TextNormalizer
class atom.nlp.TextNormalizer(stopwords=True, custom_stopwords=None, stem=False, lemmatize=True, verbose=0, logger=None)[source]
Normalize the corpus.
Convert words to a more uniform standard. The transformations
are applied on the column named corpus
, in the same order the
parameters are presented. If there is no column with that name,
an exception is raised. If the provided documents are strings,
words are separated by spaces.
This class can be accessed from atom through the textnormalize method. Read more in the user guide.
Parameters | stopwords: bool or str, default=True
Whether to remove a predefined dictionary of stopwords.
custom_stopwords: sequence or None, default=None
Custom stopwords to remove from the text.
stem: bool or str, default=False
Whether to apply stemming using SnowballStemmer.
lemmatize: bool, default=True
Whether to apply lemmatization using WordNetLemmatizer.
verbose: int, default=0
Verbosity level of the class. Choose from:
logger: str, Logger or None, default=None
|
See Also
Applies standard text cleaning to the corpus.
Tokenize the corpus.
Vectorize text data.
Example
>>> from atom import ATOMClassifier
>>> X = [
... ["I àm in ne'w york"],
... ["New york is nice"],
... ["new york"],
... ["hi there this is a test!"],
... ["another line..."],
... ["new york is larger than washington"],
... ["running the test"],
... ["this is a test"],
... ]
>>> y = [1, 0, 0, 1, 1, 1, 0, 0]
>>> atom = ATOMClassifier(X, y)
>>> print(atom.dataset)
corpus target
0 running the test 0
1 hi there this is a test! 1
2 this is a test 0
3 new york is larger than washington 1
4 New york is nice 0
5 I àm in ne'w york 1
6 another line... 1
7 new york 0
>>> atom.textnormalize(stopwords="english", lemmatize=True, verbose=2)
Fitting TextNormalizer...
Normalizing the corpus...
--> Dropping stopwords.
--> Applying lemmatization.
>>> print(atom.dataset)
corpus target
0 [run, test] 0
1 [hi, test!] 1
2 [test] 0
3 [new, york, large, washington] 1
4 [New, york, nice] 0
5 [I, àm, ne'w, york] 1
6 [another, line...] 1
7 [new, york] 0
>>> from atom.nlp import TextNormalizer
>>> X = [
... ["I àm in ne'w york"],
... ["New york is nice"],
... ["new york"],
... ["hi there this is a test!"],
... ["another line..."],
... ["new york is larger than washington"],
... ["running the test"],
... ["this is a test"],
... ]
>>> y = [1, 0, 0, 1, 1, 1, 0, 0]
>>> textnormalizer = TextNormalizer(
... stopwords="english",
... lemmatize=True,
... verbose=2,
... )
>>> X = textnormalizer.transform(X)
Fitting TextNormalizer...
Normalizing the corpus...
--> Dropping stopwords.
--> Applying lemmatization.
>>> print(X)
corpus
0 [I, àm, ne'w, york]
1 [New, york, nice]
2 [new, york]
3 [hi, test!]
4 [another, line...]
5 [new, york, large, washington]
6 [run, test]
7 [test]
Methods
fit | Does nothing. |
fit_transform | Fit to data, then transform it. |
get_params | Get parameters for this estimator. |
inverse_transform | Does nothing. |
log | Print message and save to log file. |
save | Save the instance to a pickle file. |
set_params | Set the parameters of this estimator. |
transform | Normalize the text. |
method fit(X=None, y=None, **fit_params)[source]
Does nothing.
Implemented for continuity of the API.
method fit_transform(X=None, y=None, **fit_params)[source]
Fit to data, then transform it.
method get_params(deep=True)[source]
Get parameters for this estimator.
Parameters | deep : bool, default=True
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
|
Returns | params : dict
Parameter names mapped to their values.
|
method inverse_transform(X=None, y=None)[source]
Does nothing.
method log(msg, level=0, severity="info")[source]
Print message and save to log file.
method save(filename="auto", save_data=True)[source]
Save the instance to a pickle file.
Parameters | filename: str, default="auto"
Name of the file. Use "auto" for automatic naming.
save_data: bool, default=True
Whether to save the dataset with the instance. This parameter
is ignored if the method is not called from atom. If False,
add the data to the load method.
|
method set_params(**params)[source]
Set the parameters of this estimator.
Parameters | **params : dict
Estimator parameters.
|
Returns | self : estimator instance
Estimator instance.
|
method transform(X, y=None)[source]
Normalize the text.