poBQoeAUU/C74IaAEUAqcmwIKfp+b1OpCSoGCVkDB74IOv7p5pcC5KqDg97nKrS6mFChoBRT8Lujwq5tXCigFHkQBBb8fRD3VVimgFMhHAQW/81FLvVYpoBQ4qwIKfp9VOdVOKaAUyFcBBb/zVUy9XimgFDirAgp+n1U51U4poBQoeAUU/C74IaAEUAqcmwIKfp+b1OpCSoGCVkDB74IOv7p5pcC5KqDg97nKrS6mFChoBRT8Lujwq5tXCigFHkQBBb8fRD3VVimgFMhHAQW/81FLvVYpoBQ4qwIKfp9VOdVOKaAUyFcBBb/zVUy9XimgFDirAgp+n1U51U4poBQoeAUU/C74IaAEUAqcmwIKfp+b1OpCSoGCVkDB74IOv7p5pcC5KqDg97nKrS6mFChoBRT8Lujwq5tXCigFHkQBBb8fRD3VVimgFMhHAQW/81FLvVYpoBQ4qwIKfp9VOdVOKaAUyFcBBb/zVUy9XimgFDirAgp+n1U51U4poBQoeAUU/C74IaAEUAqcmwIKfp+b1OpCSoGCVkDB74IOv7p5pcC5KqDg97nKrS6mFChoBRT8Lujwq5tXCigFHkQBBb8fRD3VVimgFMhHAQW/81FLvVYpoBQ4qwIKfp9VOdVOKaAUyFcBBb/zVUy9XimgFDirAgp+n1U51U4poBQoeAUU/C74IaAEUAqcmwIKfp+b1OpCSoGCVkDB74IOv7p5pcC5KqDg97nKrS6mFChoBRT8Lujwq5tXCigFHkQBBb8fRD3VVimgFMhHAQW/81FLvVYpoBQ4qwIKfp9VOdVOKaAUyFcBBb/zVUy9XimgFDirAgp+n1U51U4poBQoeAUU/C74IaAEUAqcmwIKfp+b1OpCSoGCVkDB74IOv7p5pcC5KqDg97nKrS6mFChoBRT8Lujwq5tXCigFHkQBBb8fRD3VVimgFMhHAQW/81FLvVYpoBQ4qwIKfp9VOdVOKaAUyFcBBb/zVUy9XimgFDirAgp+n1U51U4poBQoeAUU/C74IaAEUAqcmwIKfp+b1OpCSoGCVkDB74IOv7p5pcC5KqDg97nKrS6mFChoBRT8Lujwq5tXCigFHkSB/7+9uwuxozrgAH70QZQSQ7T1I2CV+BJLUwIlNS+VUB8KK8EidKkvNSQsS3zKB4asxYpI3SVh1YdiugStPmm3IEhwfVKC9CGNFAIpTV6MSiBG8aOpD0Zftpwrczt7OnfvnXvvzu6d+e1T9u7MnHN+ZzKc+d8zZ669NoQf3Hh9+OTfVwc5jH0JECDQVUD43ZXIBgQIDEFA+D0ERIcgQKAnAeF3T0w2IkBgCALC7yEgOgQBAs0UEH43s9+1msBqCAi/V0NdmQSaJyD8bl6fazGB1RIQfq+WvHIJNE+g1uF387pTiwkQIECAAAECBAgQIECAAAECBAgQIECgSOCaxcXFRTQECBAgQIAAAQIECBAgQIAAAQIECBAgQKBOAsLvOvWmthAgQIAAAQIECBAgQIAAAQIECBAgQIBAS0D47UQgQIAAAQIECBAgQIAAAQIECBAgQIAAgdoJjHz4/frCu+GJIy+1OuaB+7eHpx7bHW64/rradZQGESBQjcB7Z86HXftmWoVtuWdTODazP2xYv66w8Pc/uhQmD82Gjz/5vKftq2mBUggQGAWBr69+G548+lJ48+1Treo+fWh3eGjsvp6q/uzcfDh95vyy16eeDmQjAgQaIVBmbJOBxOvMi68utH7d8/BYODA53ggrjSRAoH+BL698FfYefi6cPXehdZCXnz8ctm3d3PGA6b1UmbFQ/7W0JwECdReI15ajL7wWph+faGc5Ix1+x4Hc7Nx8++YvDtLij8FZ3U9l7SOwMgLxIvm76ePhD1MT4e47N4b45dqpf/yr45dq8Rp08dKn7cAqXoMuf/qFL+FWpnsclUCtBPJjluxm8eDk+LI3iREgC6S6fTlXKyyNIUCgb4GyY5vsOuOeqm9yOxJopED2pf72n/6odW+UXntSlHTsU2Ys1EhgjSZAoKtA/gu49F5ppMPveAN41x23tYOnNAzvKmMDAgQI5ARi2P3hxcvtL9C6DdpSPNcgpxMBAr0IxIHZ1DPHw2OP/qb1RVuvYVN2jfr5vT9Z8uV/L2XahgCBZgqUHdvEscxfT5z0RX4zTxetJtC3QDrTMg3D0wOn91ndtu+7YnYkQKBxArWa+V10cSwbVDXuDNBgAgSWFUifHik7A6HbTHH8BAgQiAJF45Vu14/83/95/oLw26lEgEBPAmXHNvklJbMCui1d0FNFbESAQK0FiiYBdXsyP/594Z2/h7kjB1s26TIFtQbTOAIEVkygluH3r3fuaD8iLPxesXPHgQk0QiB9mqRM+O3604hTRCMJDEWgaEC2XPidzsT0lMlQusFBCDRCoOzYpujJ2qnp461wKntSpRFwGkmAQCmBoqdGuoXfrfHMn/4SPvvyP613KFnzuxS5jQkQ6CBQy/A7W1Mqtln45NwnQGAQgbKzo7Kyspe1TE9NdF2vd5D62ZcAgXoIlJ35XTQTM0pY97se54NWEFhJgbJjmzT8thTBSvaOYxOoj0DZmd9pOJVNOhrfuaPnF4DXR09LCBAYpkCtwu8IY83vYZ4ejkWAQNl1MbMv3SYPzQbBt/OHAIFeBfpd8zs7vpnfvUrbjgCBsmObdPss/M4/bUuVAAECqUDZNb/7mSlOnQABAr0I1C78Tm/+uj1W0wuSbQgQaK5AOhszXYYgneHtaZPmnitaTmBQgfyYJV1iqdvsJ+H3oPr2J9AcgW5jmzjWmT9xMhyb2R82rF/XepI2/6W+601zzhUtJTCIQPqUSHrtScc26bWm29hnkLrZlwCBZgnULvyO3Zd/FPiB+7d7M3mzzmmtJTB0gXiTt2vfTOu46ZIC6SCt01IEXgw19G5xQAK1E8huEt98+1Srbfl1LrvdAAqjanc6aBCBFRVYbmyTht+xIvntb7/1Zut9r2jvODiB+ghk45ez5y60GpW/Jyoa2+SvNelYqD4qWkKAQFUC6TUolrvn4bFwYHI8XLO4uLhYVUWUQ4AAAQIECBAgQIAAAQIECBAgQIAAAQIEqhAQflehrAwCBAgQIECAAAECBAgQIECAAAECBAgQqFRA+F0pt8IIECBAgAABAgQIECBAgAABAgQIECBAoAoB4XcVysogQIAAAQIECBAgQIAAAQIECBAgQIAAgUoFhN+VciuMAAECBAgQIECAAAECBAgQIECAAAECBKoQEH5XoawMAgQIECBAgAABAgQIECBAgAABAgQIEKhUQPhdKbfCCBAgQIAAAQIECBAgQIAAAQIECBAgQKAKAeF3FcrKIECAAAECBAgQIECAAAECBAgQIECAAIFKBYTflXIrjAABAgQIECBAgAABAgQIECBAgAABAgSqEBB+V6GsDAIECBAgQIAAAQIECBAgQIAAAQIECBCoVED4XSm3wggQIECAAAECBAgQIECAAAECBAgQIECgCgHhdxXKyiBAgAABAgQIECBAgAABAgQIECBAgACBSgWE35VyK4wAAQIECBAgQIAAAQIECBAgQIAAAQIEqhAQflehrAwCBAgQIECAAAECBAgQIECAAAECBAgQqFRA+F0pt8IIECBAgAABAgQIECBAgAABAgQIECBAoAoB4XcVysogQIAAAQIECBAgQIAAAQIECBAgQIAAgUoFhN+VciuMAAECBAgQIECAQGeBL698FfYefi6M79wRHhq7b2Cq1xfeDfMnToZjM/vDhvXrej7e+x9dCpOHZsP01ETYtnVzz/vZkAABAgQIECBAgMBaEhB+r6XeUBcCBAgQIECAAIE1KZCFwR9/8vmS+u15eCwcmBwfWp1XK/x+dm4+nD5zvh2Sp+H311e/DU8efanVzqce2x1uuP660G+wPjQsByJAgAABAgQIECDQRUD47RQhQIAAAQIECBAg0EUgC4MffeTB9ozsLKj+4cZb2oHwoJDC70EF7U+AAAECBAgQIEDgfwLCb2cDAQIECBAgQIAAgT7C77jLe2fOh137ZsLLzx8eyvIgqxV+p83vZdkTM7/9tyFAgAABAgQIEFjrAsLvtd5D6keAAAECBAgQILDqAkUzv2Ol0s/j8iGXP/0i/Hb8l2Hf7/8Y4jIp+aVRsrA8a9AD929fMms8H35/ePFyePHVhdamt996c5g7cjDcfefG1u/ZdmfPXVhik4bwWUB9cHI8TE0fb9Un/qTLtaRBdlH4nbUtLnvy1junwhNHvlsGJfvZcs+mMP34RJh65nj42dbN/7ccTCzjhVfeWNKOVe9YFSBAgAABAgQIEKi1gPC71t2rcQQIECBAgAABAsMQKBN+x8A6DbVjHdLwt2gd7XyonQ+y0zW543Z/fu2tsPeRX7XW344/RbPQY5kxpM7Xp6gtZcPv5db8LpoRnrX1tltuGuoa6cPoW8cgQIAAAQIECBCor4Dwu759q2UECBAgQIAAAQJDEugUfsfAOc6ozmZl52dHZ6F0rEKn5UzSz3vdrqhZRft2Wpok/XyY4XeR1bCXhxlStzoMAQIECBAgQIBAzQWE3zXvYM0jQIAAAQIECBAYXKAo0M0+G/vFve3ZzJ3C7zQkz2qUzojuFH4XzZzOPnvz7VNLGphf0qRT+J3WZ5jhd6xM6tDJZfCecQQCBAgQIECAAAECnQWE384OAgQIECBAgAABAl0EsqA7WzM72/zpQ7vDQ2P3tfcuG36nQfHVb74Jew8/F8Z37lhy3DT8zmZS55czyYLz/HrbqxV+52d637ThxjB5aDY8+siDS9rkpCNAgAABAgQIECCw0gLC75UWdnwCBAgQIECAAIGRF+i07EnasLLhdz8zv+M6308e/e5lk/Hlk9nyKmsp/M636647bgvzJ06GYzP7w4b160b+XNAAAgQIECBAgACB0REQfo9OX6kpAQIECBAgQIDAKgkMGn73upZ3p+2y8qenJsKPN29qhd/pyyPLhN9pSD/sZU9iN2Uv24z/TmfIr1I3KpYAAQIECBAgQKBhAsLvhnW45hIgQIAAAQIECJQXGDT8zsLgF155o/1yzGx2dPxbNoO7KMAu2i4Nq/Prf6drfufLjGUVvXyyn/C720sss7Z89sWVdpvLy9uDAAECBAgQIECAQP8Cwu/+7exJgAABAgQIECDQEIFhhN/54Dljy6/ZHT/LAuP1674X/nb6bFs3H2hnH8bZ2y++utD69fZbbw5xVvjs3HxI1/yO4ff3N9wYzp7/oL3t3JGD4e47N7aP30/4HXfOz+7ecs+mJUubFL2ksyGni2YSIECAAAECBAisEQHh9xrpCNUgQIAAAQIECBAgUCeB/FIt27ZurlPTtIUAAQIECBAgQGBEBITfI9JRqkmAAAECBAgQIEBglAQ6vfxzlNqgrgQIECBAgAABAqMtIPwe7f5TewIECBAgQIAAAQJrTqDXZWLWXMVViAABAgQIECBAoFYCwu9adafGECBAgAABAgQIECBAgAABAgQIECBAgEAUEH47DwgQIECAAAECBAgQIECAAAECBAgQIECgdgLC79p1qQYRIECAAAECBAgQIECAAAECBAgQIECAgPDbOUCAAAECBAgQIECAAAECBAgQIECAAAECtRMQfteuSzWIAAECBAgQIECAAAECBAgQIECAAAECBP4LNDfi6Vtqg9MAAAAASUVORK5CYII=", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Some plots allow you to choose the target class to look at\n", "atom.rf.plot_probabilities(dataset=\"train\", target=2)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAALECAYAAAAVTJEkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAAsTAAALEwEAmpwYAABkzklEQVR4nO3dd3wU1f7/8feHXkKRJgJ2EAsiXhErKCJgw4r92isWvnYU7CJeFcsVsWGHKypiAWyIIIKCAlYQpYkISG8JLQn5/P7YhV+MgWyYk2w2eT0fj32w2Zlz5rOTyZJ3zswZc3cBAAAAAKIrl+wCAAAAAKC0IGABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACQEszsJDP73sx+MLMfzez0PMvvMTM3sxbb6ON6M/vVzH42sx9C11ghdIcAAAAAEJqZmaSBktq6+1QzaynpKzN7391zzOxfkg6V9Mc2+jhd0pmSDnb3dDPbMXSdjGABAAAASBU5kmrFn9eW9Fc8XFWW1F9StwLa3yzpXndPlyR3Xxy6QAIWAAAAgBLP3V3SWZI+MLM/JL0v6cL44vslDXL3uQV0s6+kQ83sazObbGZXhK6TUwQBAAAAlDQuyXK/YGYVJN0h6RR3/8rMjpD0tpmdL6m1pNsT6Le8pJ0lHSmpnmKnGP7m7l+GKpwRLAAAAACpoJWkRu7+lSTF/10r6WhJ+0j63czmSmoi6VMz65RPH/MkDXb3HHdfIukzSW1CFknAAgAAAJAK5ktqYmbNJcnM9pG0o6T+7t7I3Xdz993i63V295H59PGGpOPi7atLaivpx5BFcoogAAAAgBLP3ReZWTdJ75hZTvzlS919xbbaxadiP8HdF0p6QtILZjYtvvh1d/8sZJ0Wu1YMAAAAAEqMf1yDlSo4RRAAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELAAAAAAIhYAEAAABAIAQsAAAAAAiEgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELAAAAAAIhYAEAAABAIAQsAAAAAAiEgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELAAAAAAIhYAEAAABAIAQsAAAAAAiEgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELAAAAAAIhYAEAAABAIAQsAAAAAAiEgAUAAAAAgRCwAAAAACAQAhYAAAAABFIh2QWgzPJkFwAAAFACWLILQFiMYAEAAABAIAQsAAAAAAiEgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELAAAAAAIhYAEAAABAIAQsAAAAAAiEgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIJAKyS4AAAAAZYu7KzMzUxkZGcrIyNDatWu3PM/IyFCVKlXUsWNHmVmySwUKjYAFAACAYIYNG6YPPvjgb4Epb4Bau3atJKlGjRqqXr260tLStjyqV6+umTNn6qijjlL//v1VsWLFJL8joHDM3ZNdA8omDjwAAEqZtWvXavfdd9ddd92lBg0a/C085X1eqVKlrfaTnp6us88+Wzk5OXr77bdVs2bNYnwXxY5huvy5UnTfELCQLBx4AACUMk899ZTGjh2roUOHRu4rOztb1113nSZMmKAPP/xQTZo0CVBhiZSSIaIYELCAQuLAAwCgFMnKylLTpk01ZMgQtWnTJkif7q6+ffvqqaee0vDhw9WqVasg/ZYwKRkiikHKBixmEQQAAEBkb775pvbcc89g4UqSzEy33nqrHn/8cXXs2FEff/xxsL6BokLAAgAAQCQ5OTl6+OGH1aNHjyLp/8wzz9QHH3ygSy65RM8//3yRbAMIhVkEAQAAEMlHH32kihUrqlOnTkW2jcMPP1zjx4/XCSecoDlz5uihhx5SuXKMFaDk4RosJAsHHgAApUTbtm117bXX6pxzzinybS1fvlynnHKKGjVqpNdff11VqlQp8m0WsZS8zqgYcA0WAAAAyp6vvvpKCxcuVNeuXYtle3Xr1tWoUaNUrlw5dejQQcuWLSuW7QKJImABAABguz388MO65ZZbVKFC8V15UqVKFb3xxhtq166dDjvsMM2cObPYtg0UhFMEkSwceAAApLhp06apQ4cO+v3331W1atWk1DBgwADdddddeuedd3TkkUcmpYaIUvI0uGLAKYIAAAAoWx555BF17949aeFKkq644gq99tprOu200/TWW28lrQ5gM0awkCwceADKtA0bNuibb75Ru3btZJaSf6RFGTdv3jwdeOCBmjVrlnbYYYdkl6Mff/xRXbp00bXXXqvbbrstlX6uUqbQYsYIFgAASIy76+qrr9YJJ5ygrl27asmSJckuCSi0xx9/XJdeemmJCFeSdMABB2jChAkaPHiwrrrqKmVlZSW7JJRRBCwAAIrZM888o++++07z5s3TnnvuqZYtW2ro0KHJLgtI2PLly/X666/rhhtuSHYpf9O4cWONGzdO8+fP1z777KNbbrlFY8eOVXZ2drJLQxnCKYJIFg48AGXSuHHj1LVrV3399dfac889JUlff/21Lr74YrVu3Vr9+vVT3bp1i6WWjIwMjR07Vp07dy7WGeCQ+u677z7NmzdPL730UrJLyZe76/vvv9ewYcM0fPhwzZ07V8cdd5y6dOmi4447TrVr1052ibml5GlwxSBlTxEkYCFZOPAAlDnz589XmzZt9Morr6hz585/W7Zu3Tr17NlTb7/9tp5//nl16dKlyOpIT09X//799cQTT6h27draaaed9Oabb6phw4ZFtk2UHmvXrtXuu++uL7/8UnvvvXeyy0nIggULNGLECA0fPlxffvmlDj74YHXp0kVdunTZ8oeOJErJEFEMUjZgcYogAADFYOPGjTrjjDPUvXv3f4QrSapWrZqefPJJDR48WDfccIMuvvhirVq1KmgNa9asUZ8+fbTnnnvqp59+0pgxY/TLL7/o6KOP1kEHHaSxY8cG3R5Kp5deeklHHnlkyoQrKXbq4FVXXaURI0bor7/+Uvfu3TV16lQdccQR2nfffdWjRw+NHz9emzZtSnapKAUYwUKycOABKDPcXVdccYVWr16tt99+u8DZzTIyMnTbbbdp+PDhGjBggI477rhI21+9erWeeuopPfXUU+rcubPuvPPOf/xy/Mknn+jiiy/WzTffrFtuuSWVZmBDMcrKylLTpk319ttv65BDDkl2OZHl5ORo8uTJGj58uIYPH64FCxbohBNOUJcuXdSpUyfVrFmzOMrghy1/KTuCRcBCsnDgASgznn/+efXr108TJ05UWlpawu1GjRqlyy67TJ07d9Zjjz2mGjVqFGq7q1at0n//+189/fTTOv7449WrVy81b958q+vPmzdPZ555pho1aqRXXnmlpF2nghJg0KBBeumllzRmzJhkl1Ik/vjjjy2nEo4fP17Vq1dX7dq1VatWrUL/W7NmTZUrl9DJYikZIooBAQsoJA48AGXC119/rVNPPVVfffWVmjVrVuj2a9as0U033aTPP/9cL730ko455pgC26xcuVJPPvmk+vfvr5NOOkm9evVKeNsbN27UzTffrE8++UTvvPOOWrVqVeiaUTq5u1q2bKm+ffvme5praZOZmamVK1dq1apVWr16daH/zcjIUOfOnfXhhx8WtKmUDBHFgIAFFBIHHoBSb+HChWrTpo2ef/55nXjiiZH6+vjjj3XllVfqlFNO0cMPP6zq1av/Y50VK1boiSee0LPPPqtTTjlFPXv23O4L+AcPHqzu3bvrkUce0SWXXBKp9rLgm2++0fnnn699991XnTp1UseOHbXXXnuVqlMtP/zwQ91555367rvvStX7Kio5OTnasGGDqlWrVtCq7Mz8pWzAYpILAACKQGZmprp27aqrrroqcriSpOOPP14//fST1qxZowMOOEDjx4/fsmz58uVbRqkWLVqkSZMm6aWXXoo0O9q5556rsWPH6pFHHtHll1+u9evXR34PpdXUqVN18skn64EHHtB5552n7777Th06dNDuu++uK6+8Uu+8845WrFiR7DIj+89//qPbbruNcJWgcuXKJRKuUAoxgoVk4cADUKp169ZNf/31l959991Er8NI2AcffKBu3brpnHPOUeXKlfXCCy+oa9euuuOOO7TbbrsF3VZ6erquuOIK/fbbb3rnnXdKwpTWJcqcOXPUrl07PfLIIzrvvPO2vO7umj59uj777DONHDlS48aN0z777KNOnTqpU6dOOvTQQ1WxYsUkVl44X331lS644ALNmDGDe6aFR2LNX8qOYBGwkCwceABKrRdffFF9+/bVt99+W2SzkC1btkw9evRQ5cqVdfvtt2uXXXYpku1IsbDQv39/3X///RowYIBOOeWUIttWKlm4cKHatm2rW265Rd26ddvmuhs3btTXX3+tkSNHauTIkZo1a5aOPvroLYGradOmJXpk6OSTT9Zxxx2na665JtmllEYl9xufXAQsoJA48ACUSt988426dOmSUjdhTdTEiRN11lln6bzzzlPv3r3L9EjGihUrdNRRR+ncc89Vz549C91+6dKlGjVq1JbAValSJXXq1ElHHHGE9tprLzVr1kx169YtgsoLb9q0aerQoYN+//13Va1aNdnllEYpGSKKAQELKCQOPAClzuLFi9W6dWs9/fTTpXaUZ+nSpTr//POVmZmpN998Uw0bNkx2ScUuIyNDxx57rNq2batHHnkk8siTu+uXX37RyJEjNWnSJM2cOXPLqXjNmjVTs2bNtoSuzf8Wdsr+KC666CLttdde6tWrV7Fts4xJyRBRDAhYQCFx4AEoVbKystShQwe1b99e9913X7LLKVKbNm3SAw88oBdffFGDBw9W27Ztk11SsdmwYYNOOukk7b777nrhhReK7LQ+d9fSpUu3hK2ZM2dueT5r1izVrFkz3/C15557Bh1lmjdvnlq1aqXZs2drhx12CNYv/iYlQ0QxIGABhcSBB2C7LViwQI0bN052GX/TvXt3/f777/rggw+CT2pRUn3yySe6+OKLdf/99+vKK69MdjlFLjs7W2eeeaYqVqyowYMHq3z58kmpIycnRwsXLvxb6Nr87x9//KGTTz5ZPXv2VMuWLSNv68Ybb1T58uXVt2/fAJVjK1IyRBQDAhZQSBx4ALbLyy+/rMsvv1zXX3+9+vbtWyJmYnvttdf04IMP6ttvv1Xt2rWTXU6xmjNnjo444gi9+uqrpfrmszk5Obr00ku1aNEiDRs2TJUqVUp2SflKT0/Xc889p8cff1xt2rRRr1691KZNm+3qa/ny5WrWrJl+/vnnEvcHjVImJUNEMUjZgFU2/sQGACgVBg4cqLvuuksTJ07UjBkz1LlzZy1btiypNU2ZMkW33HKL3nvvvTIXriRpjz320JAhQ3ThhRdqxowZyS6nSLi7brrpJs2aNUtDhw4tseFKkmrUqKFbb71Vc+bMUceOHdW1a1d17NhRY8eOVWH/qN6/f3+ddtpphCugkAhYAICU8Oabb6pHjx4aNWqU2rRpoxEjRuiQQw7RwQcfrB9++CEpNS1dulSnn366nnvuOe23335JqaEkOPLII/Xggw/q5JNP1qpVq5JdTnD333+/vvjiC40YMULVq1dPdjkJqVq1qq677jrNmjVL5557ri6//HK1bdtWH3/8cUJBa+3atXr66ad16623FkO1QOnCKYJIFg48IAmuu+46ZWVlqVOnTjrmmGNS5qL1oUOH6tprr9Vnn32m/fff/2/L3n77bV177bXq16+fzjnnnGKrKTs7Wx07dtRhhx2mPn36FNt2S7Lu3btr5syZGjFiRNKuTwrtv//9r/r3769x48Zpxx13THY5223Tpk0aMmSIHnzwQVWqVEk9e/bUaaedttXrBfv166fRo0frvffeK+ZKy6SUPA2uGKTsKYIELCQLBx5QzEaNGqWrr75a1113nUaOHKnx48drv/3223Kj0zZt2pSI65ny+uCDD3TllVfq008/VatWrfJd58cff9Spp56qs846S3369CnyX+7T09N14403av78+frwww9LTZiIKjs7W8cdd5wOPPBAPfroo8kuJ7LXX39dd955p8aNG6ddd9012eUEkZOTo+HDh+vBBx9URkaGevbsqXPOOedv9zTLyspS06ZN9dZbb+nQQw9NYrVlRkqGiGKQsgFL7s6DRzIeAIrRpk2bvFWrVj5kyJAtr61fv95HjRrlt912m7dq1cpr1arlp556qj/zzDM+a9asJFb7/3344YfeoEEDnzx5coHrLl261I855hjv3Lmzr1ixokjqWb9+vT/++OPeoEEDP++884psO6ls+fLl3rRpU3/ttdeSXUok77//vjds2NCnT5+e7FKKRE5Ojo8cOdKPOuoo32OPPfz555/3DRs2uLv7wIED/aijjkpugWVLsn8nK6mPlN03SS+AR5l9AChGAwcO9EMOOcRzcnK2us6iRYt80KBBfuGFF3rDhg19jz328Kuvvtrfe+89X7VqVTFWG/Ppp596/fr1feLEiQm3ycrK8htuuMGbNm3qU6dODVZLVlaWDxgwwHfeeWc/+eST/ccffwzWd2k0bdo0r1+/vk+YMKFYtrd8+XIfOHCgT5kyZUtIiOLzzz/3+vXrJxTsS4Nx48b5cccd540bN/YnnnjCW7Ro4R9//HGyyypLkv07WUl9pOy+4RRBbGFmzSW9JWlPSb0k/Sapm7ufmkDbbyVd4u7TEtwcBx5QTDZs2KDmzZtr0KBBCd8Q1t01depUjRw5UiNHjtTXX3+tAw44QJ06dVKXLl104IEHFmnNo0eP1tlnn6333ntPRx55ZKHbv/7667r55ps1YMAAnXrqqdtdR05Ojt5++23dfffdaty4sfr06aPDDjtsu/srS0aMGKGrrrpK33zzjZo0aVJk2/n+++91xhlnqHnz5po/f75mz56tffbZR//617+2PFq2bJnwzXe//fZbnXTSSXrnnXfUrl27Iqu7JJoyZYr69OmjxYsXa9y4cUV2E2X8Azs6fyl7iiABC1uY2UuS1rj7jfGvJ0u6zt0nJtD2LElnu/sZCW6OAw8oJn379tX48eP1/vvvb3cf69ev1/jx4zVy5Ei9+eabat26tR566CHtvffe4QqNGzdunE4//XQNGTJERx999Hb3M2nSJJ1xxhm65JJLdM899xTq5r/uro8++ki9evVSpUqV1KdPH3Xo0IFfOAvp4Ycf1pAhQzRu3LiEA05hvPbaa7rlllvUv39/nXXWWZKkdevW6eeff9Z333235TF9+nTtueeefwtdrVq1Uo0aNf7W39SpU3XsscfqpZde0oknnhi8XmAr+GDJHwELqc/MRkl6091fNLODJb3h7s0SbFtF0kJJ+7r7ogSacOABxWDFihVq3ry5xo0bFywMrV+/Xk8//bQeeeQRnXHGGbrnnnu00047Bel7woQJOuWUU/TGG2/o2GOPjdzf4sWLdcYZZ6hu3boaOHCgatasWWCbL7/8Uj179tTKlSvVu3dvnXrqqQSr7eTu+ve//y131//+979g+3Hjxo264YYbNGbMGL377rvad999t7l+Zmampk2bpilTpmwJXT///LN23nnnLYGradOmuv766/XII4/o3HPPDVInkCA+YPJHwEJqM7PRko6SlCUpW9IjknZx98vjyw+XNEzSge7+p5kdIOkLSYe5+6/xdT6TNMjdX0tgkxx4QDG4+eabtXbtWj333HPB+16xYoX69OmjV155Rdddd51uueWWf4wIFMakSZN04okn6vXXX9dxxx0XrM7MzEz93//9n8aOHav3339fe+21V77rTZkyRb169dJvv/2m++67T+effz6zAwawfv16tWvXTmeccYZuv/32yP3Nnz9fXbt2VaNGjfTqq68mFJrzk52drV9//XVL4Prhhx90wQUX6LLLLotcI1BIKRkiikHKBqykXwTGo+Q8FAtMl8efD5F0a57lD0oaLamqpJ8VO30w9/KnJD2e4PYAFLE5c+Z4nTp1/K+//irS7cydO9cvuOACb9iwoT/99NOemZlZ6D6+++47b9CggQ8bNqwIKox5/vnnvX79+v7hhx/+7fVffvnFu3bt6jvttJP379/fN27cWGQ1lFXz58/3xo0bR/7+jh492hs2bOj/+c9/tjlhC5Bikv47YAl9pOy+YQQLW5jZF4qNQL0YH40a6u7P5VpeUdJESZUkLZB0vOc6gMzsQUk7ufulBW1ryZIlvnTpUjVp0kRLlixRZmam9thjD82ZM0e1atVShQoVtHz5cu2yyy5auHChcnJytMsuu2ju3Llbboy6cuVK7bbbbpo3b57KlSunRo0aad68eapbt66ys7O1evXqLX1WqlRJDRo00Pz581W/fn1t2LBB6enpW5ZXqVJFderU0cKFC7XjjjsqIyNDa9eu3bK8evXqSktL0+LFi9WoUSOtWLFCGzZs2LK8Ro0aqlKlinhPvKeS9J7OPPNMNW/eXLfeemuxvKf09HTdfPPNWrBgge699161bt1aDRs2LPA9ff3117rooovUr18/tWzZski/T++//75uu+02XXzxxWrfvr0GDRqkESNG6LLLLtONN96olStXcuwV0Xv6+OOP1a1bN33yySeqVq1aod7T7rvvrrvvvluvvfaaXnzxRTVt2rREvKfS+H3iPRX/e6patWpqjtIUvZQdwSJgYYs8AettSZPc/dE861yv2EhVJ3f/LM+ypyRlu/tNCWyOAw8oQlOmTFGXLl00Y8YMpaWlFeu2P/vsM/Xo0UOVKlXSI488ss2Z2H755Rd16NBBTz75pM4+++xiqW/BggU6/fTTNX36dHXv3l233HKLateuXSzbLusGDhyo++67T998843q1q2bUJv09HRdeumlmjt3roYOHapddtmliKsEil1KhohikLIBK/EplVDW/CTpbxcqmFljSfdIekXSY2ZWOU+bfST9WDzlAdgad9ett96qe+65p9jDlSR17NhRkydP1vXXX6+LLrpIXbp00bRp/7yDw2+//aaOHTvq0UcfLbZwJUmNGzfW+PHjtWDBAvXu3ZtwVYwuuOACnX766TrrrLOUlZVV4Pq//vqrDjnkENWuXVvjxo0jXAFICQQsbM1Hik16IUmy2NRPr0p6SdJlkv6S9ECu5VUkHSTpb6NaAIrfJ598ooULFyb1Yv1y5crp/PPP16+//qr27durffv2uvzyy7VgwQJJ0qxZs3Tssceqd+/e+ve//13s9VWsWDHShBzYfg899JAqV66sm2++eZvrvfvuu2rbtq1uuukmDRgwQFWqVCmmCgEgGgIW8uXu30labWaHxF/qLqmBpLvi111dIukSM9t819Iukr5w94XFXy2AzTZt2qTbbrtNDz/8sCpUqJDsclS5cmXddNNNmjFjhurVq6eWLVvq1ltvVYcOHXTXXXfpkksuSXaJKGbly5fX4MGDNXLkSA0YMOAfy7Ozs9WjRw/deOON+uijj3T55ZcnoUoA2H5cg4WtMrNOkq5x91MTWPcbSZe5+9QEu+fAA4rAyy+/rFdeeUVffvllibx3059//qkHHnhABx10kK666qpkl4MkmjFjhtq2bat33nlHbdvG/la3dOlSnXPOOSpXrpwGDx6sevXqJblKoFiUvA/rkiFlr8EiYCFZOPCAwNatW6e99tpLQ4cO1SGHHFJwAyDJRo4cqYsuukgTJ07U4sWL1bVrV/373//WAw88wD3IUJakZIgoBikbsJJ//ggAIIgnn3xShx9+OOEKKaNTp07q0aOH2rdvr/T0dL3wwgs67bTTkl0WAETCCBaShQMPCGjp0qXaZ599NHHiRDVt2jTZ5QAJc3c9/fTT6tSpk5o3b57scoBkSMlRmmKQsiNYBCwkCwceEFD37t0lSU899VSSKwEAFFJKhohiQMACCokDDwhk1qxZOvTQQzV9+nTVr18/2eUAAAonJUNEMUjZgMU07UAJtmbNmmSXgBRwxx136KabbiJcAQBQAhCwgBJq9OjR2mGHHXTCCSdo+PDh2rRpU7JLQgk0ceJETZw4UTfccEOySwEAAOIUQSQPB9425OTkqE2bNrr++uslSc8884wWL16sq666SpdddpkaNGiQ5ApREri72rVrp0svvZQb9gJA6krJ0+CKAacIAgjnnXfekSRdcMEFuuiii/TNN99o6NChmj17tpo3b67zzjtP48ePV1n4A8nYsWPVpk0btW/fXr1799aECROUlZWV7LJKhGHDhmnVqlW68MILk10KAACIYwQLycKBtxVZWVnad9999dxzz6lDhw7/WL5y5Uq9/vrreuaZZ1S5cmV169ZN//73v1WjRo0kVFt0Fi1apFtvvVVjx45V3759lZaWps8//1yff/65fv/9d7Vt21YdOnRQhw4d1KJFC5UrV7b+XpSdna0WLVroiSee0PHHH5/scgAA2y8lR2mKQcqOYBGwkCwceFvx7LPP6v3339enn366zfXcXaNHj9azzz6r0aNH69xzz1W3bt3UokWLYqq0aGRnZ+vZZ5/V/fffr0svvVR33XWX0tLS/rbOsmXLNGbMGH3++ecaPXq0Vq1apfbt26tDhw465phjtOeee8osJT+TE/b888/r7bff1qhRo0r9ewWAUo4P8fwRsIBC4sDLR0ZGhpo1a6aPPvpIBx54YMLtFixYoAEDBmjAgAHac8891a1bN51xxhmqVKlSEVYb3sSJE9WtWzfVqlVLzzzzjPbdd9+E2s2bN0+jR4/eMsJVsWLFLWGrQ4cO2mmnnYq48uKVnp6u5s2ba/jw4TrooIOSXQ4AIJqUDBHFgIAFFBIHXj4eeOABTZ8+XW+88cZ2tc/KytKwYcP07LPPaurUqbrsssvUvXt37bjjjoErDWvZsmW644479OGHH+rRRx/Veeedt92jMu6u3377bcvo1pgxY9SwYUMde+yxOuWUU9SuXTtVrFgx8DsoXvfee69mzZqlQYMGJbsUAEB0KRkiigEBCygkDrw8li5dqn322Ufffvut9thjj8j9/frrr+rXr5+GDx+uESNGqGXLlgGqDCsnJ0cvvfSS7rzzTp1zzjm6//77VatWraDb2LRpk3744Qd9+umn+uCDDzRz5kydcMIJOvXUU3Xcccf94/TDku6vv/5SixYtNGXKFO22227JLgcAEF1KhohiQMACCokDL48bbrhBmzZtUr9+/YL2+9Zbb+n666/XwIED1blz56B9R/Hdd9/pmmuuUbly5fTMM8+oVatWxbLdBQsWaNiwYfrggw/09ddfq127djr11FPVpUuXEj/SJ0lXX3210tLS1Ldv32SXAgAIIyVDRDEgYAGFxIGXy++//67WrVtr+vTpRXKPq6+++kpdu3bVfffdpyuvvDJ4/4WxatUq3XXXXXr77bfVp08fXXLJJUmbAXD16tX6+OOP9f777+uTTz5RixYtdMopp+jUU09Vs2bNklLTtnz//ffq1KmTfvvtN9WpUyfZ5QAAwkjJEFEMUjZgla15jYES6u6771b37t2L7AbCRxxxhMaNG6e+ffuqR48eysnJKZLtbIu7a+DAgdp3332VmZmpX375RZdddllSp1evVauWzjnnHL355ptavHix7rzzTs2ePVvt2rXTfvvtp169emnSpElJ2V95DRkyRJ06dVL//v0JVwAAlGCMYCFZOPDifvjhBx1//PGaMWNGkd/Lavny5Tr11FO100476bXXXlPVqlWLdHubTZ06Vddee63S09P17LPP6pBDDimW7W6vnJwcTZo0Se+//77ef/99paen6+STT1a3bt20//77F2st2dnZuv322zV06FANHTpU//rXv4p1+wCAIpeSozTFgBEsANvnjjvuUK9evYrlRsF169bVZ599pvLly6tDhw5aunRpkW5vyZIl6t69u9q3b6+zzjpLkyZNKvHhSpLKlSunQw45RA899JCmT5+uUaNGqUmTJurQoYPuvfdeZWZmFksdixYt0rHHHqtp06Zp8uTJhCsAAFIAAQtIojFjxmjGjBnFel1UlSpV9L///U/t27fXYYcdpt9++y34NtLT03Xfffdpn332kZlp2rRpuvbaa1W+fPng2yoOe++9t3r27Knvv/9eU6ZMUevWrTV58uQi3eZXX32l1q1b6+ijj9aIESNUt27dIt0eAAAIg4AFJIm7q0ePHnrwwQeL/YbA5cqV04MPPqg77rhD7dq105dffhmk38zMTD399NNq1qyZZs6cqUmTJum///1vkV1bVtwaN26sYcOGqUePHjrxxBN1++23a8OGDUG34e7q16+fTj/9dD3//PO69957UzaYAgBQFhGwgCQZOnSosrOzddZZZyWthssuu0yDBg1S165dt/vmxlLsmqXBgwdrn3320YgRI/Txxx9r0KBBQe7nVdKYmc4//3z99NNPmj17tlq1aqWvv/46SN9r167VBRdcoJdeekkTJkzQiSeeGKRfAABQfJjkAslSpg+8rKws7bfffurfv786duyY7HL0888/66STTtIVV1yhXr16ySyxa0rdXZ999pluv/12lS9fXg8//LCOOeaYIq62ZHnnnXfUvXt3nX322erdu7eqV6++Xf3MnDlTp59+uv71r3/p2WefVbVq1QJXCgAooVJyIodiwCQXABL38ssva9dddy0R4UqS9t9/f02YMEHvvfeeLrvssoQmcZg8ebI6duyo6667TnfccYe+/fbbMheuJKlr1676+eeftXTpUrVs2VJffPFFofv44IMPdMQRR+jaa6/Vq6++SrgCACCFMYKFZCmzB97atWvVrFkzDR8+XAcddFCyy/mbjIwMnXfeeVq7dq2GDh2q2rVr/2OdmTNn6s4779S4ceN0zz336NJLL1XFihWLv9gSaPjw4erWrZtOPvlkPfzwwwXODLlp0ybdfffdGjhwoIYMGZISMywCAIJLyVGaYsAIFoDEPPnkk2rXrl2JC1eSlJaWpvfee0/77befjjjiCP3xxx9bli1atEjXXHONDjvsMLVs2VIzZ87UVVddRbjKpUuXLpo6daoyMzPVokULffrpp1tdd9myZTr++OM1ceJETZ48mXAFAEApwQgWkqVMHnjLli3T3nvvrYkTJ6pp06bJLmeb/vvf/+qRRx7RwIEDNWbMGD3zzDO66KKL1LNnT9WrVy/Z5ZV4n332ma644godc8wxeuyxx7TDDjtsWTZp0iSdeeaZOvfcc/XAAw+oQoUKSawUAJBkKTlKUwwYwQJQsD59+ujss88u8eFKkv7v//5P/fv31+mnn6558+ZpypQpevzxxwlXCerYsaN+/vlnVa1aVfvvv7+GDRsmd9eAAQN04okn6oknntBDDz1EuAIAoJRhBAvJUuYOvLlz5+qggw7StGnT1LBhw2SXkzB3T3hWQeRv7Nixuuyyy1SjRg1lZmbq3XffVfPmzZNdFgCgZOA/2fyl7AgWAQvJUuYOvAsvvFC777677rvvvmSXgiRYt26dhg4dqtNOO01paWnJLgcAUHKkZIgoBgQsoJDK1IH3008/qWPHjpo5c6Zq1qyZ7HIAAEDJkZIhohikbMDiGiygGNxxxx3q1asX4QoAAKCU4+pqoIh98cUXmj59ut59991klwIAAIAixggWSqVx48bp119/VbJPgXV39ejRQ71791blypWTWgsAAACKHiNYKHWeeeYZPfjgg6pYsaLWrVuntm3bbnkccMABxTot9nvvvafMzEydc845xbZNAAAAJA+TXCBZiuTAe/PNN3XLLbdo3Lhx2n333TVv3jyNGzduy2P+/Pk67LDDtgSuNm3aqEqVKkVRirKzs7XffvvpqaeeUufOnYtkGwAAIOWl5EQOxSBlJ7kgYCFZgh94I0eO1AUXXKBRo0Zp//33z3edZcuWafz48VsC1y+//KJWrVqpbdu2ateunQ4//HDVqlWr0NvOycnR2rVrtWbNGq1Zs0bp6en66KOPNG7cOI0aNYr7SAEAgK3hl4T8EbCAQgp64H3zzTfq0qWL3n//fR1++OEJt8vIyNCECRO2BK5JkyapWbNmatu2rfbee29lZGRsCUybw1N+X69du1ZVq1ZVzZo1VbNmTdWoUUO1a9fW448/vtWwBwAAoBQNEcWAgAUUUrAD75dfftExxxyjl19+WSeccEKkvjIzMzV58mSNGzdOc+bM2RKYNoem/J7XrFlTaWlpKl++fKB3BAAAypCUDBHFgIAFFFKQA++PP/5Q27Zt9dBDD+n8888P0SUAAEBxSskQUQxSNmAxTTtS1tKlS9WpUyfdfPPNhCsAAACUCIxgIVkiHXjp6ek65phj1LlzZ/Xu3TtUTQAAAMUtJUdpikHKjmARsJAs233gbdy4USeccIKaNWumZ599lhn6AABAKuMXmfwRsIBC2q4Db9OmTTr77LNlZnrzzTeZWAIAAKS6lAwRxSBlA1aFZBcAJMrd1a1bN61evVojRowgXAEAAKDEIWAhZdx555364Ycf9Pnnn6ty5crJLgcAAAD4BwIWUsKTTz6poUOHavz48apRo0ayywEAAADyRcBCiTdw4EA9/vjjGj9+vOrVq5fscgAAAICtYpILJEtCB96IESN0+eWXa8yYMdpnn32KuiYAAIDilpITORQDJrkAQhs/frwuueQSjRgxgnAFAACAlFAu2QUA+fnpp590xhln6H//+58OOeSQZJcDAAAAJISAhRJnzpw5OuGEE9SvXz916tQp2eUAAAAACeMaLCSFNe/sunxE/gsnvy5lrpMOv3qbfaRVilZDRma09iH0bhv9bxwVLPrpyeVKwBnOVSKesDxxYfTPsjUl4Jg4tFH0Pnq1jthBhej3mJu6NPr3o1LEMvaoHbkEVchYH62DCTOiF1E3LXof67OSXkPOPk0itS/3/ZzINWivAD9gX/0Wrf2GAB80v/wZrf2aiMe1JC1cEb2PXxdEa18nwM9G7erR2v80N3IJ9ku/T939uMgdlT5cgwUUytplW1/W+sLiqwMAACC5mCK5lOEUQQAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAuE+WAAAAEDyHGRm0e/OXgjunpI38E0VjGABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAIWKWMmV1sZuMj9nG0mc1P1vYBAACAVEXAAgAAAIBACFgAAAAAEAgBK0WZ2e1mNtvM0s3sFzM7bSvr7Wdmn5nZCjNbbGY9469XNrMnzWxh/PGkmVXO0/ZmM1tiZn+Z2SW5Xq9lZq+b2VIz+8PM7jQzjiUAAACUefxSnLpmS2orqZak+yQNMrOdcq9gZjUkjZL0iaRGkppK+jy+uJekQyW1knSApDaS7szVvGG878aSLpPU38x2iC/rF1+2h6SjJF0o6RIBAAAAZRwBK0W5+xB3X+juOe7+lqSZioWk3E6StMjdH3P3De6e7u7fxJedL+l+d1/i7ksVC2kX5GqbFV+e5e4fScqQ1NzMyks6R9Id8f7mSnosT9t8mdmVZjbZzCZr7bII7x4AAAAomQhYKcrMLjSzH8xslZmtktRCUr08q+2s2EhXfhpJ+iPX13/EX9tsubtn5/p6naS0+DYq5tO2cUE1u/sL7t7a3Vuret5SAQAAgNRHwEpBZrarpAGSrpNU191rS5oqyfKs+qdip/HlZ6GkXXN9vUv8tYIsU2x0K2/bBQm0BQAAAEo1AlZqqi7JJS2VpPgEFC3yWW+EpJ3M7Ib4pBY1zOyQ+LLBku40s/pmVk/S3ZIGFbRhd98k6W1JD8b721XSTYm0BQAAAEo7AlYKcvdfFLvuaYKkxZL2l/RVPuulS+ooqYukRYpdp9U+vri3pMmSfpL0s6Tv4q8l4npJayXNkTRe0huSXt6+dwMAAACUHhWSXQC2j7v3UmwmwPy8mmu9qZI65NN+g6Tu8UfeZV9IapLntd1yPV8p6d9bqevV3NsHAAAAyhJGsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELAAAAAAIhYAEAAABAIAQsAAAAAAikQrILAAAAAMqwKe7eOtlFIBxGsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAAJCLmZUzs522py0BCwAAAAAkmVltM3tD0gZJs+KvnWxmvRPtg4AFAAAAADHPSVotaVdJmfHXJkg6O9EOmKYdAAAAAGI6SGrk7llm5pLk7kvNrEGiHRCwkBQH1c3R5AsyIvWxrm7tSO0rlY/UXJK0ZF209o0qZEWuYWF2xch95Hi09uUscglqtGZlpPaHNdohcg0NqkXuIvK+aPLmqOhFVGsWrX2l6P81tNi7SeQ+tCGz4HW2Yc6a6D8bDapVjdS+WqcDItdQbn20/SBJWhTt50vlop/wUs6i/XBktNgjcg1pOdE/c9W8UbT2ayL+xyFJ++8SrX2jOtFrmDQ7eh9RPzB3rBW9hoa1o7UP8LOh6v2i94GQVkuqJ+mvzS+Y2S65vy4IpwgCAAAAQMyLkoaaWXtJ5czsMEmvKXbqYEIYwQIAAACAmIclrZfUX1JFSS9Lel7SfxPtgIAFAAAAAJLc3RULUwkHqrwIWAAAAAAgycyO2doydx+dSB8ELAAAAACIeSnP1/UlVZI0X1JCs+0QsAAAAABAkrvvnvtrMysv6U5J6Yn2wSyCAAAAAJAPd98k6UFJtyXahoAFAAAAAFvXUVJOoitziiAAAACQPAeZmed90d0j3okZ28PM/pSU+/tRTVIVSdck2gcBCwAAAABi/p3n67WSZrj7mkQ7IGABAAAAgCR3Hxu1DwIWAAAAgDLLzAbq76cF5svdL0ykPwIWAAAAgLJsVsjOCFgAAAAAyix3vy9kfwQsAAAAAIgzs0qSmkuqJ2nLbI7uPjqR9gQsAAAAAJBkZkdKGiKpsqSaktZIqiHpT0l7JNIHNxoGAAAAgJgnJD3i7nUkpcf/fUDSM4l2QMACAAAAgJi9JP03z2v/kXRjoh0QsAAAAAAgZrVipwZK0l9mtq+kHSSlJdoBAQsAAAAAYt6VdEL8+cuSxkiaIumdRDtgkgsAAAAAkOTuN+R63tfMJio2ycWnifZBwAIAAAAASWZ2qqQP3T1Lktx9fGH74BRBAAAAAIi5V9JiM3vRzNpvTwcErDLOzJ4zs7uSXQcAAACQbO7eStKRkhZJetHM5pvZY2Z2UKJ9ELDKOHe/2t0fSHYdAAAAQEng7r+4+53uvqekrpL2l/Rtou25BgsAAAAAcjGznSWdI+k8SbtKeiXRtoxgBWBmc83sVjP7yczWmtlLZrajmX1sZulmNsrMdoivO8TMFpnZajP70sz2y9VPXTMbbmZrzGySmfU2s/G5lruZXW1mM81slZn1NzPLtfxSM5tuZivN7FMz2zX+upnZE2a2JN73z2bWIr7sVTPrHX9+ce7t5dpm01zrPhN/Xxlm9pWZNTSzJ+Pb/NXMDizKfQ0AAAAUFTO7Jv778C+SWku6T1JDd7880T4IWOGcIamjYnd/7iLpY0k9JdVXbD93j6/3saRmkhpI+k7S/3L10V/SWkkNJV0Uf+R1kqSDJbWUdJakzpJkZqfEt3d6fJvjJA2Ot+kkqV28tlrxdsu3832eJelOSfUkbZQ0If4+6il2f4DHt7NfAAAAINlOkvS8pJ3c/Wx3f9/dMwvTAQErnH7uvtjdFygWbr5x9+/dfYOk9yQdKEnu/rK7p7v7RsVmKTnAzGqZWXnFQto97r7O3X+R9Fo+2/mPu69y93mK3fisVfz1qyU95O7T3T1bUh9JreKjWFmKzd+/tySLr/PXdr7P99x9Sq73tcHdX3f3TZLe2vw+82NmV5rZZDObvHT5su3cPAAAAFA03P0Edx/o7hnb2wcBK5zFuZ6vz+frNDMrb2b/MbPZZrZG0tz48nqKjTpVkPRnrna5n2+2KNfzdZLS4s93lfTf+KmDqyStkGSSGrv7aElPKzZCtsTMXjCzmtvxHpXP+/rH+9xaQ3d/wd1bu3vr+nXrbefmAQAAgJKLgFW8zpN0iqRjFTtVb7f46yZpqaRsSU1yrb9zIfr+U9JV7l4716Oqu38tSe7+lLsfJGlfxU4VvDWfPtZKqrb5CzNrWIjtAwAAAGUeAat41VDsuqXligWZPpsXxE+xe1fSvWZWzcz2lnRhIfp+TtIdmyfNiJ92eGb8+cFmdoiZVVQsRG2QlJNPHz9K2s/MWplZFcVOYQQAAACQIAJW8Xpd0h+SFig2M8nEPMuvU2xka5GkgYpNUrExkY7d/T1JD0t6M3764VRJx8cX15Q0QNLK+PaXS3o0nz5mSLpf0ihJMyWNz7sOAAAAUBqZWSczu8nM2kfqx91D1YTAzOxhxaaFzG82wZTW+oADffKnoyP1sa5u7UjtK5WP1FyStGRdtPaNKmRFrmFhdsXIfeRE/BgoZwWvU5BGa1ZGaj+53A6Ra2hQreB1ChJ1XzR5c1T0Ig5pFq19pQC3SNy7ScHrFGRDoSZt+oc5G6L/bEQ9JqpFL0Hl1kfbD5KkRdF+vlQuwN9jd2sQqXlGZvTfV9Jyon/matGqaO3XRPyPQ5LSqkRr36hO9BomzY7eR9QPzB1rRa+hYe1o7QP8bFj1/L+f7h7gf9eU5opdRlMszKyHpLslTVPskpoe7t5/e/piBKsEMbO9zaxl/L5VbSRdpthMfQAAAACKzlWSOrh7G8Vug3TN9nYU4M+UCKiGYqcFNlJsdr7HJH2Q1IoAAACA0q+eu0+UJHf/KspkbwSsEsTdJ0lqmuw6AAAAgLLGzEyx0xIt/uXm55Ikd89vkrh/IGABAAAAKOvSFLtl0maW62tT7JqwhK7gJ2ABAAAAKOt2D9URAQsAAABAmebuf2xtmZntIOlcSc8k0hezCAIAAABALmZW3sxONrOhkv6S1C3RtoxgAQAAAIAkM/uXpIsknSOpqqTKkrq6+/BE+2AECwAAAECZZma3mtnPkr5W7Hqs/5PUUNIKSd8Upi9GsAAAAACUdQ9LWi7pQklD3N0lKTZTe+EwggUAAACgrDtG0nBJL0qab2aPmdlBik3PXigELAAAAABlmrt/4e6XKnZa4O2SWip2auCOkq4ys7qJ9kXAAgAAAABJ7r7O3Qe6e0fFrsW6S9L5kv5MtA8CFgAAAADk4e5/unsfd99bUvtE2zHJBQAAAIAyzcyOCdUXAQsAAABIninu3jrZRUAv5fl6Z/39tECXtEciHRGwAAAAAJRp7r577q/NbGXe1xLFNVgAAAAA8HeFnp59MwIWAAAAAARCwAIAAACAQLgGCwAAAECZZmbj9PfTAmuY2Ze513H3don0RcACAAAAUNa9mOfrvLMKJoyABQAAAKBMc/fXQvVl7ts9QQaw3Q48qLWP+WpSpD7WZUeroUKAKxAbVLNoHSxaGb2IzIg7QtK82vUita9TJXIJqlYxWvty6zOjF7FuY/Q+0iLujEoB/u61am209uUC/HBsCPD9WLM+WvsmdaPXMH95tPY5OdFrCHFMVCgfrX3U41rSiqppkdpv2BS5BG2I/nGpelUj1hDgfSzMiNa+WoBDqmH16H2s2BCtfWaAfZlWKVr7ZRE/piTpgAbluA9W/lxSxF+0EmdmB0na6O5T41/Xl/SkpBaSJki6xd0T+uljkgsAAAAAZd2Tkhrm+vpFSXtJekGxkPVIoh1xiiAAAACAsm4fSeMkycxqSzpeUgt3n2FmwyR9LemaRDpiBAsAAABAWVdB0ubz2w+VtMjdZ0iSu/8pqXaiHRGwAAAAAJR10ySdGX9+jqRRmxeYWWNJqxPtiFMEAQAAAJR1PSQNN7PnJG2SdGSuZWdL+irRjghYAAAAAMo0dx9vZrsoNrHFDHdPz7X4Q0lvJtoXAQsAAABAmRcPVVPyef23wvTDNVgAAAAAEAgjWAAAAEDyHGRmnvdFdy+2m+wiLEawAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBKxiYmbNzewHM0s3sxVm1jvZNW2NmbU1s9+2sfzVklw/AAAAkCwErOJzm6Qx7l5D0rBkF7Mt7j7O3Zsnuw4AAAAg1RCwis+ukqYluwgAAAAARYeAVQzMbLSk9pKeNrMMSZVyLdvBzEaY2VIzWxl/3iS+7Gwzm5ynrxvNbFj8+Ylm9r2ZrTGzP83s3lzr7WZmbmYXmdk8M1tmZr1yLa9sZk+a2cL440kzqxxfdrSZzc+17oFm9l389Ma3JFXJtaxevOZV8VMfx5kZxxUAAADKJH4RLgbufoykcZKuc/c0SZm5FpeT9IpiI1y7SFov6en4suGSmptZs1zrnyfpjfjztZIulFRb0omSupnZqXk2f6Sk5pI6SLrbzPaJv95L0qGSWkk6QFIbSXfmrd3MKkl6X9JASXUkDZF0Rq5VbpY0X1J9STtK6inJt7ozAAAAgFKMgJVk7r7c3Ye6+zp3T5f0oKSj4svWSfpA0rmSFA9aeyt+DZe7f+HuP7t7jrv/JGnw5ra53Ofu6939R0k/KhamJOl8Sfe7+xJ3XyrpPkkX5FPioZIqSnrS3bPc/R1Jk3Itz5K0k6Rd48vHuXu+AcvMrjSzyWY2ednSpYXZTQAAAEBKIGAlmZlVM7PnzewPM1sj6UtJtc2sfHyVNxQPWIqNXr0fD14ys0PMbEz89MLVkq6WVC/PJhbler5OUlr8eSNJf+Ra9kf8tbwaSVqQJzTlbveopFmSRprZHDO7fWvv1d1fcPfW7t66Xv36W1sNAAAASFkErOS7WbFT+A5x95qS2sVft/i/n0mqb2atFAtab+Rq+4Zio1k7u3stSc/laleQhYqdlrjZLvHX8vpLUmMzszzrSpLcPd3db3b3PSSdLOkmM+uQYA0AAABAqULASr4ail13tcrM6ki6J/dCd89S7LqnRxW7BuqzPG1XuPsGM2uj2AhXogZLutPM6ptZPUl3SxqUz3oTJGVL6m5mFc3sdMWu15IkmdlJZtY0HsBWS9okKacQdQAAAAClBgEr+Z6UVFXSMkkTJX2SzzpvSDpW0hB3z871+jWS7jezdMUC0tuF2G5vSZMl/STpZ0nfxV/7G3fPlHS6pIslrZB0tqR3c63STNIoSRmKhbFn3H1MIeoAAAAASg3bynwEQJE68KDWPuarSQWvuA3rsgteZ1sqBPjzQoNqiZ6RuRWLVkYvIjPijpA0r3beS/cKp06VgtcpSLWK0dqXW59Z8EoFWbcxeh9pEXdGpQrRa1i1Nlr7cgF+ODYE+H6sWR+tfZO60WuYvzxa+5wAA/ohjokK5QteZ1uiHteSVlRNK3ilbdiwKXIJ2hD941L1qkasIcD7WJgRrX21AIdUw+rR+1ixIVr7zAD7Mq1Swetsy7KIH1OSdECD/D9z3T3iLxkpz5X4pS8lCiNYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELAAAAAAIhYAEAAABAIAQsAAAAAAiEgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAJJnirtb3keyi8L2I2ABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABBIhWQXgLKpvEm1q0S7xUPt7E2BqokgIzNS8/nVa0cuoUnahuh9VI/Wvtz0+ZFrUJ20aO3XrE9+DZJyKleM1H7WysglaK+5S6J1sEfD6EWE+H5ErmFd9D4iH5cBaqiU/P+ql1WJ/rMR8eNSlcpHLkFNakTvo0LEP03X3JgVuYYlFu1zplq05sHsVj0nUvs5GdHHCRpUi9Z+9qrIJaAUYgQLAAAAAAIhYAEAAABAIAQsAAAAAAiEgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEEjy714IAAAAlF0HmZnnfsHdLVnFIDpGsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELAAAAAAIhYAEAAABAIAQsAAAAAAikTAUsM7vYzMYH6MfNrGn8+XNmdleC7RJeNxQzO83M/jSzDDM7sAj637IvAAAAgLKuQrILSHXufvX2rGtmR0sa5O5NiqCs3PpKus7dPyji7QAAAABlXpkawSqjdpU0LdlFAAAAAGVBqQxYZna7mc02s3Qz+8XMTtvKevuZ2WdmtsLMFptZz/jrbcxsgpmtMrO/zOxpM6u0lT5eNbPe8edHm9l8M7vZzJbE216Sd10zqy7pY0mN4qfuZZhZIzNbZ2Z1c63/LzNbamYVt/Fey5nZnWb2R3ybr5tZLTOrbGYZkspL+tHMZm/vPjOzpmY21sxWm9kyM3srT/NjzWxmfH/1NzPb1rYAAACA0qpUBixJsyW1lVRL0n2SBpnZTrlXMLMakkZJ+kRSI0lNJX0eX7xJ0o2S6kk6TFIHSdckuO2G8e02lnSZpP5mtkPuFdx9raTjJS1097T4Y6GkLySdlWvVCyS96e5Z29jexfFHe0l7SEqT9LS7b3T3tPg6B7j7ngXUva199oCkkZJ2kNREUr88bU+SdLCklvH6OxewLQAAAKBUKpUBy92HuPtCd89x97ckzZTUJs9qJ0la5O6PufsGd09392/i7ae4+0R3z3b3uZKel3RUgpvPknS/u2e5+0eSMiQ1T7Dta5L+LUlmVl7SuZIGFtDmfEmPu/scd8+QdIekc8ysUNfXFbDPshQ71bBRfF/lnSjkP+6+yt3nSRojqVV+2zCzK81ssplNXrp0aWHKAwAAAFJCqQxYZnahmf0QP2VtlaQWio1G5bazYqM2+bXfy8xGmNkiM1sjqU8+7bdmubtn5/p6nWKjSon4QNK+Zra7pI6SVrv7twW0aSTpj1xf/6HY5CU7JrhNSQXus9skmaRvzWyamV2ap/miXM+3+n7d/QV3b+3urevXr1+Y8gAAAICUUOoClpntKmmApOsk1XX32pKmKhYQcvtTsVPq8vOspF8lNXP3mpJ65tM+Kv/HC+4bJL2t2CjWBSp49EqSFio2urTZLpKyJS1OtJCC9pm7L3L3K9y9kaSrJD3D1OwAAADAP5W6gCWpumLhZakkxSeZaJHPeiMk7WRmN8QnhKhhZofEl9WQtEZShpntLalbEdS5WFJdM6uV5/XXFbum6mQlFrAGS7rRzHY3szTFRtveyjOKVpBt7jMzO9PMNk8nvzK+bk4h+gcAAADKhFIXsNz9F0mPSZqgWIjZX9JX+ayXrthpeF0UO8VtpmITRUjSLZLOk5Su2MhO3lnzQtT5q2LhaE78tLxG8de/Uiy8fOfuf2yrj7iXFQtiX0r6XdIGSdcXspaC9tnBkr6Jz0o4TNL/ufucwmwDAAAAKAvM/R9nqiHJzGy0pDfc/cVk11JUWrdu7ZMnT47WSfamMMVEsSEzUvP5XiVyCU1sQ+Q+cqpHq6Pc9PmRa1CdRC9V3Io165Nfg6ScujUitZ+1MnIJ2mtuxL9/7NEwehFLVkfvI6qaVaP3UaF8tPZr1kWvoVKh5iwqEsvq1C14pQJkbGs+3ARUivitkKR6IQ6JiH+aLrcx4o6QNDV9q3dvSUjt6P/1qGa+N68pZB/lo50MMycj+jjBLjWjtZ+wMHIJarfzP9+Hu3PLm9gZUym5H5L/qY2/MbODJf1L0inJrgUAAABA4ZS6UwRTmZm9pti9uW6In8K4+fXnct2QOPfjuUL0vctW+sgws12K4v0AAAAAZQ0jWCWIu1+0ldevlnR1xL7nKfHp4gEAAABsB0awAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAQPJMcXfL/Uh2QYiGgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACIWABAAAAQCAVkl0Ayqa1WdK3f3mkPtqsXxqtiCb1orWXpJxo76FB9eglyCpH7mLF+mjta+/dJHINGZkRa6hSKXINqhZ9X85ZFa19dk7kEqK/j9oBDsy0KtH7WLI6UvOcHWtHryGicisyoncS4oMiY0Ok5vWqRb8tT2ZGtM/LRmtWRq5By7Kj91Eu4r6oVzNyCS1qbYrUflFW+cg11Fwe4PsR8bjcY5cQ/49H2xdtG3HLKvwTI1gAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQLjRMAAAAJA8B5nZljtxuzt3L05xjGABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELkZiZm1nTZNcBAAAAlAQELAAAAAAIhIAFAAAAAIEQsLCFmd1uZrPNLN3MfjGz0+KvNzWzsWa22syWmdlbeZoea2YzzWyVmfU3M0tC+QAAAEDSVUh2AShRZktqK2mRpDMlDYpfX/WApJGS2kuqJKl1nnYnSTpYUk1JUyQNl/RJMdUMAAAAlBiMYGELdx/i7gvdPcfd35I0U1IbSVmSdpXUyN03uPv4PE3/4+6r3H2epDGSWuXXv5ldaWaTzWzyquVLi/CdAAAAAMlBwMIWZnahmf0QP9VvlaQWkupJuk2SSfrWzKaZ2aV5mi7K9XydpLT8+nf3F9y9tbu3rl23fhG8AwAAACC5OEUQkiQz21XSAEkdJE1w901m9oMkc/dFkq6Ir3ekpFFm9qW7z0pawQAAAEAJxAgWNqsuySUtlSQzu0SxESyZ2Zlm1iS+3sr4ejnJKBIAAAAoyQhYkCS5+y+SHpM0QdJiSftL+iq++GBJ35hZhqRhkv7P3eckpVAAAACgBOMUQWzh7r0k9drK4tu20sbyfH1x4LIAAACAlMEIFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELAAAAAAIhYAEAAABAIAQsAAAAAAiEgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAJM8Ud7fNj2QXg+gIWAAAAAAQCAELAAAAAAIhYAEAAABAIAQsAAAAAAiEgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAIBAKiS7AJRNlcpLu9SM2MlODSM1X7HeIxYg1YnYvtKCZZFrmFq1XuQ+WmxcHqn9hoZ1I9dQOyczWgdLVkeuQbtE35e71SofqX2FDRH3g6QZDRpHap+5NPrPRrWK0f9+16jBDpHaZ0bflVqYEa39bnvsFLmGZesjd6HadapEap+WvSlyDY3WRduZ2Q2jHQ+SVCHA+1DUn9FqlaPXEPF9RDwcYqx69D5qB+gjqszsaO3XrAtTB0oVRrAAAAAAIBACFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELAAAAAAIhYAEAAABAIAQsAAAAAAiE+2ABAAAAyXOQmW25AaG7WzKLQXSMYAEAAABAIAQsAAAAAAiEgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsys7lmdmyy6wAAAABSHQELAAAAAAIhYAEAAABAIAQsbNbKzH4ys9Vm9paZVTGzi81sfO6VzMzNrGn8eWUz62tm88xssZk9Z2ZVk1M+AAAAkHwELGx2lqTjJO0uqaWkixNo8x9Je0lqJamppMaS7i6a8gAAAICSj4CFzZ5y94XuvkLScMVC01aZmUm6UtKN7r7C3dMl9ZF0zjbaXGlmk81s8vJlSwOWDgAAAJQMFZJdAEqMRbmer5PUqID160uqJmlKLGtJkkxS+a01cPcXJL0gSQf8q7Vvd6UAAABACUXAwrasVSxESZLMrGGuZcskrZe0n7svKO7CAAAAgJKIUwSxLT9K2s/MWplZFUn3bl7g7jmSBkh6wswaSJKZNTazzkmpFAAAACgBCFjYKnefIel+SaMkzZQ0Ps8qPSTNkjTRzNbE12terEUCAAAAJQinCELuvluer+/N9fxBSQ/mWjwo17INknrGHwAAAECZxwgWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELAAAAAAIhYAEAAABAIAQsAAAAAAiEgAUAAAAkzxR3t82PZBeD6AhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAqJLsAlE3rsqTvl3ikPnZOi1ZD0x2itZeknzKqRmrfskH0H8EWyorcx9gNdSK1r7sycgmqUqFSpPZ1dt4pehHRDklJUs2I7ccsqxi9iIhv5Kido9/ncsm6yF2oyqr0aO3TqkSuoebqFdE6yKocuYYmtatH7kPZEQ/uCuWj19CgVrQS5i2NXEJ2k3qR+6gQcV+sWB/9g6bOxg2R2mdXrxa5hko/zo3chw7YLVr7Nesjl7Buh2if2tUahPjMRmnDCBYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAAIFwHywAAAAgeQ4yswB3YpTcPfqNDBEZI1gAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEkrIBy8yam9kPZpZuZt2LedtHm9n8It5GbzNbZmaLinI7AAAAAMIpMGCZ2ZFm9rWZrTazFWb2lZkdXBzFFeA2SWPcvYa7P5V3oZlNM7OMXI9sMxu+PRsyMzezppErTnx7u0i6WdK+7t4wYl9FHgYBAAAAxGwzYJlZTUkjJPWTVEdSY0n3SdpY9KUVaFdJ07a20N33c/c0d0+TVEPSn5KGFFdxiTKzCvm8vIuk5e6+pLjryWsr9QEAAADIR0EjWHtJkrsPdvdN7r7e3Ue6+0+SZGb3mtmgzSub2W7x0Z4K8a+/iJ/q9nV8FGm4mdU1s/+Z2Rozm2Rmu21t42Z2cnwkalW8r33ir4+W1F7S0/F+9yrgfbSTVE/S0G1s6wozmxUfpRtmZo3ir38ZX+XH+LbOztXmZjNbYmZ/mdkluV6vbGZ9zWyemS02s+fMrGp82dFmNt/MesRP/3slTx3HSvpMUqP49l6Nv35ofD+uMrMfzezoXG0uMbPp8dMl55jZVfHXq0v6OFdfGWbWyMxeNbPeudr/bZTLzObG6/tJ0lozq1DA9i+ObzfdzH43s/ML+H4AAAAApVJBAWuGpE1m9pqZHW9mO2zHNs6RdIFio197SpqgWKioI2m6pHvyaxQPTYMl3SCpvqSPJA03s0rufoykcZKui49SzSighoskDXX3tVvZ1jGSHpJ0lqSdJP0h6U1Jcvd28dUOiG/rrfjXDSXVir+vyyT1z7V//qNYOG0lqWl8nbtzbbJh/P3vKunK3LW4+yhJx0taGN/exWbWWNKHknrH290iaaiZ1Y83WyLpJEk1JV0i6Qkz+1f8/ebuK83dFxawrzY7V9KJkmpL2nFr24+HuKckHe/uNSQdLumHBLcBAAAAlCrbDFjuvkbSkZJc0gBJS+OjOzsWYhuvuPtsd1+t2GjKbHcf5e7Zip2yd+BW2p0t6UN3/8zdsyT1lVRVsV/gE2Zm1SR1lfTqNlY7X9LL7v6du2+UdIekw7Y1uiYpS9L97p7l7h9JypDU3MxMsdB0o7uvcPd0SX0UC5qb5Ui6x903uvv6BN7GvyV95O4fuXuOu38mabKkEyTJ3T+M72N397GSRkpqm0C/2/KUu/8Zr2+b24+/nxZmVtXd/3L3fE/dNLMrzWyymU1es2JpxPIAAACAkqfASS7cfbq7X+zuTSS1kNRI0pOF2MbiXM/X5/N12lbaNVJsJGlzHTmKXUfVuBDblqTTJa2QNHYb6+TdVoak5QVsa3k8JG62TrH3Ul9SNUlT4qfTrZL0Sfz1zZa6+4ZCvIddJZ25ub94n0cqNtqm+OjixPjpjasUCz71CtF/fv5MZPvxUbKzJV0t6S8z+9DM9s6vQ3d/wd1bu3vrmnXq57cKAAAAkNIKNU27u/+q2EhQi/hLaxULE5tFmvEuj4WK/WIvSYqPDO0saUEh+7lI0uvu7oXYVnVJdbdjW5K0TLHguJ+7144/asUn29hsW7Xk509JA3P1V9vdq7v7f8yssmLXlvWVtKO711bsdErbxrYS+b7lbrfV7UuSu3/q7h0VC3y/KjbaCQAAAJQ5Bc0iuHd8Iocm8a93VuzanInxVX6Q1M7MdjGzWoqdWhfK25JONLMOZlZRsWnLN0r6OtEO4nW3l/RaAasOlnSJmbWKB5Y+kr5x97nx5Ysl7ZHINuMjbQMUuw6qQbyOxmbWOdG68zFIUhcz62xm5c2sSnxiiiaSKkmqLGmppGwzO15Sp1xtF0uqG//+bPaDpBPMrI6ZNVTsOrft2r6Z7Whmp8RD6UbFTpXMifBeAQAAgJRV0AhWuqRDJH1jZmsVC1ZTFQs7il+L85aknyRNUWxK9yDc/TfFrv3pp9ioUBdJXdw9sxDdXCBpgrvPLmBboyTdpdhI0F+KTcaR+5qpeyW9Fj897qwEtttD0ixJE81sjaRRkpoXou689f0p6RRJPRULUn9KulVSufg1Xt0VC6QrJZ0naViutr8qFiDnxOtvJGmgpB8lzVXseq23tA3b2n78cZNio4ArJB0lqdv2vlcAAAAgldm2z5wDikaz/Vv7U8O+jdTHzmlW8Erb0HR75sTMY8bKaO1b1siKXkQAY5dGu91Z3SrRvheSVCXiHdfqVIlcQhA1K0drP25+8j+Tj9o5+vdzybrodTRcnx6tg7QAB8XCFdHaV4t4QEhS7erR+8iJeFxVKB+9hkoRf8jnRZ8cKbtJ1MuTpQobCvN33n9aYZUi11BnY7QfsHXVqxW8UgGqTS5oAucEHLBbtPYZhbmcPX/rdqgZqX218tE/s618gJ+vOHeP/gFecrj+/yUvKaVQ12ABAAAAALaOgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACIWABAAAAQCAELAAAAAAIhIAFAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABBIhWQXAAAAAJRhU9y9dbKLQDiMYAEAAABAIAQsAAAAAAiEgAUAAAAAgRCwAAAAACAQAhYAAAAABELAAgAAAIBACFgAAAAAEAgBCwAAAAACMXdPdg0og8zsE3c/bhvLr3T3F4qzptKKfRkO+zIc9mU47Mtw2JfhsC8TV9DvRGWYS7JkF7E9GMFCUiTwQXJlsRRSNrAvw2FfhsO+DId9GQ77Mhz2ZYIIV+GY2V5m9oWZ/WBm083s3nzWOdrMNpnZddvo5xgzm2xm0+KPAwpTR4XtqB0AAAAASppHJL3j7k+bWZqkaWb2kbt/K0lmVkPSw5I+3loHZtZY0suSOrv7b2ZWVVLFwhTBCBYAAACA0sAl1Yo/rxb/ekmu5Y9LelTSsm30cY2k1939N0ly9/XuvqYwRRCwUFJx3nY47Mtw2JfhsC/DYV+Gw74Mh32JZLhB0tlmtkDSXEmPuvtcSTKz4yXVcvd3CuhjX0k1zGy0mX1vZo+bWeXCFMEkFwAAAABKPDP7TtIuW1m8o6QHJK1090fNbCdJX0i6UNJvksZK6ujuS8zsVUmT3f3pfLYxTFJDSR0lrZf0hqSf3P3+ROvkGiwAAAAAJZ67/2tby82su6Q94uv+ZWajJbVT7BqqnSR9a2aSVE9SFzOrk09wmqdY+Fod7/NtxUJawjhFEAAAAEBp8Luk46QtE1q0lTTV3ce7ewN3383dd5P0jqR7tjIq9YakY8ysksXSWGdJPxamCAIWShQzq2Nm75nZWjP7w8zOS3ZNqSo+TekGM8uIP35Ldk2pwsyui0/PujF+GkHuZR3M7FczW2dmY8xs1ySVmRK2ti/NbDcz81zHZ4aZ3ZXEUks0M6tsZi/FPxfT41MQH59rOcdlgra1LzkuC8/MBpnZX2a2xsxmmNnluZZxXKK4XSzpajP7UdI3kt52963OGLiZmb1oZidLkrt/rdgsgz9I+kmxM/76FKYIrsFCiWJmgxUL/pdJaiXpQ0mHu/u0ZNaViszsC0mD3P3FZNeSaszsdEk5iv3Vqqq7Xxx/vZ6k2ZIulzRcsXO927r7oUkqtcTbxr7cTbG/NFZ09+ykFZgizKy6pFslvarY6SsnSBosaX9JGeK4TFgB+1LiuCwUM9tP0ix332hmeyt2zcuJkv4QxyXKKK7BQokR/0/vDEkt3D1D0vj4hYYXSLo9qcWhTHH3dyXJzFpLapJr0emSprn7kPjyeyUtM7O93f3XYi80BWxjX6IQ3H2tpHtzvTTCzH6XdJCkuuK4TFgB+3JKUopKYXn+AOrxx56K7U+OS5RJnCKIkmQvSdnuPiPXaz9K2i9J9ZQGD5nZMjP7ysyOTnYxpcB+ynUedvwXtdniGI3iDzObb2avxEcIkQAz21Gxz8xp4riMJM++3IzjshDM7BkzWyfpV0l/SfpIHJcowwhYKEnSJOW9kdtqSTWSUEtp0EOxmXQaK3Y/kuFmtmdyS0p5aYodk7lxjG6fZZIOlrSrYn/priHpf0mtKEWYWUXF9tVr8ZEAjsvtlM++5LjcDu5+jWL7qq2kdyVtFMclyjACFkqSDEk187xWU1J6EmpJee7+jbunu/tGd39N0leKXWuA7ccxGoi7Z7j7ZHfPdvfFkq6T1Ck+6xO2wszKSRooKVOxfSZxXG6X/PYlx+X2c/dN7j5esVOBu4njEmUYAQslyQxJFcysWa7XDtDfT9vA9nNJluwiUtw0xY5JSVuuG9xTHKMhbJ5xif+XtiI+XfBLit1M8wx3z4ov4rgspG3sy7w4Lguvgv7/8cdxiTKJDwyUGPHzs9+VdL+ZVTezIySdothfGFEIZlbbzDqbWRUzq2Bm5yt2o71Pkl1bKojvsyqSyksqv3k/SnpPUgszOyO+/G7F7u7OBdtbsbV9aWaHmFlzMytnZnUlPSXpi803dkS+npW0j6Qu7r4+1+scl4WX777kuCwcM2tgZueYWZqZlTezzpLOlfS5OC5RhjFNO0oUM6sj6WVJHSUtl3S7u7+R3KpSj5nVV+wi470lbVLswuO73P2zpBaWIuKzXd2T5+X73P1eMztW0tOKXaPxjaSL3X1u8VaYOra2LyX9pth9RRoodu3lZ5Juc/dFxVpgiojfP2iuYte25J4+/Cp3/x/HZeK2tS8Vu6UAx2WC4v/XvKPYSFU5xaZmf8rdB8SXc1yiTCJgAQAAAEAgnCIIAAAAAIEQsAAAAAAgEAIWAAAAAARCwAIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgEAIWAAAAAAQCAELAAAAAAIhYAEAipyZXWxmbmZNA/fbyszuNbM6IfsFAGB7EbAAAKmslaR7JBGwAAAlAgELAAAAAAIhYAEAip2ZfWFm483sWDP7zszWmdlUMzstz3p7mdl7ZrbEzDaY2TwzG2JmFczsYkmvxFedGT8F0c1st3jb68xsgpmtMLNVZjbRzE7M0/9u8TZXmdn9ZvZXfN3hZtYkn7qviNe73sxWmtlYMzs81/JqZvawmf1uZpnxf3uZWblc66SZWb/4e9kYf2+jzGzvcHsYAJAsFZJdAACgzNpT0n8lPSRpmaSbJQ0xs73dfVZ8nQ8lrZTULb5OY0knKPYHwg8l9ZZ0p6QzJc2Pt/kr/u9ukl6UNFex/++6SBphZse7+yd5arlD0teSLpXUQNJjkgZJOnrzCmbWN17jS4qdlpgj6VBJu0j62swqSPpU0r6SHpD0c3z5XYqdwnhzvKsnJJ0sqaekmZLqSjpCUu0E9xsAoAQjYAEAkqWepHbuPlOSzOw7xcLRWZL6mFk9SU0lneLuw3K1eyP+71Izmx1//kOuUCZJcvdbNj+PjyB9LmkvxcJa3oA1193Py7V+fUmPmlkjd18Yn5zjRklPuPtNudp9mOv5uZKOlHSUu38Zf+1zM5Oke8zsYXdfIukwSf9z95dytX1vK/sIAJBiOEUQAJAsMzeHK0mKh48lio0ISdJySXMk/Sd+al6zwnRuZgeZ2QgzWywpW1KWpI6Smuez+kd5vv45/u/mWo5V7P/MF7axyeMk/aH4aNbmh6SRkioqNpolSZMkXWxmPc2stZmVL8z7AgCUbAQsAECyrMjntY2SqkiSu7tigWiyYqcRzjCzOWbWraCOzWxnxUas6ki6XtLhkg5WbOSqSgK1bIz/u3nduvF/52vrGkjaVbEgl/vxbZ4+rpf0vGKnI06StMTMnjCzagW9LwBAyccpggCAEsvd50i60GLn2R0g6TpJz5jZXHf/eBtNj5NUS9JZ7r4lFEUIMcvi/zaW9NtW1lku6XfFTnHMz1xJcvcMxa75usPMdpXUVdJ/JGVK6rGd9QEASghGsAAAJZ7H/CBp8/VPLeL/bh5pqpqnyeYglbX5BTPbS7HJJLbHKMUmtbhyG+t8ImlnSRnuPjmfx7K8Ddz9D3d/TLFTElvkXQ4ASD2MYAEASiQza6nYLINvSZolqbykixW7nmp0fLVf4v9ea2avKRaoflIsEGVLet3MHpO0k6T7JM3Tdvxx0d1nm9kTkm4ysxqShknaJKmNpF/d/S1J/5N0iWITWzwm6UdJlRSbLfFkSae6+zozmxBv/7OkDElHKTY691ph6wIAlDwELABASbVIsUB0k6QmkjYoFkpOcvcpkuTuP5rZvYqNLF2hWHja3d2nmdn5ku5XLMzMlnS7YqcOHr09xbj7LWY2S9I1ki6StFaxMDcyvjzLzDrHt3OlpN3j68xWbLbBzHhXXyp2GuHtiv0/PEfSje7+1PbUBQAoWSx2DTEAAAAAICquwQIAAACAQAhYAAAAABAIAQsAAAAAAiFgAQAAAEAgBCwAAAAACISABQAAAACBELAAAAAAIBACFgAAAAAEQsACAAAAgED+HxLDjBRoMU6hAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "atom.lda.plot_shap_heatmap(target=2, show=7)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.2" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }