plot_det
method plot_det(models=None, dataset="test", target=0, title=None, legend="upper right", figsize=(900, 600), filename=None, display=True)[source]
Plot the Detection Error Tradeoff curve.
Read more about DET in sklearn's documentation. Only available for binary classification tasks.
Parameters | models: int, str, Model, slice, sequence or None, default=None
Models to plot. If None, all models are selected.
dataset: str or sequence, default="test"
Data set on which to calculate the metric. Use a sequence
or add target: int or str, default=0+ between options to select more than one. Choose
from: "train", "test" or "holdout".
Target column to look at. Only for multilabel tasks.
title: str, dict or None, default=None
Title for the plot.
legend: str, dict or None, default="upper right"
Legend for the plot. See the user guide for
an extended description of the choices.
figsize: tuple, default=(900, 600)
Figure's size in pixels, format as (x, y).
filename: str or None, default=None
Save the plot using this name. Use "auto" for automatic
naming. The type of the file depends on the provided name
(.html, .png, .pdf, etc...). If display: bool or None, default=Truefilename has no file type,
the plot is saved as html. If None, the plot is not saved.
Whether to render the plot. If None, it returns the figure.
|
Returns | go.Figure or None
Plot object. Only returned if display=None .
|
See Also
Plot the cumulative gains curve.
Plot the Receiver Operating Characteristics curve.
Plot the precision-recall curve.
Example
>>> from atom import ATOMClassifier
>>> import pandas as pd
>>> X = pd.read_csv("./examples/datasets/weatherAUS.csv")
>>> atom = ATOMClassifier(X, y="RainTomorrow", n_rows=1e4)
>>> atom.impute()
>>> atom.encode()
>>> atom.run(["LR", "RF"])
>>> atom.plot_det()