Normalizer
class atom.data_cleaning.Normalizer(strategy="yeojohnson", device="cpu", engine="sklearn", verbose=0, logger=None, random_state=None, **kwargs)[source]
Transform the data to follow a Normal/Gaussian distribution.
This transformation is useful for modeling issues related to heteroscedasticity (non-constant variance), or other situations where normality is desired. Missing values are disregarded in fit and maintained in transform. Categorical columns are ignored.
This class can be accessed from atom through the normalize method. Read more in the user guide.
Warning
The quantile strategy performs a non-linear transformation. This may distort linear correlations between variables measured at the same scale but renders variables measured at different scales more directly comparable.
Note
The yeojohnson and boxcox strategies scale the data after
transforming. Use the kwargs
to change this behaviour.
Parameters | strategy: str, default="yeojohnson"
The transforming strategy. Choose from:
device: str, default="cpu"
Device on which to train the estimators. Use any string
that follows the SYCL_DEVICE_FILTER filter selector,
e.g. engine: str, default="sklearn"device="gpu" to use the GPU. Read more in the
user guide.
Execution engine to use for the estimators. Refer to the
user guide for an explanation
regarding every choice. Choose from:
verbose: int, default=0
Verbosity level of the class. Choose from:
logger: str, Logger or None, default=None
Seed used by the quantile strategy. If None, the random
number generator is the **kwargsRandomState used by np.random .
Additional keyword arguments for the strategy estimator.
|
Attributes | [strategy]: sklearn transformer
Object with which the data is transformed.
feature_names_in_: np.array
Names of features seen during fit.
n_features_in_: int
Number of features seen during fit.
|
See Also
Applies standard data cleaning steps on a dataset.
Prune outliers from the data.
Scale the data.
Example
>>> from atom import ATOMClassifier
>>> from sklearn.datasets import load_breast_cancer
>>> X, y = load_breast_cancer(return_X_y=True, as_frame=True)
>>> atom = ATOMClassifier(X, y)
>>> print(atom.dataset)
mean radius mean texture ... worst fractal dimension target
0 16.78 18.80 ... 0.07228 0
1 15.34 14.26 ... 0.09946 0
2 14.22 27.85 ... 0.07796 1
3 18.31 18.58 ... 0.06938 0
4 18.49 17.52 ... 0.09445 0
.. ... ... ... ... ...
564 13.44 21.58 ... 0.07146 0
565 20.47 20.67 ... 0.06386 0
566 12.98 19.35 ... 0.09166 1
567 14.61 15.69 ... 0.05695 1
568 23.27 22.04 ... 0.09187 0
[569 rows x 31 columns]
>>> atom.plot_distribution(columns=0)
>>> atom.normalize(verbose=2)
Fitting Normalizer...
Normalizing features...
>>> print(atom.dataset)
mean radius mean texture ... worst fractal dimension target
0 0.868700 0.010820 ... -0.684572 0
1 0.513904 -1.257343 ... 1.019875 0
2 0.200435 1.773390 ... -0.226619 1
3 1.197448 -0.042755 ... -0.945047 0
4 1.233326 -0.310726 ... 0.786014 0
.. ... ... ... ... ...
564 -0.041166 0.635293 ... -0.756291 0
565 1.595052 0.440855 ... -1.497202 0
566 -0.193933 0.141884 ... 0.642613 1
567 0.313768 -0.816597 ... -2.307746 1
568 2.022355 0.730259 ... 0.653756 0
[569 rows x 31 columns]
>>> atom.plot_distribution(columns=0)
>>> from atom.data_cleaning import Normalizer
>>> from sklearn.datasets import load_breast_cancer
>>> X, y = load_breast_cancer(return_X_y=True, as_frame=True)
mean radius mean texture ... worst symmetry worst fractal dimension
0 17.99 10.38 ... 0.4601 0.11890
1 20.57 17.77 ... 0.2750 0.08902
2 19.69 21.25 ... 0.3613 0.08758
3 11.42 20.38 ... 0.6638 0.17300
4 20.29 14.34 ... 0.2364 0.07678
.. ... ... ... ... ...
564 21.56 22.39 ... 0.2060 0.07115
565 20.13 28.25 ... 0.2572 0.06637
566 16.60 28.08 ... 0.2218 0.07820
567 20.60 29.33 ... 0.4087 0.12400
568 7.76 24.54 ... 0.2871 0.07039
[569 rows x 30 columns]
>>> normalizer = Normalizer(verbose=2)
>>> X = normalizer.fit_transform(X)
Fitting Normalizer...
Normalizing features...
>>> print(X)
mean radius mean texture ... worst symmetry worst fractal dimension
0 1.134881 -2.678666 ... 2.197206 1.723624
1 1.619346 -0.264377 ... -0.121997 0.537179
2 1.464796 0.547806 ... 1.218181 0.453955
3 -0.759262 0.357721 ... 3.250202 2.517606
4 1.571260 -1.233520 ... -0.943554 -0.279402
.. ... ... ... ... ...
564 1.781795 0.785604 ... -1.721528 -0.751459
565 1.543335 1.845150 ... -0.480093 -1.210527
566 0.828589 1.817618 ... -1.301164 -0.170872
567 1.624440 2.016299 ... 1.744693 1.850944
568 -2.699432 1.203224 ... 0.103122 -0.820663
[569 rows x 30 columns]
Methods
fit | Fit to data. |
fit_transform | Fit to data, then transform it. |
get_params | Get parameters for this estimator. |
inverse_transform | Apply the inverse transformation to the data. |
log | Print message and save to log file. |
save | Save the instance to a pickle file. |
set_params | Set the parameters of this estimator. |
transform | Apply the transformations to the data. |
method fit(X, y=None)[source]
Fit to data.
method fit_transform(X=None, y=None, **fit_params)[source]
Fit to data, then transform it.
method get_params(deep=True)[source]
Get parameters for this estimator.
Parameters | deep : bool, default=True
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
|
Returns | params : dict
Parameter names mapped to their values.
|
method inverse_transform(X, y=None)[source]
Apply the inverse transformation to the data.
method log(msg, level=0, severity="info")[source]
Print message and save to log file.
method save(filename="auto", save_data=True)[source]
Save the instance to a pickle file.
Parameters | filename: str, default="auto"
Name of the file. Use "auto" for automatic naming.
save_data: bool, default=True
Whether to save the dataset with the instance. This parameter
is ignored if the method is not called from atom. If False,
add the data to the load method.
|
method set_params(**params)[source]
Set the parameters of this estimator.
Parameters | **params : dict
Estimator parameters.
|
Returns | self : estimator instance
Estimator instance.
|
method transform(X, y=None)[source]
Apply the transformations to the data.