{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example: Train sizing\n", "-----------------------\n", "\n", "This example shows how to asses a model's performance based on the size of the training set.\n", "\n", "The data used is a variation on the [Australian weather dataset](https://www.kaggle.com/jsphyg/weather-dataset-rattle-package) from Kaggle. You can download it from [here](https://github.com/tvdboom/ATOM/blob/master/examples/datasets/weatherAUS.csv). The goal of this dataset is to predict whether or not it will rain tomorrow training a binary classifier on target `RainTomorrow`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load the data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Import packages\n", "import pandas as pd\n", "from atom import ATOMClassifier" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
LocationMinTempMaxTempRainfallEvaporationSunshineWindGustDirWindGustSpeedWindDir9amWindDir3pm...Humidity9amHumidity3pmPressure9amPressure3pmCloud9amCloud3pmTemp9amTemp3pmRainTodayRainTomorrow
0MelbourneAirport18.026.921.47.08.9SSE41.0WSSE...95.054.01019.51017.08.05.018.526.0Yes0
1Adelaide17.223.40.0NaNNaNS41.0SWSW...59.036.01015.71015.7NaNNaN17.721.9No0
2Cairns18.624.67.43.06.1SSE54.0SSESE...78.057.01018.71016.63.03.020.824.1Yes0
3Portland13.616.84.21.20.0ESE39.0ESEESE...76.074.01021.41020.57.08.015.616.0Yes1
4Walpole16.419.90.0NaNNaNSE44.0SESE...78.070.01019.41018.9NaNNaN17.418.1No0
\n", "

5 rows × 22 columns

\n", "
" ], "text/plain": [ " Location MinTemp MaxTemp Rainfall Evaporation Sunshine \\\n", "0 MelbourneAirport 18.0 26.9 21.4 7.0 8.9 \n", "1 Adelaide 17.2 23.4 0.0 NaN NaN \n", "2 Cairns 18.6 24.6 7.4 3.0 6.1 \n", "3 Portland 13.6 16.8 4.2 1.2 0.0 \n", "4 Walpole 16.4 19.9 0.0 NaN NaN \n", "\n", " WindGustDir WindGustSpeed WindDir9am WindDir3pm ... Humidity9am \\\n", "0 SSE 41.0 W SSE ... 95.0 \n", "1 S 41.0 S WSW ... 59.0 \n", "2 SSE 54.0 SSE SE ... 78.0 \n", "3 ESE 39.0 ESE ESE ... 76.0 \n", "4 SE 44.0 SE SE ... 78.0 \n", "\n", " Humidity3pm Pressure9am Pressure3pm Cloud9am Cloud3pm Temp9am \\\n", "0 54.0 1019.5 1017.0 8.0 5.0 18.5 \n", "1 36.0 1015.7 1015.7 NaN NaN 17.7 \n", "2 57.0 1018.7 1016.6 3.0 3.0 20.8 \n", "3 74.0 1021.4 1020.5 7.0 8.0 15.6 \n", "4 70.0 1019.4 1018.9 NaN NaN 17.4 \n", "\n", " Temp3pm RainToday RainTomorrow \n", "0 26.0 Yes 0 \n", "1 21.9 No 0 \n", "2 24.1 Yes 0 \n", "3 16.0 Yes 1 \n", "4 18.1 No 0 \n", "\n", "[5 rows x 22 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load the data\n", "X = pd.read_csv(\"./datasets/weatherAUS.csv\")\n", "\n", "# Let's have a look\n", "X.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run the pipeline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<< ================== ATOM ================== >>\n", "Algorithm task: binary classification.\n", "\n", "Dataset stats ==================== >>\n", "Shape: (142193, 22)\n", "Memory: 61.69 MB\n", "Scaled: False\n", "Missing values: 316559 (10.1%)\n", "Categorical features: 5 (23.8%)\n", "Duplicate samples: 45 (0.0%)\n", "-------------------------------------\n", "Train set size: 113755\n", "Test set size: 28438\n", "-------------------------------------\n", "| | dataset | train | test |\n", "| - | -------------- | -------------- | -------------- |\n", "| 0 | 110316 (3.5) | 88253 (3.5) | 22063 (3.5) |\n", "| 1 | 31877 (1.0) | 25502 (1.0) | 6375 (1.0) |\n", "\n", "Fitting Cleaner...\n", "Cleaning the data...\n", " --> Label-encoding the target column.\n", "Fitting Imputer...\n", "Imputing missing values...\n", " --> Dropping 161 samples for containing more than 16 missing values.\n", " --> Imputing 481 missing values with median (12.0) in feature MinTemp.\n", " --> Imputing 265 missing values with median (22.6) in feature MaxTemp.\n", " --> Imputing 1354 missing values with median (0.0) in feature Rainfall.\n", " --> Imputing 60682 missing values with median (4.8) in feature Evaporation.\n", " --> Imputing 67659 missing values with median (8.4) in feature Sunshine.\n", " --> Imputing 9187 missing values with most_frequent (W) in feature WindGustDir.\n", " --> Imputing 9127 missing values with median (39.0) in feature WindGustSpeed.\n", " --> Imputing 9852 missing values with most_frequent (N) in feature WindDir9am.\n", " --> Imputing 3617 missing values with most_frequent (SE) in feature WindDir3pm.\n", " --> Imputing 1187 missing values with median (13.0) in feature WindSpeed9am.\n", " --> Imputing 2469 missing values with median (19.0) in feature WindSpeed3pm.\n", " --> Imputing 1613 missing values with median (70.0) in feature Humidity9am.\n", " --> Imputing 3449 missing values with median (52.0) in feature Humidity3pm.\n", " --> Imputing 13863 missing values with median (1017.6) in feature Pressure9am.\n", " --> Imputing 13830 missing values with median (1015.2) in feature Pressure3pm.\n", " --> Imputing 53496 missing values with median (5.0) in feature Cloud9am.\n", " --> Imputing 56933 missing values with median (5.0) in feature Cloud3pm.\n", " --> Imputing 743 missing values with median (16.7) in feature Temp9am.\n", " --> Imputing 2565 missing values with median (21.1) in feature Temp3pm.\n", " --> Imputing 1354 missing values with most_frequent (No) in feature RainToday.\n", "Fitting Encoder...\n", "Encoding categorical columns...\n", " --> LeaveOneOut-encoding feature Location. Contains 49 classes.\n", " --> LeaveOneOut-encoding feature WindGustDir. Contains 16 classes.\n", " --> LeaveOneOut-encoding feature WindDir9am. Contains 16 classes.\n", " --> LeaveOneOut-encoding feature WindDir3pm. Contains 16 classes.\n", " --> Ordinal-encoding feature RainToday. Contains 2 classes.\n" ] } ], "source": [ "# Initialize atom and prepare the data\n", "atom = ATOMClassifier(X, verbose=2, random_state=1)\n", "atom.clean()\n", "atom.impute(strat_num=\"median\", strat_cat=\"most_frequent\", max_nan_rows=0.8)\n", "atom.encode()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Training ========================= >>\n", "Metric: f1\n", "\n", "\n", "Run: 0 =========================== >>\n", "Models: LGB01\n", "Size of training set: 11362 (10%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LightGBM:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.795\n", "Test evaluation --> f1: 0.6169\n", "Time elapsed: 2.726s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.6025 ± 0.0021\n", "Time elapsed: 2.361s\n", "-------------------------------------------------\n", "Total time: 5.088s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 5.089s\n", "-------------------------------------\n", "LightGBM --> f1: 0.6025 ± 0.0021 ~\n", "\n", "\n", "Run: 1 =========================== >>\n", "Models: LGB02\n", "Size of training set: 22724 (20%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LightGBM:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.711\n", "Test evaluation --> f1: 0.6172\n", "Time elapsed: 3.588s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.606 ± 0.0021\n", "Time elapsed: 3.214s\n", "-------------------------------------------------\n", "Total time: 6.802s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 6.803s\n", "-------------------------------------\n", "LightGBM --> f1: 0.606 ± 0.0021\n", "\n", "\n", "Run: 2 =========================== >>\n", "Models: LGB03\n", "Size of training set: 34087 (30%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LightGBM:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.6844\n", "Test evaluation --> f1: 0.6205\n", "Time elapsed: 4.145s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.6136 ± 0.0021\n", "Time elapsed: 3.725s\n", "-------------------------------------------------\n", "Total time: 7.870s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 7.872s\n", "-------------------------------------\n", "LightGBM --> f1: 0.6136 ± 0.0021\n", "\n", "\n", "Run: 3 =========================== >>\n", "Models: LGB04\n", "Size of training set: 45449 (40%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LightGBM:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.6788\n", "Test evaluation --> f1: 0.6246\n", "Time elapsed: 4.740s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.6209 ± 0.0012\n", "Time elapsed: 4.361s\n", "-------------------------------------------------\n", "Total time: 9.101s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 9.105s\n", "-------------------------------------\n", "LightGBM --> f1: 0.6209 ± 0.0012\n", "\n", "\n", "Run: 4 =========================== >>\n", "Models: LGB05\n", "Size of training set: 56812 (50%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LightGBM:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.6694\n", "Test evaluation --> f1: 0.6256\n", "Time elapsed: 5.560s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.6231 ± 0.0025\n", "Time elapsed: 5.129s\n", "-------------------------------------------------\n", "Total time: 10.689s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 10.693s\n", "-------------------------------------\n", "LightGBM --> f1: 0.6231 ± 0.0025\n", "\n", "\n", "Run: 5 =========================== >>\n", "Models: LGB06\n", "Size of training set: 68174 (60%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LightGBM:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.6623\n", "Test evaluation --> f1: 0.627\n", "Time elapsed: 6.235s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.6223 ± 0.0043\n", "Time elapsed: 5.758s\n", "-------------------------------------------------\n", "Total time: 11.993s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 11.998s\n", "-------------------------------------\n", "LightGBM --> f1: 0.6223 ± 0.0043\n", "\n", "\n", "Run: 6 =========================== >>\n", "Models: LGB07\n", "Size of training set: 79536 (70%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LightGBM:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.6609\n", "Test evaluation --> f1: 0.6307\n", "Time elapsed: 6.979s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.6254 ± 0.0029\n", "Time elapsed: 6.485s\n", "-------------------------------------------------\n", "Total time: 13.465s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 13.469s\n", "-------------------------------------\n", "LightGBM --> f1: 0.6254 ± 0.0029\n", "\n", "\n", "Run: 7 =========================== >>\n", "Models: LGB08\n", "Size of training set: 90899 (80%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LightGBM:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.6588\n", "Test evaluation --> f1: 0.6316\n", "Time elapsed: 7.869s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.6255 ± 0.002\n", "Time elapsed: 7.227s\n", "-------------------------------------------------\n", "Total time: 15.095s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 15.101s\n", "-------------------------------------\n", "LightGBM --> f1: 0.6255 ± 0.002\n", "\n", "\n", "Run: 8 =========================== >>\n", "Models: LGB09\n", "Size of training set: 102261 (90%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LightGBM:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.6601\n", "Test evaluation --> f1: 0.6318\n", "Time elapsed: 8.578s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.6253 ± 0.0022\n", "Time elapsed: 8.169s\n", "-------------------------------------------------\n", "Total time: 16.747s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 16.752s\n", "-------------------------------------\n", "LightGBM --> f1: 0.6253 ± 0.0022\n", "\n", "\n", "Run: 9 =========================== >>\n", "Models: LGB10\n", "Size of training set: 113624 (100%)\n", "Size of test set: 28408\n", "\n", "\n", "Results for LightGBM:\n", "Fit ---------------------------------------------\n", "Train evaluation --> f1: 0.6558\n", "Test evaluation --> f1: 0.631\n", "Time elapsed: 9.401s\n", "Bootstrap ---------------------------------------\n", "Evaluation --> f1: 0.6258 ± 0.0034\n", "Time elapsed: 8.782s\n", "-------------------------------------------------\n", "Total time: 18.183s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 18.190s\n", "-------------------------------------\n", "LightGBM --> f1: 0.6258 ± 0.0034\n" ] } ], "source": [ "# Analyze the impact of the training set's size on a LightGBM model\n", "atom.train_sizing(\"LGB\", train_sizes=10, n_bootstrap=5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Analyze the results" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
score_trainscore_testtime_fitscore_bootstraptime_bootstraptime
fracmodel
0.1LGB010.79500.61692.7264770.6024732.3611455.087622
0.2LGB020.71100.61723.5877860.6059843.2141026.801888
0.3LGB030.68440.62054.1447650.6136333.7247487.869513
0.4LGB040.67880.62464.7404030.6208944.3609609.101363
0.5LGB050.66940.62565.5599760.6230755.12865810.688634
0.6LGB060.66230.62706.2346840.6222875.75823011.992914
0.7LGB070.66090.63076.9794770.6254126.48540613.464883
0.8LGB080.65880.63167.8685860.6255197.22682215.095408
0.9LGB090.66010.63188.5783000.6253348.16881416.747114
1.0LGB100.65580.63109.4010000.6258408.78237018.183370
\n", "
" ], "text/plain": [ " score_train score_test time_fit score_bootstrap \\\n", "frac model \n", "0.1 LGB01 0.7950 0.6169 2.726477 0.602473 \n", "0.2 LGB02 0.7110 0.6172 3.587786 0.605984 \n", "0.3 LGB03 0.6844 0.6205 4.144765 0.613633 \n", "0.4 LGB04 0.6788 0.6246 4.740403 0.620894 \n", "0.5 LGB05 0.6694 0.6256 5.559976 0.623075 \n", "0.6 LGB06 0.6623 0.6270 6.234684 0.622287 \n", "0.7 LGB07 0.6609 0.6307 6.979477 0.625412 \n", "0.8 LGB08 0.6588 0.6316 7.868586 0.625519 \n", "0.9 LGB09 0.6601 0.6318 8.578300 0.625334 \n", "1.0 LGB10 0.6558 0.6310 9.401000 0.625840 \n", "\n", " time_bootstrap time \n", "frac model \n", "0.1 LGB01 2.361145 5.087622 \n", "0.2 LGB02 3.214102 6.801888 \n", "0.3 LGB03 3.724748 7.869513 \n", "0.4 LGB04 4.360960 9.101363 \n", "0.5 LGB05 5.128658 10.688634 \n", "0.6 LGB06 5.758230 11.992914 \n", "0.7 LGB07 6.485406 13.464883 \n", "0.8 LGB08 7.226822 15.095408 \n", "0.9 LGB09 8.168814 16.747114 \n", "1.0 LGB10 8.782370 18.183370 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# The results are now multi-index, where frac is the fraction\n", "# of the training set used to fit the model. The model names\n", "# end with the fraction as well (without the dot)\n", "atom.results" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAIzCAYAAAAataTVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACEtklEQVR4nO3deXxU9b3/8fd3Jvu+QghhDQKiLArihqIgivveTW3tdmq97dW29vZ28dfb5d72ttrb1tbW471Vq3Zx33FfCi5oRQVBdgRiSMhCyL7O+f0xEwwhCYFk5juZeT0fj3lw5qyfOZxMziff7/l+jOd5AgAAAAAgUny2AwAAAAAAxBcSUQAAAABARJGIAgAAAAAiikQUAAAAABBRJKIAAAAAgIgiEQUAAAAARBSJKAAAAAAgokhEAQAAAAARRSIKhJkxptAY85wxZo8x5k/GmJ8ZY64f5LZvGmOOCnOIAAAAQEQZz/NsxwDENGPMrySleJ53rTGmUNK7kqZ4ntcyiG0/IemTnuddGuYw9+O67j2SFktKl1Qh6ReO4/xvP+tOlHSrpBMltUl6QNL1juN09ljnU5J+KGl8aH9XO46zfLDLAQAAEFtoEQXC7wxJ94emr5b01GCS0JDHJJ1ujCkKR2AD+JmkiY7jZEm6QNJPXded28+6t0raLWmMpDmSFkq6tnuh67pLJP23pM9LypR0qqStg10OAACA2JNgOwAgVhljkiRVScqS9LgxZlvo/Z96rPMLSVM9z7so9P6Xko6VdLbnee2e57UaY96WdJakuyIVu+M4a3u89UKvUklv97H6JEm/cxynVVKF67pPS+rZnfhHkn7sOM4bofcf9dr+YMsBAAAQY0hEgTDxPK/dGHOipJc8zxstScaYKkkbeqz235K2GmOOkXS8pKWSFnie195jnQ8kze7rGK7rPiFpQT8hrHAc57zDjd913VsVbMFNlfSOpKf6WfXXkj7luu7LknIlnS3pxtA+/JLmSXrMdd3NklIkPSLp247jtBxs+eHGDgAAgOhGIgqE1xxJ7/V4nyOpofuN53k1xpj/UbC1M1vBJHRvr300KNjt9QBDSTQPxnGca13X/bqCz36epuDzn335hyRHUr0kv4Kf5ZHQstGSEiVdJukUSR2SHpX0A0nfH8RyAAAAxCASUSC85mj/RHSPgs9B9vSOggP1XOF53s4+9pEpqW44ggm1Wi7sZ/GrjuPs17rqOE6XpBWu614p6auSfttrfz5JT0tyJZ0kKUPBrsf/LenfJHW3at7iOM6u0Da/0seJ5sGWAwAAIAaRiALhNVvS3T3er5Y0VdJbkmSMmSnpDwq2In5B0l/62MeRku7pa+eu6y5TsCWxL8sdxzm75wzHcU47hNh7SlDwGdHe8hQc6fZ3juO0SWpzXfcOST+V9G+O4+xxXbdMwWdMu+2bPthyAAAAxCYSUSC8Zku6ocf7pxRskbzXGDNW0uOSrpH0vKRtxpjTPM97uXtlY0yKpLmSPtfXznsnmsPBdd1RkhZJekLBFsszJH069Op9/GrXdbdJ+qrrujcp2CL6OQUT7m53SPp6aBCjDknfCO17sMsBAAAQYyjfAoRJqORKrqT1PWb/WdI5xphsBZPSX3me95jnec2SfinpP3vt5nxJL3ueVx6JmEM8BbvhlinYlfgmBeuCPta9guu6y1zX/V7o7SUKDrJUJWmzPk4mu/1EwRbgjQoOvPSO9v+cB1sOAACAGGM8j15wQCQZY/5L0m7P8349iHVXSvqi53nvhz0wAAAAIEJIRAEAAAAAEUXXXAAAAABARJGIAgAAAAAiikQUAAAAABBRJKIAAAAAgIgiEQUAAAAARBSJKGCRMeZu2zEAAAAAkUb5FsAiY0yT53nptuMAAAAAIokWUQAAAABARCXYDgCIkKhs+r/88sulKI0NAAAAh8zYDmCkoGsu4kVUXujbt2/XhAkTbIcBAACA4UEiOkh0zQUsKigosB0CAAAAEHEkooBFFRUVtkMAAAAAIo5EFLAoJyfHdggAAABAxJGIAhZ1dnbaDgEAAACIOBJRwKLGxkbbIQAAAAARx6i5iBdReaG3tbUpOTnZdhgAAAAYHoyaO0i0iAIWlZWV2Q4BAAAAiDgSUcCixMRE2yEAAAAAEUciCliUl5dnOwQAAAAg4khEAYsqKytthwAAAABEHIkoYFFubq7tEAAAAICIIxEFLGpvb7cdAgAAABBxJKKARU1NTbZDAAAAACKOOqKIF1F5oVNHFAAAIKZQR3SQaBEFLKKOKAAAAOIRiShgEa2hAAAAiEckooBFWVlZtkMAAAAAIo5EFLCoqqrKdggAAABAxJGIAhbl5+fbDgEAAACIuATbAQDxrLm5WTk5Of0ub2j31ECpUQAYMp+RitIZzBIAogWJKGBRS0tLv8s6A54mul1q7YxgQAAQo9q7pMcu7NLZUxgkDgCiAYkoYFFJSUm/y1bukjoCUjOJKAAMWWaStKuuTRKJKABEA54RBSwaqI7o41sCaumIYDAAEOMam5pshwAACCERBSxKTU3td9nDmzx1ehEMBgBiXE52tu0QAAAhJKKARWlpaX3O393kaXt9hIMBgBjX2NRoOwQAQAiJKGBRTU1Nn/Of2+4pkZ9OABhWnZ1dtkMAAIRwqwtYVFhY2Of8Bzd6auT5UAAYVtRuBoDoQSIKWFRff2D/24Dn6fntPBwKAMOtv14oAIDIIxEFLGpraztg3qpKC4EAQBxISUmxHQIAIIREFLCorzqiT24NqJXHmABg2Pn9ftshAABCSEQBi/qqI/rARk8dAQvBAECMa6KOKABEDRJRwKL09PT93u9p9bSx1lIwABDjcnJybIcAAAghEQUsSkpK2u/9C9s9JSdYCgYAYlxDQ4PtEAAAISSigEV79uzZ7/1Dmzw1tFsKBgBinOfx3AMARAsSUcCi0aNH75v2PE9Pb6NsCwCES052ju0QAAAhJKKARbW1Hz8QurZaaueP9QAQNrW9eqEAAOwhEQUs6ujo2Df91LaAOklEASBs0tJSbYcAAAghEQUs6llH9L4NntqoHwoAAIA4QCIKWNRdR7Sx3dOaKsvBAECMa25usR0CACCERBSwKCMjQ5L00k5PKZRtAYCwysvNtR0CACCERBSwKCEhmH0+sslTPWVbACCs6vbW2Q4BABBCIgpYVFdXJ8/z9MRWyrYAQLgZw20PAEQLvpEBi4qKirS5TmqgNRQAwi4zM9N2CACAEBJRwKLq6mot2xqQR4MoAIRdXV2d7RAAACEkooBFgUBA92/01ErZFgAIu/T0dNshAABCSEQBi3IKivRWhe0oACA+dHXxVz8AiBYkonEiNze39uKLL366v+UTJkxwp02b5g12fQyPR9fUKtlvOwpgf/9yjNFbV/rVer1fdywd+NfEUQXS05f6VHWtX94Nfdcg+uQ0o3Wf96vxOr82f8mvBWPDETVwcK2trbZDAACERFXlQtd1/1XSFZJmSip3HGfKQdY/RdJvJE2U5Je0RdJPHcd5qI91Z0n6p6R/OI5zxuEecyjGjRu3ori4eObKlSuzBzN/OO3ZsyfvcNc3xkyUtO2b3/zmv9588823DGZ7Y0zemDFj1tXX1xd2dnb6MjIyuo488sj3LrvssjOuu+66PYcWfez6R022GjtsRwHsr7xR+ukbAZ010Sj1IL8lOrqk+zZ4uvVdT49efOBfVc6YYPTfC3365ONdenOXNCYjTEEDg5Cfn287BABASLS1iJZL+oWk/xzk+hskXSwpX1KOpOsl3eO67pE9V3JdN0HSnyQtH4ZjYnCaZs6c+ZWrrroqr7W11RQXFx+7du3aKc899xytrD08szNJAQYqQpR5eJOnRzd7qmk5+Lob90h/et/T2pq+L+QfneTTj18LaOUuyVMwyS1vHN54gcGqqamxHQIAICSqElHHcR5wHOdBSR8Ncv3djuNsdxzHk2QkBRT8TL1bNb8r6S31kYge6jEjwRjjffazn3V7vD/N7/d7rusukKRRo0Z9eOKJJ+6YMGHCxpSUlEBBQUHXJz7xiT9MmzbtM4WFhY0pKSnejBkz9nzrW9+a272PzMzMxosuuuil7vfTp0//ckFBQVNycrI3ffr0+pSUlGk9Y+i5flJS0iZJ+t3vfvfb5ORkb/HixZsnTJhw38yZM9tc103q3qagoODclJQU70c/+tESz/PannnmmUf/8Ic/7O2xW2/v3r0Te37O008//ZVRo0btTUlJ8SZPntz0hS984Qvdyw/nc44k2/d6qqGXGGKYz0jziqTCNGnTF/3a+RW/blnsU0pU9cVBPElI4FkIAIgWMXE74LpunaR0BT/PPyQ922PZTElXSzpG0jeH4VgLJD0xwCo7HMeZNdTjHMz7778/7vzzz/+vhoaG/1izZs3dzz777DXFxcWXXHrppWc8/fTTWysqKja+9957f9eBSbmysrKmNjc333bOOee8UFJScvErr7xy2aZNm/40adKkPo/V3t5+hKRtX/va1/Z1zU1JSZny0UcfXb5x48bPSbo9NO//TZkype6HP/zhc93bFhcXf1BdXT29o6NDubm53rRp077ec9/r169fcM4553xh1apVD9bX1z+0bNmy/73ppptevuGGG7YO9XNGu6c/DMjvM8E/nwAxaHSalOQ3umyqT6f8rUsdAenRi/z6wQk+/WAFFz4iLyOdvuEAEC3Cnoi6rnunpM8NsMp/Oo7zg6Ecw3GcHNd1kyWdLWmapM7QsRMk3SHpOsdx6l3XHWAvgz7WCgW7AR+WVatWZaWlpe3Xh629vV3FxcX1h7KfmTNn7vnLX/7yfUkyxvxY0icvueSSv/3xj398Q5ImTJjwfFVV1QV9bZubm/utUaNG6bzzzrvQcZxmSXeWlJRcI+n4wR6/tbV18+jRo7e89957N0i63RiTm5CQcNxZZ531m57rlZeXH2mM8c+ZM+cCY8w3U1JS3uu5fN68eSvvvPPOu0Kf4yK/39+4Zs2af5N0zVA/Z08NDQ37CplHy3RLZ5q6At2N+UBkvPRJv04b1/c1t6LM0yl/G75RRVs6g//e8k5AFU3B6V/9MxBKRIftMMCg1dTWSkqTFD2/C5hmmunYmsbgRaJF9GuSbhhgefNwHMRxnDZJj7iu+5SkOkm3Sfo3SZscxxmoBTOijj322Pq+BitScLCkQUtLS6vt8bZZknJzczf3mNfY3t7e5/+v53mTcnJyWkJJqCTJ7/dv1iEkoqFt/nv16tW3ua47fty4cddI0vHHH3/As7ae53VJenjChAmLXnvttWdd181wHCcgSVlZWVt6rNeckZHR0tjYuK9pdiifs6eeXw7RMr10oqfv/WP4bvqBwTj975G75urapJ31nrwef3rjkWjYlJ2VtW86Wn4XMM0007E1jcELeyLqOE6jpEgOTZEg6YjQ9JmSjnVdtzr0Pk1SQuj9VMdxavvawUBCI/UuG2CV7Y7jHHWo++0pMTGxq6OjY99vy6Kiohm7d+8eyi73Y4z5sK6u7gzXddO6k9Gurq7SATbpsw/drl277kxLS7tl+fLl/9HY2Hj+iSeeuMpxnOq+1g1JrKmpSVWwG3WDJNXX1+87rjEmze/3p2ZkZGw79E818kzLk9ISjVrIRRFl/EZK8El+X3A62S91BqSufrLIZL+U5P942pPUHrqu71jr6evH+vT0h13q6JK+MdenJ7aSjsKOzq5O2yEAAEKi6hnRUFfaBEmJkozruimS5DhOn0O6uK57qaSNkj4IbXeVpEWSfhla5XJJyT02+aak4yR9WsFW00M+puM4yyWF9SGTnJycsg8++ODs73znO8WPPfZYbmdn54+Hc/979uy5ubm5+ctPPfXUQ+++++5lL7/88sVVVVXHp6en97dJlTFGlZWV83rO9DyvY8KECY+++OKLVzQ1NSUdc8wxX+peNmXKlLNnzJixMD8//9d33nln1Zw5cz5ZXV39hfnz5+90HKehe7233377+KuvvvrKlStXPjRhwoSHWltbNWvWrF8qDhhjdGphkx7eyTNLiC4/ONGn/zjp47HsrjrKp/94LaAfvRbQuExp3ef9mnFHl3Y2SBOypA+dj3+VtH4jQR/u9TTp9mAm+pPXAypI9WnjF/xq7QqWevnPN3g+FHa0trbZDgEAEBJViaikH0j6YY/33cUDjCS5rnuFpNscx+m+cx8j6eehf9sVLOfyacdxnpMkx3Gqeu7cdd16SW2O45QN9pg2ZGRkfKqiouKpX//61x+NGjWqbezYsffU1tZ+cbj2X19fv+HII4+8dsWKFTc1NDQ0TJw4sWHixInLJZ3a1/qe57UcccQRdz366KNXpqamXnXSSSdtfuGFF6ZKUmVl5ffb29s/MXfu3Ibx48c/1r1NZ2dnwptvvnltXV3dd1JSUvTRRx91HnPMMavOOuusi3rue9q0aSuefPLJWxsaGu4eM2ZM89KlS7/yrW99a4vixMVHGL1QKdW3244E+NiPQklnX3Y2SJm//bgZf3u9ZG7qv5WpMyD9y/MB/cvzwx4mcMioIwoA0cN4Hl2kcPiMMekJCQn1n/nMZ26/6667rjnEbb2rrrrq9j//+c9OuOLrISov9M07d+uo+/PUTgMRAIRVZpL009lV+teFY2yHAiC2MQrlIEVVHVGMLMYYM2HChF8XFxfr5JNPvtF2PCORaW/QjALbUQBAfEhMTLQdAgAghEQUh8UYMyoxMbGzsbHxC6eeeupPe3eDxuCUlJTo8qlm30AvAIDwSU1NtR0CACAk2p4RxQjhed5uSUNKnzzPi/uuC2VlZTp38mT9bGXXvlFGAQDhUV9fr+DA7QAA22gRBSxKTEzUrMJgiQwAQHhR6w8AogeJKGBRXl6ejDE6ayKZKACEW1sb5VsAIFqQiAIWVVZWSpIumWqUyRgaABBW7e3UygKAaEEiCliUm5srSTpjglEbz4gCQFhRRxQAogeJKGBR91/n81ONSnMtBwMAMa6mpsZ2CACAEBJRwKKmpqZ905ceYZTITyQAhE1SUpLtEAAAIdz2AhaVlJTsmz6v1KcUCioBQNgkJyfbDgEAEEIiClhUVla2b3reaCngWQwGAGJcQ0OD7RAAACEkooBFPf867/cZLRpPGRcACJesrCzbIQAAQkhEAYt63xRdNtUogzIuABAWLS0ttkMAAISQiAIWVVVV7ff+zIlGHQFLwQBAjOvo6LAdAgAghEQUsKh3TbuidKOSDEvBAECMo44oAEQPElHAoubm5gPmXXyEkZ9HRQFg2FFHFACiB4koYFFfzyudX+pTOs+JAsCwS0mhfAsARAsSUcCinnVEu51YLLV3WQgGAGJcgp9izQAQLUhEAYt61hHtlug3WjDWQjAAEOMam5pshwAACCERBSxKTU3tc/7l04zS+MM9AAyrnOxs2yEAAEJIRAGL0tLS+py/dJJPAS/CwQBAjGtsarQdAgAghEQUsKi/ERzHZxkV9p2jAgAOU2cnD+ADQLQgEQUsKiws7HfZhaVGPsq4AMCwoY4oAEQPElHAovr6+n6XXTDFKIMyLgAwbKgjCgDRg+FQAIva2tr6XXZKiVFHQMqm7B0ADFlrp5STzhcqAEQL43mMiIK4EJUXeltbm5KT+78x2rzH00eMrQEAQ+Y30vSUWhUU0D0XQFjxYNUgkYgiXkTlhb5lyxaVlpbaDgMA4gLfuQAigER0kHhGFLAoPT3ddggAEDeKiopshwAACCERBSxKSkqyHQIAxI3q6mrbIQAAQkhEAYv27NljOwQAiBuBQMB2CACAEJ4RRbyIygu9sbFRGRkZtsMAgLjQ0tKi1NRU22EAiG08IzpItIgCFtXW1toOAQDiRnl5ue0QAAAhJKKARR0dHbZDAIC4kZWVZTsEAEAIiShgUUlJie0QAAAAgIgjEQUsKisrsx0CAMSN+vp62yEAAEJIRAGLGKgIACKnuLjYdggAgBASUcCihIQE2yEAQNyoqKiwHQIAIIREFLCorq7OdggAEDd8Pm57ACBa8I0MWFRUVGQ7BACIGwUFBbZDAACE0C8QsKi6ulrp6em2wwCAuFBRUaHS0tI+l3mep/s3eKpqiXBQMW7JBKOpecZ2GACiEIkoYFEgELAdAgDEjZycnH6XfVAjfW4Z38nDqcuTzpoQ0OOXJtkOBUAUIhEFLKJrLgBETmdnZ7/LntoWkCeprSty8cSDzi5OKIC+8YwoYFF5ebntEAAgbjQ2Nva77IENHkloGHS0d9gOAUCUIhEFLMrKyrIdAgDEjZKSkj7nN7V7emd3hIOJE8nJybZDABClSEQBAEBcKCsr63P+K2WeUnhYKSw6OtpthwAgSpGIAhbV19fbDgEA4kZiYmKf8x/d7KmBfCksAgHPdggAohSJKGBRcXGx7RAAIG7k5eX1Of/xLZ5Il8IjNTXFdggAohSJKGBRRUWF7RAAIG5UVlYeMG9Lnae6NgvBxImWllbbIQCIUiSigEU+Hz+CABApubm5B8x7ehu1Q8MpIcFvOwQAUYq7YMCigoIC2yEAQNxobz/wQdD7Nnhq6b+8KIbIGG41AfSNbwfAIrrmAkDkNDU17fe+rdPTyl2WgokTHR3UEQXQNxJRwKKcnBzbIQBA3OhdR3TFR56S6TkaVskp1BEF0DcSUcCizk76gwFApPSuI/rYFk+NNNiFVV/doQFAIhEFrGpsbLQdAgDEjeTk/VvnHt3siTKXYcb5BdAPElHAot7dxAAA4ZOVlbVvuqzBU2XTACtjWPRO/gGgG4koYFHvbmIAgPCpqqraN/30toD8xmIwcaK1lTqiAPpGIgpYlJiYaDsEAIgb+fn5+6Yf2Oipicf0wy4hMcF2CACiFIkoYFFeXp7tEAAgbjQ3N0uSOgOeltMhBQCsIhEFLKqsrLQdAgDEjZaWFknSG+VSAndAEdHZQbMzgL7xNQxYlJubazsEAIgb3QPEPb4loCbKtkRESkqK7RAARCkSUcAi6qsBQOR0DxD38CZPXZQViYi2tjbbIQCIUiSigEVNTdQOAIBISU1N1e4mT9sbbEcSRxiZGEA/SEQBi6gjCgCRk5aWpme3e0ri7idikpKSbIcAIErxVQxYRB1RAIicmpoaPbDRUyPPh0ZMWytdcwH0jUQUsCg5Odl2CAAQN/ILCvXCdh4OjSTqZQPoD4koYFFWVpbtEAAgbry6vVkmCp9ZzE2RHrrQp8br/PrQ8evT0/sP8vq5Rlu+5Nfer/v10TV+/eo0n/w9Vv/xyT6t/pxfHd/064cn2b/N87yA7RAARCn731CIa8cdd9wzU6ZMqbAdhy1VVVW2QwCAuPHsjgS1RmFZy98v9qm9Sxp9a5eueLJLf1ji04z8vtd9bLOnY+/uUvYtXTr6zi7NHiX967EfZ6Kb6zz92z8CenJrdLT8dnZ22Q4BQJRKsB1AtHFdN1nSbyUtklQkaY+kv0u60XGc1n62uVzSDyWNDc1aK+n7juO80mOdeZJulXS0pF2Sfug4zj09lh8v6ZeSZklqk/SspOsdx6kZ1g8oacaMGZuNMZ1r166dPtz7HsiECRPqRo0a9dZbb721pHveW2+9dVYkY4g2+fn93GkAAIbdC7uz1RFlDXRpidKlU42OvrNLTR3Sqx8Fk82rZvj03eUHBrt178fTRlLAk6bkGknBxPPPa4P/XnFkdDT9pqZSRxRA32gRPVCCpGpJ50vKkXSKgknpLwbY5g1JSxzHyZWUr2Ai+5TrujmS5LputqRlkh6UlCvpGkl/dF33xNByv6QnJL0qqVDSkZKKQ/tBDGtubrYdAgDEhT2tnjbW2Y7iQFNzpc6AtGnPx/Peq/J0VEH/23x6utHer/tV87UEzS40uu29KMuue2hp6fNv+ABAi2hvjuM0Sfp+j1nbXde9XdK1A2yzs8dbI6lLUpqkcZLqJF0iqVnSLxzH8SQ957ruw5IcSa9LypZUIOkOx3E6JNW6rnufpK8P1+carHPOOWfKhx9++ExZWdlESSopKdk2ceLEM5966qmtknTuueeO/uijj57YsWPHnObm5oSsrKz2mTNnfvOFF174/SmnnPKbTZs2OXV1dSlJSUmB8ePHb5gwYcLCJ598smrWrFmrd+7cmV1eXn5GcnKyl5WV1VFVVZU0b968l2tqamZu27YtfzDHz8vL6ywtLX2hqqrquF27duXm5OS0HX300f/6wgsvuJE+V8OhpaXFdggAEBee3+4p2eepIxAdLYXdMhKl+vb95+1tkzKT+o/zr+s9/XV9l6bkSJ89yqfKKC5J7fNF1/kGED1IRAdnsaT3BlrBdd3xklZLylSwpflvjuOsCS2eLemdUBLabZWkqyTJcZxa13Vvk/Rl13V/oGBi+ilJDw9wvH+X9O8DhPQXx3H6TZ77s379+td9Pl/XggULSiVpw4YNb27YsOENSaMkafPmzW+1tLRkz58/f1FiYuKK9vb207u39fv91bNmzfpkcnLyk+3t7QvfeeedZUlJSY9KOmn16tWz+uqae6jHl6StW7eePnfu3Mtmzpy5bMeOHSvfe++930kakYkodUQBIDKe3OqpsTPyHcFe+qRfp43rOxlbUebp6y92KatXqc2sZKmh/eDPeG6uk9ZWe7r1DJ8ufSw6W0UTE6kjCqBvcdM113XdO13X9QZ4/bSf7a6XtFD7t5IewHGcHY7j5EjKkvR5SS/3WJwpaW+vTepC63a7X9LFkpokVUoKSPrZAMf7ueM4OQO8DjkJPfvss4/Ztm1bQWlp6ZVPPfXUh0899dSHU6ZM+ezWrVsLzz777NnnnHPOjI0bN46bPn36VU8//fTyxx9/3HvmmWdefOaZZ16UpJdffvknzz777GOPP/541zPPPPNiaWnpo5WVlbOG6/jd65WWlj4bOk7H6NGj/6Ompibx3HPPHTfQvhsaGqJyuqyszHoMTDPNNNPxMF2aIyWayCdrp/+9S+amzj5fp/ytSxv3SAk+aUrOx9vMLjRaWz24/Sf4pNKc6G11bGn9uOeP7WuAaaYjMY3Bi5tEVNLXFHz+sr/Xf/XewHXdbyjY6rjIcZwdgzmI4zhNjuPcKek613W7B+JpULCVs6ccSfWh4xyh4DOkP5WUGlq2RdLTg/1ww6Gjo+MYSUpMTFzePS8xMfGl7mXt7e3zJSkpKem5vrY//fTTvzN+/Pi9GRkZgZSUFG/VqlWXt7S0DLpQ5sGO3z0vKSlp3/+Fz+erlaRAIDB6oH1nZmZG5XRqaqr1GJhmmmmm42H6vMk+JSdEX8LW3CE9tMnTj0/2KS1ROqlYunCK0d3r+k6avzjTqDAtOH1kvvTd4316YcfHracJPinZL/mMlGA+nralZ71s29cA00xHYhqDFzddcx3HaZTUONj1Xde9UdJXJC10HGfDYRwyQdIRkp5RsFvvRb2WH6OPu/vOlrQnlMBK0l7XdW+RtNp13RzHcer6iO97kr43wPHvcRznmkMJODEx8R1J6ujoOFnSi6Hphd3LjDEdktTe3n6GpMd7bnveeeelv/baaz8/9thj75s1a9Y1TzzxxJ4TTzzxvg0bNlzSvY4xA/8p+mDHP5TPMlKkpaXZDgEA4sLsUZI8T8GhHKLLtc8H9KezfNp9rV81LdJXnwtoXU1w2YKx0rJL/cr8bZck6eSxRv+5wKeMJKmqWbp/o6cbV3z86/X2M326+uiP2xl+cKJPVy/r0l1r7ZRzCQSis8swAPviJhE9FK7r/lLSJxRMQrcMYv3PSnpN0lZJ6ZK+IWm8QsmUgs96/sJ13W9L+o2CI/FeIqn7Wcm3JWW7rnulpL8qONDR1yRt7SsJlSTHcf5LfbTiHgL/eeedt18rbUJCwruTJk2q2bp1673nnnvuCZ7nmS1btvx58uTJVcuWLXtPkqZNm1a2YcOGu5cuXXpeYmLiq93PiCYkJKzt7OxUQkJC1RNPPLHnzDPPPH/z5s0X9tx/SkpKfVNT06T+Alq2bNk7kydPHvD4saampkY5OTm2wwCAmOczRiePatEz5em2QznAnlbp4kf7TthWfKR9SagkfeHpgRO7zz8d0OcPsk4kdVFHFEA/4qlr7qC4rjtB0g0K1hB9z3XdxtBrbY91vtfzvaSpkl5QsAvuVgWfKT3XcZx1khRKJs+RdLmCz4reLukax3FeDy3fJulSSddJqpH0oaQJkvZL5IbTunXrpjz55JN1PV8tLS1fmD59+oKEhISWf/zjH1uXL1++JTExsXnatGkLurebMmXK/JycnG0rV658+dlnnw28++67T3V2dk578sknK48//vi716xZc01ycrK3YcOGP0+YMGFFz2OWlJT8sKampiQtLc0bPXp0n+O5H+z4saawsNB2CAAQNz4zM1WZibajiC/UEQXQH+N5drpqABEWlRd6WVkZI+cCQIS8tW6bFjwzTu000kXM4qJmPX9l1sFXBGJH9PX/j1K0iAIWtbW12Q4BAOLG+Pw0Te49dCDCyufjVhNA3/h2ACyiNRQAIichIUGXHGEUhYPnxqyERIYjAdA3ElHAorKyMtshAEDcqKur03mlPqXynGjEtLe12w4BQJTiz1SARenp0Td6IwDEqqKiIk1MlbqiZ1DZmJeUlGQ7BABRihZRwCJ+QQNA5FRXV8vvMzp9HH1zI6Wri5GhAPSNRBSwaM+ePbZDAIC4EQgEm0Ivm2aUTvfciCARBdAfElHAotGjR9sOAQDiRlFRkSTprIlGnXTPjQjqiALoD4koYFFtba3tEAAgbpSXl0uSxmQYFWdYDiZOtLS02g4BQJQiEQUs6ujosB0CAMSNrKysfdMXTzHy8aho2Pn9ftshAIhSJKKARdQRBQA7zi81yuA50bAjEQXQHxJRwCLqiAJA5NTX1++bPmmsUTvj6IRdezt1RAH0jUQUsCgjg4eUACBSiouL900n+Y1OKh5gZQyLpGTKlAHoG4koYFFCQoLtEAAgblRUVOz3/vJpRml8DYdVZ0en7RAARCkSUcCiuro62yEAQNzw+fa/7Vk6ySequIRXd+1WAOiNRBSwqLumHQAg/AoKCvZ7PzHbKJ8yl2FFHVEA/SERBSyqrq62HQIAxI3eXXMl6YIpRlRxCR/qiALoD4koYBFdlgAgcnJycg6Yd2GpUSbj6YSNP4HyLQD6RiIKWETXXACInM7OAwfOObXEqJUyLmHT+7lcAOjGtwNgUXl5ue0QACBuNDY2HjAvNdFo3mgLwcSJjvYO2yEAiFIkooBFWVlZtkMAgLhRUlLS5/zLpxml0IM0LJKTk22HACBKkYgCAIC4UFZW1uf8syf55GPEorDo6Gi3HQKAKEUiClhUX19vOwQAiBuJiYl9zp+aK6X3vQhDFAh4tkMAEKVIRAGLiouLbYcAAHEjLy+vz/nGGJ07mSbRcKCOKID+kIgCFvVV0w4AEB6VlZX9Lrv4CMq4hAN1RAH0J8F2AEA8Y1h7AIic3NzcfpedPt4oJ1nqorzzsJpdaDsCANHKeB599xEXovJCb2pqUnp6uu0wAAAIi5qaGuXn59sOA4gk+vkPEs0xgEV0zQUAxLK6ujrbIQCIUiSigEU5OTm2QwAAIGyKiopshwAgSpGIAhZ1dnbaDgEAgLCprq62HQKAKEUiCljU2NhoOwQAAMImEGD0JwB9Y7AixIuovNDb2tqUnJxsOwwAAMKipaVFqamptsMAIonBigaJFlHAorKyMtshAAAQNuXl5bZDABClSEQBixITE22HAABA2GRlZdkOAUCUIhEFLMrLy7MdAgAAABBxJKKARZWVlbZDAAAgbOrr622HACBKkYgCFuXm5toOAQCAsCkuLrYdAoAoRSIKWNTe3m47BAAAwqaiosJ2CACiFIkoYFFTU5PtEAAACBufj1tNAH2jjijiRVRe6NQRBQDEsqamJqWnp9sOA4gk6ogOUoLtAIB4VlZWptLSUtthAAAQFhUVFQP+nvvp6116ZHNU/q04bE4Za/Q/i/y2wwCsIxEFLKI1FAAQy3Jycvpd1hnw9LOVnpo7IxdPNPhwb4BEFBDPiAJWUegbABDLOjv7zzLf3CX54/FOlMfiAEkkooBVVVVVtkMAACBsGhsb+1322JaAWjoiGEyUCJCIApJIRAGr8vPzbYcAAEDYlJSU9Lvs4U2eOuMwJ2MkYSCInwTAoubmZtshAAAQNmVlZX3O393kaXt9hIOJEl4gYDsEICqQiAIWtbS02A4BAICwSUxM7HP+c9s9JcbpXWgcNgIDfYrTrwAgOgzUZQkAgJEuLy+vz/kPbvTUGIfPh0p0zQW68ZMAWNRflyUAAGJBZWXlAfMCnqfnt8dvu2CArrmAJBJRwKrU1FTbIQAAEDa5ubkHzHunMr67pxpjbIcARAUSUcCitLQ02yEAABA27e3tB8x7cmtAbV0WgokSpKFAEIkoYFFNTY3tEAAACJumpqYD5j2w0VNHHPdOpY4oEEQiClhUWFhoOwQAAMKm96B8da2eNtRaCiZKMFgREMRPAmBRfX2cFlEDAMSF3oPyPb/dU3KCpWCiBIMVAUEkooBFbW1ttkMAACBskpOT93v/0CZPDQc+NgogDpGIAhZRRxQAEMuysrL2TXuep6e38XwkXXOBIH4SAIuoIwoAiGVVVVX7ptdWS+30SqVrLhBCIgpYlJ6ebjsEAADCJj8/f9/0U9sC6iQHo44oEEIiCliUlJRkOwQAAMKmubl53/T9G7y4rh8KYH8kooBFe/bssR0CAABh09LSIklqbPe0uuogK8cJjzqigCQSUcCq0aNH2w4BAICw6R6U7+WdnlLivGxLNwYrAoL4SQAsqq2N86reAICY1j0o38ObPNVTtkUSgxUB3UhEAYs6OjpshwAAQNikpqbK8zw9sZXuqAD2RyIKWEQdUQBALEtLS9PmOqmB1tB96JoLBPGTAFhEHVEAQCyrqanRsq0BMT7Px+iaCwSRiAIWZWRk2A4BAICwKSws1P0bPbVStmUfH3VEAUkkomGXnJzcddlll/3gcLefNWvWjwsKCvg7Yj9yc3ObzzzzzEdsx3G4EhIYQhAAELt276nXWxWROVZuivTQhT41XufXh45fn57ef8J3w3FGa672q/5f/dr6Zb9uOG7/dV/8hE+7r/Vr79f9evezfl1QOnzJIzd1QNCw3gW7rpsm6XeSLgnNelDS1xzHaeln/T9KurLX7HRJ33Ic51ehdTxJLZJ69mMY6zjO3tDylyWdKKnnqC+fchzniaF9mv3NnDnz6xs2bPjtd7/73dIf/ehHW0Pzvvb+++/fsmjRomdfeOGFs7rXzc7Obj322GNfe+mllxa1tbX5hzMOSTrhhBMurK6u/m1FRUVJR0eHLz09vWvUqFHVkydPvvWpp5768VD3P2XKlHczMzML33nnnbHd84wxvpkzZz7y0UcfndXU1JTk9/u9/Pz85tmzZ9/8+OOP/3Cox4xXdXV1ys/Ptx0GAABh8Wq5UbJfaotAi+jvF/vU3iWNvrVLc0ZJT17i13tVXVpXc+C6RtJnn+rS6iqpNEd69nK/dtYH9PcNwTTxuhcDWlcjdXnS/CLp+U/4NfX/ulTRNPQ4qSMKBA13c8xvJE2XNE3BP/g8IulXkr7a18qO41wj6Zru967rLpH0lKS/9Vr1TMdxVgxw3J84jvPTww/74LZs2XJXV1fXb9esWfMlSd+TpPb29stHjRrVVllZeVz3euPHjz+6vr4+eezYsX8PRxzHHnvsl9esWeMec8wx7x999NGnl5aWvvraa6/lSrquoqLiM5KGnIj2ZcaMGfdWVlaes3DhwiuWLl1631/+8pf89vb2z3mex7CvQ1BUVGQ7BAAAwuaN+kI1RuBOIS1RunSq0dF3dqmpQ3r1I+mxzZ6umuHTd5cf+EzmL9/6OBncuEd6dLOnk8eafYnomuqP1/UkJfqkcZkalkSUwYqAoGH7SXBdN1XB1s0bHcepdBxnt6QbJX3Odd2UQe7mK5IedxynfLjiGi7Nzc31o0aNqqmsrDy3e15NTc0xRx99tPvhhx/m/OY3v8mVpOzs7C9nZ2fr1FNPvUeSjDHepZde+mNJmjVr1s9HjRrlzZkz547s7OzOtLQ0b86cOVtuvPHG7O59zp8//9IxY8Y0JCcnexMmTGj0+Xzzesaxbdu23xx99NHlb7755sxHHnnkHzfffHPX66+/Xv3666/fuGrVqund640dO7bilFNO+WfPbXvGctxxx51TUlKyJzU11UtPTw+MHz++8atf/epxRx999D3btm2bvXr16uLk5GQvOTnZu/nmm6c0NjaeMGnSpM0PPfTQ3x3H8V5++eXq11577eYnnnjit6F9TzTGeAsXLvxbfn5+a2pqqjdt2rSqK6+8cn738Y866qjMo48+enleXl5Henp6YMqUKXsuv/zyi3rElzB79uyHCgoK2tLS0rzx48c3XnTRRf/Svby4uDjxqKOOWp6RkdGVlZUVWLBgwfIh/rdaV11dffCVAAAYoR7dHFAgAg2AU3OlzoC0ac/H896r8nRUweC2P2Ws0dqa/QN9/GKfWq73680rE/TyTk//HKYuxgxWBAQNZ4voNEkpkt7uMW+VpFRJUyWtHmhj13WLJF0o6dw+Ft/vum6ipC2S/ttxnId6Lb/edd1vStol6R5JNzmO0+ff31zX/YykWwcIZYXjOOf1tSA3N/eN8vLyJZJUWFhY3NTUlHnaaaf9/J133vni66+//vnrrrvuV42NjWdNmDBht+M4ff7NrKamRpMnTz7m4osvHvXBBx8csWbNmtfeeuut2yV9YsKECXlVVVX3zZ07983x48eftXnz5jPWrVt3X3JysiSpuLh4Zl1dXeqECRMGin9QysrK7po8efKWCy+88JRVq1YF/H7/ZZ2dnVXvv//+lVOmTDm6d9fcO+64Y8WaNWuuPOGEE17Mysp6rKCg4L6//OUvB/zBYMeOHeefeeaZp23fvn3rrl27Xl+5cuWLrutmO47T1dra+npCQsLYM88886RNmzataW1tve8f//jHA//2b/825he/+EXV9OnTH92zZ8/i00477eLKyspnGxsbb3r++ed/5zjO667rrsrNzf1rVVXViWefffYlu3bteqmqquq5+vr61KGeC5v4ZQQAiFU76j3Vtg/7E0p9ykiU6nuViNnbJmUmHfzZzv84ySefke54f/9E9PyHA0rwSWdMMDoyb/ie7WSoIiDooC2iruve6bquN8Cru0tsZujfvT02757OGkQsX5S0Q9JzveafIWmSpBIFu/ne67ru0h7LvyvpCEmFoX18SQN0T3Uc5y+O4+QM8OozCQ25Z8eOHUnf/va3jx0zZsyXJkyY0HjjjTeWFxQUrN61a9clxhize/fu0qKion67ESclJemCCy44684776xduXLlytGjR2+ura09VpKys7OvS0lJ8V144YWL77333vqVK1c+VFJS8kz3tllZWZMlKTMzc333vFmzZl2XlpbmpaameomJiZ7ruhMGiH8fn8/X1dTUVFheXn7S66+/3rZixYp7b7/99g/7W3/t2rWfnTFjxs27d++esWLFil/df//9H02bNq3qU5/61Bk915s9e/Yf/vrXv77x2muv7e7q6rpw8+bN6W+//fa5ycnJBVu3bj1qwYIFX/7b3/721ttvv926bt26i/bu3Wu2bNnydWOM2bp169J58+bd/MADDzy1fPnyznfeeef6lJSUhu3bt39XksrLy8+ZPXv2svvvv//RFStW1NfV1S02gxx5rqGhISqni4qKrMfANNNMM8000+GYfne3p0QzPOnbS5/0y7shoc/X8k/51dghZSXtv01WstTQPvDx/+UYo88eZXTuQ11q7+M51s6A9PQ2T2dONDp/uAYs6nHvYvv/iOnhn8bgDaZF9GuSbhhgeXPo3+7/gWxJdT2mJal+oAO4ruuT9GVJf3AcZ79vDMdxXujx9u+u654h6QpJT4eWv95j+Ruu6/4/ST9XMEEdVh988MHDiYmJ3oYNG77Y0tIyf+zYse9KUkpKymMVFRXfmzx58slbt25NmDhx4l397SMzM1Pf+973Krvf+/3+lo6OjkJJCgQCU3JyctpvuOGG7nOqhISE9ZLOkaTGxsYPJamhoeHI7uWrV6/+jaTfHHnkkRevX7/+IQ3yD20lJSXn7t27988vvvjiM/n5+ZoyZcqqBQsWLLn55pv39rW+F3yy/obQSwsWLLh048aNd7755ptPhLplS5JycnLe7Z7euXPneknas2fPUePHj2/ZvHmz/vrXv97/17/+VZKUmpqqzs5ONTU1HSGpoL293bds2bLvpaWlfa97H11dXWppaRkX+vwp6enpG7qXVVZWNmZlZQ2qRHZmZmZUTpeXl6u0tDRq4mGaaaaZZprp4Zo+foxRW2B4krfT/9414PK0RCnBJ03JkTbXBefNLjRaO8ATMJ8/2ujf5/t06t+69FHjwMdP8AUHNRoOPQcrsv1/xPTwT2PwDpqIOo7TKOkgP56SpA2SWiUdK+nF0LxjFBzxduNBtl0qaYykPw3iOAENnGwNuNx13Ssk3TbA9ssdxzm7rwWe57WNGzfuo8rKyiVVVVXj5s6d+31JKisr+1Nzc/N/HXXUUTeMHj06MHfu3KcG8TkO4PP5ttTV1SXddNNNad3JaFdX17Tu5R999NHqnJyclu3bt39K0rcG2ldCQkJLZ2fnvgQxPz9/XM/lK1eufFvSUZJ08sknn7169erHsrKy7pZ0gfYfobhPK1aseHDmzJlnbt682ZGU2z2/rq5ujoLdozVu3LjpO3fuVG5u7todO3a8J0mf//znz/z973/fu9VbxhiTlJTknX/++d+77777ft7XMTMyMlqbmpr2nY/MzMz0lpaWpL7WHSmysgbTWQAAgJFndLrRuAxPW+vD3xm1uUN6aJOnH5/s05eeDWhOoXThFKOT/tJ3AvuZI43+6xSfTv97l7b1+hP8tDxpUrbRyzs9dQakT04zOrXE6N9eGZ7HaagjCgQN2zOijuO0uK57j6Qfu677fmj2jyX92XGc1oNs/hVJDzmOU9Vzpuu6R0tKk/Sugl3zz5V0laRPhZbnSFog6WVJTZLmSPoPSf2OWOs4zr2S7h30B+slOzv7lfXr13+ms7PTnHjiiXdIUm1tbWVBQUHDpk2bzp82bdp2x3E6D2ffdXV1v2ltbf3+Y4899ty6deuWrlu37vSdO3ee1f2MqOd53rHHHnvD6tWrfz9//vzVY8eOvXby5Mmvv/rqqxmJiYkX99xXenr6e1u3bj3viiuumLthw4YP8/Pzn6ytrd23/IQTTvh9cXHxn5cuXfpmIBAo8/l8njGmU5ISExMr6uvrp3/rW99Kvvnmm9sk6dhjj/1bQUHBlpycnP+97777tp1yyikLqqqqPjlhwoRGx3Fqv/KVr2RJ0urVq7/66U9/+r4tW7Zs8/v9j0yZMqVp7ty5T952221dpaWla1966aW/XH755Rfff//9K0477bSx7e3tzqxZs+72PG/zkUceueytt9668eKLL1539tlnP/6Xv/wlv6Oj47Pjx49/669//evyMWPGPL169eoLLr/88gu2b9/+UnFx8bObN28+nFMNAAAi4MwxTbq9IVNdERiw6NrnA/rTWcH6nzUt0lefC+wr3bJgrLTsUr8yfxtMTH+6wKf8FOmtK/37tr9nnaevPh+QUfC50Rn5UldA2lQnffLxgN7ZPTxxUrwFCBru8i3XS7pFH7eAPijpG90LXdf9nqQrHMc5qse8sQommIv72F+hgnVJJ0pqV3Cwoi84jvNYaHmipB8omFj6FBys6F5JPxuuD9Rba2vr/9XX118xY8aMuuuuu27f2Gz5+fnvbNy48dTRo0c/f7j73rFjR83xxx9/xaZNm25fuXJlfVFRUVNpaelzZWVl+1poV61adeuJJ55YuXv37v9Zt27dK911RAsLC6vPPvvsGyVtl6SOjo4vZmRk/PPBBx/8Z3p6ete8efPu2LRp08zu/dTU1Jy6bt26a5588klfampqYOrUqe+fdNJJV0lSUlLS9/bu3fvKH/7wh5Y//OEP5ic/+ckUY0zNunXrvrZnz57vJicnm7S0tK7x48dvmzVr1id7foZx48Y9/txzzy1vampKGjduXO1xxx13puM4XZKUkpJyot/vf+jFF198ISUlJSklJSVQXFxcnpiYeI8krV+//sI5c+b8ecWKFX9ftmxZSlJSUmDMmDHVEydOvEKSqqurP1VQUPDysmXLHvb5fGbWrFmv7t69u88atSNFfX29CgsLbYcBAEBYnDaqSfduy1TDoB6kGZo9rdLFj/bdarniI+1LQiVp8u39d/VdXyudcO/AXYGHgjqiQJDhhwHDwRgzUdK2L33pS5fcfvvtD9uOpw9ReaG3tLQoNXVED/wLAEC/mlraVHibXy2H1VcsNuWneKr+WqLtMBA+9L0eJCrqAhZVVAxTUTIAAKJQRXmZTimxHUV0oXQbEEQiCljk8/EjCACIXRkZGbrsCKP04X4YbARjrCIgiK8FDAvP8z4UXREOWUFBge0QAAAIm4SEBC2d5NO/vhi+Zy5HGmP4IzQg0SIKWEXXXABALKurq9O4LKNRabYjiR50zQWCSEQBi3JycmyHAABA2BQVFUkK1vT00W9KEnVEgW4kooBFnZ0MIwgAiF3V1dWSpAumGGUwUKykKB3GH7CARBSwqLGx0XYIAACETXc31FPGGrXxmKgk6ogC3UhEAYtKShjTHgAQu7q75iYnGB0/xnIwUYIR84EgfhIAi8rKymyHAABA2JSXl++bvnyqUSr1GhisCAghEQUsSkzkgRkAQOzKysraN332ZG47JckwWBEgiUQUsCovL892CAAARERpjlF2ku0o7CMNBYJIRAGLKisrbYcAAEDY1NfX7/f+vFIT94lYgMGKAEkkooBVubm5tkMAACBsiouL93t/0RSjzDhvFWWwIiCInwTAovb2dtshAAAQNhUVFfu9P22cUWucl9D2PAYrAiQSUcCqpqYm2yEAABA2vVv/0pOM5oyyFEyUoGcuEEQiClhEHVEAQCwrKCg4YN7l04yS/RaCiRJ0zQWC+EkALKKOKAAglvXumitJ50zyKSGORyyijigQRCIKWJScnGw7BAAAwiYnJ+eAeUfmS8kJkY8lWlBHFAgiEQUs6lnoGwCAWNPZeeDIRMYYnTMpfpOx+P3kwP5IRAGLqqqqbIcAAEDYNDY29jn/4iOMsuK0jAt1RIEgElHAovz8fNshAAAQNv0Nyrd4QvyWcWGwIiCInwTAoubmZtshAAAQNv0NypedbDQ9Tv8W6zFYESCJRBSwqqWlxXYIAACETWJiYr/LLptqlBSHd6J0zAWC4vDHH4ge1BEFAMSyvLy8fpedN9mnpDisJ0rXXCCInwTAIuqIAgBiWWVlZb/LZo+SfHE4hCx1RIGgOK7iBNiXmppqOwQAAMImNze332U+Y/TbRUbLtkUwoChwVEaLJOqIA8ZjCGnEh6i80Ovq6vos9g0AAGJTTU0No+bHtjhs5z88dM0FLKqpqbEdAgAAiKC6ujrbIQBRgUQUsKiwsNB2CAAAIIKKiopshwBEBRJRwKL6+nrbIQAAgAiqrq62HQIQFUhEAYva2tpshwAAACKIUXOBIAYrQryIygu9ra1NycmMnAcAQLxoaWlh1PzYxmBFg0SLKGARdUQBAIgv5eXltkMAogKJKGBRenq67RAAAEAEZWVl2Q4BiAokooBFSUlJtkMAAAAAIo5EFLBoz549tkMAAAARxIj5QBCDFSFeROWF3tjYqIyMDNthAACACGGwopjHYEWDRIsoYFFtba3tEAAAQARVVFTYDgGICiSigEUdHR22QwAAABHk83H7DUh0zUX8iMoLnTqiAADEl6ampgFHzfc8T40x8HfqjETJmLjspRqXH/pwJNgOAIhnZWVlKi0ttR0GAACIkIqKigF/9//4tYB+8oYn3whOZ7o86Y+LA/ryHKoDoH8kooBFDFQEAEB8ycnJGXD5n9d56vKCydxI5TPSjj3tkkhE0T86qQMWJSTwtyAAAOJJZ2dnv8t2NXr6qDGCwYRRS0uL7RAQ5UhEAYvq6upshwAAACKosbH/TPPZDz0lxsjdOb2+cDAxcqkDI1NRUZHtEAAAQASVlJT0u+yBjbExUJFEiygOjkQUsKi6utp2CAAAIILKysr6nN8V8PTSzhH8YGgvXV1dtkNAlCMRBSwKBAK2QwAAABGUmJjY5/y3KjSiR8rtLTs723YIiHIkooBFdM0FACC+5OXl9Tn/iS0BtfY/jtGIs3fvXtshIMqRiAIWlZeX2w4BAABEUGVlZZ/zH9rkqSOGOkolJ1G6BQMjEQUsysrKsh0CAACIoNzc3APm1bR42lIX+VjCyef32w4BUY5EFAAAAIiQ9vb2A+Y9t91TcozlbYyai4MhEQUsqq+vtx0CAACIoKampgPmPbjRU0OMlG3plpmZaTsERDkSUcCi4uJi2yEAAIAI6l1HNOB5evbD2Cnb0q2vhBvoiUQUsKiiosJ2CAAAIIJ61xFdXSUFYi8PlefF4IfCsCIRBSzy+fgRBAAgniQnJ+/3/qmtAbXH0Gi53eiai4PhLhiwqKCgwHYIAAAggnqPmH//Rk/tXZaCCSPGwcDBkIgCFtE1FwCA+FJVVbVvur7N07pqi8GEUUpKiu0QEOVIRAGLcnJybIcAAAAiKD8/f9/0Czs8pSRYDAawiEQUsKizs9N2CAAAIIKam5v3TT+8yVP9gWVFY0Jra6vtEBDlSEQBixobG22HAAAAIqilpUVScFTZp7bG7siyvZ+FBXojEQUs6l1LDAAAxLbu3/3ra6WWGO4Y1dDQYDsERDkSUcCi3rXEAABAbOv+3b9sWyAm64d2M8bYDgFRjkQUsCgxMdF2CAAAIIJSU1MlSfdv8NQag2VbuqWnp9sOAVGORBSwKC8vz3YIAAAggtLS0tTc4WlVpe1IwouuuTgYElHAosrKGP8tBAAA9lNTU6NXdsZ+2Zbull+gPySigEW5ubm2QwAAABFUWFioRzZ7aojRsi3dAl0x3O8Yw4JENE5MmDDhziOPPDIQzmNkZWXtvfDCC1eE8xixpr09xn8LAQCA/dTX1+vxLZ6Gc5yi3BTpoQt9arzOrw8dvz49vf+Bgk4bZ/TiJ3yq+7pf277sP2D5icXSyiv8qv9Xv977nF8njz28mNq4x8FBxHingCDXdf9V0hWSZkoqdxxnykHWP0fSDZJmSfJLel/S9xzHWR5afoqkZb02S5G0znGcWaF1iiT9RtIiBc/zO5K+4TjOe8P1uXqaOnXqnEAgcG9lZeW09vZ2f0ZGRldJScmuWbNmff/uu+/+cziOORBjzLQxY8as3Lt3b1ZXV5fJzs7unD179suXXXbZeY7jtEU6nmjV1NRkOwQAABBBm2q7VDfMd0K/X+xTe5c0+tYuzRklPXmJX+9VdWldzYHrNnV4+tP70l/Xe/re8fu3SeWmSI9f7Nc1zwX00CZPn55u9PjFfk2+/dBjzs7OHsInQjyIlxbRckm/kPSfg1w/V9ItkqZIKpT0F0nLXNcdJ0mO4yx3HCej+yUpS9JHku7psY9bJeVJmipptKR/SnrCdd1hH8u6pKRk/o4dO97OysoqPPfccy+98cYbk4uLi8d5nvfURx995Az38Qap4vjjj//s1Vdfnd7a2mpGjRq15NVXX1348ssv32kpnqhEHVEAAOLLmrYxw7q/tETp0qlGN74aUFOH9OpH0mObPV01o+/b/LcqpHvWedpad+Cyk4qNKpqkBzZ6CnjSvR94qmqWLjni0G9f9+7de8jbIL7ERYuo4zgPSJLrulcPcv17e836g+u6P5R0nKSdfWxyjqQiSXf0mDdF0u8cx9kTOvb/Sfq2pHxJ1YcS/8F0dHT8Zfz48V3XXHPNtO7j/eAHP9gl6Sv9bTNmzJhRqampz1ZVVR1tjPFNmjSpcsGCBZf+/ve/f02SMjMzGxcvXvzWI488crokGWMmStr2zW9+819vvvnmW4wxiaWlpU9UVFQs9vl8vrlz575rjNn3jed53l5Jj3W/N8Z4krRnz54je+5v0aJFj7777rtnNTc3p0ycOLHu9NNP/+Stt976bHcMxxxzzOYtW7aMrq6uLsrLy+tcsmTJD958802ze/fu/2hpaUk+8sgjd1166aXHf//73+/r/yXqlZWVqbS01HYYAAAgQu5d266WzpRh29/UXKkzIG3a8/G896o8LRx3eG0fvct/GiMdXWCkQ+xM7Pcf2O0X6CkuEtGhcl13pqQCSWv6WeUaSQ86jlPVY94vJV3puu7DkhokOZJWOI7TZxLquu4CSU8MEMaO7m6/PRlj0owxpfPnz3+jOwkdDM/zVqSkpIy96qqrTnrllVe2V1dXL3/ppZdedF13lOM49Qfbfvz48X9oaGhYctlll31+1apVD27btu3RxsbGjN7r5eXlVTc0NOR3dnZqzJgxXdOmTftuz+Uffvjh2Zdccsn5b7zxxtt79ux55cUXX3zCdd2C7hjWr18/66yzzvrqO++8c8fevXuXL1u27GclJSU7rrjiiplPPfWUWb9+/fv//Oc/71KwC/SIk5ycbDsEAAAQIe1dnt6rHd7f/RmJUn2vxzH3tkmZSYeeiL5e7qk4XfrUdKMHNnr6zJFGpTnBVtdDxai5OJgR2zXXdd07Xdf1Bnj9dJiOM0rSg5JuchxnUx/Lx0s6W9JtvRa9quDzpbslNUq6RNKX+zuO4zgrHMfJGeB1QBIakut5ntLT0wfdImiMKa6srDxi0aJF/3Xrrbe+uXbt2srq6uoLPvjgg+RNmzZdMZh91NXVXT5//vw37rzzzrtWr17duH379gvUx5/KamtrCwoLC5OOOeaYL40dO/b1xMTEzT2Xn3DCCffdfvvtz65Zs6amoqLiog0bNiRu3Ljxyu7lc+bM2XD33Xff9v7777fv3bv359XV1Wbp0qU/ueWWWzZt2bJlY25u7pqqqqqjDxZvz1pW0TSdlZVlPQammWaaaaaZZjoy021dUuAQRyl66ZN+eTck9Pla/im/GjukrKT9t8lKlhraD304pNpW6cJHuvTNeT5VftWvpRONnt/uqazhEPfleWpsbJRk/5xHehqDN5JbRL+m4IBC/Wke6gFc1y2W9JykZyV9t5/VviRpg+M4r/TYzifpeUlPK5iAtkr6rKTlruse7TjOcBaP3GOMUVNT07hD2GacJB1xxBFvdc9ob2/fLEnV1dUzBrODpqamjKysrC3d7z3Pa8rIyGjpa93y8vIOSf83fvz4T7z55psvS9o3/lpeXt7a7umurq4PJammpubI7nlpaWkV3dMNDQ17fD6fJk2atKF7ns/na+no6DjonxYzMzOjcrqqqmq/rrm242GaaaaZZppppsM3nZlkNDmzQxvqe2WOAzj9710DLk9LlBJ80pQcaXNdcN7sQqO1h/kg2D/KpPn3BI/pN9LWL/t18z8PMRE1Zl+LqO1zHulpDN6ITUQdx2lUsKUxLFzXnSjpBUkPO47TZ8Lrum6CpC8qOBBST3mSJkm6pUc31/91Xfe/JZ0o6ZE+9nWKDhyJt6ftjuMc1Xum53nNo0eP3rJhw4a5ruvmDrJ77k5J2rRp01wFk2wlJSWVtre3q6CgYJ0kJSQktHZ2dqZ3b5CcnDyure3j4dLS0tIa6+vr92VQxph0v98/YB8Mz/MS9u7dW9BzXm1t7b7P5Pf7J3Z1dSk/P/+DQXyGmJCfn287BAAAEEGXTTX6xSqpY5iK6jV3SA9t8vTjk3360rMBzSmULpxidNJf+k5gjaQkv5ToDz7/mewPttJ2xzNnlPR+tZSaIP34ZJ92NkjPfnjoratd1BHFQYzYRPRQhBLGBEmJkozruimS5DhOaz/rT1ewRfNOx3F+MMCuz1dwhN27es50HKfadd2Nkq51XfffJbUp2CKaKWl1XzsKlYY54BnLwUhKSrpyx44dr952220fvPTSS860adOWPfjgg7nGmP9XWFg4+4UXXjil5/qe55UXFRVteumll75/7bXXPvv888/vLCgoeDQ7O7v9iCOOuFeSMjIy1q9fv37+ddddd9STTz5Zl5+ff1d5efm+feTm5j741ltvXX311VdfuWrVqkcmTJjw8M6dO/c9jDBz5swvHnHEEXkFBQX/+9prrzX5fL5rKysrT58zZ84bPWNZuXLlJxzHueuVV15ZVVRU9HB6enrH1KlTew8WFbOam5uVk5NjOwwAABAhJ+bUKdlfOGyJqCRd+3xAfzrLp93X+lXTIn31ucC+0i0LxkrLLvUr87fBxPDUcUYvf9K/b9vWbyTo5Z3evpbXfzvOp3MmB2/pnt7m6eJHDy+hpFY6DiYuElFJP5D0wx7vu7uQGklyXfcKSbeFSrFI0ncU7D56veu61/fY7iu9RtT9iqS/O45T18cxL1JwwKLtCibAmyVd7jjO1iF9kj7s3LnzjSOOOGLe3r17733iiSceeuihh/zp6eld48ePLy8uLu6zS3FCQsLClpaWZ+6+++43JZlJkybtPumkk5Z0t+C2trZe6Xneq7fddtv7OTk5ndOnT/9reXn5pO7td+zYcU1paen4Bx544C6fz2fmzp377p49e/a1ULe1tWUuX778R/X19b/w+/3KyclpP+WUU54///zzL+4Zx4QJE55+8MEHH29ubk6ZMGHC3tNOO+1Cx3HiZrzvlpY+ezMDAIAYNTWjWcNdy29Pq3Txo31ntis+0r4kVJJe2enJ3NTZ774+8+TwZMjUEcXBGM879KZ2YKh6l4OJwCGj8kJva2tj5FwAAOJIW1ubPr0sQQ9vjspbk2HhM9I3jtyjm84ptB2KDcP9d4aYNWJHzQViQVlZme0QAABABJWVlenSqUYZh1ESZSRJSIiXjpc4XFwhgEXU2AIAIL5kZGTozDFG7TE+lg89vnAwJKKwwvO8D0XXBaWlpdkOAQAARFBCQoLy04wmZUsbBlPrYIRqamqSxH0O+kfXXMCimpoa2yEAAIAIqqurkyRdMtUoIYb/JM8f23EwJKKARYWFcfkQPwAAcauoqEiSdN5kn1Jj+DnRjo4O2yEgypGIAhbV19fbDgEAAERQdXW1JGn+GKlrGGuJRhsSURwMiShgUVtbm+0QAABABAUCwewzwWe0cFzs9s2ljigOhkQUsKikpMR2CAAAIIK6u+ZK0qVHSOkx2j137969tkNAlCMRBSyijigAAPGlvLx83/TSST51xmj33MTEGM2wMWxIRAGL0tPTbYcAAAAiKCsra9/02Eyjohi9FSARxcGQiAIWJSUl2Q4BAABYdNEUI18MPira3NxsOwREORJRwKI9e2K4kjUAADhA7xHzL5hilBGDjYf0+sLBkIgCFo0ePdp2CAAAIIKKi4v3e39ysVF7l6VgwojKADgYElHAotraWtshAACACKqoqNjvfXKC0QnF/aw8gnV2dtoOAVGORBSwiGLPAADEF5/vwNvvy6capSZYCCaMqCOKgyERBSyijigAAPGloKDggHlLJ8XeLTl1RHEwsXfVAyMIdUQBAIgvvbvmStLkHKOcZAvBhBGVAXAwJKKARRkZGbZDAAAAEZSTk9Pn/AtKjWKpiovf77cdAqIciShgUUJCjD0QAgAABtTfID4XTjHKjKFGxJaWFtshIMqRiAIW1dXV2Q4BAABEUGNjY5/zF44zao2hgWbp9YWDIREFLCoqKrIdAgAAiKD+BipMSzQ6NobKi9MiioMhEQUsqq6uth0CAACIoIEGKrx8mlFKjDxa2dXVZTsERDkSUcCiQCBgOwQAABBBiYmJ/S47e5JPvhgZsYg6ojgYElHAIrrmAgAQX/Ly8vpdNj1PSo2RcQypI4qDiZFLHRiZysvLVVpaajsMAAAQIZWVlf0O5GOM0bmTje7f6ClpBDcXtXZJ6SkxNAQwwoJEFLAoKyvLdggAACCCcnNzB1x+y2KfLp/mRSia8JmdEUNDACMsSEQBAACACBmoa64kZSUbnVc68h8U3bKlThqdbzsMRLER3OgPjHz19fW2QwAAABh2jIOBgyERBSwqLi62HQIAAMCwo0QdDoZEFLCooqLCdggAAADDjhJ1OBgSUcAin48fQQAAEHvomouD4S4YsKigoMB2CAAAAMOuvLzcdgiIciSigEV0zQUAALGIEnU4GBJRwKKcnBzbIQAAAAARRyIKWNTZSbFnAAAQeyhRh4MhEQUsamxstB0CAADAsKNEHQ6GRBSwqKSkxHYIAAAAw45xMHAwJKKARWVlZbZDAAAAGHaUqMPBcIUAFiUmJtoOAQAAYNhRog4Hk2A7ACCe5eXl2Q4BAABg2FVUVKi0tLTf5SvKPG3d60UwosM3I99oXpGxHUbMIREFLKqsrFRGRobtMAAAAIbVQCXqmto9nXF/lxJHQN/MgCdlJ3kqv5ZebMONRBSwKDc313YIAAAAw26gEnUv7/SU7Jfq2yMY0BCkJ4yMltuRZgT8HQKIXe3tI+QbGAAA4BAMVKLukc2eGkbQLVDAIxENBxJRwKKmpibbIQAAAAy7gUrUPbHF00hK7RgBODw4q4BF1BEFAACxqL8SdZv3eNo7glpDJckLBGyHEJNIRAGLqCMKAABiUX8l6p7eNvKSupHUejuSkIgCFiUnJ9sOAQAAYNj1V6Luvg2eWvofxygq+emaGxacVcCirKws2yEAAAAMu8rKygPmtXZ6erPCQjBD1EXX3LAgEQUsqqqqsh0CAADAsOurRN2Kj4JlW0YaY4ztEGISiShgUX5+vu0QAAAAhl1fJeoe2+ypscNCMENEGhoeJKKARc3NzbZDAAAAGHZ9lah7dLOnwAgc+Yc6ouFBIgpY1NLSYjsEAACAYde7RN3Oek+7R+jf36kjGh6cVcAi6ogCAIBY1LtE3dPbAvKP0D6u1BENDxJRwCLqiAIAgFjUu0TdAxs9NY2wsi3d6JgbHiSigEWpqam2QwAAABh2PUvUdXR5Wv6RxWCGiDqi4cFZBSxKS0uzHQIAAMCw61mi7o1dUuIIzjqoIxoeI/iSAEa+mpoa2yEAAAAMu54l6h7fElDTCCzb0o06ouFBIgpYVFhYaDsEAACAYdezRN3Dmzx18aAleiERBSyqr6+3HQIAAMCw6y5RV9nkaUeD5WCGyKOOaFiQiAIWtbW12Q4BAABg2HWXqHv2Q09JIzzjYLCi8OCsAhZRRxQAAMSi7hJ1D2z01DiCnw+VGKwoXEhEAYuoIwoAAGJRamqqugKeXtwx8ru1MlRReJCIAhalp6fbDgEAAGDYpaWlaVVlbCRxhq65YcFZBSxKSkqyHQIAAMCwq6mp0RNbA2rpsh3J0AXomhsWJKKARXv27LEdAgAAwLArLCzUAxs9dcZADuejjmhYJNgOAIhno0ePth0CAACIIbUtnr74TEDPfuipIFX62ak+febIvtueXtoR0I9f97Sq0lNuivSh83FqsKPe04w79m/ObOqQblro07eOO3hb1vaqBm3ekza0DxMlRv5TrtGJFtERLDk5ueuyyy77weFuP2vWrB8XFBQc8s/W+PHjd5x66qmvHu5x8bHa2lrbIQAAgBjyLy8ElOSXKq/1695z/frqcwGtre77di890egLRxv9cuGBKcH4LKPG6xL2vdZ8zi+fkS6dOrjWwZfKfEqOkSYv6oiGx4i5PFzXTZP0O0mXhGY9KOlrjuO09LP+HyVd2Wt2uqRvOY7zK9d18yQ9Imm6pBRJVZLukPSfjuN4oX28LOlEST0Hnf6U4zhPDMdn6jZz5syvb9iw4bff/e53S3/0ox9tDc372vvvv3/LokWLnn3hhRfO6l43Ozu79dhjj33tpZdeWtTW1uYfzjjGjh1bsXv37tF+v1/GGKWlpXUVFRV9NGXKlJ89+uijf+xeb8eOHeMPtq85c+b8X1lZ2ZVNTU2JPp9PRUVFe2fNmvXNhx9++I7hjHmk6+gY4eOZAwCAqNHU7unBjZ7ev9qvjCSjBSXSBVOM7l4X0M9PPfC2cf4Yo/ljjJ7ffvD+s39e5+nUEqOJ2YNLRJfX5auh/ZA/QlSijmh4jKSz+hsFk8ZpkqZKOlLSr/pb2XGcaxzHyeh+SbpYUqekv4VWaZL0VUljHcfJknSGpCskfbnXrn7Scz/DnYRK0pYtW+7q6urSmjVrvtQ9r729/fJRo0a1VVZWHtc9b/z48UfX19cnjx079u/DHUO3E0444e3W1lbT0tJiZsyYcbzf79/4xBNP/OGcc87538FsP3XqVL/jOIk5OTl3nHrqqce2tLT4xo4dm5qWlvb4yy+//H+//vWvc8IV+0hEHVEAADBcNu6REnzS1LyPk8XZhUZrq4e2X8/z9Oe1AX3uqMEloZ7n6ZkPY6cVkTqi4TEiElHXdVMVbN280XGcSsdxdku6UdLnXNdNGeRuviLpccdxyiXJcZw2x3HWOo7Ts0kqoGCiG1HNzc31o0aNqqmsrDy3e15NTc0xRx99tPvhhx/m/OY3v8mVpOzs7C9nZ2fr1FNPvUeSjDHepZde+mNJmjVr1s9HjRrlzZkz547s7OzOtLQ0b86cOVtuvPHG7O59zp8//9IxY8Y0JCcnexMmTGj0+XzzBopr+fLlb69evXrJ5MmTV73++utf6E4ix44dW3HKKaf8MxTDRGOMt3Dhwr8WFha2bNu2rdPn8y15+eWXVzz00ENrJSkzM9MYYzrr6upMWVnZdEmaMWPGI1OmTGmeMWPG8vT09EBOTk7XySef/A/XdRNDyz/l9/u9hQsX/iEvL689OTnZmzlzZtkll1wyfvr06e+mpaUFcnNzu5YuXeoO439FxFFHFAAADJfGDimr14D82clSQ/vQksIVH0mVzdJlg+yWu6Za6vJGRJoxKAxVFB4jpWvuNAW7z77dY94qSakKto6uHmhj13WLJF0o6dw+lj0haXFo/zsl3dZrletd1/2mpF2S7pF0U6/ktee+PiPp1gFCWeE4znl9LcjNzX2jvLx8iSQVFhYWNzU1ZZ522mk/f+edd774+uuvf/666677VWNj41kTJkzY7ThOU1/7qKmp0eTJk4+5+OKLR33wwQdHrFmz5rW33nrrdkmfmDBhQl5VVdV9c+fOfXP8+PFnbd68+Yx169bdl5ycPEC4QcnJybfU1dXd8fbbb18mqc+W0bKysvMWL1582qZNm97z+/1Gko466qhLtm3b9mBra6skaf78+R/cdNNNb3Rvs23bttSTTjop4ZhjjsnZvHnz6e+9996DDz300D2O43xSCg6VXV9ff/aFF144ad26dflr165dVVlZuem444677dRTTz3ujTfe+NU//vGPr33zm9+86Ve/+tXGg36QKJSRkWE7BAAAMEKc9rdOvdLP37BPHivdssiv+l7dYevbpMykoaVSd60N6NIjjDIGuZ/nPgzExGi53agjGh5Wz6rrune6rusN8PppaNXM0L97e2zePZ01iEN9UdIOSc/1XhBKDDMUfBb0bkk9Oy98V9IRkgpD+/iSpB/3dxDHcf7iOE7OAK8+k9CQe3bs2JH07W9/+9gxY8Z8acKECY033nhjeUFBwepdu3ZdYowxu3fvLi0qKlrR3w6SkpJ0wQUXnHXnnXfWrly5cuXo0aM319bWHitJ2dnZ16WkpPguvPDCxffee2/9ypUrHyopKXlmgHj2qa6ufleSWlpaxvW3zuzZs3/7t7/9beXbb7/d+vvf/75FktauXftQc3OzOemkk8Yec8wxf8nOzv5Hz22ys7PVI55Hx48f//TWrVv3O0cnnXTSl++4446PVq5cubqwsHBzXl5e+5NPPvmvrut2rFmz5jstLS3atWvX2Qf7DA0NDVE5nZCQYD0GpplmmmmmmWZ6ZEw/fm6LvBsS5N2QoPqv7D+94tMJmpordQY8bdrj7dv2vSpPRxUc/nFbOjzdvyGgzx1tBr1tjr9Nib7Y6ZrbXUd0MJ8dg2c7vf+agklef6//Cq3X/b+b3WPb7un6gQ7guq5Pwec+3e5BiHpzHKfLcZw3FExuf99j/uuO4+zpsfz/6cABkIbFBx988LDf7/c2bNjwxZaWlvOLiorelaSUlJTHKioqZk+ePPnk5ubmhIkTJ97V3z4yMzP1ve99r7L7vd/vb+no6EiVpEAgMCUnJ6f9hhtuaO5enpCQsH4wsRUUFMyRpNTU1J39rZObm/tOf8tWrFhRvmrVqquWL1/+5SuuuGLfc7C94/H7/RsaGhpSu9/7fD7Nnj37gx7LW1NTU/f9f3ue1yxJ7e3t+Qf7DJmZmVE5XVdXZz0GpplmmmmmmWY6NqbTk4wuOcKn//dqQE3tnlbXZ+jRzZ6umuHrc/2A5ykxNUMdXZLnSYmpGWrv8vZb5+HNnnJTjE4fZwYdzwXTU9URiJ0Ord11RAfz2TF4VrvmOo7TKKlxEKtukNQq6VhJL4bmHSOpRdLBumQulTRG0p8GcZwEBVtA+xPQAN3EXde9Qgd27e1pueM4fbbeeZ7XNm7cuI8qKyuXVFVVjZs7d+73JamsrOxPzc3N/3XUUUfdMHr06MDcuXOfGsTnOIDP59tSV1eXdNNNN6V1J39dXV2Deh62ra3tazk5Od7cuXMfGGD/XQcLoaury9TX189VqHtvX/FkZmb2OQpyrCoqKrIdAgAAiCG3nuHTF54JaNStXcpPlf6wxKejCoK3r8vLPJ39YJcarwumAP/Y6en0+z7uQ5v66y4tLJFe/tTHKcJdaz1dNcPImMEnloVpRiXpXdraMFKeAhxY7LTtRpcRcXU4jtPiuu49kn7suu77odk/lvRnx3FaD7L5VyQ95DhOVc+ZruueoGA5l9cktUs6WdJ1ktzQ8hxJCyS9rOAIu3Mk/YekfkesdRznXkn3Dv6T7S87O/uV9evXf6azs9OceOKJd0hSbW1tZUFBQcOmTZvOnzZt2nbHcToPZ991dXW/aW1t/f5jjz323Lp165auW7fu9J07d5410DOip5566py6urqfb926de5ZZ5115/XXX1832OPNnz//jpKSkv8rKCh47f333x83derUB8rKyszo0aPv6V5n79696o5n7dq1C3fs2LF0wYIFDx3O5xupqqurlZ6ebjsMAAAQI/JSjR65yN/nslNKzL4kVJJOG++Td8PAHSSfuazvfR3MmWMa9b+NOeqMgSyOOqLhMSIS0ZDrJd2ij1tAH5T0je6Frut+T9IVjuMc1WPeWAUHKFrcx/6SJP1CwcGOPEkfSfqtpJ+HlidK+oGCiaVPwcGK7pX0s+H6QL21trb+X319/RUzZsyou+666/Z0z8/Pz39n48aNp44ePfr5w933jh07ao4//vgrNm3adPvKlSvri4qKmkpLS58rKyvbr4X2jTfemJuSkuJJ6q4juuvcc8/918cee+yWQzleXV3dMevXr3+5ra3Nn5yc7BUVFdUsWbLkmv/93/99tXudSZMmtVRXVwfefvvtvQkJCd7s2bPfOOGEE6443M84EgUYDhwAAMSgT87K1L0fKiZqiVJHNDwMGT5smDFjxiMdHR1nbtq0KS1Ch4zKC72lpUWpqakHXxEAAGAE2bBpi459coKaD6svX3TJT+5S9dcPXmkiJHYejg0z0nvAovLyctshAAAADLucrAwtHBcbOVlsfIroQyIKWJSVNZjqQwAAACNLQkKCLpsqpSfajmToqCMaHiPpGVHEkHXr1l1kOwYAAACER11dnZZOylNn4GCFFaIfY3qEB+k9YFF9/YBlcAEAAEakoqIiFWcYjYmB4gC+Qyhdg8EjEQUsKi4uth0CAADAsKuurpYkXXSEkW+E53EM7hoeJKKARRUVFbZDAAAAGHbd3VkvKDXKGOHPiZKGhgeJKGCRj4ffAQBADCoqKpIknTzWqH2EPyZKHdHw4KwCFhUUFNgOAQAAYNh1l6hL8hudMMKfROpisKKwIBEFLKJrLgAAiEU9S9RdPtUodQTX6hjhj7hGLRJRwKKcnBzbIQAAAITV2ZN8I/o5S8OouWFBIgpY1NnZaTsEAACAYdezRN2kHKO8ZIvBDFGAUXPDgkQUsKixsdF2CAAAAMOud4m6C6aYEdvFlcElw4OzClhUUlJiOwQAAIBh13scjAunGGUmWQpmiDwGKwoLElHAorKyMtshAAAADLverYgLS4xaR2gZFzrmhgeJKGBRYuIIr/AMAADQh94l6lITjeaOshTMEFFHNDw4q4BFeXl5tkMAAAAYdn2VqLt8mlGK30IwQ0Qd0fAgEQUsqqystB0CAADAsOurRN3Zk3zyjcARiyjfEh4kooBFubm5tkMAAAAYdn2VqJuWJ6WNwKeSSEPDg0QUsKi9vd12CAAAAMOurxJ1xhidO3nkpXXUEQ0PElHAoqamJtshAAAADLv+StRdfIRR1ggr40Id0fDgrAIWUUcUAADEov5K1C0ab9R6YK/dqEYd0fAgEQUsoo4oAACIRf2VqMtMMjqqoM9FUYuOueFBIgpYlJycbDsEAACAYTdQibrLpxoljaAshDqi4cFZBSzKysqyHQIAAMCwG6hE3TmTfUocQfVEqSMaHgm2AwDiWVVVFckoAACIOQOVqJtVKBWnS1v3RjCgISjNIhENB+MxHDHiQ1Re6HV1dX0WfAYAAEB0qKmpUX5+/mBXH3n1aSyhay5gUXNzs+0QAAAAMIC6ujrbIcQkElHAopaWFtshAAAAYABFRUW2Q4hJJKKARdQRBQAAiG7V1dW2Q4hJJKKARdQRBQAAiG4BRs0NCxJRwKLU1FTbIQAAAGAAdM0NDxJRwKK0tDTbIQAAAGAA5eXltkOISSSigEU1NTW2QwAAAMAAqPkeHiSigEWFhYW2QwAAAAAijkQUsKi+vt52CAAAABgA92vhQSIKWNTW1mY7BAAAAAyguLjYdggxiUQUsIg6ogAAANGtoqLCdggxiUQUsIg6ogAAANHN5yNlCgfOKmBRenq67RAAAAAwgIKCAtshxCQSUcCipKQk2yEAAABgAL275m6o9XT/hoClaGIHiShg0Z49e2yHAAAAgAHk5OTs9/5Lz3TpE4+TiA4ViShg0ejRo22HAAAAgAF0dnbu935ttaVAYgyJKGBRbW2t7RAAAAAwgMbGxv3e72mTMhM9S9HEDhJRwKKOjg7bIQAAAGAAfZXbK0njHm6oSEQBi6gjCgAAEN16lturaQm2hI7JSrQVTswgEQUsoo4oAABAdEtM/Djp3BB6qqqttdVSNLGDRBSwKCMjw3YIAAAAGEBeXt6+6fW1nowkv99vL6AYQSIKWJSQkGA7BAAAAAygsrJy3/SaKk+eJOMz9gKKESSigEV1dXW2QwAAAMAAcnNz902/XRl8RrSzo7O/1TFIJKKARUVFRbZDAAAAwADa29v3TW/cE/w3KTnZUjSxg0QUsKi6morIAAAA0aypqUmS1NbpqbolOK+jR3KKw0MiClgUCARshwAAAIABdJfb21wnpYWG9/DshRMzSEQBi+iaCwAAEN26y+2tr/VkQmMUJSclWYwoNpCIAhaVl5fbDgEAAAADSA49D7quxlNTR3BeW1ubxYhiA4koYFFWVpbtEAAAADCA7vu1tyukrlCfXErwDR2JKAAAAAD0o6qqSpK0toYnQ4cTiShgUX19ve0QAAAAMID8/Hx5nqedDR/P6+ykjuhQ0aYMWFRcXGw7BAAAAAygublZjf5s+czH85KpIzpktIgCFlVUVNgOAQAAAANoaWnR+lpPST0ypzbqiA4ZiShgkc/HjyAAAEA0Kykp0foaqa3r43mm/9UxSNwFAxYVFBTYDgEAAAADKCsr06rdnlp7JKKJ1BEdMhJRwCK65gIAAES31NRUvbd7/xFz26kjOmQkooBFOTk5tkMAAADAANLS0rR17/7zEhIZ83WoSEQBixj6GwAAILp9WFGrxo7953kBaooOFYkoYFFjY6PtEAAAADCAPQmjlNarAbSrq6vvlTFoJKKARSUlJbZDAAAAiFq1LZ4ufqRL6b/u1ITbOvWXDwL9rut5nr7zSpfyf9ep/N916juvdMnzgi2XG2s9Xfhwlwp/36m833XqrAe6tKF2cK2aq3e1qncDaEpKymF/JgSRiEaZvLy8zgULFtwa7uMsXbp04bhx4+pTUlK8I444ojzcx0PfysrKbIcAAAAQtf7lhYCS/FLltX7de65fX30uoLXVfSeQ7mpPj2z29N7n/Fr9Ob8e3+LptveC69a1SRdMMdrwBb8qv+rX/CLpwkcG16q5ttaoqVfX3NbW1iF9LpCI7nPKKaf8Zvz48XtTUlI8v9/f59V9zjnnzJgxY8bm9PT0QEpKijdmzJiWs88++5jDPaYxxlu8ePFXDz/qw1dWVvbHtLS0uiVLlvg2bdpUPNT9LVq06Pr+zhv6l5iYaDsEAACAqNTU7unBjZ5+crJPGUlGC0qMLphidPe6vltF71ob0Lfm+VSSaTQ20+hbx/l059rguvPHGH1xpk95qUaJfqNvzPVpQ61U03Lw29fNLVnqvZbxUUl0qEhEQxISEionTJjw57lz597R1/Lzzjsv++23317l8/k6Fy5cOH3JkiUJM2fO/KTP59sd6VgPxXnnnZfa1/ympqZRWVlZGx5//PGoSh77izdW5eXl2Q4BAAAgKm3cIyX4pKl5Hyd9swuN1lb3vf7aamn2qMGt+48yT0XpUn7qwRPKddUHtpzSmDB0JKIhL7300n8tX77868nJyav7Wl5bW/v7tra2hIkTJx7z1FNPbXz88ce7nn322ceefPLJj/rb55IlSy6dOHFibVpaWiAvL6/juOOOe+78889PlKSioqIWSVq+fPmtycnJ3lFHHbW+e7u2trbSiRMn1iYnJ3ujR49uXbx4sdNzvyeddNKfR48e3ZqamuqNGTOm+fTTT//37mXz5s17eeLEibVz5sx5KzMzs2vdunU7esdVVFTUsn379rx33333jOTkZO/kk0++Q5IWL178L+PHj9+bnp4eyM/P7zj++OMfO//8840knXvuuflTp079KCsrqyslJcUrLi5uPv30078jSWefffYxK1as+J9AIKDk5GQvOTnZW7Bggbt06dIFxhjv7LPPntd97JNPPvl/8/Pz27vf5+Xldc6bN++FCRMm7ElOTvb27t378/POOy/5uOOOe6agoKA9LS3NGzduXP0ZZ5xxVfc2p59++rfHjBnTnJKS4mVkZAQmTZpU0///bHSrrKy0HQIAAEBUauyQspL2n5edLDW0992O0tghZSftv25jh/Y9J9qtrMHTv7wQ0K9OO3gq1NHlqbrNf8D89rb2PtbGoSARHaTa2tpTcnJy6rds2bIuPT09UFhY2Hb88cc/0t/655577rg33njjvoKCglWLFi3Knjdv3kVbtmw5rbKy8mFJqqioSJWkU0455dq2tjazdu3a6d3bbt269fSpU6defeaZZyYVFRWte++9937Xveykk07684YNGz41a9asq84444yEadOm/fy111772VlnnbWoe52dO3fmJicn71q4cGHWkUceOV29VFRUpI4bN27vnDlznm9razOvvvrq588888zzX3311d9NmjTpd4sWLUqeN2/eBZs2bTp7z549fwxtljBq1KhHTznllJIzzjgjraSk5MXXX3/95+ecc870ZcuWvbNgwYJv+Hw+tbW1mba2NrNixQqn93H7s3nz5oVTp0796plnnunLzs7+j/Ly8hd27dp18rx585YsXrw4afz48Q++8cYbd51zzjkTJWnVqlU/nzx58l+XLFniO+2007InTZr0k4Mdo6GhISqnc3NzrcfANNNMM80000wzbWP6tL91ytzU92vBXztlOppU377/tvVtUqqvq899ZiR6+61f3yZlJO5fpWDb7gadeX+Xrp3j03klTQeNc8vuRiX2kTH5fL4+18ch8DyPV4/X6aeffr3P5/N6z584cWKNJO/4449/8Nxzz01fvHjxVenp6YGTTz75933tZ8GCBb/Lzs7uPO+880z3vBNPPPGegoKC9u73krxFixZ9ted2ubm5nccdd9wT3e+XLFlygSTvnHPOGed5nkaNGtV68skn39Zzm9LS0op58+Y953me5s6d+3JeXl7HwT7n+PHj67q38TxPM2fOXD1jxoyNPdeZP3/+YxMnTqzpbx/p6emBhQsX/r/+zttZZ521QJK3dOnSed3zTjrppP/Ny8vbdw5yc3M7586d+0L3+/POO88kJyd7p59++td67iv0uW/t3uaYY45ZvnTp0pmH8H8blXbt2mU7BAAAgKjU2BbwEm/u8DbWBvbNu+rJTu87r3T2uf6J93Z47ntd+97/3+ou7/h7Ova9r20JeHPu6uh3+750dAU8/03tnn7Zsd/r1Lub+tvEej4zUl60iA5SQkJCW3Z2dtcbb7xx6RNPPNH0/PPP311aWvpeVVXVBX2t39bWNjkrK6up5zOYycnJ7+3du/egHcqTkpL2daf1+Xy1khQIBEZLUl1dXfI///lPJy0tzet+7dy5c3Rra+uY7m0yMzMP+c8yTU1NRZs2bTqi537fe++985ubm9Ml6bzzzsudNWvW6ry8vI6UlBQvLS3Na25uNp2dnUOuP5KSkrK5e7qrq2taW1ubXn/99Vt6xlJXV5fc3t4+SZLmzp376aampgnLly9/b9SoUW0nnHDCw0ONwZampqaDrwQAABCH0pOMLjnC6P+9GlBTu6dXP/L06GZPV83oO4X57AyffvXPgD5q8FTe6OnmfwZ09VHBdevbPJ31QJdOLjb6+an+QceQ4DMqSjuwKzB1RIeORHSQsrOz1/ezqM9O6snJyVvr6+vTu5+xlKS2trZZ2dnZ+wZ/NubQR9vKzs5unz9//q+am5tN96utrc2sWbPm6B77PeQBiNLS0nZPnz79/Z77bW1tNZWVlSmSVFlZ+ffdu3cfMX/+/EVLlizxNTc3m7S0NM/zvO5rqLP3Pn0+X4UkBQKBgu557e3t4/o4/L6fZL/fvyEpKUknn3zy1b0/45tvvnm2JD333HP3b9iwYfzpp5/unzlz5jdXrVp10aJFi755qJ85GlBHFAAAoH+3nuFTS6c06tYuffqJLv1hiU9HFQTvoZeXecr4zce3oF+ZbXR+qdHMu7p09J1dOney0VdmB9d9eJOntyqkO94PbtP92lF/8NvmSekHPg9KHdGhS7AdQLQ4//zzEz3PS/M8L0UKjpIrScaY+scff9wrKCj4werVq1898cQT/15QUHBla2vrRVu2bJl9zDHH/Lav/WVlZf13V1fXtRUVFc+cd955F3d0dJyyYcOGT5WWlj7bvU5mZmagtbV1Xl/b92fKlCl/37Bhw78sWbLkzZSUlPs8z8tpaWn5VEJCwofPPPPMssP9/GPGjPnBq6+++tDChQt/nJmZ+TNJgfb29jM7Ozsnvfjii7/t7OzM8vv9Ab/fv9XzvIx58+Y90tLSsi+TTkxM3BgIBLR06dJTnn766eWS9NRTT23Oy8vr2r1793+cf/75L7S1tZ2/ZcuWRQMlyo8//rh37LHHvrpp06bfnHXWWR8988wzz5977rmjm5ubv5iSkrLM7/dvrKur+5+srKybnnrqqY1nnnnmR6GE/oBEeCQoKytTaWmp7TAAAACiUl6q0SMX9d2CeUqJUeN1H6czxhj9YqFfv1h44LqfO9qnzx19eG1wM7Lb9OrulP1an4J1RBk5dyhIRENqa2v/8Nprr32x+/2TTz5ZJ0lnnXXWKZJWPP30068tWrToGx988MF/rVq1qj0zM7Nj5syZ9y9fvvz6vvb35JNP7lyyZMmnN27c+Me1a9c2pKSkBCZPnvyPUaNGXdK9ztFHH33n2rVrP5eWlvb5yZMnr3///fdnHCzO11577bMLFixoff/99+/Yu3fv33w+nzdq1KjaKVOmDHpwoL48++yzjyxevPgrW7Zs+e/q6uofeJ6nnJyc5tLS0j9KUlFR0Rfr6ur+8fzzz5elpqZ2TZs2bVlOTs6+1t1nnnnm2ZkzZ65dsWLFK2lpaebYY4+9bcWKFdfMmTPnm2vXrv3FunXr2ouLi2tLS0tf3rp1ax9fDx8rLi5enJiYeN8777zzZEpKSlJSUlJg9OjRlVOmTHlWknbt2nXRu++++6Xk5GSTnp7eOWfOnCdefPHFPv8gEO2Sk5NthwAAAIABnDAxU3/5MDgCb7eegxXh8BjPi6oykkC4ROWFXl9fr6ysLNthAAAAoB+P/HOnPvfamH0j8krS6WO79OKn+2xQOPRn7+IUqTxgUVVVle0QAAAAMICZRUlq7vUQWHs7dUSHikQUsCg/P992CAAAABhATmqCMns9DpqYyPOhQ0UiCljU3NxsOwQAAAAMoK6uTpNz9p/XFaB8y1CRiAIWtbS02A4BAAAAAygqKtKcUfs/+hnoCliKJnaQiAIWUUcUAAAgulVXV+uYUUYpParIUEd06EhEAYvKyspshwAAAIABBAIBTc+TknskosE6ohgK6ogCFqWmptoOAQAAAAMoKipSUqdRe4/euD4/7XlDxRkELEpLS7MdAgAAAAZQXl6u4gwp0KMqvd/n738DDAqJKGBRTU2N7RAAAAAwgKysLBljND7z43kdHR32AooRJKKARYWFhbZDAAAAwCAcVfDxyLlJSUkWI4kNJKKARfX19bZDAAAAwAC679fmjpb8oVy0s7PTYkSxgUQUsKitrc12CAAAABhAcXGxJGlGvlF6YnBeIEAd0aEiEQUsoo4oAABAdKuoqJAkTc8z8kIDFlFHdOhIRAGLqCMKAAAQ3Xy+YMpUmiM1h3rkUkd06EhEAYvS09NthwAAAIABFBQUSJKSE4wKQ5X3/H7KtwwViShgESOuAQAARLfurrmSNDU3+G93KykOH2cQsGjPnj22QwAAAMAAcnJy9k3PHR0cNpc6okNHIgpYNHr0aNshAAAAYAA9S7XMLDAykpKS6dU2VCSigEW1tbW2QwAAAMAAGhsb901PzzfyRIvocCARBSziSwwAACC69Sy3Ny30jGgg4FmKJnaQiAIWUUcUAAAguvUst5eXGnxGtCFAHdGhIhEFLKKOKAAAQHRLTEw8YN62vbSIDhWJKGBRRkaG7RAAAAAwgLy8vP3fp0iNnaRRQ8UZBCxKSEiwHQIAAAAGUFlZud/7owssBRJjSEQBi+rq6myHAAAAgAHk5ubu9/7/zvLr1vm7LUUTO4zn0b8ZcSEqL/Smpialp6fbDgMAAACHYIB7OBPpWEYqWkQBi6qrq22HAAAAgEPEPdzQkYgCFgUCAdshAAAA4BBxDzd0dM1FvIjKC72lpUWpqam2wwAAAMAhGOAejq65g0SLKGBReXm57RAAAABwiLiHGzoSUcCirKws2yEAAADgEHEPN3QkogAAAACAiCIRBSyqr6+3HQIAAAAOEfdwQ8dgRYgXUXmhM1gRAADAyMNgRUNHiyhgUUVFhe0QAAAAcIi4hxs6ElHAIp+PH0EAAICRhnu4oeMMAhYVFBTYDgEAAACHiHu4oSMRBSyiWwcAAMDIwz3c0JGIAhbl5OTYDgEAAACHiHu4oSMRBSzq7Oy0HQIAAAAOEfdwQ0ciCljU2NhoOwQAAAAcIu7hho46oogXUXmht7W1KTk52XYYAAAAOAQD3MNRR3SQaBEFLCorK7MdAgAAAA4R93BDRyIKWJSYmGg7BAAAABwi7uGGjkQUsCgvL892CAAAADhE3MMNHYkoYFFlZaXtEAAAAHCIuIcbugTbAQCRYIzpkOS3HUeUM4rSQZ2iEOdq8DhXh4bzNXicq8HjXB0aztfgxfO56u+zt3uelxTpYEYiRs0FIEkyxvzT87x5tuMYCThXg8e5OjScr8HjXA0e5+rQcL4GL57PlTGmyfO8dNtxjGR0zQUAAAAARBSJKAAAAAAgokhEAXRzbQcwgnCuBo9zdWg4X4PHuRo8ztWh4XwNXjyfq4dsBzDS8YwoAAAAACCiaBEFAAAAAEQUiSgAAAAAIKJIRIE4YIz5kzFmpzGm3hizK/Q+d4D1/2iMaez18owx3+yxjmeMae61TnZkPlF4Hcb5utoYE+h1Lv7aa515xpg3Q+dsizHmyvB/kvA7jHP1WWPMa8aYPcaYamPMMmPMzB7LJ4auraYe57IsMp8mvA71XIW2+Wzoemk2xqw0xszttTzmritjTLIx5jZjzCZjTIMxZocx5pfGmJQBtonb76zDPF9x+Z11mOcqLr+zDudchbaLu+8sHD4SUSA+/ErSdM/zsiQdKSlN0u/7W9nzvGs8z8vofkm6WFKnpL/1WvXMnut5nrc3XB8gwg7pfIVs7XUuPt29IHSzu0zSg5JyJV0j6Y/GmBPDE35EHeq5ypT0Q0klksZKWiXpWWNMWq/1pvU4lyVhiNuGQzpXxpgFkv4g6asKXjcPSnrKGJMVWh6r11WCpGpJ50vKkXSKpEWSftHfBnH+nXXI5yskHr+zDudcxet31iGfqzj+zsJhIhEF4oDnee97ntfUY1ZA0rRD2MVXJD3ueV758EYWnYbhfPV2iaRmSb/wPK/N87znJD0syRnCPqPCoZ4rz/N+73nec57nNXme1ybpJ5KKJE0Pc6jWHcZ19WVJD3me92zoXP1SUpuCSZYUo9dV6Nr4vud56z3P6/I8b7uk2yWddgi7iZvvrGE6X71xbX28TVx+Zx3mdRWX31k4fCSiQJwwxvy7MaZB0h5JF0n6z0FuVyTpQkl/7GPx/aGuSiuNMZcMW7BR4DDO1zhjTEWo6+XfjDGTeiybLekdb/9hyleF5o94h3tthSxW8MZkU6/5K40xVcaYl40xpw1HnNHgEM/VbElvd78JXT/v6OPrJqavq14WS3pvMCvG63dWL4M5X3H7ndXLoK+tHuvHzXdWLwc7V3xn4ZCQiAIjmDHmztCzKf29ftq9rud5P/c8L1PSZEk3S9o8yMN8UdIOSc/1mn+GpEkKdlf6laR7jTFLh/yhwiiM5+sfkmZKKpZ0nKRWSc8ZY9JDyzMl9e4CWCcpa3g+2fCLxLVljJkq6Q5J3/I8ryE0u1rSiQpeWxMV7MK1zBgza/g+3fAK47k62HUT09dVj22ul7RQ0vcHeZi4/M7qsc31Ovj5iuvvrB7bXK9DuLbi8TurxzbX6+DnKua+sxBeCbYDADAkX5N0wwDLm3vP8DxvmzHmcQWf2xjveV6gv42NMT4Fu9r8oddfMOV53gs93v7dGHOGpCskPX0oHyDCwnK+PM/b2uNthTHmywr+sj1B0guSGhS8QekpR1L9IUUfWeG+tmYomCjc5HneH3vso1HSG6G37ZJuMcZcIOlySasP/WNERLjOVYOk3oPp5Eja0mP5xD6Wx8x1ZYz5hqTvSFrked6Og+083r+zBnu++M46rGsrbr+zDuFcxeJ3FsKIRBQYwUK/ABsPY9MEBQddSFfwF0N/lkoaI+lPg9hnQJI5jFgiJgLna9+hQq/u8/Gegt0wezpGh9YdLKLCea6MMccqePP/E8/zbhnEPqP62grjuXpP0rHdb4wxRtIcSQ/1WH5Rr21i5royxtyo4LOeCz3P2zDIQ8Ttd9Zhnq99h1IcfWcd6rmK5++sQzxXMfedhTDzPI8XL14x/JI0StJnJeWE3k+VtELS8kFs+6ikv/Yx/2hJ8yUlSUpU8BdLs6QLbH9eG+dL0rkKdvczkvIk3SZpu6SM0PIcSVWSvh06Z4sVvAk40fbntXCuTlbw+cgv97P8hND1lSApRcFBLFolzbX9eS2cqwWh62Rx6Lq5QVKlpKxYvq5Cn+2XoZ+h0kPcLu6+sw7nfMXrd9Zhnqu4/M46zHMVt99ZvA7vZT0AXrx4hfclqVDSi5JqJTWFfqn8UdLoHut8T9LaXtuNVbD8wcI+9nm6pLWh/e2R9E9Jn7L9WW2dr9Av6/LQ+rskPSBpaq/9HifpTUktkrZKutL2Z7V0rl5SsLWgsdfrlNDyTyv43GSTpBpJyyUtsf1ZbZyr0LzPhq6XltD1M7fX8li8riYo2DrX1usa6Xkd8Z01hPMVx99Zh3Ou4vU763B/DuPuO4vX4b9M6KIAAAAAACAiGDUXAAAAABBRJKIAAAAAgIgiEQUAAAAARBSJKAAAAAAgokhEAQAAAAARRSIKAAAAAIioBNsBAAAAAAAix3Xdr0m6WtJMSX91HOfqAdZt7DUrVdKtjuN83XXdIyX9XtJcSVWSvu04zsODiYEWUQAAAABxzxjjGWOajDH/2Wt+oTHmOWPMHmPMn4wxPzPGXH8I+33TGHNUr3kvGmNajTErhin8Q1Uu6aeS/nSwFR3Hyeh+SSqS1CLpftd1EyQ9KukJSXmSHEn3uK47dTABkIgCAAAAiAvGmNxQwtnY63V9aJXZnud9v9dm35W0yfO8XEnfkfRZSbf12GepMabZGDOmx7wrjDHlxphxkm6S9OOeO/Q8b5Gka4b/Ew6O4zgPOY7ziKSaQ9z0Ukm7JS2XNF1SsaT/cRyny3GcFyW9KumqweyIrrkAAAAA4sUcSbWe5+X3XmCM+Z9+tjlD0nWh6aslPeV5Xkv3Qs/zthhjHpd0vaTvGGNOlPQ7SWd6nrfTGFMl6Y/GmCLP8yoOJVjXdZ+QtKCfxSscxznvUPY3DD4n6c+O43iu6/a13Eg6ejA7IhEFAAAAEC/mSFo3mBWNMUkKPveYJelxY8y20Pu+urP+t6QXjTF3S3pI0lc8z3tLkjzPazXGvC3pLEl3HUqwFhLNfrmuO0HSQklfDM3aoGDr6Ldd1/0fSaeHlr80mP2RiAIAAACIF8dokImo53ntodbNlzzPGy1JodbNDX2su8oY86aklZL+2/O8+3qt8oGk2UOKfBBc131ZwWSwL686jtNf6+pgXKVgK+w2SXIcp8N13Ysk3aJgl+V/SrpPUttgdkYiCgAAACBezJE0xRjzyR7z/uR53jcHWP+9Hu9zJDX0XskY45PUJSmgYOtobw2SxvQxf0Cu6y6TdEo/i5c7jnN2zxmO45x2qMc4BJ+V9PNex1utHomv67qvaZCtviSiAAAAAGKeMSZZ0pGSTvQ875+D3GyO9k9E90jK7GO9mxVMUjdJukIHdt/NlFQ3+GiDeieawyU04m2CJL8kv+u6KZI6Hcfp7Gf9kySNlXR/r/mzJG1UcBDcaxVMtu8cTAyMmgsAAAAgHhwtyZO05hC2ma39E9HVkvYrT2KM+YqkiyVdqGBr6LeNMabXfo7stR/bfqBgGZZ/l3RlaPoH3Qtd113muu73eqz/OUkPOY7TuzX4Kkm7FHxWdLGkJY7jDKprrvE87/DDBwAAAIARwBjzJUn/4nneMf0s9yQd4Xne5h7zKiQt8TxvTej9NyVN9zzPCb0/Q9LfJS30PO99Y4xfwRbCb3me90honRQF63Ye7XleeY99Xy3pS57nDeW5zRGLFlEAAAAA8WCOpJm96oc2GGOy+1rZGFMkKVfS+h6z/yzpHGNMqjFmuqS/SbrK87z3JcnzvC5Jv1Jw8J5u50t6uWcSClpEAQAAAEDGmFYFR3z9red5Nw6w3n9J2u153q8Hud+Vkr7YnayG5j0n6QRJb3qet3hIgY9QJKIAAAAAgIiiay4AAAAAIKJIRAEAAAAAEUUiCgAAAACIKBJRAAAAAEBEkYgCAAAAACKKRBQAAAAAEFEkogAAAACAiCIRBQAAAABE1P8HvFJpwu81oXYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Every model can be accessed through its name\n", "atom.lgb05.plot_shap_waterfall(show=6)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_y": { "array": [ 0.0021093507865551924, 0.0020567842220873423, 0.002118481499414932, 0.001160167220745696, 0.00250375447453087, 0.004265897967306575, 0.0028864062364942697, 0.0019579716683319, 0.0021689829117167393, 0.003362587796705156 ], "type": "data", "visible": true }, "hovertemplate": "(%{x}, %{y})LGB - f1", "legendgroup": "LGB", "legendgrouptitle": { "font": { "size": 16 }, "text": "LGB" }, "line": { "color": "rgb(0, 98, 98)", "width": 2 }, "marker": { "color": "rgb(0, 98, 98)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines+markers", "name": "f1", "showlegend": true, "type": "scatter", "x": [ 11362, 22724, 34087, 45449, 56812, 68174, 79536, 90899, 102261, 113624 ], "xaxis": "x", "y": [ 0.6024732288039821, 0.605983880000626, 0.6136333528411273, 0.6208941926213539, 0.6230748072286343, 0.62228677254213, 0.6254124354209738, 0.625519241877403, 0.6253336016433961, 0.6258404708878225 ], "yaxis": "y" }, { "hovertemplate": "%{y}upper bound", "legendgroup": "LGB", "line": { "color": "rgb(0, 98, 98)", "width": 1 }, "mode": "lines", "showlegend": false, "type": "scatter", "x": [ 11362, 22724, 34087, 45449, 56812, 68174, 79536, 90899, 102261, 113624 ], "xaxis": "x", "y": [ 0.6045825795905373, 0.6080406642227133, 0.6157518343405423, 0.6220543598420997, 0.6255785617031652, 0.6265526705094366, 0.6282988416574681, 0.6274772135457349, 0.6275025845551129, 0.6292030586845276 ], "yaxis": "y" }, { "fill": "tonexty", "fillcolor": "rgba(0, 98, 98, 0.2)", "hovertemplate": "%{y}lower bound", "legendgroup": "LGB", "line": { "color": "rgb(0, 98, 98)", "width": 1 }, "mode": "lines", "showlegend": false, "type": "scatter", "x": [ 11362, 22724, 34087, 45449, 56812, 68174, 79536, 90899, 102261, 113624 ], "xaxis": "x", "y": [ 0.600363878017427, 0.6039270957785386, 0.6115148713417123, 0.6197340254006082, 0.6205710527541034, 0.6180208745748235, 0.6225260291844795, 0.6235612702090712, 0.6231646187316794, 0.6224778830911173 ], "yaxis": "y" } ], "layout": { "font": { "size": 12 }, "height": 600, "hoverlabel": { "font": { "size": 16 } }, "legend": { "bgcolor": "rgba(255, 255, 255, 0.5)", "font": { "size": 16 }, "groupclick": "togglegroup", "traceorder": "grouped", "x": 0.99, "xanchor": "right", "y": 0.01, "yanchor": "bottom" }, "margin": { "b": 50, "l": 50, "pad": 0, "r": 0, "t": 35 }, "showlegend": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "font": { "size": 24 }, "pad": { "b": 15, "t": 15 }, "x": 0.5, "xanchor": "center", "xref": "paper", "y": 1, "yanchor": "top" }, "width": 900, "xaxis": { "anchor": "y", "automargin": true, "autorange": true, "domain": [ 0, 1 ], "range": [ 4903.27371014096, 120082.72628985904 ], "title": { "font": { "size": 16 }, "text": "Number of training samples" }, "type": "linear" }, "yaxis": { "anchor": "x", "automargin": true, "autorange": true, "domain": [ 0, 1 ], "range": [ 0.5987617013136991, 0.6308052353882555 ], "title": { "font": { "size": 16 }, "text": "Score" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABb8AAAJYCAYAAABCY5tXAAAAAXNSR0IArs4c6QAAIABJREFUeF7svQeYXGd5sP3M9r6rturF6mVVjLExzRjLYMsNiIEQ/6SH32nkg/ARMLmuJHz8CfDlhxSS8DsmxAUCgRg+QjEGV0mW5CarS5attk19e53dmfmv5z0zs0Ura8+eKe855z6w1+zOnPc9z3s/Z2XpnmeeN5JIJBLCAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAIEIEI8jtA2WQpEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgYAggv7kRIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAIHAEkN+BSykLggAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAeQ39wAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgEjgDyO3ApZUEQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCA/OYegAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgcARQH4HLqUsCAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABJDf3AMQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAQOALI78CllAVBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA8pt7AAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABAJHAPkduJSyIAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEB+cw9AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBA4AggvwOXUhYEAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACyG/uAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEAgcAeR34FLKgiAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAD5zT0AAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACgSOA/A5cSlkQBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIIL+5ByAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQCBwBJDfgUspC4IABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAHkN/cABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIBI4A8jtwKWVBEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggPzmHoAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHAEUB+By6lLAgCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASQ39wDEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgEDgCyO/ApZQFQQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAPKbewACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQCRwD5HbiUsiAIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBAfnMPQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQOAIIL8Dl1IWBAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAshv7gEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAIHAHkd+BSyoIgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAA+c09AAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAoEjgPwOXEpZEAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCC/uQcgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgcARCK79bL/YHLpksKNwEZtaWSmfvkAwNx8MNgtVDIEAEZtSUSHffsET5vQ5QVllK2AlMqyqR/uiwDET573XY7wXWHxwCdVUlEh2KSd9gLDiLYiUQCDmB2spiGY4lpHdgOOQkWD4E/E8A+e3/HLICCBgCyG9uBAgEjwDyO3g5ZUUQQH5zD0AgeASQ38HLKSuCAPKbewACwSGA/A5OLllJyAkgv0N+A7D8QBJAfgcyrSwq5ASQ3yG/AVh+IAkgvwOZVhYVcgLI75DfACw/UASQ34FKJ4sJMwHkd5izz9qDSgD5HdTMsq4wE0B+hzn7rD2oBJDfQc0s6wozAeR3mLPP2oNGAPkdtIyyntASQH6HNvUsPMAEkN8BTi5LCy0B5HdoU8/CA0wA+R3g5LK00BJAfoc29Sw8gASQ3wFMKksKJwHkdzjzzqqDTQD5Hez8srpwEkB+hzPvrDrYBJDfwc4vqwsnAeR3OPPOqoNJAPkdzLyyqhASQH6HMOksOfAEkN+BTzELDCEB5HcIk86SA08A+R34FLPAEBJAfocw6Sw5sASQ34FNLQsLGwHkd9gyznrDQAD5HYYss8awEUB+hy3jrDcMBJDfYcgyawwbAeR32DLOeoNMwCr53d7ZLX/w2b+T/YePG+YP/v1n5dpNq9+Q/4t7jshvfeJL5pz1a5bK17/0SZlWWy3HTrXKvX/2FTl99qJ57fbN18vnP/07Ul5WYn5uvdgf5LyythASQH6HMOksOfAEkN+BTzELDCEB5HcIk86SA08A+R34FLPAEBJAfocw6Sw5sASskd/9A1H5y7/9plx/zVr5ldtuMPL6z7/4gPz1fR+TZYvnTZgAFd9fuf97aeE9+qQf/GyrLJxXn5bnX73/e+blP733w8jvwN7O4V4Y8jvc+Wf1wSSA/A5mXllVuAkgv8Odf1YfTALI72DmlVWFmwDyO9z5Z/XBImCN/FbZ/bf/8l354uc+Ziq3x8vw8di1Svy+v3lAPv2HH7msHB8vw3e9fChd/U3ld7BuZFYjgvzmLoBA8Aggv4OXU1YEAeQ39wAEgkcA+R28nLIiCCC/uQcgEBwC1sjviaq4x1drj8Y+vq2Jvva7v3ZburJ79LkpkT6nfjqV38G5d1nJOALIb24JCASPAPI7eDllRRBAfnMPQCB4BJDfwcspK4IA8pt7AALBIWCV/P7+j58Z05f7jeS3yvLR56f6hX/4zhtN25TUoXP823d+dknP757+4eBkkZVAQETKSwtlcCgu8XgCHhCAQEAIlJcUSHQ4ITF+rwOSUZYBAZGykgIZjiXMV64PvWIk1xflehAIAYHSkgKJxxIylIff6xDgDcQS+fPXf2ksLS6QeCIhQ8O5/++1/2gRMQTsJmCV/B7fv9uN/FbM2ud7dGuT0ejHv9bVN2R3ZogOAi4JVJYVyUA0LrF43OVITodAbgkkEiIR7MukoPN7PSlMnAQBXxEoLy2SoeG4DMdy/99r/vz11a1CsD4ioL/X+jutv9scEJiIAH/++u++KCspFP2ndXQ45r/giRgCEBhDwBr57bbn9/jzU/L7ZNOZCVufjD+fnt/8JgSNAG1PgpZR1gMBEdqecBdAIHgEaHsSvJyyIgjQ9oR7AALBI0Dbk+DllBWFl4A18nv8Bpcqq//8iw/IX9/3MbOhZarH9xfv+5hcu2l1ekPMVB/vVNuTT937YfP6v37rx7L5ndekN8PUKvIz59rY8DK893rgV478DnyKWWAICSC/Q5h0lhx4AsjvwKeYBYaQAPI7hElnyYEngPwOfIpZYIgIWCO/lXlKYO8/fNyk4MG//6wR2XqMl98Tnf+FP/uddL9v7Qn+W5/4UjqVt2++fkw/cSq/Q3SXh2SpyO+QJJplhooA8jtU6WaxISGA/A5JollmqAggv0OVbhYbEgLI75AkmmWGgoBV8juXxJHfuaTNtXJBAPmdC8pcAwK5JYD8zi1vrgaBXBBAfueCMteAQG4JIL9zy5urQSAXBJDfuaDMNSCQGwLI79xw5ioQyDoB5HfWEXMBCOScAPI758i5IASyTgD5nXXEXAACOSeA/M45ci4IgawTQH5nHTEXgEDOCCC/c4aaC0EguwSQ39nly+wQyAcB5Hc+qHNNCGSXAPI7u3yZHQL5IID8zgd1rgmB7BJAfmeXL7NDIJcEkN+5pM21IJBFAsjvLMJlagjkiQDyO0/guSwEskgA+Z1FuEwNgTwRQH7nCTyXhUAWCSC/swiXqSGQYwLI7xwD53IQyBYB5He2yDIvBPJHAPmdP/ZcGQLZIoD8zhZZ5oVA/gggv/PHnitDIFsEkN/ZIsu8EMg9AeR37plzRQhkhQDyOytYmRQCeSWA/M4rfi4OgawQQH5nBSuTQiCvBJDfecXPxSGQFQLI76xgZVII5IUA8jsv2LkoBDJPAPmdeabMCIF8E0B+5zsDXB8CmSeA/M48U2aEQL4JIL/znQGuD4HME0B+Z54pM0IgXwSQ3/kiz3UhkGECyO8MA2U6CFhAAPltQRIIAQIZJoD8zjBQpoOABQSQ3xYkgRAgkGECyO8MA2U6TwRaO9rl1MULl51jXl2dLJ4xy9M1gjwY+R3k7LK2UBFAfocq3Sw2JASQ3yFJNMsMFQHkd6jSzWJDQgD5HZJEs8xQEUB+hyrd1i/2/3v2SfnCT3/oxJlIiEQiY2K+9503yV/c+SvWryNfASK/80We60IgwwSQ3xkGynQQsIAA8tuCJBACBDJMAPmdYaBMBwELCCC/LUgCIUAgwwSQ3xkGynSuCBw+3SIHWpplb/Mp2dvcJPtbGqUgEpHy4hKJxWPSPTAgc+umyeLpM82879t0jfzGW9/p6hphOhn5HaZss9ZAE0B+Bzq9LC6kBJDfIU08yw40AeR3oNPL4kJKAPkd0sSz7EATQH4HOr1WLW5/i8rtJtnTeFL2tTTJodYWWTxjpiyfNVuWzqqX5fWzZdms2VJWXGzifnT3C/KNbU/LvTdsptp7kplEfk8SFKdBwHYCyG/bM0R8EHBPAPntnhkjIGA7AeS37RkiPgi4J4D8ds+MERCwnQDy2/YM+S++6PCwkdwHVHQ3nTLfHz7TKitnzzFyW79UeKvsLiwouOwCkd/uc4/8ds+MERCwkgDy28q0EBQEPBFAfnvCx2AIWEkA+W1lWggKAp4IIL894WMwBKwkgPy2Mi2+Cap3cNDIbf3a26QV3c1mw0pHdNePyO762a7XhPx2jUyQ3+6ZMQICVhJAfluZFoKCgCcCyG9P+BgMASsJIL+tTAtBQcATAeS3J3wMhoCVBJDfVqbFyqDa+3pNNbdpXZKs6D7f3W1Et7YtSVV0ayuTTBzIb/cUkd/umTECAlYSQH5bmRaCgoAnAshvT/gYDAErCSC/rUwLQUHAEwHktyd8DIaAlQSQ31amJe9Bnevuciq6mxuN6D7Q2ixa5b2i3unPbUR3/WyZXzc9a7Eiv92jRX67Z8YICFhJAPltZVoICgKeCCC/PeFjMASsJID8tjItBAUBTwSQ357wMRgCVhJAfluZlpwG1drRbkT3vuZG2dt8Sg60NEsskXBE98yRjShn19TmNC7kt3vcyG/3zBgBASsJIL+tTAtBQcATAeS3J3wMhoCVBJDfVqaFoCDgiQDy2xM+BkPASgLIbyvTkrWgTl48PyK6mxrlYGuzlBQVmSruZTPrZVm9bkY5R2ZUVWUthslOjPyeLKmR85Df7pkxAgJWEkB+W5kWgoKAJwLIb0/4GAwBKwkgv61MC0FBwBMB5LcnfAyGgJUEkN9WpiUjQb129oyzEWVzo6nqVtFdV1Ehy2eNbV1SW16RketlehLkt3uiyG/3zBgBASsJIL+tTAtBQcATAeS3J3wMhoCVBJDfVqaFoCDgiQDy2xM+BkPASgLIbyvT4jooFdu6GeWepkbZ19Ioh1pbZG5dXVp0q/DWPt2VpaWu587XAOS3e/LIb/fMGAEBKwkgv61MC0FBwBMB5LcnfAyGgJUEkN9WpoWgIOCJAPLbEz4GQ8BKAshvK9Ny2aDi8bjTtkQruptOmUcV3cvMJpT1sjS5EaXKbm1n4ucD+e0+e8hv98wYAQErCSC/rUwLQUHAEwHktyd8DIaAlQSQ31amhaAg4IkA8tsTPgZDwEoCyG8r02KCGhgaMtXcKrv3NJ0yj0fPnpGVs+c4PbqN8Ha+L4hE7F3IFCNDfrsHh/x2z4wRELCSAPLbyrQQFAQ8EUB+e8LHYAhYSQD5bWVaCAoCngggvz3hYzAErCSA/LYjLd0D/bK/xWld8krTSSO6W9rbZcXsOUnJrRtROr26w3Igv91nGvntnhkjIGAlAeS3lWkhKAh4IoD89oSPwRCwkgDy28q0EBQELkvgU9/7lpy8eMG8Hh0eNl/6kfniwkKJRCLyd7/6UdmwaJ5Eh2LSNxiDJAQgEBACyO/cJ7Ktt8fI7f3NWtF9Uva3Nkt7b68R3UtnzkpXcy+aPiP3wVl0ReS3+2Qgv90zYwQErCSA/LYyLQQFAU8EkN+e8DEYAlYSQH5bmRaCgsAlBM53d8ne5kb51Pe/LRd6ukUSibHnJD9KrxJmyYwZUl9dKzOqqmVOTZ3Mqq6WWdU1Mru61jzWVVRAGAIQ8BkB5Hd2E3ams0MOtDbLvuZG07pEv9d2JivqZ8tVM+vNo25EOa9uWnYD8eHsyG/3SUN+u2fGCAhYSQD5bWVaCAoCngggvz3hYzAErCSA/LYyLQQVcgIqt1V0q4R5pdH5WP1wLCYrZ8+V2vIKmVtbK/Prpsu/bX9GznR1yCffs0Xm1tRJ7+CgTKuslERBXM51dsm5rh5p7+uRjr4+83Wxr0e0krE/OiQzq6qMCK9XKV5Ta75S36eeV2leWlQc8mywfAjYQQD5nbk8NLe3mT9XdSNK/bNWRbf24k61K9He3Pq9/lnIcWUCyO8rMxp/BvLbPTNGQMBKAshvK9NCUBDwRAD57QkfgyFgJQHkt5VpIagQEbg4SnTv1o/VNzfJkBHd+rH6eiO8VcTMrKq+hMoffvubcuLCefmXe35brhrVX7a6oliGhmMyEI1PSFLnb+/rNR/fb+vrMY/m5+RXR1+vtPX2ysXeHikrKjYCSEW4yvH6mlqZY0S5I8tTz2uVOQcEIJA9AsjvqbE9fuGc6c+t1dz7mpvkYGuzVJSUjBXd9XNkWkXl1C7AKEF+u78JkN/umTECAlYSQH5bmRaCgoAnAshvT/gYDAErCSC/rUwLQQWUgFZdpyu6m04aETM4NGQE97JZ9aaP7PJZc4xQnswxVfk9mblT5/QMDhgR7shyrSR3vtdKcn3U13Rdnf39TnuVKqfFSqqKfE6ttl3Rn0eerygpdRMC50IAAiKC/L7ybfDqmdNORXeziu5GOdjaIjOqqkZE96zZ5s3E6rLyK0/GGZMmgPyeNKr0ichv98wYAQErCSC/rUwLQUHAEwHktyd8DIaAlQSQ31amhaACQECrqVMC5hVTcdgo/UNDsipZ0a2ie0W9iu6pf6w+F/J7sqmIJxJGgqcqytOV5Elx3tHfZ17XanJtL6CV7GlJXl0rKslHC3LTo7ymdrKX5zwIBJ4A8ntsirWaW0W3qehuaZJDrS2yYNo0I7eXznQkt7YuKS8pCfy9ke8FIr/dZwD57Z4ZIyBgJQHkt5VpISgIeCKA/PaEj8EQsJIA8tvKtBCUzwio6NV2JSq7tUe3ihjtv71q9lxZqhXd9XNMVbdWQ2fysEl+u1lXXzRqepGPbreiFeTabsWR5E41uYry6ZVV6Wry2SrEa0f6kxt5XqWtWGqo5HSTAM71JYGwym/d70Alt369kmwNdfhMq9mAMiW5dSNKld3FhYW+zK3fg0Z+u88g8ts9M0ZAwEoCyG8r00JQEPBEAPntCR+DIWAlAeS3lWkhKIsJaLuP/S2Nsrep0YgYbV2irUFUcKdal+j3uaha9qv8dpPe8ZXkKsVTLVdS1eUXe3pkOB5zqsmramRWTbXMqa6TObW16eryVJW5vgFRhCBzkwLOtYRAGOR3fzSaFN2NpqJ7f0uzHD9/zrx5qH++pqq5l9fPsSQrhKEEkN/u7wPkt3tmjICAlQSQ31amhaAg4IkA8tsTPgZDwEoCyG8r00JQlhDo7O+7pKK7a6BfVhrRrZWGc8zGlLkQ3RMhCYP8nuytMDg8dEkleaoXudnAs8/ZwLOtp0eqysqS1eTVJne6eacR5ckqcmcjzxo2wJssfM7LCYGgyW/z56tWdDc3yZ7mU2ZTytOdnenNflV065+zV82clRO+XGTqBJDf7tkhv90zYwQErCSA/LYyLQQFAU8EkN+e8DEYAlYSQH5bmRaCygOBrv5+2TeqoluFjLbgULmtAkY/Yq8V3dqb2pYD+T21TGiuU1Xj6T7lE2zi2RcdHNObPLWJpyPMHUGeeiwrLp5aMIyCwCQJ+Fl+X+jpNqJb9z7Qiu4Drc2iv4dO65JkRXf9HFkwbfokaXCaTQSQ3+6zgfx2z4wRELCSAPLbyrQQFAQ8EUB+e8LHYAhYSQD5bWVaCCrLBLoH+k27klSPbv1ofVtfj6noNh+r1x7d9XNkrkWieyIkyO/s3ijaa1glufYgd2S506dc3xRJ9Ss3FeU9PVJSVGhkeKp6fHZ1sjd5zYggV1GurVk4IDAVAn6R360d7aaKe29zo/lS0a2/S85GlCOtS2x6I3Eq+WDMCAHkt/u7AfntnhkjIGAlAeS3lWkhKAh4IoD89oSPwRCwkgDy28q0EFQGCfQMDJgNKPc2nXI2S2tpMrIyVdGtQkZF97y6aRm8am6mQn7nhvNkrqIbnI6uIjcbePb3OrK8r8+8uZKS6LO0N7mpHK+WlCTXavLRleQqyitLSydzac4JCQEb5Xdj2wXTl1v/fNXWJYdam01P/eWznB7dqY0oedMn2Dcp8tt9fpHf7pkxAgJWEkB+W5kWgoKAJwLIb0/4GAwBKwkgv61MC0FNkYAKSG1dsq+pUXY3OqL7fE+XrJw919mMMlnZPb8uGB+tR35P8UbJ47BEIpGU4D3pqnLtSd7e1yep3uRaZa5v0Oihglxlucrw+hrtTV43tuVKldO3PBKJ5HFVXDoXBPItv4+dOyv7W5tkT+Mp8+fswdYWqS4rM4I79eerfl9XUZELHFzDIgLIb/fJQH67Z8YICFhJAPltZVoICgKeCCC/PeFjMASsJID8tjItBDUJAtqPWVuXaA/Z3Y0njOg+26Wi26k4dER3sHvIIr8ncaP4+JT+aHRUb/Jk65XeHtN2ZXQ1ufZTnl5RKTOrk5I82XJFpflLjSeksqTUVJHrV3FBoSSSTIoiEfmjm94rieQTCX3F/N95Qp9XWT/mZ/1p3PnmXPN86szUOOfRmct5LfXz6OdGvh87t7l+KtrLxJKOM3l9J5aJr3O5WCY+//KxpLik1n0JswliSTEfHcNEXFKxjD4/lZeK0kIZjidkIBoblZMrMLtCLKPXfuz8WXlg29Njf2NSyY5EpLSoSN62dIUsS25EqZ+aqSot8/FvGKFnigDy2z1J5Ld7ZoyAgJUEkN9WpoWgIOCJAPLbEz4GQ8BKAshvK9NCUOMI9A9FjeRW2b371AnTxuRMV4ep6NYesiq8VXaHbbM05De/KikCTvX4SH9ybbFysbdb/nvPyyKjq8JTMlMHRiJSXFgoEXGqxvU0832yiFy/Tz9nTnBeT01nvk8+nxyZrkB3nk/NrN+mzk1ey7w89nVnqpFYzE/pWMaeP2bu9HmXW8fouFPnjFx7zLrUBifjGl1NP2bdydfNqePWMRLz2FjSdfnpuZOWfty1Ujwv4SAiRYURSUhE4vHEmEr/1NypeMf8PIpxiq8y1dvAYTvCWNv2PH/89cv+Um1YsFC+fPc9/NJB4BICyG/3NwXy2z0zRkDASgLIbyvTQlAQ8EQA+e0JH4MhYCUB5LeVaQl1UANDQ47obmmU3adOmkfdQM1pXeL0515RP1sWTp8Rak66eOR36G+BNwQQi8flOy/uNOfEYjH57os7pSASkV97y9vNc4X6/XVvA6JPCFSVF0kslpD+aCzrEeufwZ959DuC8M466kBcAPntPo3Ib/fMGAEBKwkgv61MC0FBwBMB5LcnfAyGgJUEkN9WpiU0QQ0OJ0W3VnQ3njCV3c3tbbJqzuge3XNkEaJ7wnsC+R2aXxXPC40OD8v7/vkrUlJUJD/6o095no8Jck8A+Z175lxxcgSQ35PjNPos5Ld7ZoyAgJUEkN9WpoWgIOCJAPLbEz4GQ8BKAshvK9MSyKBUvo2t6G6SxrYLsipV0T17jiyfNVsWz5gZyPVnY1HI72xQDeacyG//5xX57f8cBnUFyG/3mUV+u2fGCAhYSQD5bWVaCAoCngggvz3hYzAErCSA/LYyLb4PaigWS/bo1s0oT5rvT168MKaiW9uXILq9pRr57Y1fmEYjv/2fbeS3/3MY1BUgv91nFvntnhkjIGAlAeS3lWkhKAh4IoD89oSPwRCwkgDy28q0+Cqo4VhM9jY3yv6WkdYlxy+cMxXdWsm9vH62rJg9R5bMmOWrdfkhWOS3H7JkR4zIbzvy4CUK5LcXeozNJgHkt3u6yG/3zBgBASsJIL+tTAtBQcATAeS3J3wMhoCVBJDfVqbF2qB0Az3TuqR5pKL72Plz6Yru5WYzyjly1UxEdy6SiPzOBeVgXAP57f88Ir/9n8OgrgD57T6zyG/3zBgBASsJIL+tTAtBQcATAeS3J3wMhoCVBJDfVqbFiqDiKrpbmpKi+4TsbW6S18+dkZWjKrpXzlbRXW9FvGEMAvkdxqxPbc3I76lxs2kU8tumbBDLaALIb/f3A/LbPTNGQMBKAshvK9NCUBDwRAD57QkfgyFgJQHkt5VpyXlQiUTCSG5tX/JK40nzePSsiu45TtuSZEX30lmI7pwn5w0uiPy2KRt2x4L8tjs/k4kO+T0ZSpyTDwLIb/fUkd/umTECAlYSQH5bmRaCgoAnAshvT/gYDAErCSC/rUxL1oMaL7qPnGl1enTXJ3t018+RZbNmZz0OLuCNAPLbG78wjUZ++z/byG//5zCoK0B+u88s8ts9M0ZAwEoCyG8r00JQEPBEAPntCR+DIWAlAeS3lWnJaFC6EaWp6D51wrQxOXS6xanoNptROj26VXpz+I8A8tt/OctXxMjvfJHP3HWR35ljyUyZJYD8ds8T+e2eGSMgYCUB5LeVaSEoCHgigPxW5vCoAAAgAElEQVT2hI/BELCSAPLbyrRMOagDSdG9u/Gk7G9ulIOnW9Jye4Wp6nZkN0cwCCC/g5HHXKwC+Z0Lytm9BvI7u3yZfeoEkN/u2SG/3TNjBASsJID8tjItBAUBTwSQ357wMRgCVhJAfluZlkkFdbC12fTpfrnxhOxrbhL9WQW3titxqrnnmApvjuASQH4HN7eZXhnyO9NEcz8f8jv3zLni5AggvyfHafRZyG/3zBgBASsJIL+tTAtBQcATAeS3J3wMhoCVBJDfVqblkqBUbGv7kt2nTpgWJgdbW2TZrHpHdM/Wam5HeEciEX8siCgzQgD5nRGMoZgE+e3/NCO//Z/DoK4A+e0+s8hv98wYAQErCSC/rUwLQUHAEwHktyd8DIaAlQSQ3/lPy9effVKeOLTfBDIcj0t0aEh6ooPSMzggvYOD0jcUlaUzZ6UrulVyq/AuQHTnP3l5jgD5necE+OjyyG8fJesyoSK//Z/DoK4A+e0+s8hv98wYAQErCSC/rUwLQUHAEwHktyd8DIaAlQSQ37lLi4rs1o52ae1sl9OdHdLc3ibN7Rdl69Ejcra7ywkkkbgkoE/cvEVuWbchd4FyJd8QQH77JlV5DxT5nfcUeA4A+e0ZIRNkiQDy2z1Y5Ld7ZoyAgJUEkN9WpoWgIOCJAPLbEz4GQ8BKAsjvzKSlPxo1YlultsptR2y3pZ8709UhsXhC6qtrZGZVtcyoqjKP+rMehZGI1JZXyI/37ZYXTx6XD11znVy7ZJl5beH0GVJXUZmZQJklUASQ34FKZ1YXg/zOKt6cTI78zglmLjIFAshv99CQ3+6ZMQICVhJAfluZFoKCgCcCyG9P+BgMASsJIL+vnJaBoSGnWrvDEdstHe3S0t5mHlV4n+3qlMHh4bTYnpkU27OSontWdbXMqqqRytLSK17s7554TH5xcJ9Q7X1FVJwgIshvboPJEkB+T5aUvechv+3NTdgjQ367vwOQ3+6ZMQICVhJAfluZFoKCgCcCyG9P+BgMASsJhF1+qxBKtSExLUk62qUpWbGdEtt90ajU19TIzMpqmVldLTMqq0TF9qyqalGxrRXc1WXlGckv8jsjGEMzCfI7NKn2vFDkt2eEeZ8A+Z33FBDAZQggv93fGshv98wYAQErCSC/rUwLQUHAEwHktyd8DIaAlQSCLL+HY7FLxLZpR2Lak7TLmc5O6R4YMGJbRbZpR5IU2/p9SmxrO5JcHcjvXJEOxnWQ38HIYy5WgfzOBeXsXgP5nV2+zD51Ashv9+yQ3+6ZMQICVhJAfluZFoKCgCcCyG9P+BgMASsJ+FV+x+PxdH/tVm1H0qF9ti86YrujXc50dUpHX59Tsa0iO91nu8ZI7ZTstq2XNvLbyl8Ta4NCflubGusCQ35blxLXASG/XSNjQI4IIL/dg0Z+u2fGCAhYSQD5bWVaCAoCngggvz3hYzAErCRgq/xObx6Z3ESyqf2i6bPd2tkhZzo75EJPj9SrxE721Xb6bDtiWx/15+mVVVYyf6OgkN++S1leA0Z+5xW/ry6O/PZVuiYMFvnt/xwGdQXIb/eZRX67Z8YICFhJAPltZVoICgKeCCC/PeFjMASsJJAP+a3yWiV2SnA3t12Ulk6n3/bpzg45191lJHa9kdjVRmKbHtvJ/tq6eeSMKv+J7cncAMjvyVDinBQB5Df3wmQJIL8nS8re85Df9uYm7JHtaTou3YN9smRGvdyx4c2SSISdyJXXj/y+MiPOgIAvCCC/fZEmgoSAKwLIb1e4OBkCviCQafmt4jq1caSK7FTF9unOTqfPdldnug2JCu3plZXpzSNVdKeqt30BLwtBIr+zADXAUyK/A5zcDC8N+Z1hoHmYDvmdB+hc8g0J9ET7pLqsWJ44fEiePXpUPvTmN8vd11wj8XiBVBTlbr8UP6YJ+e3HrBEzBCYggPzmtoBA8Aggv4OXU1YEATfy+0JP9xix7Wwe2SanOzrSYlt7aGs7EpXYzuaRzkaSzgaSzsaSkUgE8JchgPzm1nBDAPnthla4z0V++z//yG//5zBIKygqiEhr9wX5zW98Y2RZyb/f/eRP/oesn7dEigqKg7TkjK4F+Z1RnEwGgfwRQH7njz1XhkC2CCC/s0WWeSGQPwIp+d3a7lRsa7W22Tyyo01aOtqltd15Tiu2q8vKpD7ZY1vF9sxRG0emem8XFhTkbzEBuDLyOwBJzOESkN85hO3zSyG/fZ5AEUF++z+HQVpB12C3/GD3S/KfL7xwifz+yHXXyadvvU3mVM0M0pIzuhbkd0ZxMhkE8kcA+Z0/9lwZAtkigPzOFlnmhUB2CbT39Y4R2yq1WzrazHNnu7T/dqeUF5ckxbZuHDlSrZ2q2NbH4sLC7AbK7IL85iZwQwD57YZWuM9Ffvs//8hv/+fQmhUkEtIzOCg90UHpGxyUvuiA9AxGzfe90eTXoD6nr0eld3BAeoecc3XMwGBUPv+B98v/fuwxOd/dfYn8Lisulj1/9XmpLq6xZsm2BYL8ti0jxAOBKRJAfk8RHMMgYDEB5LfFySG00BLo7O8bEdudHdLSrhXbTtW2Vmyf7eyUkqKikYrtqhG5rdXaV82aJrVllZJIULFtw02E/LYhC/6JAfntn1zlO9LhWEz+6dnHRZtO/Y+bbst3OFx/CgSQ31OAFtAhPQMDI+J6aFB6BhwxnRLXPQP90htVme2I64HhYeke6HPGDAzKwPCQZzJf+MAH5L/37JEXT5y4RH43zJ8vj/7hH0tVcbXn6wR1AuR3UDPLukJHAPkdupSz4BAQQH6HIMks0SoC3QP96TYkrWmx7VRta59tbUWibUZSrUi0DclMbUeS7K+dquDWCpzLHTUVxTI4FJPBobhVaw9rMMjvsGZ+autGfk+NW9hG9Q/3SXFhRH55+LCUFBbKTWvWyGB0WMrYkM5XtwLy21fpmjjYRMJI6d5UtbWpvI5KX3RQerS6Wl9Lims9R2V2qtraqdDWr6hnEAWRiJSXlEhlaZlU6mNJmVSU6s+lUllS6jxfWiZVJSVSoc+lni8pdX4uKZVobFBeOHVMvvr445fI7/tuu01+4/p3Sk0Z8vtyyUJ+e76NmQACdhBAftuRB6KAQCYJIL8zSZO5wk5A/1FzurNdWju07YhTpd3UdjFdsX2ms8Mg0g0jU/20VWzPGLVxpMpt/ceLlwP57YVe5scivzPPNKgzxuLD8vzJo2Z582pnyFUzZ0si4ay2uqJYhoZjMhDlTa2g5n+y6+qL9sije3bLf+zcOWbI791wg9yx8WopLSib7FScl2cCyO88JyCRkL6hIekdcFqAOALbqaxWca0Suyc6IL2mfYiKbD0nKr1DA9KrldnRQemPRiX5x/SUF6PiuqykRKpURBuBXS6Vo8S1yumqEpXXKqr1vLLkec5zKq69/t0xFfxArE8e2PqsbDt6VLoHBkxcd27cKJ/ZskXm186ReNzraqeMyfqByG/rU0SAEJgcAeT35DhxFgT8RAD57adsEWs+CfzH88/Jpx/9ztgQ1EpF9APnYnpnFxUUSv0osT29ssoR3VU16Z7b+o+UbB/I72wTdjc/8tsdrzCeXVAQkWisX/Y0Ncq2116T5rY2ec+6dXJrQ4PEYwVSEClCfofxxphgzZFIRGIyILf//d9f8qp+auixT35SYsNF0PIJgVzK79fOtcr2Y69KUaRQfv36G3xC6I3DVFHtSOmoI6uT4jolsY24NpI6ec7AoBHX2iZERXYmxLX+LdBUXJvqav1KimutsFZhXeaIa0dqJyuwR1VoV5Q6r9lyFBZE5GxPm9SWlcnzJ47LvTfeKBe6+2R+7SwZjvHm6xvlCflty11MHBDwSAD57REgwyFgIQHkt4VJISQrCYyR36lSzFGR3rSmQT793tutiB35bUUa0kEgv+3Kh43RdA12yyM7n5Of7N07Jjxtb/Sjj/+JxGMBl9+JhMQSCYkn4hKLx0ULC+P6KAnzaJ6LJyQmCUnoOTHnXHO+nmuec352xjhfsUTMzKXjzTi9jvleH1NzOM858yWvZx51vPNcLKbzJH9OxmfmEWes+T4ZnxPLSHxmLaPi0zWMjk//c5K6vmFg5k+eY2JOrj3J46bVq2XJzJnyj088MeGtrK0Jdjc2ySunTpkWWvrGrPNYZB6LUl/JN2yLzGNEipKvO+cXSnFBxHksKpKiSIEUFeqX8yZvYWGBFEeSj/qzzllUaKSqOU9/LixKX6uwUOcrcOYz80fS8dj4+5jLmHIhvweHo5KIDEvXQL/86JVXZP2CBfKOFSvkYk+f1Jbmr4WFimez6WLyUcW1ymqnp7VuwqjfpzZqTFZcD/YbwW02aIxGze+Kl2O0uK4oK5XKYq2kdkS2Smn9PlVxnRLXaYldXCqVZWVSoW3okoUQXmKxbeyju1+Qvc0n5U0Ll8pf3PkrtoVnZTzIbyvTQlAQcE8A+e2eGSMgYDsB5LftGSK+fBOIDg/Lt57fLg/u2Gp6JW5Zt0EGhobkH578udzSsFE+sfnWfId4yfWR33alBPltVz5sjCZREJUP/su/GNEz/tANyOrKqqR7sF+iQzHpHx6WRDwpTMURxSk5mxK4RqLGkuJUROKxmCOX4zFH+upzSeHriFeVtY7cTRiZKxJTjWy+T0rpCcTssDl/rDweLZWNuFbZmxTTGkNKPA9mYHM2G3OZ7ZhuXL1arl+6VL70s59NeKkJN6zLdlAe59cNnI1YV8muEr1Av1KiXoV68rm0gE+9ViSFhZEREZ8U90bARwocca9zFRaIEfARfSyQ4gJ9I0AFvCP6dX5Hzo8Ifkfgjxb2qTcQIlJadPk9N9yiyIX8LiqOyZ9+97uyv7k5HZ6u+a/uuks2LFgixQXuq45HV1yrwJ5IXI+uuDavD4yI64n+rHPLTs8vL9b+1Y6srimrkNLiItPr2khrrbIuKx/pf63V1iq4TWsR57GqjBZBl+Ou8vsb256We2/YjPye5M2J/J4kKE6DgO0EkN+2Z4j4IOCeAPLbPTNGhIPAK40n5aGdW+WHr7wsd2zYJLeu2yiLZ8w0i//5gb3I73DcBhlZJfI7IxgDO0lJUYE8d+yI/MX/+eGEa3z7ihXSMH++3P/MM4FlMHphRoQWFIi29yiMRKQgUiAFKib1+wJtAeM8p/Jy5PsCiWilsj5vzk++ljzfPF8QkYjOI/q9ON/ruWY+rXLW751rFYg482tVs75eqKPEOV+FaHKMOV/H6usRER2p80QKxMhXZ77UGpz4nDFTT6Vy2bBojtzy1a9eMol+UuAHf/zHcqDxzBteYDgeF+crJsP6xkg8LkNjHmMyFHNeN6/pecOxMWOcsQkZjg8nn0/ONxyX4UTy/ER8ZH6dazgmQ8kq+KC8+VFWVJyseh8lzo1sH6mOLyksMveBI/ULx5xfVlJk7gtJqIxPSvqkkHek/6hK+jEV+MnrabV9kcr+UVX3BfpmgnO9qvJSOXKmSe579NFL7om18+bJfbffISfPtzu9rk21dVQGooOmStzpb+20Bklv3KiV2hO8STeVO1rZabW19rmuLquQslHieqQ9SFJWa8/rslKp0GrrZI9rxPVUqE9+DPJ78qxSZyK/3TNjBASsJID8tjItBAUBTwSQ357wMTiABB7Z5VR5q5vY0rBR3rN2/SWrRH4HMPFZXBLyO4twfT717saTsu31w/L7N75L3v+1r024mk+85z0yNByX/S1atRkxksyI1mRbipS8TQvhgqSoTcveiBQWFaXlrSN9Ve6mRKwjfo08HiVvU6LWkcyjJK4KOJXHY0RzSkaPyF2Vf+Z/RkpHzPkq8lJyWZ8vyWAFrc9vBVfh9w71yZOHD8i/bdsm+ukkPXRDvHvf9S55+7JVUllS4Wq+fJ88MBQ1vYTTQl7F/HgZH4+ZTxlEY8Njz9VxSdmun1wwEj8WN5J9eFjFvEr7hAzruPS8jtxPiX395ETqDQHnjYDhCd8QcMbHTQx+OT6+ebMcOXNGfnnw4IQhf+O3f1s+91//Jee6u10tSavfVUJrdbUR10VF5tNxThW29rbWXtdlUpmU1Slx7WzcSMW1K9h5Ohn57R488ts9M0ZAwEoCyG8r00JQEPBEAPntCR+DA0LgYGuzEd7/8cIOuWP9Jrm1YaMsmzX7sqtDfgck8TlaBvI7R6B9cpnXz52Rp44ckmdePSTtfb0m6r+5+2754e7d8uKJE5es4kcf/7iUFlZIVXmxDA3HZCDKhmM+SXVWwxwY7hOtGt517JiUFhfLpkWLpH9gWCp8Jr6zCinLkxuxnq6IVzE+LNoKaDhV/a5SPSXnU1XyyYp6Z2xciorEvIHRHx2WoWT/+CEj7ZPzGXGvct4R9CrqU9XzKUmfvoaJJSnyk9e55/q3SFNbm/nzZaJDPynw1Z//QgoihWPEdZXKa9P3WgW3s3FjWlzrxt0B7HGd5dvFd9Mjv92nLKfyu38gKn/5t9+Unz65y0T6hT/7HfmV2954J9tjp1rl3j/7ipw+e1Hmzp4h9//vT8myxfNk/Fw634N//1m5dtNqM/focSks69csla9/6ZMyrbZaWi/2u6fFCAhYTAD5bXFyCA0CUySA/J4iOIYFgsB/vrhTHty5Tfqjg6atyW3rN01qXcjvSWHipCQB5De3woXuLnniyEF56vABaWpvM0B0A8K3XLVMNq9ZJ1cvWiznezvkh7tflm1Hj0r3wIBce9VV8v6rr5aVs+dJVUmlVFcgv7mTxhJQafrXj/3QfFLpr+78EHh8SCDbPb+1b/n+1hOm5/f4402LF8v/vGWLTCuv9SE5Qs42AeS3e8I5ld9fvf97JsI/vffD0t7ZLX/w2b+TT9374bSwHh++Cuw//+ID8tf3fcwI79GHjv/37z4mf/Cb75fyshJ5cc8Rue+LD6Tl+BuN1XmQ3+5vFkbYTQD5bXd+iA4CUyGA/J4KNcb4mcDRs6fl4Z3b5JFdz8nm1evk1oYNsnrO2L8DXml9yO8rEeL10QSQ3+G8H3oGBmTba0fkySOH5FBrkyScpiXSMH+hbF7TIDesWC3lJSMbzamkamo/J3WV5XKus9O0BJlWUSNlRaUGIPI7nPfRG61a5ff7/vkron3Sf/RHnwKQDwlkW34rkngkKv/wxC/lFwcOpAnNnzZNPvne98q6OQu1m70PyRFytgkgv90Tzpn8Vll93988IJ/+w4+kRfZoGT4+9FRl94fuvPGycny8DB8t05Hf7m8GRvibAPLb3/kjeghMRAD5zX0RFgI/fOVF+fcdW+ViT49sadggWxo2SXHh1P7Bh/wOy12TmXUivzPD0Q+zaMuB548fk6eOHJAXTh437Qr0WDR9hmxe3SA3rV4rM6tr3nApf/jtb8rF3h750gc+IlfNqk+fi/z2wx2Q2xiR37nlnY2r5UJ+a3/9roFuqS4rlUd3vyxvWrRY6mtqpECK0m+uZWNtzOlvAshv9/nLmfyeSEb/4GdbZdfLh+Tzn/4dU709kczef/h4+unbN18/4bl6wvj5x7c9Gd3yRM8/3znonhYjAkPAwybe1jKorSqR3n5nkxEOCNhMIFVdZXOMtsRWW1ksfQPOxj8cEAgagRMXzsu/P7dVHtq5Td62bIXcvn6TrJ+vVU7ejsf275Gv/PIx2bJ+o3zqPbd5mywLoyvLiiQ6HJOhYf3TkCPfBP7fX/xUfn5gn3zqvbeZTVQ5gkUgkUjI/pYmeeLwAXn26KvSOzhgFji9slLevWqtvGfdeln+BnsIjKfxfz/8DTl+4bz866//jiwdNa6irMhs5Dc4xH+vg3UHTX01Kr9v+8e/NZXfP/uTT6c/XTD1GRmZawIVpYUSSyRkMAe9/Pc1N8pPDrwiZYVF8qfvuT3XS+V6PiPw/Zd2yf1bn5Y/vPFm+fz77vZZ9PkJN6fy+2//5bvyxc99zPTc1uON5LfK69HnpyrB59RPN21TRh+p166/Zu1le4hrlfmZc21pea67cnOEl0AQ/7lZXBgxu2Ungri48N6qgVx5LJaQwsIgvgWV+XQVFUYkxu915sEyY14J/ODll+XrzzwlJy5ckPdf/SbzVTGqvYDX4P77lVfkiz/7idx19dVy3213eJ0u4+OLCkTiCecr10c8nhCtMuMYIfA3P/2x/HjPHvnc7XfKnZsm11cefvYTOHnxgvxs7155/MABOdfdZQIuLy6WG1atltvWbzA9uyNT2BTuow/cL8fOnZNHfu9jsnz2nDSIfP5e25+NcEao8vtdX/6ikd/PfuY+4c9f/90HhQUi+q5FLAf/vd596qT80bceMZXf//zrv+E/WEScUwL/sWunfO3JJ+QT73mvfPlDY/1oTgPx0cVyKr/H9+92I7+Vqfb1/sr930tvWqnPvZEUH52H8TKdnt8+uksJdVIEaHsyKUycBAFfEaDtia/SRbBvQKC1o10e2rFVHnn+Odm0YJHc2rBRNi1cnBVmtD3JCtbATkrbk+CktqOvV540G1celOMXzpmFFUQicvXCJXLz2gbzCRPt1e3l0LYn+qmVf7nnt2l74gVkCMbS9sT/Sc5F25MUJa38/syj35ENCxbKl+++x//wWEFWCdD2xD3enMlvtz2/Jzpf5ff3f/xMunp7suJbsSC/3d8cjPAXAeS3v/JFtBCYDAHk92QocY7NBH55aL88uGOrHDrdYtqa3Lpuo9SUl2c1ZOR3VvEGbnLkt79TOhCNyvZjR+XJwwdE5VE8+RFIbWWyec06uXHVOqmrqMjYIpHfGUMZ+ImQ3/5PMfLb/zkM6gqQ3+4zmzP5raGN3uBS5fboDSpTr49uTTK6VYm+/pd/+01JtTa5UquTx595QZZfteCym2tS+e3+ZmGE3QSQ33bnh+ggMBUCyO+pUGNMvglc6OmWh3duM728V9bPkVsbNsi1S5blLCzkd85QB+JCyG//pTEWj8vLp07Ik4cPyq4Tr4lKRj3qa2rlxlVr5L1r1sv8adOzsjDkd1awBnJS5Lf/04r89n8Og7oC5Lf7zOZUfqeE9U+f3GUi/cKf/c6YHt3j+3KPP/93f+22dL/v8RtappaeOkerxH/rE19KExm/WSby2/3Nwgi7CSC/7c4P0UFgKgSQ31Ohxph8EXjm1UOmyvulUydMlbduHji9sirn4SC/c47c1xdEfvsnfUdOt8qTRw7I1qNHpGug3wReWVoq71i+yrQ1aZi7QGQKfbzdEEB+u6EV7nOR3/7PP/Lb/zkM6gqQ3+4zm1P57T687I1AfmePLTPnhwDyOz/cuSoEskkA+Z1NusydCQKd/X3yyM7t8tCubbKgbprcsm6j6aubzwP5nU/6/rs28tvunJ3ubJcnDh2Qp189JKc7O0ywRYWFcu3ipbJ5TYO8ZekyKSoozNkikN85Q+37CyG/fZ9CQX77P4dBXQHy231mkd/umTECAlYSQH5bmRaCgoAnAshvT/gYnEUCz71+1LQ2eeboYblDe3k3bJTZNbVZvOLkp0Z+T54VZ4ogv+27C7SqW/9s0T7eR8+cTge4du58I7xvWLFaqsrK8hI48jsv2H15UeS3L9M2Jmjkt/9zGNQVIL/dZxb57Z4ZIyBgJQHkt5VpISgIeCKA/PaEj8EZJtAfjcojz283rU1mVFTKLes2yA0r12T4Kt6nQ357ZximGZDfdmQ7OjwkO46/Jk8dPii7G0+K9vXWY37ddLNx5ebVDVJfU5P3YJHfeU+BbwJAfvsmVZcNFPnt/xwGdQXIb/eZRX67Z8YICFhJAPltZVoICgKeCCC/PeFjcIYIvHTyuDy4c6s8tn+v6eWtVd4LsrSZXCZCRn5ngmJ45kB+5y/XiURCXmk6JU8dOSg7Xj8q/UNRE0xtWbm8a9VaI71Xzp6bvwAnuDLy26p0WB0M8tvq9EwqOOT3pDBxUh4IIL/dQ0d+u2fGCAhYSQD5bWVaCAoCngggvz3hY7AHAlp1+cgup8q7tKjIbF550+p1HmbM3VDkd+5YB+FKyO/cZ/H1c2eN8H726GFp6+0xAZQUFclbl64wbU3etGiJFBYU5D6wSVwR+T0JSJxiCCC//X8jIL/9n8OgrgD57T6zyG/3zBgBASsJIL+tTAtBQcATAeS3J3wMngKBvU2n5KGd2+T7Lz8vd2642lR5L5kxawoz5W8I8jt/7P14ZeR3brJ2obtLnnz1kDx1+IA0tl00Fy2IRGTDgkVGeL9j2UopKynJTTAeroL89gAvZEOR3/5POPLb/zkM6gqQ3+4zi/x2z4wRELCSAPLbyrQQFAQ8EUB+e8LHYBcEvv38c/LQjq0SSyTk1nUbTD9vvx7Ib79mLj9xI7+zx70vGpWtZuPKg3KwtUkSyUtdNXOW3LSmQW5evU7qKiqzF0AWZkZ+ZwFqQKdEfvs/schv/+cwqCtAfrvPLPLbPTNGQMBKAshvK9NCUBDwRAD57Qkfg69A4PDpFlPl/a1dz8ltDRvlloYNsqJ+ju+5Ib99n8KcLgD5nVncw7GYvHDimDx55IC8cPK46M96zKiqkndrH+/V62TJzPrMXjSHsyG/cwjb55dCfvs8gSKC/PZ/DoO6AuS3+8wiv90zYwQErCSA/LYyLQQFAU8EkN+e8DH4MgS0pYn28u4e6De9vLc0bDLtB4JyIL+DksncrAP5nQHOiYQcaG2SJw4flO2vvyq9g4Nm0oqSEnn78lVy0+oG2bhgoUQC8OcM8jsD90tIpkB++z/RyG//5zCoK0B+u88s8ts9M0ZAwEoCyG8r00JQEPBEAPntCR+DRxE4du6sPLRzq3zr+efkXSvXmNYma+bODyQj5Hcg05q1RSG/p462qa1NnjiyX545ckjOdXeZiXSjymsWX2U2yH3bshVSXFg09QtYOBL5bWFSLA0J+W1pYlyEhfx2AYtTc0oA+e0eN/LbPTNGQMBKAshvK9NCUBDwRAD57Qkfg0XkR3teNtL7dGeH3LZ+k5HepUXFgWaD/A50ejO+OOS3O6Qdfb3y1JGDpjFWhT4AACAASURBVI/38Qvn0oNXzplrNq68aeVaqSorczepj85GfvsoWXkOFfmd5wRk4PLI7wxAZIqsEEB+u8eK/HbPjBEQsJIA8tvKtBAUBDwRQH57whfawY1tF+ThndvlkV3b5bolS83mlRsWLAoND+R3aFKdkYUiv6+McSAale2vH5WnjhyQvc2NEk84W1fOqamTm1avlZvXNsjc2mlXnigAZyC/A5DEHC0B+Z0j0Fm8DPI7i3CZ2hMB5Ld7fMhv98wYAQErCSC/rUwLQUHAEwHktyd8oRv82IG9ppf38fNn0728K0tLQ8cB+R26lHtaMPJ7YnyxeFxePnXCVHjvOvGaqMjTo7qsTN65Yo1sXr1W1s5b4Im9Hwcjv/2YtfzEjPzOD/dMXhX5nUmazJVJAshv9zSR3+6ZMQICVhJAfluZFoKCgCcCyG9P+EIx+Exnhzy8c5s8vGu7NMxfILes3WD67Yb5QH6HOfvu1478HsvsyOlWeerVg/Lsq4ela6DfvKh9u69bukw2r14n1y1ZZvp6h/VAfoc18+7Xjfx2z8y2Echv2zJCPCkCyG/39wLy2z0zRkDASgLIbyvTQlAQ8EQA+e0JX6AHP3H4gDy0Y6vsa2mS200v741SV1ER6DVPdnHI78mS4jwlgPwWOdPVKU8c2i9Pv3pIWjvazY0REZF18xeaPt43rFgtFSUl3DAigvzmNpgsAeT3ZEnZex7y297chD0y5Lf7OwD57Z4ZIyBgJQHkt5VpISgIeCKA/PaEL3CD23p7TB/vh3Zuk6UzZ5nNK6+7anng1ul1QchvrwTDNT6s8rtnYMDI7iePHJBXz5xOJ33R9Bly05oG2bxqrcysrgnXzTCJ1SK/JwGJUwwB5Lf/bwTkt/9zGNQVIL/dZxb57Z4ZIyBgJQHkt5VpISgIeCKA/PaELzCDtx49YoT3ruOvmSrvW9ZtlFnV1YFZX6YXgvzONNFgzxcm+R0dHpIdx1+Tp48cMv28ta+3HtMqKuVdq9aatibL62cHO+EeV4f89ggwRMOR3/5PNvLb/zkM6gqQ3+4zi/x2z4wRELCSAPLbyrQQFAQ8EUB+e8Ln68FalalV3g/u3Cpza+vklrXr5e3LV/l6TbkKHvmdK9LBuE7Q5XcikZA9TafkySMHZcfrR6V/KGoSV1ZULG9dvsK0NXnTwiUSiWijE44rEUB+X4lQuF/XN5S+8+JOAyEWi8l3X9xpfrd+9dq3ml75hZGI/Np1bws3JB+tHvnto2SFLFTkt/uEI7/dM2MEBKwkgPy2Mi0EBQFPBJDfnvD5cvCu46+bXt5PHDkgd2y42vTyVvnNMXkCyO/Js+LM4Pb8Pnb+nDx1+IA8c/SwaMskPQoiEdm0aIncvLpB3rpsuZQV08fb7e8A8tstsWCf39HXJ+e6u+R8d5ec6+6U050d8uO9u0X0zaREwnnUQ7/XIxKR+uoaKSsulvLiEvOY+iotcr7X58tLSqS8uFj0uUu/L0k+75wb5g1os313Ib+zTZj5p0oA+e2eHPLbPTNGQMBKAshvK9NCUBDwRAD57QmfbwYPDg85vbx3bJOasjLTy1tbEHBMjQDye2rcwjoqSJXfF7q75KkjTh/vxraL6ZQumzVbbl6zTm5ctY6NcT3e6MhvjwB9NFyruEfEtsrtLjnX1SUXerrN92e7OqWitETm106TeXXTZeH06bKgbrq80nxKasrKzZeK69Sh8yXicfn1t75T+qKD0js4KL3RqPk+9XNfNCo9gwOin/7qiQ5I32BUepPn6mvmvOig9Jvvo+axoCDiCHMV5yVJoV7k/FxWoqK8KCnYk88lz3Wk+8hz44U8Ul0E+e2jX9iQhYr8dp9w5Ld7ZoyAgJUEkN9WpoWgIOCJAPLbEz7rB2vP3Yd3bZMf7XlZ7tzwJrll3QbRzeY4vBFAfnvjF7bRfpffKsC2vnZEnjx8QA62NEmyvtRUl964eq28d816mT9tetjSmrX1Ir+zhjbnE6t81mptI7WTYvt8T3e6irutt9d88mpe3TRZMM0R24tnzJT5ddNlft0083ulwjjfh76BbsS4kekq0qNGrKdEeernXpXqgwPmtZ706yPjHKHujNf2SEUFhemqc1OlXpKsVk9WqOva09XqplJ9pJJ94u8d0e6nFkvI73zf3Vz/cgSQ3+7vDeS3e2aMgICVBJDfVqaFoCDgiQDy2xM+Kwdr/11T5b1zqxQWFJoq75vXNFgZq1+DUvn91NGDMq92unxi863WLaOmolgGh2IyOORsNsiRXwJ+lN/DsZi8cOKYqfB+8eQJGYoNG4gVpaXyzuWrTJV3w7yFIy0X8os4UFdHfvsnnee7u+V8j1Zrq+B2pLb+rM+f6eqUgojIPFO1Pc1UbS+cNtM8puT2nJC3HBsYUqk+ItONWB8l1VNV60amDzhS3alSH0hLeKei3ZHpqblMK5dklXpKkpsq9dFtYIqKpXRUaxhT0Z5qCzPu+9TYbNyZyO9sUGXOTBBAfruniPx2z4wRELCSAPLbyrQQFAQ8EUB+e8Jn1eADLU3y0M5t8h8v7JA7k728l86qtypGvwejH/3uGuiRokKR7a+9JpvXrpWOnn6ZVVUnw/FUPWz+V4n8zn8ORkfgG/mdSMiB083y5OGDsu21I0Y06VFYWCjXLl4qm9esk+uXLjfVmhzZI4D8zh5bNzNrtbO2IElXbSf7bmtLEm1HcrarS2ZVV4+p2tZPVmm1tlZtayV3dVm5m0tyboYIpCrML2nnYsS60+Yl1QZGK9R7VaxH9cupaB9p+zLSNkZFvVaiV5gK9WQLGNPSpSQp0Z1+6qlK9fEtXxyBProNjPP9zJpyicUS0h+NZWj1l59mX3OjfObR78iGBQvly3ffk/XrcQF/E0B+u88f8ts9M0ZAwEoCyG8r00JQEPBEAPntCZ8Vg7/74k55cMdWGRwaki0NG+XWho1WxBXEIKLxfnlo5w559sgRudjTIyVFRfLOlSvl19/6NplXM1Nilghw5Lddd5/t8rulvU1+cXi/PHPkkBF9qWPN3PmyefU6edfKNVJVVmYX1ABHg/zOTXI7+npNtba2JXE2k+ySC/pzj/ba7pKBoajMrZ2WFtkqthdMU7k9zbQnUcFdUFCQm2C5ihUERvdNT1Wpj28Do+eoUNf2L6k2MSmhPrpdTKqn+sDwkFQkW7o4G5GO65M+qgWMkeumWn2kin2i9i/6nP79RA+N4/j5c+Z7fbx/65OydNZsufeGm8xzVSWlsrR+thV8CcIuAshv9/lAfrtnxggIWEkA+W1lWggKAp4IIL894cvb4FfPnDZtTb79/HPynrXrTWuTlbPn5i2eMFy4N9ov+1tPyed/9KNLlvvha6+VWxs2yNyamVagQH5bkYZ0EDbK746+Pnn61YOmyvvY+bPpWLU9w+Y1DXLz6gapr6mxC2RIokF+e0/0RBtJmpYkSdmtcruytNSp2jZV2jNkoZHbI1Xb0yurvAfCDBC4AoGaiiLp7B+Q81196T7ql2xWmqxGT/dR159N6xetVHce+81GpU5/dZXsQ7GYkepFhQXS2dfnRBGJOI+JkU+q6Zs5v/nWd0ltebnUlldITbmzkSqbkXLrIr/d3wPIb/fMGAEBKwkgv61MC0FBwBMB5LcnfDkfrH8RfXjnNtFNsrY0bJBb122UokJaEOQiEYPxAfmHJ34hTx8+fMnl5tbVyT/ec48cbDor0ysrpa68UmblURwiv3NxR0z+GrbI74FoVLa9/qo8deSg7Gk6lV6AVnXftGqd3LhqjWi1N0d+CSC/r8xfq1lT1dqpjSS1HYn221ax3dbbk+61rUJ7oX5pS5K66UZwq/S2YSPJK6+UM4JOoLayWIZjCekdcPZVyNQRj8dN+5ZXTp2QL//iJxKPJ0TfFIonEkaMD8dj5rG6tEyumlkvF3u7zd8t2/ucr4qSUplWUTFGiGsbHxXjKUGuwly/V2leVcqngzKVO1vmQX67zwTy2z0zRkDASgLIbyvTQlAQ8EQA+e0JX04GH79wTh7ZuV0e2bVN3rF8ldyyboOsm7cgJ9fmIiIHW5tF+2RevWSBfPXxx6WprW1CLP/80Y/Kp7//fVN1lTq0snBaRWXyq0rqKipkepXzOK1cn68wr82szmyFLfLbrjs33/JbN65U4f3s0bFv3Ny4co28e/U6ue6qZXYBC3k0yG8xFdrjN5JUua0tSlRuF0Qiom86auuRhWOqtp3K7bBvJBnyXyFfLT9b8tsrhM7+PrnY2yPtvb3mzSTnq1cu9Habtm/68+jXVbTr321UhKe+asrKTN9751GfV1GuwrzCSHTegPKapeyOR36754v8ds+MERCwkgDy28q0EBQEPBFAfnvCl9XBP963Wx7asU2a2y/KloZNptJbN0fiyC6BQyq7W5pkX9MpOXi6RaLDTjWWtjbRCtlvbtt2SQBvXb5c7r7mGvnP518UbSehVVMqatwcKsqnqyhXOV5WOUaUT69ICfOKSYly5Lcb8tk/Nx/y+8jpVnnq1YPy9KuHpGdgIL3IDQsXmT7eNyxfbTZt47CPQNDl9/iNJE07kp5US5IuOdPZKfXV1TLXiG2nUnvR9JnpjSVVbrORpH33LRFNjYCt8tvtarSqPCXI2/p60oJc/z6kslz/TqSyXM8x1eW9vZKQhNRV6KflRtqtpCrLU1Xmo6vLacfiNivezkd+u+eH/HbPjBEQsJIA8tvKtBAUBDwRQH57wpfxwbrx3MO7tsnDO7fLNYuXyHvXbpBNCxdn/DpM6BDQf6y9dvaMqeze29Ioh1qaRTefGn2ofNmwYLGo4F41Z6Z86OtfvwTf39x9t6yuXyDlJWM/9qvS0ZHhzj/2Ovr7nI8V9/aY7/U1/Yegfj8ci006LdVlZaZiXP/RmHo04rzS+Xn+9BqpKimXypJyNmSbNNXsnZgr+X2mq1OePHJQnjp8QFo72tMLWjJjpty0Zr1sXr1W6GOcvTxnama/y+8JN5I0VdsjG0nOq50m86Y5Vdu6kaS2I2EjyUzdQczjJwJBkd9TYd4/FJU2rSLvG1dd3qMtWJzK8rRQT0pzbcfiVJgne5SXlY+qLneeSwnzmrIK0b8vcUyNAPLbPTfkt3tmjICAlQSQ31amhaAg4IkA8tsTvowNfvzgPtPL+8iZVrl9/Sa5Zd1G/sKeMbojE2kPzNfOqexukr1Np+TQ6RbRf3yNl93rFyyWjQsWGumt/8hKHd0DPVJbWSZPHD4kjx88KG9dulQ2r1kj8YRIbam31iUqytv7VIgnq6L0H4MqzJM9OFMV5e39fRKbpCjXra20Wt0IchXj2mqlsspUmJvWK8n+5Kn2KwUFBVmgzpTZlN9632h1t1Z5a7V36tD2Ou9eucZsXqn9XDn8Q8Bm+T1+I0lnE0mt3O427UjOdnVKVWmpqdrWim2nanuk17ZWbfMGjH/uRSLNPoEwy++p0NV2LFpEMNKKxWnHoqLcfCUrzLWyXIsOugcGZFrl6FYso/uWj7RjSfUupx3LSFaQ3+7vUOS3e2aMgICVBJDfVqaFoCDgiQDy2xM+T4O1Cu5bu7bLQzu3yeo5c+WWtRvkzUuWepqTwWMJqOw+dv6s7Glukn3Np0RbmvRFJy+7L8dzX8tJOd3ZJqVFJXLT6vVmI6lcHqNFuRHkKVHe0yvt/b3SNdBv/gHY3t/vSpRrhZSpJk+K8rqkKDeS3PQnrzJ9yvUjyojyyWc80/J7KDYsO469Zvp4v3zqhPkEgx4VJSXytmUrZfPqBtm4cJFEIvr2B4ffCORTfqc2klSR7bQicdqR6OPZ7rEbSZqWJNNnmNYkbCTpt7uMeG0hgPzObib074FOBbkWFCQfkxXlqXYszvPOa+l2LFpBntrwc9RGn7qx59jqcqfavDCAxQPIb/f3JvLbPTNGQMBKAshvK9NCUBDwRAD57QnflAZrleZDO7bK7saTctv6TXLrug1Uwk2J5KWDjOy+cM5pY6I9uyeQ3VqJuGHBItm4YNElld2TDePnB/bKPzz5c7mlYaN8YvOtkx2Ws/NG9/xWUZ4S5KbPZvKrIynKTXVUv7ZkcSvKy51qct3E01SSqxhPtV6pSP7sbOgZdgmbCfmdSCRkb1OjPHnkgOw4djT9Jo7+g/tNi5bITWvWyduXrZTiwqKc3WdcKDsEsim/R28kmfpeH52WJJ3pjSRN1XZdsiXJtGlOWxI2ksxOwpk11ASQ3/alXz8RmNroc3TrldT32r88Lcv103q9fVJeUjKy4afKct3YM9mSRQsLVJA71eX6vD/asSC/3d+byG/3zBgBASsJIL+tTAtBQcATAeS3J3yTHqwtKx4xVd5bzUfAVXhfv3TFpMdz4sQEVAgeO6+y+5TsbW6UAyq7BwfHnJyS3SnhrZXNXg8/yW83a+3u7xdtq+JUkvekN+9MfXxYW7C09fdK5xRFuelLrpXjKsorq2RaubZeGVVRHlBR7kV+Hz9/Tp48fECeee2w6Y2aOlbOniub16yTG1etNf/A5ggOganK74GhIVOhrSJbv/R7lTROS5LO9EaS80xLkhmycPp003Pb+dmR22wkGZz7iJX4gwDy2x95ulKUo9uxaJGB6Vnek2zF0ttt/vudqkBPtWPRT9TpJ+lMhXmqd3l5uVSXlknNmN7ljjTP9ab3yO8rZf3S15Hf7pkxAgJWEkB+W5kWgoKAJwLIb0/4rjh4++uvml7eW187Inesv1pubdgo9dXeekNf8aIBPkFl9/EL52V/8ynZ06Syu0l6cyC7xyMNqvx2c+ukRLlTOe6IcrN5p9ng0/nosFaUd/b1pdtyXGl+bdKhIreuKtWf3HlMtV+pU1FeXinTKytNFZVfKsrdyu8L3V3y9KuH5YkjB6Tx4oU0tjk1dfLuVWvkPevWy9zaaVfCyes+JXA5+T2ciEpLe7s0tXWk25Go3NZ2JOe6OkXl99y6OllQ5/TaXshGkj69Awg7TASQ32HK9sha9ZOKqY0+021Z0ht89pg3LtOyPLnZZzyRcGR5Upjr35eMNC8vF6cdi1acJzf81Nc8tmNBfru/N5Hf7pkxAgJWEkB+W5kWgoKAJwLIb0/4JhzcFx10qrx3bJOZVdVya8MGecfyVZm/UBhmTCTkxMXzpqp7X1Oj7G9tEm3jMfrQj+NvWLBQNi7UTSoXmZ7V2T6Q3+4Iaw9yZ+NOFeMqyJ3NPNMV5fq8S1FeEImY6ijTn3z0hp5VWlE+0n5FX8u3KP/Jvpele7BPls+aK9cuWX6ZPzei5k0yrfI+2NIkqS7yumHpDStWy02r18m6eQvcgeds3xBICe8xAWvP9oRzJxQXFZk3huZPmybzaqeZiu0F00d6bbORpG9STaAQGEMA+c0NMVkCo9uxpHqYp6rLU5Xm+qk9fS5VhFBeUmz+DqR/N1ZRrq1XtA1LqiVLqh2LEenl5TI4NCSnOztMSM8cPSI/2/+K3LnxGvnNt77TPDevrk4Wz5g12ZBDdx7yO3QpZ8FBJYD8DmpmWVeYCSC/M5f9F04cM1XePz+4V+7Y8Ca5Zd160yeVwwWBREJOXjwv+1qaTM/u/S1N0n0Z2b1h4SLZtGBxTmT3+BUgv13k1M2piYR0DQ4YUd7Wp+1XkqLcVD2NVJR39PeJfsQ4tdHjlS6hotxUlJtNOx0xXqeCvKpKppvKcqcdi27oqf/4y1RFeU+0V6rLSmTXieOy4/XX5bb162XpzFkSkWIpKiiS4VhMXjx5TJ44clBePHFcdCNLIzoLi+Taq5bKzavXybVLlklRYeGVlsjrPieQlt8p4T1us9Kf/vH/lBvXrpToUEz6BmM+Xy3hQwACKQLIb+6FbBLo6u83bexSQtzpVZ5sx6KtWJIV5k6rFmfDdPOm66g3X833yePed94kf3Hnr2QzZF/Pjfz2dfoIHgIjBJDf3A0QCB4B5Le3nA7FYvKtXdvlwZ1bpbKkVG5Zt0HevWqtt0nDNDqRkFNtF2Vvi7NB5YHmRumyUHYjvy28KRMJ6dSKciPFHVHuVDolRbmpNNeNPJ0e5vpx4ckcKVGerihPC/OxFeXat7yuvNz5B+IERzwRk9fPt8qnv/89iQ47UluPWdXV8uDv/q7827Pb5ReHD6Q/yaCzrJu30PTxvmHlGqkoKZlMuJwTAAJ6f+inhX5xaL989tY75TffdsOEq6qrKkF+ByDfLAECowkgv7kfbCLwf/a8JN/c/owMxeIyHI9JUUGBVJSUpkN836Zr5DeSVeA2xW1LLMhvWzJBHBDwSAD57REgwyFgIQHk99SSsqfplNm88ge7X5Q7TZX3Blk8Y+bUJgvZKO1hvK+lUV5pPDlhZbduvqabU27KYRsTtymg8tstsfyfr5K8w7RW6TdVT9p+ReW59tU0An1Uv3I30Wr/Ta0on15ZZR5nVteYKvONi+bLf738kjx75Mgl0/3JzTfL6+fOyc/27TO9mbWlyebVDVJfw34AbtgH4Vx98/R7Lz9vpPfvv+vmN1wS8jsIGWcNEBhLAPnNHQGB4BBAfgcnl6wk5ASQ3yG/AVh+IAkgv92l9VvPPycP7dgqCUnIloZN8p41De4mCOHZTW1tsrf5pOxrbpJ9TaeMcBx9pGS39utW6a0S0fYD+W17hjzEl6woN1XjvY4wd2R5qme5Pu9UlWvrlYkqyosLC+Xhj31M7rn/ftFNWscfa+fPlz9+900SixXI8vo5HoJlqF8JfO+lXfLvO7bKp997u3zi5i2TWgbye1KYOAkCviKA/PZVuggWAm9IAPnNDQKBgBBAfgckkSwDAqMIIL+vfDscbG02H0nXrzvWX22qvJfXz77ywJCe0dh2UfY1nwqU7B6fSuR3SG/uCZZtKsq1N3n/gLT1dJuNO7Vn5j3XXyu/8cADl7Tx0SnevmKFfPbW26WoYOSjxBANB4Ef7XlJHtyxTX7vHTfKZ7fc5aq/PPI7HPcIqwwXAeR3uPLNaoNNAPkd7PyyuhARQH6HKNksNTQEkN+XT/X3X3re9PLuHRyULQ0b5NZ1G12JirDcRM3tbbK/uVH2NjfKvuZGUxE7+tDK7vXzF5o2Jn6p7L5S7pDfVyLE6xd62+U7L+wyrU3GH5+9/XbZMG+RTKugzUlY7pTHDuw1rbLuftN18rkt75PyKfR0R36H5W5hnWEigPwOU7ZZa9AJIL+DnmHWFxoCyO/QpJqFhohAmOW3tiw41NoyJtst7W3y+KF9ZuOx65Yskw9e8xZZM3deiO6IKy+1taNN9rU0y97Gk7Kvpcm0hAi67B5PBfl95fsk7GcUFRbIybbT8pXHH5cjp0+ncVy/bJn85V13icTZ0DIM98hTRw7KQzu3yc1rGoz01o1Up3ogv6dKjnEQsJcA8tve3BAZBNwSQH67Jcb5ELCUAPLb0sQQFgQ8EAiz/N5x7Kh86P5/HKGnvXkjEZFkj94NCxbKl+++xwPdYAw93dluWpjsNa1MGuViT/hkN/I7GPdyrlcRiw9Ld7RPROLyi0OH5ENvfrN09vbLjMo6icUv7QWe6/i4XvYIbHvtiDyy6zm5dslVct+W94l+Asbrgfz2SpDxELCPAPLbvpwQEQSmSgD5PVVyjIOAZQSQ35YlhHAgkAECYZbfB1ua5C9//Kj0DAzIwdMtEo/HpbK0TJbNmmXILp01W+69YXMGKPtrijNdHUZy721y+nZf6Okes4C5tXWmfcnGBYtl40J/bFCZ6QxQ+Z1posGe79+ee1raervl6gVXyc1r1wd7sSFf3YsnjsnDz2+XlfVzjPReOqs+Y0SQ3xlDyUQQsIYA8tuaVBAIBDwTQH57RsgEELCDAPLbjjwQBQQySSDM8ls5/v0Tj8lP978iH77mevmrHz8qYaz2PtPVOdKzu+mUnH8D2b1+wUKZWVWdyVvQl3Mhv32ZtrwF/XdPPCa/OLhPPnHzFrNhLkfwCOxpOiXfen671FfXGOm9bt6CjC8S+Z1xpEwIgbwTQH7nPQUEAIGMEUB+ZwwlE0EgvwSQ3/nlz9UhkA0CYZXf/UNR+ci//pOsnjNX/q+3vN1UOn/m0e+EQn6f7+oym1OaNiYtTXKuq3PMrTW6shvZPfFvHfI7G38aBXdO5Hdwc3v4dIs8smu7lBYXm57e1yy+KmuLRX5nDS0TQyBvBJDfeUPPhSGQcQLI74wjZUII5IcA8js/3LkqBLJJIIzy+/GD++QPvv1N+ev3fzhdnRdk+a1tS/Y2Ncq+plOyt6VRzo6T3XNqtI3JQtPGZMPCRVR2T+IXDvk9CUickiaA/A7ezXDs/Fn51q7nZGB4yEjvty9fmfVFIr+zjpgLQCDnBJDfOUfOBSGQNQLI76yhZWII5JYA8ju3vLkaBHJBIGzyW6u7T168IH9+2/vG4A2S/FbZvb+5SfY0nTQ9u7WH9+gD2e39Nwv57Z1hmGZAfgcn283tbfKt558zbyLet+UuuXlNQ84Wh/zOGWouBIGcEUB+5ww1F4JA1gkgv7OOmAtAIDcEkN+54cxVIJBLAmGR36cuXpBf/devyQeuvka2NGy6BLGf5Xdbb49p26I9Z/XxdCeyO9u/Q8jvbBMO1vzIb//n83x3l2lvcvTcGVPpfceGq3O+KOR3zpFzQQhknQDyO+uIuQAEckYA+Z0z1FwIAtklgPzOLl9mh0A+CIRBfj+8c5v809O/kC/c9UGZWzdtQsx+kt8dfb1GdGvfbo27taN9zJpMZff8hbJh4WLZSBuTrPxaIb+zgjWwkyK//Zvazv4+097kpVPHzUaWH7zmurwtBvmdN/RcGAJZI4D8zhpaJoZAzgkgv3OOnAtCIDsEkN/Z4cqsEMgngaDL79/69/uloqRYfv9dN78hZpvlt8rulOjW3t0tHW2Xld0qvWfV1OTzlgrFtZHfoUhzxhaJ/M4YypxNNDAUNZXeTx05JPfd9j756FvenrNrX+5CyO+8p4AAIJBxAsjvjCNlQgjkjQDyO2/ouTAEMksA+Z1ZnswG8bgrFQAAIABJREFUARsIBFV+v3DimHzkga/JZ2+9U65fuuKKqG2S3x19fbKvWSu7m2R/8ylpakd2XzGBOT4B+Z1j4D6/HPLbPwlMJBLy8K7t8qM9L8lnbr1TPvbOm6wJHvltTSoIBAIZI4D8zhhKJoJA3gkgv/OeAgKAQGYIIL8zw5FZIGATgSDK7y///Mfy7NHD8vm77pbSouJJ4c6n/NaP1e9vbkxXdze2XRwT8+yaWtmwYJFsmL9INi5YRGX3pDKa3ZOQ39nlG7TZkd/+yOh3X9wpD+3cZt40/fhNt1gXNPLbupQQEAQ8E0B+e0bIBBCwhgDy25pUEAgEvBFAfnvjx2gI2EggSPJbJbJWe1+z6Cr58Juvd4U7l/K7u79f9rY4/bq1nUnjxQvIblfZyv/JyO/858BPESC/7c7WD155UR7csVX+4F03m2pvWw/kt62ZIS4ITJ0A8nvq7BgJAdsIIL9tywjxQGCKBJDfUwTHMAhYTCAo8vvHe3fLp//rP+T/ef+HZOXsua6JZ1N+q+ze39JkRPfellPSeOGCJEZFWF9Tayq6qex2nba8DUB+5w29Ly+M/LYzbT/d/4o8uGOb3HPd2+SzW+6c9CeF8rUa5He+yHNdCGSPAPI7e2yZGQK5JoD8zjVxrgeBLBFAfmcJLNNCII8EgiC/P/mfj8j5nm75s1vumDLJTMrvnoEB2d/SKHuaGs3jyQvnL5HdujHlxoWLZf38haJtTTj8RQD57a985Tta5He+MzD2+r88tN+0N7mtYZPcd9tdUlteYVeAl4kG+e2LNBEkBFwRQH67wsXJELCaAPLb6vQQHAQmTwD5PXlWnAkBvxDws/x+7ewZ+dUHviYffcvb5eY1DZ6Qq/z+2lM/l+mVVfLlu+9xNVfv4KCR3LpB5b6mU3LiwjlktyuC/jsZ+e2/nOUzYuR3PumPXFv3gnh453Z5+/IVct+W9/nujUfktx33EVFAIJMEkN+ZpMlcEMgvAeR3fvlzdQhkjADyO2MomQgC1hDwq/x+YNvTpkfrF+76oMysrvbEcygele6BXmntaJeGBQvkQnePzK2ZKUOx+ITz9kWjpl936ktldzwx0sikvrrGbFBJZbentFg9GPltdXqsCw75nd+U7Dr+mjyy6zlZO2++fG7L+2TxjJn5DWiKV0d+TxEcwyBgMQHkt8XJITQIuCSA/HYJjNMhYCsB5LetmSEuCEydgB/l9z3f+CeZVVUtv/uOd0994cmRPdFe2XXidfnJ3r3y6unTUlhQIO9cuVI+ct1bZH7tDCkqKBaV3Qe0Z3fTKSO8j08gu9er7F6wSPRxDm1MPOfF9gmQ37ZnyK74kN/5ycfuxpPyyK7tsmDadLlvy12yes68/ASSoasivzMEkmkgYBEB5LdFySAUCHgkgPz2CJDhELCFAPLblkwQBwQyR8BP8nv7a6/KRx74J/nC+z8o1yy6yjOEgoKIdAx0yq9+/euXzHXd0qXy69e/Vb725FPy+rkzl1R2I7s94/f1BMhvX6cv58Ejv3OL/GBrs5HeVaVl8rnb3iebFi7ObQBZuhryO0tgmRYCeSSA/M4jfC4NgQwTQH5nGCjTQSBfBJDf+SLPdSGQPQJ+kd//6yc/lJdOHZf/ddcHpSASyQiQgoK4/OCVF+X+Z56ZcL4fffzj8qGvf11qysplw0KnslvbmcypqcvI9ZnEvwSQ3/7NXT4iR37nhvpr587IIzu3SzwRl8/d9n65funy3Fw4R1dBfucINJeBQA4JIL9zCJtLQSDLBJDfWQbM9BDIFQHkd65Icx0I5I6A7fL7fHeXqfa+YcVq+cDVb84omKH4oHzpsZ/Ijtdfn3DeL3zgA7Kifr7UllVm9LpM5n8CyG//5zCXK0B+Z5f2qYsX5NvPPydtvT2m0vvGVWuze8E8zY78zhN4LguBLBJAfmcRLlP//+ydB3hVxdaGv1RCSKF3SAggRekdBEF6IAk1gA1BEfV6/4uASFOkY8EGFoiCIrbQq9KRIggICBJCld4hQCC9/M/ekBhCknNOdpuz93eex8d7ycystd41QX2ZzJCAzgQov3UGznAkoBUBym+tyHJdEjCOgMjye+GfuzB+5SJMCu2NSiVKqg7J090V209G4+0lSx5au7iPD+YMGAgP14Kqx+WCzk+A8tv5e6hnBZTf2tC+dOsm5v+xHaeuX8WozmHo/FgdbQIJsirltyCNYBokoCIBym8VYXIpEjCYAOW3wQ1geBJQiwDlt1okuQ4JiENAVPn96g9zEZ+UhNfbddYM1u5TJ1EvsCx6fvYZklJSHojzTLNmCKvbAD6ePPWtWQOceGHKbydungGpU36rCz0m7q58p7f0ALH0kGX3eo3UDSDoapTfgjaGaZGAAgKU3wrgcSoJCEaA8luwhjAdEsgvAcrv/JLjPBIQl4Bo8lt6qKzP7Bl4qdWTaP1IDc3ALdy7C3O3bUajSpUwoVs3bIqOxtpDh1CpRAm0qV4dpXz94FvAF+npmqXAhZ2YAOW3EzfPgNQpv9WBfjcxUZbeW48fwejOoejXuLk6CzvJKpTfTtIopkkCDhCg/HYAFoeSgOAEKL8FbxDTIwF7CVB+20uK40jAeQiIJL8/27QW8lUnob1Q2NtbE4gpqan4cP1qbIqOgqe7O8Z26Y5GgUE4feMKjl+9KD+m2b5GXaSkpmkSn4s6L4HjVy5h5z8n5AKOX76EP/45jsolS2c+qlelRClhHtjz8/ZAYnIqEpO5j0XYcZTfyrog/b793R/bsOrAfozsHIKBLVorW9BJZ1N+O2njmDYJ5EGA8pvbgwTMQ4Dy2zy9ZCUWJ0D5bfENwPJNSUAE+S2Jjb4RMxBYrASea9ZSM86x8fEYu2wBjl6+iOI+vpjYrbccU/pIPz7/5qIfUbt8Bbzb8ynNcuDC4hOQTpdK1ypIj+dl/P3G3buQfirh8MXz/xbg4oKsPxrQ8bE6GNK2kxAFUn4L0YbMJCi/898P6SHLn3bvwIiOIfhPm/b5X8gEMym/TdBElkAC2QhQfnNLkIB5CFB+m6eXrMTiBCi/Lb4BWL4pCRgtvzdEH8KAubMwpXs4apevqBnjczeuY9SSn3HtTiweKVUGk8J6w7fgv49ZUn5rhl6YhbOK7Ey5ffcubsbHyaJb+uv63btwd3VFCV9flPDxQ0k/P5T2K4zS/v7yvfAnr11FoQIFUMizAAp6euLCzRicuHoZJ69eQUpaKh6vUg0NA4LQuFJl+acIjPpQfhtFPue4lN+O90P6KaC5v/+GIe06Y1j7YMcXMOEMym8TNpUlWZ4A5bfltwABmIgA5beJmslSrE2A8tva/Wf15iRgpPweuzQShy9dwLiuPTSFKz1sOWX1UiQkJ6Nl1eoY0bEr3N3cHohJ+a1pCzRbXBLS/57QvosbcZLEvoubcXcRc/eufHL7uiy176BoIR+U9PVFSV8/lPT1R2n/wijt548Svn4o5Xfv16SvSVI7Px9JhEt/mLPm0AFsPnIYjQIroYEkwgOD5Fh6fii/9aRtOxblt21GGSOW//Unvt2xFf2btcSozmFwc3W1f7LJR1J+m7zBLM+SBCi/Ldl2Fm1SApTfJm0sy7IeAcpv6/WcFZufgBHy+3zMDfSNmInOj9VB19r1NIW8aO8uzNm2Genp6Xi++RMIb9Q0x3iU35q2weHFYxPiZYmd9fqR63fu4FZ8XKbQlr4uye97p7R9UdLPH6X8/GWhLf1d+v/3RLckt/0dzkHphE1HorD20AFZiEt/2NIwoBIaB1bW9CccMnKm/FbaPXXnU37b5in9oZEkvcPqNsCoTqHw8fKyPcliIyi/LdZwlmsJApTflmgzi7QIAcpvizSaZZqfAOW3+XvMCq1HQG/5/cOu3zF97SpMDO2F8kWLaQY8NS0N09eteuhhy9wCUn5r1orMhdPS0+9fLyJJ7XsntKVT2zfj7glt6dS2dFr72p078Pb0lO9ll64dKSWdyPbzQ1n/IrLolk5oSye1pRPb/gW1eRhVbRrHLl/C+sN/y6fCD144iyaBldEwUDoVXhl+Wa7fUSsu5bdaJNVZh/I7d47S48Pzdm5F60dqYFRwmPx9z0/OBCi/uTNIwHwEKL/N11NWZF0CQsnvmFuxeGXkRzh4+KTckW8+HolGdavn2Z3d+6Px/JBp8phaNYLwxbTXUcTfF1l/Xfpal7ZNMf6NgSjode/HZS9cj7du11m5KQlQfpuyrSzK4gT0lN8vfhsh34P82pMdNKUuPWw5bsUi+XHCoj4+mNwtPPNhS8pv9dHHJyX9+zDk/etGMq4iiZHF9h3cO7Udf++Utq+ffFI745S2dCWIfEI7y0ltT3d39RMVZMW4pERsOHwIa6IOYGP0IZQtXASNAoLQKDAIVUqWViVLym9VMKq2COX3wyh/P34U83ZuQ90KFTE6uBvKFymqGm+zLkT5bdbOsi4rE6D8tnL3WbvZCAgjv+MTkjDu/Tlo2qAmegS3wonTFzBmagQmjxqEygFlc+QuCe7psyIzhXfWQYtXb0GFsiVleZ6xdumSRTF0cDjlt9l2MeuRCVB+cyOQgPkI6CG/9545hb4RM/B6205oUaWaphCzP2w5PrQXCnvbPh3Mk98Pt+Xeiex7J7SzXj8inc6+IUlu6T7tO3fu/fNBOqUtC+x7V4yU8S8sn9iWT2pL15D4+qEYT3TmuPel7491UQex7vBBXL59W74jXBLh0qnw7HfT2/vNQ/ltLyl9xlF+/8tZeoNh/h/bUKlYCYwODlPtD3z06aSxUSi/jeXP6CSgBQHKby2ock0SMIaAMPJbkt3vf/4Tpo4eJJ/czi7Ds+ORTomPmhKBN17tm6sczy7Dd/4ZlXn6mye/jdlwjKodAcpv7dhyZRIwioDW8vvDdavx699/QZLQhQoU0LTM/WdOYfzKxXk+bJlbAlaR38mpqf+e0s4mtaVHIiXRLT0OKZ3c9i9YECV87l0vIglt+aS2vySy711DIv+6r7/mfdV00wi2+JXY29hw/3oU6c7wOuUD5IczGwVWlk+I2/uh/LaXlD7jKL8B6ffY+Tu3oUghH1l61ypXQR/4JopC+W2iZrIUErhPgPKbW4EEzENAGPmd0ynuD2dFyqQzTmtnxS7J8sEjpuPi5euZv/xCv+Acx0oDsq9F+W2eTcxK7hGg/OZOIAHzEdBKfktXO/SZPQOPli2Ppxo31xzc4r278PX9hy2fbdYS/RyM6ezy+25i4r37tOVrR+79/cadO7h5/4FI6bS2JLXjkpJQ3Mcn8yFI6VS2fEo7y5UjGdePuLm6at43BsibwJaj0VgbdQDrDx8CkC6fCJdEeN0KAXlOpPwWa2dZWX4fuXQR3+3cCjdXN4wODpX3Lz/5I0D5nT9unEUCIhOg/Ba5O8yNBBwjIJT8XrBi8wP3cuclvyVZnnV8xn3h4SGt5WtTsn5yEuspqWmOkeJoEhCcgCRCpAfL0tPTBc+U6VmdQEpqOtzdXKyOwa763VxdkJYOVb+vl+7bi+e+/hoz+j2FWuXL25VHfgelpqZi/IoVWPP3QRTw8MCkbt3RqprjV6vsPX0Kr3z3HeoHBOCLZ5/Lbzqqz7sWG4vr9x+BlK4Ykf6SHoTMeCxS+t9XYmNRwN1dfgRS+ks6nV22cGGUL1Lk/hUk/ijl7ydL7qKFCqmeIxfUh8DRy5ew+sBBrPhrP3aeOIHHH3kEzYMqo3mVKijm4/NAEq4ukiqXvq/1yS1rlNRUwM1N/7giR5y8cgWW79+PMV1DEFq3rsipqpbb8StXMHvLb7gdH4+pPXuibY2aqq1t1YVcXV3k72n+e7hVd4DtulPS0uEu/QOAH6chIH1fS//Alv4bmx8SIAHnJiCU/M5+f7cj8ltqg3TPd9arTaRfk8T3qKkRmPXesAeuR7lyM9G5O8fsSSAbgSK+HoiNT0FKCv/hzM0hOgFpj/Jf/u3pUmEfD9xNSEGySt/XwyK/x5kb1/FWl272hFc05lZCHN5euhBRmQ9b9kaVEvl7MHD/udN4Y8EPqF2+Iqb3flpRXrYmJ6YkZ14vIt+fffeOfCpbukM7427tjOtHpLu0pcchpdPYpe9fPVKmsHSf9r8PREqntr08PGyF5ddNREDaQ+uj/savhw7Ij2dKV9BIp8KbBFZGtdJl4OPljsQU6fvaREU7cSnT163Cr38fwND2wej8WB0nrsR26udvxmDejq04d/MGxnbpho6P1rY9iSPsIiD9REdySirik3jAyi5glhzEf/91trb7FnRHalo64hJTnS115ksCJJCNgDDy29E7v7OPz5Dfp85eyrz6JDfxLY3ltSf8XjAbAV57YraOsh4SANS69uTktSvoO3smetVvjE6PaS87sj5sGVSiFCZ3C7frYcvceq7GtSfSCcdMeS1fP3JPbEu/Jj0eKf3va3fvIDUtFcV9/O5fPeKb+UBkxnUjksyWZKb0gCQ/JGAPgb/Onsb6w39jbdRBnIu5gRZVqqJhYCXUq1AJBdz5ByP2MNRyjBWuPbl2J1a+0zvq4gX5epPQOg20RGrJtXntiSXbzqJNToDXnpi8wSzPUgSEkd/ZH7iU5PaYqRGYPGqQfGI7447vqaMGoVHd6pkPYpYuWVSW3RnXngwbHC5/PaerTrJ2lvLbUvvcEsVSfluizSzSYgTUkN/f/L4FX/62ARNDe6KUf2HNCWZ92LJpUFWM6hwKT3d3RXFzk9+paWnyKe2YuHtXjfz79/ty+/4d25LU9ilQIFNqS9ePlPT1x71T2vdk9r3T2n7w9SqoKFdOJoG8CFy/E4sd/xzBsv17seFwFGqWKYeGAfcezaxQtBjhGUDAzPI7NiFBvtP7j39OyL8XhzdsagBha4Sk/LZGn1mltQhQflur36zW3ASEkd8S5gyBffDwSZn6Nx+PlEW29Mkuv3MaP3HEwMz7vqUrU77+cfUD3StTqljm9SeU3+be2FasjvLbil1nzWYnoFR+PzfnC/h6eWFwq7a6oFqybze+2rpJvvP06WYt8bSDD1tmTTJDeOeYuIsLpHcOpDjS1SPSKWxZYEt3avvdeyAy+yORHrzoWJc9wCC2CRTx8UR8UgoSktKw/fhRrIs6KJ8MT0pNQcMA6dHMIDQIqGR7IY5QhYAZ5XdSSgrm7dwq/7TBqE6h6N/8wfeQVAHHRR4gQPnNDUEC5iNA+W2+nrIi6xIQSn7r2QbKbz1pM5YeBCi/9aDMGCSgL4H8yu+dJ4+jb8QMjA0OQ+NKVTRPWjqBLd2buyk6Sj7lLZ0wlE59K/k8JL9dHrwnXjotu+w/w5SE4FwSMIRAVvmdNYFT16/Kd4SvOXQA0vdwk6DKsgxvHFj5oUczDUncpEHNJr+lO70X7d2NNzt1xctPtDNp18Qri/JbvJ4wIxJQSoDyWylBzicBcQhQfovTC2ZCAooIUH4rwsfJJCAkgfzI76mrl2HbiaMYH9JT8XUj9kC5k5CAt5cvxOGL5+Ff0Fu+37tyyVL2TLVrjCQCj1y+iK+eG2TXeA4iAdEJ5Ca/s+adkpqKDdGHsFZ6NDP6EPy9ve+L8CDUKFNO9BKdKj+zyO/IPTsx9/cteKNjVwxp28mpemCGZCm/zdBF1kACDxKg/OaOIAHzEKD8Nk8vWYnFCVB+W3wDsHxTEnBEfksPN/adPQONK1VG7wZNdOEhPWw5ZtkCXLl9C9LDlhNCe6KYj69qsZfu24MbcXfxcZ9nVVuTC5GA0QTskd/Zczx04Zx8PYr014lrV9Ck0r+nwgt6ehpdklPHd3b5vXT/HkhvO7z4eBuMDg5z6l44c/KU387cPeZOAjkToPzmziAB8xCg/DZPL1mJxQlQflt8A7B8UxKwV34v2/8nRi7+CZPCeqNqqdK6sNDiYcusiX//x3Z4uLvLNfFDAmYikB/5nbX+m3Fx8h3ha6MOYGN0lPw93+j+o5kBxYqbCZUutTir/F59cL98r3ev+o0xKjgMBT34hyC6bJhcglB+G0mfsUlAGwKU39pw5aokYAQBym8jqDMmCWhAgPJbA6hckgQMJmCP/P7fz/MQc/cOhnfoqlu20knDiC0bkZaejqcaN8ezzVqqGjti60ZUKFocIzrqV5OqBXAxEsiDgFL5nX1p6X5w+VT44b9xNzFBfjDz3l+V2Qc7CDib/Jb+4GPezm3oUOMxjOochiKFCtlRJYdoTYDyW2vCXJ8E9CdA+a0/c0YkAa0IUH5rRZbrkoDOBCi/dQbOcCSgA4G85Hf0pQvoGzET/Zu1RNvqj+qQDSA9bPnJhl9l0SY9bDm8Qxe0rFpd1difbliDBgGV8EprPtSmKlguJgwBteV31sLOxdzAhsN/y49m/nYsGk0qVZFFeOPAIJTw9ROGgUiJOIv83nosWpbe0gOo0qPCZQsXEQmj5XOh/Lb8FiAAExKg/DZhU1mSZQlQflu29SzcbAQov83WUdZDAkBu8nvWbxsgXQsyPrQXivn46IJK64ctpSKm/bocwbXq4pkmj+tSE4OQgBEEtJTf2euRr0c5dADrow+hkGcBNAysJMvTR8uWN6J0IWOKLr//+Oc4vtu5DY+UKiPf6R1UvKSQHK2eFOW31XcA6zcjAcpvM3aVNVmVAOW3VTvPuk1HgPLbdC1lQSSQo/yWHrUs7V8YA1s8oRuhrA9bSncKT+4WrurDllIhby9biAEtnkBY3Qa61cVAJGAEAT3ld9b6Dl88jw2HD2FN1AEcuXRRfhy3YUAQGlcKgk8BLyNQCBFTVPm9/+xpfLdzK0r5+WN0cDfULFNOCF5MImcClN/cGSRgPgKU3+brKSuyLgHKb+v2npWbjADlt8kaynJIAA+e/N5yNBr9vpqJyd16o37FSrrxyf6w5chOISjg4aFq/OELvseo4FC0qabP9S2qJs/FSMBBAkbJ76xpxibEY0P0Ifl6lE3RUahYrLh8NYp0RUoli50sFk1+R108j/k7t8HLw0OW3vUrBjq4wzjcCAKU30ZQZ0wS0JYA5be2fLk6CehJgPJbT9qMRQIaEqD81hAulyYBgwhkXHsyeskC7D9zGhPCeumaybL9ezD7/sOWfRo1w/PNW6ke/+Xv5+DTPs+hYWCQ6mtzQRIQkYAI8js7lz2nTmJN1EGsP3wQMXFxsgi/dyq8MlxdXETEqFpOosjvE1cvy9ebJKakYHTnMLSo8ohqNXIh7QlQfmvPmBFIQG8ClN96E2c8EtCOAOW3dmy5MgnoSoDyW1fcDEYCuhBISo9Dpw8/QutqNdCtbkNdYkpBsj5s6e7mhhEdu6r+sKUU57k5X+Dnl/6LaqXL6lYbA5GA0QRElN9ZmVy4GZN5KnzzkcNoFFgJDSQRHhgkX7lkto/R8lt6pHTejq24eidWvtNbrweMzdZHo+uh/Da6A4xPAuoToPxWnylXJAGjCFB+G0WecUlAZQKU3yoD5XIkYDCBBXv+wORflmJKt94oX6S4btlkf9hSOm0uPbSm9qfnl5/gt+FjUbZwEbWX5nokIDQB0eV3dnibjkTJj2ZK16RIfxjWMODeo5m1y1cUmrO9yRklv6/E3sZ3O7bi+NXL8vUmXWrVtTdljhOQAOW3gE1hSiSgkADlt0KAnE4CAhGg/BaoGUyFBJQQoPxWQo9zSUAsAi/Pn4Ok1BS8ExqCuwmpSE5N0yVB6cTnqCU/48rtW5AetpwU1hvFff1UjR2XlISeX36M6Anvw9eroKprczEScAYCzia/szI9dvkS1h/+W74r/OCFs2gSWFm+skiS4X4FnfP7WW/5fTMuDvP/2IY/T/8jn/TuWb+xM2xb5miDAOU3twgJmI8A5bf5esqKrEuA8tu6vWflJiNA+W2yhrIcSxI4cO4M+kbMxKtPtEWrR2qgcCEP3eS39LDlxFVLEZeUKD96Nya4m+oPW167E4vB87/GsUkfWrK/LJoEJALOLL+zdlD6vWLD4UNYE3UAG6MPyT/F0Sjg3qOZVUqWdppm6yW/45OS5Du9Nx89DOnh4GeaPu40jJiobQKU37YZcQQJOBsBym9n6xjzJYHcCVB+c3eQgEkIUH6bpJEsw7IEZmxcg6X792B8SK/ME5R6ye/lf/2JWb9tQFp6Ono3bIKBzZ8AVH7k7sz1a3hr+ULse2uKZXvMwknATPI7ezf3njmFdVEHse7wQVy+fVu+I1wS4dKpcOm6FFE/Wstv6fdV6U7v5X/txZudumJQyydFRcG8FBCg/FYAj1NJQFAClN+CNoZpkUA+CFB+5wMap5CAiAQov0XsCnMiAdsEklJS0DdiBoKKl8RzzVo+MEFr+Z2WloaPN/wqCytJTg1tF4w21WvaTtrBEdEXz+PTTWuxbcQ4B2dyOAmYj4BZTn7n1RnpPusN969Hke4Mr1M+QH44s1FgZeHu+ddSfv+463d8t3M73uwUgv8+2cF8m5kVZRKg/OZmIAHzEaD8Nl9PWZF1CVB+W7f3rNxkBCi/TdZQlmMJAtLduS98G4Ep3cNRq1yFh2rWUn5LD1tOWLkYB8+fha+XFyZ1C9fkYct9Z07hx9078Ov/3rRET1kkCdgiYAX5nZ3BlqPRWBt1AOsPHwKQLp8Il0R43QoBtnBp/nUt5Pfivbsx9/ct+E/rdhjRKUTzGhjAeAKU38b3gBmQgNoEKL/VJsr1SMA4ApTfxrFnZBJQlQDlt6o4uRgJaE5g9JKfcezKJbzVpXuusbSS31kftixfpBimdg9X/WFLqajtx49g45EoLBj8P815MgAJOAsBK8rvrL05efXKvUczow7Ijz42rVQFDQIqoUmlyijsXUj3Nqopv1ce2ItvdmzFU42ay49Zerq7614PAxpDgPLbGO6MSgJaEqD81pIu1yYBfQlQfuvLm9FIQDMClN+aoeXCJKAqgbM3rsvXnHStVQ9datfLc20t5Hf2hy1Hdw6Dl6enqjVKi0lXqRy6cB5znn9J9bW5IAk4MwGry++svUtMSZYfzcw4FV7S1w8NAyqhcaXKmvyA67Z4AAAgAElEQVQkSk77Rg35vfbQAXy7cxu61KoL6fdUv4IFnXmLMvd8EKD8zgc0TiEBwQlQfgveIKZHAg4QoPx2ABaHkoDIBCi/Re4OcyOBewTm/7EdH6//BRNDe6FckaI2sagtv5cf2ItZm9fLD1v2rN8ILz7eRvWHLaWilu3fg6t3YvFp3/42a+QAErAaAcrv3Dv+19nT8qnwtVEHcS7mhizBGwYEoXGlIBRw99BkqyiR378dicK8ndvRokpVjA7uBkne82NNApTf1uw7qzY3Acpvc/eX1VmLAOW3tfrNak1MgPLbxM1laaYgMPCb2fBwc8N/2rS3ux615HfWhy1dXV0xvH0XTR62lAqTHniTYkzuFm53nRxIAlYiQPltX7ev34nFhuhDWHPoAKRHM2uWKSefCpfuCq9QtJh9i9gxKj/ye8fJY/huxzY8Wq68fNI7oFhxOyJxiJkJUH6bubuszaoEKL+t2nnWbUYClN9m7CprsiQBym9Ltp1FOwGBPadOou9XM/FG+2A0q/yIQxmrIb+zP2w5PqQXapQt51Ae9g7+etsmlPEvgpGdQ+2dwnEkYDkClN/5a/n240fl65Skk+FJqSnyiXDp4UzpvnAlH0fkt3RH+Xc7t6F8kaIYE9wN1UqXURKac01EgPLbRM1kKSRwnwDlN7cCCZiHAOW3eXrJSixOgPLb4huA5QtJ4P01K+WTi+NDeqJgPu7VViq/9XrYUoI/Y+Na1K0Q4NDJdiGbxqRIQGMClN/KAZ+6flW+K1w6Fb7z5HE0Cbp/PUpgZRTz8XEogD3y++/zZzFv5zb4eRXEmOAw1KkQ4FAMDjY/Acpv8/eYFVqPAOW39XrOis1LgPLbvL1lZRYjQPltsYazXKEJSKet+0TMQJ1yFdG3cbN856pEfh88fwbvLF+MuKRE1K0QiHFdu2vysKVU3LtrVqDTo7XxbNOW+a6VE0nAKgQov9XtdEpqqvyHjNKjk9Lf/Qt6o2FgEBoHBqFGGds/5ZKX/D56+RLm79wmv5MwpksYmlSqom7yXM00BCi/TdNKFkICmQQov7kZSMA8BCi/zdNLVmJxApTfFt8ALF8YAqsO7seQn+dhclhvVLdDvOSVeH7l94q/9uLL3+49bNmjXiO82LINXFxcNGE0bvki9G/WEt3qNdRkfS5KAmYjQPmtbUcPXTgnX48i/XXi2hU0yXg0M7Byjj+Bk5P8Pn39mny9yc34OIzuHIrW1WpqmzRXd3oClN9O30IWQAIPEaD85qYgAfMQoPw2Ty9ZicUJUH5bfAOwfCEIDFvwPS7ejFHtzmtH5beeD1tKwN9Y+ANGdOyKtjUeE4I/kyABZyBA+a1fl27Gxcl3hK+NOoCN0VGoWqo0Gt1/NDPjkcqs8rtO+Yqy9D5947osvTs9Vke/ZBnJqQlQfjt1+5g8CeRIgPKbG4MEzEOA8ts8vWQlFidA+W3xDcDyDSVw4spl9I2YgfCGTdHx0dqq5eKI/JauN3ln+SIcPH8WPl5emKDhw5ZSga/+MBcf9n4GjStVVq1eLkQCViBA+W1cl6X7waUT4Uv370FsYgLK+RfB7YR4XLp1EyV9/RCfnIyWVavhf+0647Gy5Y1LlJGdjgDlt9O1jAmTgE0ClN82EXEACTgNAcpvp2kVEyWBvAlQfnOHkIAxBOZs34yvtm7C+NBeKOXnr2oS9spv6WHLt5ZF4sLNmyhfpBgmdeutei5ZC3t+7pf4YdBrqF66rKr1cjESsAIBym/juzx8wff4cfeOe4mkpwPZroWa3vtp9G2U//cajK+QGehNgPJbb+KMRwLaE6D81p4xI5CAXgQov/UizTgkoDEBym+NAXN5EsiBwDNff4bCBQvhpVZPasLHHvmd/WHLt7p2g7dnAU3ykRbtPetTbBw6GuWKFNUsBhcmATMToPw2vrtrow7i4LkzuSbS8bE6PPltfJucKgPKb6dqF5MlAbsIUH7bhYmDSMApCFB+O0WbmCQJ2CZA+W2bEUeQgFoEth8/iqe+molxIT3QMCBIrWUfWseW/F55QHrYcgNS09IQVrchBrd6UrOHLROSk9Dji09waPy78C/orVnNXJgEzE6A8tvsHWZ9ViRA+W3FrrNmsxOg/DZ7h1mflQhQflup26zV1AQov03dXhYnEIFJq5bij5PHMT60J9zd3DTNLDf5/cDDli4uGNKuE9rXVO+u8exF3bh7By/Mi8CxidPh6uqqac1cnATMToDy2+wdZn1WJED5bcWus2azE6D8NnuHWZ+VCFB+W6nbrNXUBCi/Td1eFicAAUkA95k9A80qV0Wv+o11ySgn+Z39Ycu3u3ZHrXIVNcvn3I3rGLU0En+9PVWzGFyYBKxEgPLbSt1mrVYhQPltlU6zTisRoPy2UrdZq9kJUH6bvcOszzIEKL8t02oWagCBJft2Y+zSBZgU1guVS5bWLYPs8jvrw5ZlCxfGlO59NX3Y8uilC/how6/Y/uY7utXMQCRgdgKU32bvMOuzIgHKbyt2nTWbnQDlt9k7zPqsRIDy20rdZq2mJkD5ber2sjgDCfz3x29xOz4Owzp00T2LrPI768OWtcpVwDuhPTV92HL/2dP4/o/tWDNkpO51MyAJmJkA5beZu8varEqA8tuqnWfdZiZA+W3m7rI2qxGg/LZax1mvaQlQfpu2tSzMIAJRF8+jX8RMDGjeCk9Wf9SQLDLk9+qD+/Hx+l+Rlp6O0Dr1MbhVW03v3v79xFGsO/w3Fr08xJC6GZQEzEyA8tvM3WVtViVA+W3VzrNuMxOg/DZzd1mb1QhQflut46zXtAQov03bWhZmAIEvNq/HT7t3yI9aFi3kY0AG90L6ervhvV/WYPn+P+Gqw8OWUsz1h//GgXNn8c2AwYbVzcAkYGYClN9m7i5rsyoBym+rdp51m5kA5beZu8varEaA8ttqHWe9piVA+W3a1rIwHQmkp6cjfPanKF+4KAa0eELHyA+Hkh62nLRqMfadOSNfb/JOaA9NH7aUMljx15+4dPs2ZvTrb2jtDE4CZiZA+W3m7rI2qxKg/LZq51m3mQlQfpu5u6zNagQov63WcdZrWgKU36ZtLQvTicCmI1F45uvPMbV7H9StEKBT1JzDXL59C6OX/IQLN2+ibOEimBjWW/67lh/ppHs6INfPDwmQgHYEKL+1Y8uVScAoApTfRpFnXBLQjgDlt3ZsuTIJ6E2A8ltv4oxHAhoRoPzWCCyXtQSBt5cvxN/nz+KdkJ6G1ys9bDlh5RLcSUhAvYoV5atXPNw8Nc1rzvbNKOnrj9HBYZrG4eIkQAIA5Td3AQmYjwDlt/l6yopIgPKbe4AEzEOA8ts8vWQlFidA+W3xDcDy80Xg4q2b6BsxA+2qP4awug3ytYaak9ZFHch82LJ9zVoYFxaChMR0JKemqRnmgbU+27QOtcpVwGtPdtAsBhcmARL4lwDlN3cDCZiPAOW3+XrKikiA8pt7gATMQ4Dy2zy9ZCUWJ0D5bfENwPIdJvDz7h2Y+styTArrjYrFijs8X80JaWlpmLVlI5b/de9hy5efaIeQOvVRuJAH7iakaia/31+zEu1qPob+zVqpWQ7XIgESyIMA5Te3BwmYjwDlt/l6yopIgPKbe4AEzEOA8ts8vWQlFidA+W3xDcDyHSLw0ndfITUtDf9r28mheVoMlh62fGf5Ihw8f/ahhy21lN/jVyzG001aoEf9RlqUxTVJgARyIUD5za1BAuYjQPltvp6yIhKg/OYeIAHzEKD8Nk8vWYnFCVB+W3wDsHy7COw/exr9ImbitTbt0bJqdbvmaDko68OWJf385ccmsz5sqZX8fnPRjxjaPhjS1Sr8kAAJ6EuA8ltf3oxGAnoQoPzWgzJjkIC+BCi/9eXNaCSgJQHKby3pcm0S0JEA5beOsBnKKQl8vP4XrDywD+NDe8HXy8vwGrI+bCnduf121x7wyZaXFvL7tR+/xXs9+6JpUFXDGTABErAiAcpvK3adNZudAOW32TvM+qxIgPLbil1nzWYlQPlt1s6yLssRoPy2XMtZsJ0EEpKT0Wf2p3ikVBk82/RxO2dpOyz7w5bS9Sturq4PBVVbfg/4ZjbmDXgZj5Yrr22BXJ0ESCBXApTf3BwkYD4ClN/m6ykrIgHKb+4BEjAPAcpv8/SSlVicAOW3xTcAy8+RwNpDBzB4/hxM6R6OR8saL3zT09Px5W8bMh+2fKnVkwir2zDX7qkpv8Nnz8C6ISNRoWgx7hYSIAEDCVB+GwifoUlAIwKU3xqB5bIkYCABym8D4TM0CahMgPJbZaBcjgSMIkD5bRR5xhWVwMjFP+Hk1SsY26WbEClKD1tOXLkU+8+egpeHB8Z17YG6FQPzzE0N+Z2YkoyeX3yCv8ZNRRHvQkKwYBIkYGUClN9W7j5rNysBym+zdpZ1WZkA5beVu8/azUaA8ttsHWU9liVA+W3Z1rPwbAROX7+GvhEzEFqnAbrUqisEn+wPW04O643ydpzAViq/Y+LuYsA3s3B04nS4u7kJwYJJkIDVCVB+W30HsH4zEqD8NmNXWZPVCVB+W30HsH4zEaD8NlM3WYulCVB+W7r9LP4+gXk7tmLmprWYGNoLZQoXEYLL4Qvn8faKhbiTkIAaZcphQmivhx62zC1RJfL7fMwNjFj8Ew6OmyYEByZBAiRwjwDlN3cCCZiPAOW3+XrKikiA8pt7gATMQ4Dy2zy9ZCUWJ0D5bfENwPLx/NwvUdDDE6+0bicMDflhyw1rkJaWhjbVa2JY+y45Pmyptvw+dvkiPli3GjtGjheGBRMhARKg/OYeIAGzEqD8NmtnWZeVCVB+W7n7rN1sBCi/zdZR1mNZApTflm295Qvf9c8J9IuYiTc7h6BppSpC8JAetpy1ZSOW7d8DVxcXvNiyDbrXa+Rwbvk5+X3g3Bl8u2Mr1r0+yuF4nEACJKA9AZ781p4xI5CA3gQov/UmzngkoD0Bym/tGTMCCehFgPJbL9KMQwIaE6D81hgwlxeSwLu/rsDmI1EYH9pLfkRShE9+HrbMLW9H5ffOk8fxy6G/sOSV10VAwRxIgARyIED5zW1BAuYjQPltvp6yIhKg/OYeIAHzEKD8Nk8vWYnFCVB+W3wDWKz82/Hx6DP7U9QPqIQ+DZsKU33Why2L+/hiavc+dj1sqYb83hh9CHvPnMK8ga8Iw4OJkAAJPEyA8pu7ggTMR4Dy23w9ZUUkQPnNPUAC5iFA+W2eXrISixOg/Lb4BrBQ+SsO7MXwBd9jclg4HildRpjKsz9sOT6kJ3wLFlSUn70nv1ce2IvzN2/is6eeVxSPk0mABLQnQPmtPWNGIAG9CVB+602c8UhAewKU39ozZgQS0IsA5bdepBmHBDQmQPmtMWAuLwSB1yPn48rtW3izU4gQ+WQkofRhy9yKsUd+R+7ZieS0VLzbo59QTJgMCZBAzgQov7kzSMB8BCi/zddTVkQClN/cAyRgHgKU3+bpJSuxOAHKb4tvAJOXf+zyJfSNmIGnGjdH+5q1hKlWethy9tZNWLpvt/yw5YDHW6NX/caq5WdLfs/9/TcUK+SLsV26qRaTC5EACWhLgPJbW75cnQSMIED5bQR1xiQBbQlQfmvLl6uTgJ4EKL/1pM1YJKAhAcpvDeFyaUMJfLV1EyTJOyG0F0r4+hmaS9bgCUlJGL9yCfafPSU/tjk6uBsaBQapml9e8vvzzetRs0w5/F/bjqrG5GIkQALaEqD81pYvVycBIwhQfhtBnTFJQFsClN/a8uXqJKAnAZvye/f+aDw/ZJqc0wv9gjF0cDhOnL6AwSOm49X+YegR3ErPfFWLdeF6vGprcSESEIEA5bcIXWAOahN4KmImivn4YlDLNmovrWg96WHLsUsX4FzMdajxsGVuyeQmvz9YuwptqtfEgOZPKKqDk0mABPQnQPmtP3NGJAGtCVB+a02Y65OA/gQov/VnzogkoBWBPOX34tVbELliM76Y9jo2bd+HU2cvyfJb+nw4KxKXrtzA+DcGoqCXp1b5abYu5bdmaLmwQQQovw0Cz7CaENh27Aj6fTVTPu3dIKCSJjHyu2jWhy0fKVUGk8J6K37Y0hH5PWHlYvRt1By9Gqh3vUp+WXAeCZCA4wQovx1nxhkkIDoBym/RO8T8SMBxApTfjjPjDBIQlUCu8js+IQnj3p+D3iGt0ahudUgiPKv8zirGi/j7ilpfrnlRfjtdy5iwDQKU39wiZiEwceUS7D51AuNDe8HN1VWosjZFR+GDdauQlpYmn7we2i4Y7m5umuWY/eT3yMU/4X9tO6Hjo7U1i8mFSYAEtCVA+a0tX65OAkYQoPw2gjpjkoC2BCi/teXL1UlATwK5yu+YW7EYNSUCb7zaF5UDyj4kv6XrUKbPipRPhVN+69kyxiKBnAlQfnNnODuBa3di0Wf2p3i8SjX0VPHRSDW4SA9bRmzdhCX7dsMFwIAWrdG7YRM1ls5zjazy+/9+mocp3cPRvPIjmsdlABIgAe0IUH5rx5Yrk4BRBCi/jSLPuCSgHQHKb+3YcmUS0JtAvuW3dPJ7559RvPZE744xHgnkQoDym1vDmQks2rsL45YvwuSw3qhUoqRQpWR92NLT3R1ju3RX/WHL3ArOkN/PzZmFOf0HoVb5ikKxYTIkQAKOE6D8dpwZZ5CA6AQov0XvEPMjAccJUH47zowzSEBUAnne+S3d6x1YobT8qGXWa08yrkQpXbJo5h3gohaYW1689sTZOsZ8bRGg/LZFiF8XlcB/fpiLu4mJGNo+WLgUsz5sWdTHB5O7hSOwWAnd8pTkd6ePP8Iv/zcCAcWK6xaXgUiABLQjQPmtHVuuTAJGEaD8Noo845KAdgQov7Vjy5VJQG8Cecpv6eqTV0Z+hGGDw3H2wpXMO78lKb5rf7TTXnkiQab81nurMZ7WBCi/tSbM9dUgUGnU/5CUmvrvUunpDyy7/LXh8NDwDm1Hasj+sKV0B3lhb29HllA0NiklBb1mfYKD46bC10u/uIqS5mQSIAGbBCi/bSLiABJwOgKU307XMiZMAjYJUH7bRMQBJOA0BPKU31IVGae8V23YmVlUl7ZNnfa6k4wiKL+dZo8yUTsJUH7bCYrDDCXgLPI768OWLatWx4iOXTV92DJ7U27GxeG5uV/g+iczkJgEJKWkGdo3BicBElCPAOW3eiy5EgmIQoDyW5ROMA8SUI8A5bd6LLkSCRhNwKb8NjpBreJTfmtFlusaRYDy2yjyjOsogZUH9uKTDWtw7PJFJKemQqTT3tLDll9t3YTF9x+2fK55K/Rt1MzREhWNv3AzBsMX/oC/33kXxfw8ERuXQvmtiCgnk4BYBCi/xeoHsyEBNQhQfqtBkWuQgFgEKL/F6gezIQElBPJ88FK68iQ8pLV857fZPpTfZuso66H85h5wBgKztmzEb0cPY2SnEITO/EAo+Z39YctRnUPRNKiqrliPX7mEd9esxB+jJshxKb91xc9gJKALAcpvXTAzCAnoSoDyW1fcDEYCuhCg/NYFM4OQgC4EbMpv6b7vRnWr65KMnkEov/WkzVh6EKD81oMyYygh8NayhbgdH4cXHm8tLyOS/L4WexujlkTiXMx1GPGwpcTj4LkzmPP7FmwYOjoTM+W3kh3HuSQgJgHKbzH7wqxIQAkBym8l9DiXBMQkQPktZl+YFQnkh0Cu8jvjru+mDWry5Hd+yHIOCehMgPJbZ+AM5xCBF76djUrFSyC0ToPMeaLIb+lhy3ErFiI2IQFBJUphcrdwXR+2lIDs+ucEVh7Yh6X/GfoAV8pvh7YZB5OAUxCg/HaKNjFJEnCIAOW3Q7g4mAScggDlt1O0iUmSgF0E8rzze/HqLTh19hKGDg63azFnGsST387ULeZqDwHKb3socYwRBDp/+h5Ca9dDiyrVHggvgvzO/rDl8A5d4OnuriumTUeisPvUScx/4dWH4lJ+69oKBiMBXQhQfuuCmUFIQFcClN+64mYwEtCFAOW3LpgZhAR0IZCn/I65FYtRUyLwxqt9UTmgrC4J6RWE8lsv0oyjFwHKb71IM469BFLT0lB/0hiMDQ5DtdIP/zPEUPktPWy5bRMW7d0NFwDPNGuJpxo3t7c01catOrgPZ2/cwOdPD8hxTcpv1VBzIRIQhgDltzCtYCIkoBoBym/VUHIhEhCGAOW3MK1gIiSgmIDNO78PHj6Za5BaNYLwxbTXUcTf165EMq5SWbVhpzx+4oiBNq9UOXH6AgaPmI6Ll6+jTKlimPXesIdE/IezIhFYofQDa2Wdl5Fc1nwpv+1qGQc5EQHKbydqlgVSPXvjOpq/+w7mD3wFRQr55FixUfJbethyyi/L5NPW0ilvIx62lIAs+PMPJKak4L2e/XLdEZTfFvhmYYmWI0D5bbmWs2ALEKD8tkCTWaLlCFB+W67lLNjEBPI8+a123ZKklj7SNSrSqfJXRn6EvB7UlAT2mKkRmDxqUI4nz6VrWd56b06OIt3WXMpvtbvL9YwmQPltdAcYP4PAH/8cx39++AZz+r+UJxQj5Hf2hy0nhPRC5ZKldG/et79vQWHvQnira/c8Y1N+694aBiQBzQlQfmuOmAFIQHcClN+6I2dAEtCcAOW35ogZgAR0I6Cb/M7pCpWsMjx7xRmnxHuHtEajutXzBJLbye+8xDnlt257jIF0IkD5rRNohsmTwOK9uxGxbRPe7dHXJim95bcID1tKUL74bT2qlSqDIe0622RE+W0TEQeQgNMRoPx2upYxYRKwSYDy2yYiDiABpyNA+e10LWPCJJArAZvyO+OEdtbrTxy97kSKntNJbOnk9s4/ozD+jYEo6OX5QJI5xe3StmmOY+259iR7zpTf/K4wGwHKb7N11PnqmbFxLfacOoFhHbrYlbye8jvrw5ZNg6rKV53o/bClBOXDdavR8pHqeKFFa7sYUX7bhYmDSMCpCFB+O1W7mCwJ2EWA8tsuTBxEAk5FgPLbqdrFZEkgTwJ5yu+Me7Nf7R/2wH3akrT+/NtlOd6/nVs0aa33P/8JU0cPyrwjPC/5nX18xknw0iWLytemZP3kJL+z5yGNuXTlRqY8j41P4dYgAVMR8C7ghsTkNKSmpZuqLhbjHARe/+l7JKWkYFAr21I3PT0dLi4uaPvBNCSnpmL98JHwdHPTpFAp1pebN+HHXTvk9fs3b4kXWrbSJJatRccuWYSnmjTDU02b2Rqa+XV+X9uNigNJwGkIFPR0Q3JqGlJS9f/ndcbvv04Di4mSgJMQ8PJ0Q2pqGpIN+L52EkSWTzM9HXCRXlnnx2kIeHm4QvpP66SUNKfJmYmSAAnkTCBX+Z2XbJaWyi6TbQF29OR3TrJ89/5oTJ8V+dAjm/bI7+zrxcYl20qZXycBpyLg7eWOhKRUpFF+O1XfzJBsry9nolbZ8girW8+uciTdI/27f9vp796T38Pe1ER+xyUnYdyyJfjj5An5lPeYLiFoU62GXTmqPWho5I94vX1HhNSxj1FG/IIF3JDEP9RSux1cjwQMJSBJshSj5Ddc4AL9pbuhwBmcBHQgIMvvtHQkU5LpQNs5Q6S7uMBFMuD8OA2BAp5u8n9b8/vaaVrGREkgVwK5ym9bD1LmJqJzi+Tond85jZdiLlix+aGrT/Ijv3ntCb8rzEaA156YraPOUU+7j6agT8OmaFKpisMJa3ntSdaHLf0LemNyt3BDHraUoAz5+TtMDOuFFlWqOcyI1544jIwTSEB4Arz2RPgWMUEScJgArz1xGBknkIDwBHjtifAtYoIkYDcB3eS3lFHWBy5zkuvZT5Nn/f/S/HHvz0HTBjUfuIIlY93ACqUf+PU1m3ehSqXyqBxQVoaR/XFNym+79wgHOgkBym8naZRJ0kxITkaDyWMwKbR3vqWyVvL76OWLGLs0ErEJCQgoVlwW38V8fA0h/+K8rxDx7AuoUyEgX/Epv/OFjZNIQGgCRXw9EZ+QgoRk/hi10I1iciTgAAHKbwdgcSgJOAkBym8naRTTJAE7COh27YmUS8ZVKqs27JRTmzhi4APCOrv8zj7+hX7BD9z3Ld0Z/tZ7czLLLFOqWOY95NIp8eeHTMv8WvbHMim/7dgdHOJUBAr7eOBOfIohd4g6FSgmq5jAyWtX0Hb6FMwb+DKkU9X5/Wghv6WHLT9cvxopqamQHrYc2SkEBTw88puionlPffUZVrw2HJWKl8j3OtK/dMclpvLHLfNNkBNJQDwCft4eSExKRSKvRxCvOcyIBPJJwNfbAykpqYhP4h9q5RMhp5GAcAR8CrrL1xnFJ6YKlxsTIgEScIyAbg9eOpaW9qMpv7VnzAj6EuDJb315WzXatuNHMHzB95j97IuKEagqv9PTMWf7Ziz4c5ecV79GzfBcc2MetpTEe88vP8HuMRNRXOGJc578VrzNuAAJCEeAJ7+FawkTIgHFBHjyWzFCLkACwhHgyW/hWsKESCDfBPKU39Kq2U9fS79Wq0bQQ49O5jsDgyZSfhsEnmE1I0D5rRlaLnyfQOSenfhu5zb5GhE1PmrJ78TkZExevRS7T52Eu5sbRnTsipZVq6uRosNr3I6Px9Nff4YjE6fDS4UT55TfDreAE0hAeAKU38K3iAmSgMMEKL8dRsYJJCA8Acpv4VvEBEnAbgI25bfdKznZQMpvJ2sY07VJgPLbJiIOUEDgw3Wr8feFcxjStpOCVR6cqob8lh62HLtsAU5fvyZfwTIhrBceKVVGtRwdWejSzRgMWfA9osa/58i0PMdSfquGkguRgDAEKL+FaQUTIQHVCFB+q4aSC5GAMAQov4VpBRMhAcUE8pTf0p3an3+7LPMe7YxoJ05fwOAR0/Fq/7CHHp9UnJFOC1B+6wSaYXQjQPmtG2rLBRoaOV8+Uf1Mkxaq1q5Ufov0sOXJK5cx5dfl2DV6oqqMKL9VxcnFSEAIApTfQrSBSZCAqgQov1XFycVIQAgClN9CtIFJkIAqBHR98FKVjFVahPJbJZBcRr9/HtAAACAASURBVBgClN/CtMJUifSNmIEGFSuh46O1Va9LifzO+rBlo8AgjAnuZtjDlofOn0XEts3YOGyM6owov1VHygVJwHAClN+Gt4AJkIDqBCi/VUfKBUnAcAKU34a3gAmQgGoEcpXfMbdi8crIjzBscDga1X347tTd+6MxfVak0979Tfmt2h7iQoIQoPwWpBEmSuOJ9yfi+eat0CCgkiZV5Ut+p6dj7o4tiNy9U84pvFFTDGjWCnBx0SRHW4tK94wv2/8nlr82zNbQfH2d8jtf2DiJBIQmQPktdHuYHAnkiwDld76wcRIJCE2A8lvo9jA5EnCIAOW3Q7g4mATEJUD5LW5vnC2z2IR4NJg0Fh/2fhoVixXXLH1H5bdID1tKUDYfOYyd/xzHDy/+RzNGlN+aoeXCJGAYAcpvw9AzMAloRoDyWzO0XJgEDCNA+W0YegYmAdUJ5Hnn94ezIuWAQweHPxQ4r6+pnqUGC/LktwZQuaShBCi/DcVvmuBHLl1EyMwP8O2Al1GoQAFN63JEfmd92NLXywuTuoUb9rClBOWXg/vxz/Wr+PKZFzRlRPmtKV4uTgKGEKD8NgQ7g5KApgQovzXFy8VJwBAClN+GYGdQEtCEQJ7yO7eHLXN7CFOTDDValPJbI7Bc1jAClN+GoTdN4E1HovDW0gX4/OkButRkr/zO/rDlpLDeKO7rp0uOOQVZtHc37iYl4oNeT2meA+W35ogZgAR0J0D5rTtyBiQBzQlQfmuOmAFIQHcClN+6I2dAEtCMQJ7yW4oan5CEce/PwaoN9+5XlT61agQ57V3fGTVQfmu2p7iwQQQovw0Cb5Kw83dux6K9uzA+tKduFdkjv7cei8Z7a1YiJTUVRj9sKYGZt2MrfL0KYlxID104UX7rgplBSEBXApTfuuJmMBLQhQDlty6YGYQEdCVA+a0rbgYjAU0J2JTfmkY3cHHKbwPhM7QmBCi/NcFqiUWn/bIcJ69dwWttOuhab57yO9vDlr0bNMbAFq0Ne9hSAjNrywZULlEKQ9sH68aJ8ls31AxEAroRoPzWDTUDkYBuBCi/dUPNQCSgGwHKb91QMxAJaE6A8ltzxAxAAvoQoPzWh7PZovz3x2/h5+WFPo2a6V5abvI7+8OWQ9sFo031mrrnlzXgR+t/QYsqj+DFx9vomgflt664GYwEdCFA+a0LZgYhAV0JUH7ripvBSEAXApTfumBmEBLQhcBD8nv3/mg8P2QaJo4YiB7BrTKTyLj/++Ll6yhTqhhmvTcMlQPK6pKkFkF48lsLqlzTSAKU30bSd87Yvb78GC0qP4K2NR4zpICc5Pf1O7EYszQSp69fg/Sw5fiQXqhRtpwh+WUEnbx6KXrUa2TIHxBQfhvaegYnAU0IUH5rgpWLkoChBCi/DcXP4CSgCQHKb02wclESMITAQ/L7w1mR2LU/+oE7vWNuxeKVkR8hPKS1LMQlET5magQmjxrktAKc8tuQ/cagGhKg/NYQrgmXbv7uO3ilVVvUqRBgWHUfrl+JtPR0DHkyGO5ubpAetnx72ULcio9D+SLFMLV7uKEPW0pgJBH/yhNtEVyrniGcKL8Nwc6gJKApAcpvTfFycRIwhADltyHYGZQENCVA+a0pXi5OAroSeEB+ZzxuWbpkUQwdHJ6ZiHQafPqsyAeEuCTJpU/WcbpmrjAY5bdCgJwuHAHKb+FaImRCN+7eQYNJY/FZv/4oX7SYITkmpMbB29MDGw8fRkpaGtrVrIkrsXcw6Ju5SEpJQd0KgRjXtTu8PD0NyS8j6OuR8/FOSA+0rFrdsDwovw1Dz8AkoBkBym/N0HJhEjCMAOW3YegZmAQ0I0D5rRlaLkwCuhN4QH5nP+GdkY0kui9duYHxbwxEQa97MiInIa579goCUn4rgMepQhKg/BayLUIl9ff5swifPQPzBrwMT3d3Q3JLSkvAyr/2IWLLlgfiP//44wgsXhwHTp/Hiy3bwMXFxZD8MoK+9N3X+OLpAahXMdDQPCi/DcXP4CSgCQHKb02wclESMJQA5beh+BmcBDQhQPmtCVYuSgKGEMhRfg8bHI5Gde+ddHPkNLghFeQzKOV3PsFxmrAEKL+FbY0Qia05dABTf1mOT/s+Z2g+7h6p6DB9OtLT0x/K45fXXwfSjD3tLSX19NefY9mrQxFUoqShrKTglN+Gt4AJkIDqBCi/VUfKBUnAcAKU34a3gAmQgOoEKL9VR8oFScAwAjlee9I7pHWm/M7tNPji1VsQuWLzA1ehGFZFPgJTfucDGqcITYDyW+j2GJrcnO2b8evfBzC2SzdD8/B0d8Xmo39j4ooVOeYxrGNHdKlVH4nJaYbkmZqWhp5ffoKdo8ajpK+fITlkD0r5LUQbmAQJqEqA8ltVnFyMBIQgQPktRBuYBAmoSoDyW1WcXIwEDCWQ44OXUkYZd3lLj1sOHjEdU0cNyhTi0tdzugrF0EocDE757SAwDheeAOW38C0yJMGJK5fg4q0YvPxEO0PiZw0qye8dJ49g7JLFOeYyumtXtKteyxD5HZuQgL4RM3B04nQUNPiu8axwKL8N37ZMgARUJ0D5rTpSLkgChhOg/Da8BUyABFQnQPmtOlIuSAKGEXhIfkuye8zUCEweNQiVA8rmKLkzToM3rludD14a1joGJoEHCVB+c0dkJ/Dy/Dko5euHng0aiwPHNQmhn36K5NTUh3JaN3w4UpLddM/18q2b+O/P8xA94QPdY9sKSPltixC/TgLOR4Dy2/l6xoxJwBYBym9bhPh1EnA+ApTfztczZkwCuRF4SH5LA6XHLJ8fMk2eU6tG0ENXm0invr/+cTW++XjkA6fBnQkzT347U7eYqz0EKL/toWSdMaGfTUf76o/hiWo1hCl667FoJKYmyOL7y82bkZSSIufm4eaGF1u1Qrvqj8Lbs5Cu+f5z9Qomrl6KPWMm6RrX3mCU3/aS4jgScB4ClN/O0ytmSgL2EqD8tpcUx5GA8xCg/HaeXjFTErBFIEf5bWuSGb5O+W2GLrKGrAQov7kfMgg0mvIWhrbthEfLVRAGysK9uzBn6yZIz1xOD++LmuXKYPepU5Du2W5euTLik1NQwLWgrvlGXTiHL7dsxObhY3WN60gwym9HaHEsCTgHAcpv5+gTsyQBRwhQfjtCi2NJwDkIUH47R5+YJQnYQ4Dy2x5KHEMCTkCA8tsJmqRxipdv30LDyWMxt/9LKOnnr3E0+5ZPT0vDzM3rsfrgPnnCa206oEvtevL/nrhqEdLT0zGqc3f59Leenz9P/4NFe3dj5X+H6xnW4ViU3w4j4wQSEJ4A5bfwLWKCJOAwAcpvh5FxAgkIT4DyW/gWMUESsJsA5bfdqDiQBMQmQPktdn+0zm7fmVPoP/dLfDvgZbi5umodzq71pWtNJq5agj2nTsLT3R2jOoeiaVDVzLmhMz+Qr0BZ/tpwXeW3dP3KtuNH8eOg1+yqw8hBlN9G0mdsEtCGAOW3Nly5KgkYSYDy20j6jE0C2hCg/NaGK1clASMIUH4bQZ0xSUADApTfGkB1kiVXHdiHj9b/gg/DnxEm49iEeIxZugDHLl+Er5cXJncLR9VSZR7Izwj5/evff+HYlcuIeO5FYVjllQjlt1O0iUmSgEMEKL8dwsXBJOAUBCi/naJNTJIEHCJA+e0QLg4mAaEJUH4L3R4mRwL2E6D8tp+VmUbO3rIRm45EyaeqRflcvBWDMUsicfHWTZT09cO0nn1Rxr/IQ+npLb+X7NuD2/FxmC7QHxLY6hnlty1C/DoJOB8Bym/n6xkzJgFbBCi/bRHi10nA+QhQfjtfz5gxCeRGgPKbe4METEKA8tskjXSgjLeWLcDNuDgMatnGgVnaDpVOeo9ZGonYhAT5pPfE0F7w9/bOMaie8nv+zm3w9iyAd0J7agtA5dUpv1UGyuVIQAAClN8CNIEpkIDKBCi/VQbK5UhAAAKU3wI0gSmQgEoEKL9VAsllSMBoApTfRndA3/gvfDsbAcVKoFvdBvoGziOadLe3dMe3dNd3w8AgvNWlu3zXd24fveS3dDq+UvESGNahizCs7E2E8tteUhxHAs5DgPLbeXrFTEnAXgKU3/aS4jgScB4ClN/O0ytmSgK2CFB+2yLEr5OAkxCg/HaSRqmQZudP3kNonXpoUaWaCqups4R07/hnm9chPT0dwbXq4bXW7eBi4+FNPeT3Jxt+RZOgKnip5ZPqFKrzKpTfOgNnOBLQgQDltw6QGYIEdCZA+a0zcIYjAR0IUH7rAJkhSEAnApTfOoFmGBLQmgDlt9aEjV8/LS0N9SeNwZjgMFQrXdb4hO5n8PW2TVj45y64ABjweBv0btDYrty0lt9Tf1mG0DoN0K9xc7vyEXEQ5beIXWFOJKCMAOW3Mn6cTQIiEqD8FrErzIkElBGg/FbGj7NJQCQClN8idYO5kIACApTfCuA5wdRzMTfQdOo4fDfwFRTz8REi4+TUFLy/ZhW2HouGm6sr3uwUgpZVq9udm5byW7oPXboLvWvt+nbnI+JAym8Ru8KcSEAZAcpvZfw4mwREJED5LWJXmBMJKCNA+a2MH2eTgEgEKL9F6gZzIQEFBCi/FcATfOquf07gle/nYO7zg4XJ9G5iIsYui0T0xQvwLlAA74T0QK1yFR3KTyv5PWzB9xjbpRueeKSGQ/mIOJjyW8SuMCcSUEaA8lsZP84mAREJUH6L2BXmRALKCFB+K+PH2SQgEgHKb5G6wVxIQAEBym8F8ASeumTvbszauhHv9ewnTJbXYm9j5JKfcT7mBor7+GJq974oX7Sow/lpIb9f/n4OZvbtj/oBlRzOR8QJlN8idoU5kYAyApTfyvhxNgmISIDyW8SuMCcSUEaA8lsZP84mAZEIUH6L1A3mQgIKCFB+K4An6NSZG9fij39O4I2OXYTJ8OTVKxi7NBIxcXcRVLwkJnUPRxHvQvnKT235/eycL7Bw8P9QtVTpfOUj4iTKbxG7wpxIQBkBym9l/DibBEQkQPktYleYEwkoI0D5rYwfZ5OASAQov0XqBnMhAQUEKL8VwBNw6sjFPyExJRkDmj8hTHb7z5zCuBWLkJSSgroVAuWrTgp4eOQ7P7Xkd3p6Onp++Qm2jXgbpf0L5zsfESdSfovYFeZEAsoIUH4r48fZJCAiAcpvEbvCnEhAGQHKb2X8OJsERCJA+S1SN5gLCSggQPmtAJ5gU5+b8wWqly6LrrXrCZPZpugofLB2JdLS09GhZi38r20nuLq6KspPDfkt3T3ea9YnODpxOgoVKKAoHxEnU36L2BXmRALKCFB+K+PH2SQgIgHKbxG7wpxIQBkBym9l/DibBEQiQPktUjeYCwkoIED5rQCeQFPbfTQF4Q2aomlQFWGymr9zG77/Y7ucz7PNWuKpxs1VyU2p/L56+xZe/fEbHJk4XZV8RFyE8lvErjAnElBGgPJbGT/OJgERCVB+i9gV5kQCyghQfivjx9kkIBIBym+RusFcSEABAcpvBfAEmJqQnIyGk8diQkhPVBHkzuq0tDR8sG4VpFPfri4uGN6hK9pUr6kaLSXy+/S1q3hn5WL8OXayavmIuBDlt4hdYU4koIwA5bcyfpxNAiISoPwWsSvMiQSUEaD8VsaPs0lAJAKU3yJ1g7mQgAIClN8K4Bk89eS1K2g7fQq+HfAyCnt7G5zNvfDxSUmYsHIJ9p89hYKenni7S3fUrRioam75ld/RF89j5ub12PLGW6rmI+JilN8idoU5kYAyApTfyvhxNgmISIDyW8SuMCcSUEaA8lsZP84mAZEIUH6L1A3mQgIKCFB+K4Bn4NRtx45g2MLvEfHsiwZm8WDomLi7kB7cPHP9Gop4F8LUHn0RUKy46vnlR37vPfMPFuzZhVX/94bq+Yi4IOW3iF1hTiSgjADltzJ+nE0CIhKg/BaxK8yJBJQRoPxWxo+zSUAkApTfInWDuZCAAgKU3wrgGTT15z07Id2nPblbuEEZPBz23I0bGLXkJ1y7E4uKxYpjclhvFPf10yQ/R+X3tuNH8NvRaPz80n81yUfERSm/RewKcyIBZQQov5Xx42wSEJEA5beIXWFOJKCMAOW3Mn6cTQIiEaD8FqkbzIUEFBCg/FYAz4CpH65bjYPnz+L1dp0NiJ5zyIPnz+CdFYsRl5iIWuUqYHxoL/nKE60+jsjvtYcOIPrSRXzVf5BW6Qi5LuW3kG1hUiSgiADltyJ8nEwCQhKg/BayLUyKBBQRoPxWhI+TSUAoApTfQrWDyZBA/glQfuefnd4zh0XOh6urK55t+rjeoXONt/VYNN79dQVS09LQsmp1jOgUAndXV03zs1d+L93/J2Lu3sFHfZ7VNB8RF6f8FrErzIkElBGg/FbGj7NJQEQClN8idoU5kYAyApTfyvhxNgmIRIDyW6RuMBcSUECA8lsBPB2n9ouYiXoVAtDpsTo6Rs071II/d2Hutk1IBxDeqCkGNH9Cl9zskd8/7Podnm7umBDWS5ecRAtC+S1aR5gPCSgnQPmtnCFXIAHRCFB+i9YR5kMCyglQfitnyBVIQBQClN+idIJ5kIBCApTfCgHqMP2JDyaif9OWaBgYpEM02yHS09Iwc/N6rD64Dy4uLhjSrhM61Kxte6JKI2zJ76+2bkKFYsXxRocuKkV0vmUov52vZ8yYBGwRoPy2RYhfJwHnI0D57Xw9Y8YkYIsA5bctQvw6CTgPAcpv5+kVMyWBPAlQfou7Qe4kJKDB5DH4oNdTCChWQohEk1JSMHHVEuw5dRKe7u54q0t33aV8XvL7041r0DCgEl5+op0QvIxKgvLbKPKMSwLaEaD81o4tVyYBowhQfhtFnnFJQDsClN/aseXKJKA3AcpvvYkzHgloRIDyWyOwCpc9evkiusx4H/MGvIJCBQooXE2d6bEJ8RizdAGOXb4Iv4LemNq9D4JKlFRncQdWyU1+T/t1ObrUqoenm7RwYDVzDqX8NmdfWZW1CVB+W7v/rN6cBCi/zdlXVmVtApTf1u4/qzcXAcpvc/WT1ViYAOW3eM3fdCQKY5dG4ounBwqT3MVbMRizJBIXb91EGf/CmNajH0r6+RmSX07y++3lCzGwxRMIrdPAkJxEC0r5LVpHmA8JKCdA+a2cIVcgAdEIUH6L1hHmQwLKCVB+K2fIFUhAFAKU36J0gnmQgEIClN8KAao8ff7ObVi4dxcmhIrzUKN00nvM0kjEJiSgepmycm6+XgVVrtz+5bLL7+ELf8CozqFoU62m/YuYfCTlt8kbzPIsSYDy25JtZ9EmJ0D5bfIGszxLEqD8tmTbWbRJCVB+m7SxLMt6BCi/xen5tF+W4/jVy/i/JzsKk9TOk8cw9ZflkO76bhpUFaODQ+Hh5m5oflnl9/9+moeP+zyr+73jhgKwIzjltx2QOIQEnIwA5beTNYzpkoAdBCi/7YDEISTgZAQov52sYUyXBPIgQPnN7UECJiFA+S1GI//747fwKVAA/Ro3FyMhAKsO7MPMTWvlfLrXa4SXWrYBXFwMzy9Dfpfw9cPPL/0fqpUuY3hOoiVA+S1aR5gPCSgnQPmtnCFXIAHRCFB+i9YR5kMCyglQfitnyBVIQBQClN+idIJ5kIBCApTfCgGqML3nlx+jReVH0K7GYyqsps4SX23diEV7d8uLvdamA7rUrqfOwvlcJUN4PzA9i4g/OeVjFHA39kR6PkvTZBrltyZYuSgJGEqA8ttQ/AxOApoQoPzWBCsXJQFDCVB+G4qfwUlAVQKU36ri5GIkYBwBym/j2EuRm7/7Dl5u1RZ1KwQYm8j96MmpKXh/zSpsPRYtX28iXXMiXXdi9Och+Z3tBDrl94Mdovw2escyPgmoT4DyW32mXJEEjCZA+W10BxifBNQnQPmtPlOuSAJGEaD8Noo845KAygQov1UGaudyMXfvosHkMZjZ73mUL1LUzlnaDrubmIixyyIRffECfL28MCG0t/zApSifPadOYu7vW7B1xNuipCRsHpTfwraGiZFAvglQfucbHSeSgLAEKL+FbQ0TI4F8E6D8zjc6TiQB4QhQfgvXEiZEAvkjQPmdP25KZh26cA69vvwE8wa+jALuHkqWUm3utdjbGLnkZ5yPuYGSvn6Y1rMvyvgXUW19pQutOrgfB86dwY+DXlO6lCXmU35bos0s0mIEKL8t1nCWawkClN+WaDOLtBgBym+LNZzlmpoA5bep28virESA8lvfbq85dABTVi/DjH799Q2cR7STV69g7NJIxMTdRdVSZTAxtBf8vb2FyW/O9s3wdPfAez37CZOT6IlQfoveIeZHAo4ToPx2nBlnkIDoBCi/Re8Q8yMBxwlQfjvOjDNIQFQClN+idoZ5kYCDBCi/HQSmYLgkcVcf/Atvd+2uYBV1p+4/cwrjVixCUkoKGgYG4a0u3eEp0MOR035ZjserVMOrbdqrW7jJV6P8NnmDWZ4lCVB+W7LtLNrkBCi/Td5glmdJApTflmw7izYpAcpvkzaWZVmPAOW3Pj2fuHIJzt+Mwaut2+kT0I4oa6MO4JP1vyItPR0datbCkLad4OLqasdMfYYM+fk7DG3fGV1r19cnoImiUH6bqJkshQTuE6D85lYgAfMRoPw2X09ZEQlQfnMPkIB5CFB+m6eXrMTiBCi/td8Ar8yfg+K+vujdoIn2weyM8N2Orfhh1+9wATCgRWv0bihObnFJSRjwzSz8/NJ/Ubt8RTsr4rCsBCi/uR9IwHwEKL/N11NWRAKU39wDJGA+ApTf5uspK7IuAcpv6/aelZuMAOW3tg0N+2w62lZ/FK2r1dQ2kJ2rp6Wl4YN1q7ApOgpurq54s1MIWlatbuds7Yf9c+0Khi/8AbtGT0QR70LaBzRpBMpvkzaWZVmaAOW3pdvP4k1KgPLbpI1lWZYmQPlt6fazeJMRoPw2WUNZjnUJUH5r1/vGU96SrxJ5rFwF7YI4sHJ8UhImrFyC/WdPwbtAAbwT0gO1yolzsnrnyeP4cffv2DRsrANVcWhOBCi/uS9IwHwEKL/N11NWRAKU39wDJGA+ApTf5uspK7IuAcpv6/aelZuMAOW3+g29fPsWGk1+C1899yJK+xdWP0A+VoyJu4uRi3/CmevXUNzHF1O790X5okXzsZI2U5b/9SeOXr6EeQNf0SaAxVal/LZYw1muJQhQfluizSzSYgQovy3WcJZrCQKU35ZoM4u0CAHKb4s0mmWanwDlt7o93nvmHzw/dxa+HfCyfK2ICJ9zN25g1JKfcO1OLCoWK45pPfoKdaXI7C0b4e/tjcndwkXAZYocKL9N0UYWQQIPEKD85oYgAfMRoPw2X09ZEQlQfnMPkIB5CFB+m6eXrMTiBCi/1dsAKw/sw8frf8GH4c+ot6jClQ6eP4N3VixGXGIi6lYIxNtdu6Ogp6fCVdWbPnHVEnSoWQuDWj6p3qJcCZTf3AQkYD4ClN/m6ykrIgHKb+4BEjAfAcpv8/WUFVmXAOW3dXvPyk1GgPJbnYbO+m0DNh2NwujOYeosqMIqW49F491fVyA1LQ1tqtfE8PZd4CrIaXSpvNd+/AZjgruh46O1VaiWS2QlQPnN/UAC5iNA+W2+nrIiEqD85h4gAfMRoPw2X09ZkXUJUH5bt/es3GQEKL+VN/StZQtwM+6uUKeXF+z5A3O3b0Y6gKebtMAzTR9XXqhKK9yOj8eAb2dh2X+GoWaZciqtymUov7kHSMDcBCi/zd1fVmdNApTf1uw7qzY3Acpvc/eX1VmLAOW3tfrNak1MgPJbWXNf+HY2AooWR7d6DZUtpNLs9LQ0fLzhV6yNOghXFxcM79BVPvUtyuf4lUsYu2whdo2aAB8vL1HSMl0ePPltupayIBIA5Tc3AQmYjwDlt/l6yopIgPKbe4AEzEOA8ts8vWQlFidA+Z3/DdD50/cQUrseHq9SLf+LqDgzKSUF0h3ae06dlO/1frtLd9StGKhiBGVLbT9+BEv27cHa10cpW4izbRKg/LaJiANIwOkIUH47XcuYMAnYJED5bRMRB5CA0xGg/Ha6ljFhEsiVAOU3NwcJmIQA5bfjjUxPT0f9SWMwqlMoqpcp6/gCGsy4FReHt5YvxLHLF1HEuxCm9uiLgGLFNYiUvyUX7d2NczHX8XX/l/K3AGc5RIDy2yFcHEwCTkGA8tsp2sQkScAhApTfDuHiYBJwCgKU307RJiZJAnYRoPy2CxMHkYD4BCi/HevR+ZgbaDz1bXw38BUU9/F1bLJGoy/eisHIRT/hSuxtlCtSFNO690FxXz+Nojm+7Be/rUcpP3+8E9LT8cmckS8ClN/5wsZJJCA0AcpvodvD5EggXwQov/OFjZNIQGgClN9Ct4fJkYBDBCi/HcLFwSQgLgHKb/t7s+ufE3h5/tf4ZsDL9k/SeKR00nvM0kjEJiSgVrkKGBfSE4UKFNA4qv3Lv7NiEUJq18eAFk/YP4kjFROg/FaMkAuQgHAEKL+FawkTIgHFBCi/FSPkAiQgHAHKb+FawoRIIN8EKL/zjY4TSUAsApTf9vVjyb7d+PK3DXi/11P2TdBh1M6TxzD1l+WQ7vpuWbU6RnQKgburqw6R7QsxeP4cTArrjbY1HrVvAkepRoDyWzWUXIgEhCFA+S1MK5gICahGgPJbNZRciASEIUD5LUwrmAgJKCYglPyOuRWLV0Z+hIOHT8qFffPxSDSqWz3PInfvj8bzQ6bJY2rVCMIX015HEf9/rzA4cfoC3v/8J0wdPeiBX79wPV4xPC5AAiIRoPy23Y2Zm9ZCEs0jOobYHqzTiFUH9kHKS/r0btgEA1u01imy7TA37t7BgG9mY93rI1GlZGnbEzhCdQKU36oj5YIkYDgBym/DW8AESEB1ApTfqiPlgiRgOAHKb8NbwARIQDUCwsjv+IQkjHt/Dpo2qIkewa0gSesxUyMwedQgVA7I+SE6SXxPnxX5kPCW6GQV6TlJccpv1fYQFxKEAOV33o0YufgnJCQnY6AoHFEP+wAAIABJREFU13akpyNi6yYs3rcbLi4uGNKuEzrUrC3IbgKiL57HpNXLsGv0RHh5eAiTl9USofy2WsdZrxUIUH5bocus0WoEKL+t1nHWawUClN9W6DJrtAoBYeR39hPa2WV49oZIcnvUlAi88WrfXOW4NIcnv62ylVkn5Xfue+DZOV+gRuky6Fq7vhAbJTk1BVNWL5dPoXu6u+OtLt3RMDBIiNykJDYfOYw1h/7Cqv8bIUxOVk2E8tuqnWfdZiZA+W3m7rI2qxKg/LZq51m3mQlQfpu5u6zNagSEkd85neL+cFak3I+hg8Mf6osktQePmI6Ll69nfu2FfsEPjc1Nfl+OSbBar1mvyQkU9fNEbFwKklPSTF6pY+W1mT4ZfRo2RfPKVR2bqNHouwmJGL00Eocvnod/QW9M6tYb1UqX0Sia48v+vHsnrt6JxexnX3B8sr0zXACk2zvY2uOK+Hrgbnwqkvh9be2NwOpNRcDfxwMJialITDbin9f8DdhUm4nFCEPAr5CH/O/g8YmpwuTEREiABJQR8PX2QGpqOuISU5QtxNkkQAKGExBKfi9YsRnj3xiIgl6eMpi85Lcky7OOz7jmJDyktXxtSsYnN/mdmkbzYvjuYwKqEnB1cUFaOvd1BtTE5GRUeGM4Pu7bF9XLiCGXL968hf/+8D3OXL+OckWK4PNnnkWZwv6q7gMli01dvRpVSpbE1J69lCxjc25Kahrc3cR50NNmwgYO4Pe1gfAZmgQ0IiB9X6enpxvyZ4Apqelwd5MEOD8kQAJqEjDy+1rNOriWdgT4+692bLVa2dXl3nkd/ie2VoS5LgnoR0Ao+Z39/m5H5LeEbPHqLdj5Z9QDAp3Xnui3mRjJWAK89uRf/v9cu4o20ydh3oBXUNjb29jG3I9+8uoVjFryM27Hx6F6mbKYENoLvl4FhchNSmLM0kj5hPwzTR8XJicmAvDaE+4CEjAfAV57Yr6esiIS4LUn3AMkYD4CvPbEfD1lRdYlIIz8dvTO75yktiS/T5299MDVJ5Tf1t3cVquc8vtex7cfP4LXI+fjq+cGCbMF9p85hXErFiEpJQVNg6pidHAoPNzchcnvxXkRmN77abSsWl2YnJjIPQKU39wJJGA+ApTf5uspKyIBym/uARIwHwHKb/P1lBVZl4Aw8jv7A5eStB4zNQKTRw2SH7TMuON76qhBaFS3OjLGly5ZVJbdGdeeDBscLn8940P5bd3NbbXKKb+ByD07MW/HVkzp3keY9q+NOoBP1v8qX0kTXKse/tumPeAixo+cX4m9jefnzsK2N99GYLESwjBjIv8SoPzmbiAB8xGg/DZfT1kRCVB+cw+QgPkIUH6br6esyLoEhJHfUgsyBPbBwyfljnzz8chMkZ1dfuc0fuKIgZn3fWdfSxqf9UHMC9fjrdt1Vm5KAlaX3x+uW40D585gaPtgYfo77/ct+HH3Dkj3QA5q2Qbd6jUSJre/z5/F9HWrsXv0RLi68v5tYRqTLRHKb1E7w7xIIP8EKL/zz44zSUBUApTfonaGeZFA/glQfuefHWeSgGgEhJLfesKh/NaTNmPpQcDK8nvYgu8hnaV+rllLPVDbjJGSloYP163Cpugo+XoT6ZoT6boTUT4bDv+NzUcPY9l/homSEvPIhQDlN7cGCZiPAOW3+XrKikiA8pt7gATMR4Dy23w9ZUXWJUD5bd3es3KTEbCq/O4XMRN1KwSg82N1hOhofFISxi1fiIPnz8LXywsTQnvLD1yK8vn+j98Rl5SIGf36i5IS88iDAOU3twcJmI8A5bf5esqKSIDym3uABMxHgPLbfD1lRdYlQPlt3d6zcpMRsKL8bv3BJDzbtAUaBVYWopsxcXcxcvFPOHP9Gkr6+mFaz74o419EiNykJD5a/wtqli2PNzp0ESYnJpI3Acpv7hASMB8Bym/z9ZQVkQDlN/cACZiPAOW3+XrKiqxLgPLbur1n5SYjYCX5fTcxEfUnjcF7PfuhUnExHmo8ff0axi6NxLU7sQgqXlJ+dNPf21uYXSZJ+f7NW6FPw6bC5MREbBOg/LbNiCNIwNkIUH47W8eYLwnYJkD5bZsRR5CAsxGg/Ha2jjFfEsidAOU3dwcJmISAVeT30csXEfzp+5g38P/buw8wqcqz/+O/XdrSqzRBmihtlyZKEbBEpIg1YswbFUiMMb5JLNGImhi7f43lfVN80cQImqjEihQLFoqygrjLLlUUkC5ShAV2Wbb8r3PMbIZxlj0zc2bmOed857pyXYE95zn3/bnPuPDbwzM/U6N6WUZMr3DrJt0582VZW56c0rmr7hh7oerVqWNEbRWVlZr0zFQ98V+TNbjriUbURBHOBQi/nVtxJAJeEWjeqK6KS8tUUlrhlZKpEwEEahAg/OYWQcB/AoTf/pspHQVXgPA7uLOnc58JBCH8fn/NSt3++r/0f/812ZjpLVy3Rv/vzTdUXlGhUb2ydf3Zo5WRmWlEfdu+2aufTP+rltx2t9o3M2f7FSNwPFIE4bdHBkWZCMQgQPgdAxaHIuARAcJvjwyKMhGIQYDwOwYsDkXAcAHCb8MHRHkIOBXwe/j9bO4ivbxsie6+4PtOSZJ+3IyluXrmo/n2dSYOHakJg8zZUiR/00b9Zf485U65O+kOXCB5AoTfybNlZQTSJUD4nS55rotA8gQIv5Nny8oIpEuA8Dtd8lwXAfcFCL/dN2VFBNIi4Ofw+4G5M/XF11/pl2edmxbbyItWVlTo8Xff1NurClUrM1O/GT1ew7v3MKI2q4i3VxYod8MXeulnvzKmJgqJT4DwOz43zkLAZAHCb5OnQ20IxCdA+B2fG2chYLIA4bfJ06E2BGITIPyOzYujETBWwK/h9y9emKZGdevp8lOHGmF/+MgR3TvnNX2ycb3q162ru86/RNnHn2BEbVYR0xcvtLdgeeyyK4ypiULiFyD8jt+OMxEwVYDw29TJUBcC8QsQfsdvx5kImCpA+G3qZKgLgdgFCL9jN+MMBIwU8GP4fcn/Pa6hXbvrnF7ZRpjvO3RIt736otbv2qlWjRrr3gsnqFPLVkbUZhXx8FuzNLBzF11/9hhjaqKQxAQIvxPz42wETBQg/DZxKtSEQGIChN+J+XE2AiYKEH6bOBVqQiA+AcLv+Nw4CwHjBPwWfg/9f7/XNcPPVP8TuhhhvX3fXt368gvaWbRfJ7RspQcv/oGaN2hoRG1WEb9+6Z+6dsTZumjAIGNqopDEBQi/EzdkBQRMEyD8Nm0i1INA4gKE34kbsgICpgkQfps2EepBIH4Bwu/47TgTAaME/BJ+7z10UAPvvUN/uvwqdWjewgjjNdu36Xcz/6WikhL169hZvzvvInvLExNepWVlmjTtST0z8RoN7GTGDwpMcPFLDYTffpkkfSDwHwHCb+4GBPwnQPjtv5nSEQKE39wDCPhHgPDbP7Okk4AL+CH8Xrl1iy6Z+j+aPulnyqpTx4iJ5q5fp/vnzNSR8jKd2aOXfn3OOGVmZhpR25Y9u3Xd89P08W13q3XjJkbURBHuChB+u+vJagiYIED4bcIUqAEBdwUIv931ZDUETBAg/DZhCtSAgDsChN/uOLIKAmkX8Hr4/dbKAt035zX96fKJabcMFTC7IE9/ev9t+5c/PHWorhgy3JjarA/cfPqj+Vp0y53G1EQh7gsQfrtvyooIpFuA8DvdE+D6CLgvQPjtvikrIpBuAcLvdE+A6yPgngDht3uWrIRAWgW8HH7//cP5mlWQpzvHX5xWw6qLV1bqyYXv69W8pcrMyNCvvjdao3rlmFGbpNmFeSrYslnPX/3fxtREIckRIPxOjiurIpBOAcLvdOpzbQSSI0D4nRxXVkUgnQKE3+nU59oIuCtA+O2uJ6shkDYBr4bf98x6VVv27tF1Z56TNrvwC1vbm1jbnFjbndStXVt3jb9E/U7obERtVhFPfzjfruuhSy43piYKSZ4A4XfybFkZgXQJEH6nS57rIpA8AcLv5NmyMgLpEiD8Tpc810XAfQHCb/dNWRGBtAh4Mfz+2XNP67hGjXTpKYPTYhZ50aKSYv1u5kuyPuCyeYOGuvfCCep6XGsjarOKeHDuTA078SRdd+YoY2qikOQKEH4n15fVEUiHAOF3OtS5JgLJFSD8Tq4vqyOQDgHC73Soc00EkiNA+J0cV1ZFIOUCXgu/z//zIzr75N72h0ia8Nq5f79ufeV5bd/3jY5v3kIPXnSZWhn0IZK/evFZ3XTOGJ2XM8AELmpIkQDhd4qguQwCKRQg/E4hNpdCIEUChN8pguYyCKRQgPA7hdhcCoEkCxB+JxmY5RFIlYCXwu9B9/9WN5w9Wn2O75gqnmNeZ/3XOzXl1Re1v/iQso/vqDvHX6KG9eoZUduh0lJNemaqXvzpL5TT4QQjaqKI1AkQfqfOmishkCoBwu9USXMdBFInQPidOmuuhECqBAi/UyXNdRBIvgDhd/KNuQICKRHwQvi9s2i/Trn3Dv31yp+obdNmKXGp6SKfbFyve2a/qtKyMg3v3kO3jB6v2pmZNZ2Wkq9v2LVTv37pn1py2z32Niy8gidA+B28mdOx/wUIv/0/YzoMngDhd/BmTsf+FyD89v+M6TA4AoTfwZk1nfpcwPTwO2/TRl359yc0fdK1qmVIuPz2qgI9Pu9NVVZW6tKBp2ry6Wcac5dYH7j5/NLFev+mO4ypiUJSL0D4nXpzrohAsgUIv5MtzPoIpF6A8Dv15lwRgWQLEH4nW5j1EUidAOF36qy5EgJJFTA5/J5VkKdH583R4xOuSKpBLIs/89ECvbh0sTIyMnTdGedoXE7/WE5P6rEzly/TZ1/t0PTJ1yb1OixuvgDht/kzokIEYhUg/I5VjOMRMF+A8Nv8GVEhArEKEH7HKsbxCJgrQPht7myoDIGYBEwNv6fOf1fvrV2l28deEFM/yTq4rKJCj74zW++vWaW6tWvrt+Mu0imduybrcjGv++SC99S0QQPdd+GEmM/lBP8JEH77b6Z0hADhN/cAAv4TIPz230zpCAHCb+4BBPwjQPjtn1nSScAFTAy/f/v6v7Tn4EFdM+IsI6ZTXFqqO2e+pMKtm9WkfgPde8H31b1NOyNqs4qw9h4f1StbVw83w8sYmAAXQvgd4OHTum8FCL99O1oaC7AA4XeAh0/rvhUg/PbtaGksgAKE3wEcOi37U8C08PvH059Sx+YtdHH/QUaA7yrar9tf/5c27d6ldk2b6cGLL1frJk2MqM0q4r+ff0a3j71Q5/bOMaYmCkm/AOF3+mdABQi4LUD47bYo6yGQfgHC7/TPgAoQcFuA8NttUdZDIH0ChN/ps+fKCLgqkK7we8XWzdpfUnxUL7e+8oJO63Ki+nY4QSe2bqMGdeu52musi325e5emvPKC9h46aD/pfd+Fl6pxVv1Yl0nK8fuLizVp2lS9ft1N6tXu+KRcg0W9K0D47d3ZUTkC1QkQfnNvIOA/AcJv/82UjhAg/OYeQMA/AoTf/pklnQRcIF3h9wV/fkSffLnhP/qVlUdN4rEJV6hHu/Zpm07h1k26c+bLsrY8Gdy1u6aMOd/e69uE17qdO/Tb11/Skil3q1FWlgklUYNhAoTfhg2EchBwQYDw2wVElkDAMAHCb8MGQjkIuCBA+O0CIksgYIgA4bchg6AMBBIVSFf4fd0/n1Hu+nXaWbRfGcpQeUW5urVuq4Z169gt/fyMc9Sp5XGJthfX+daHWj7yzmyVV1RobHZ//eLMc6SMjLjWcvukDz9fq1fyPtE7N0xxe2nW85EA4bePhkkrCPxbgPCbWwEB/wkQfvtvpnSEAOE39wAC/hEg/PbPLOkk4AKpDr9fWvaxnvloofYcPKBze2drTJ++uu3VGVq9fasevfRH6tk+vVt4vLB0saZ9tEBW1H31iLN0kSF7j1u36cufLtWWvbv1t6t+GvC7lvZrEiD8rkmIryPgPQHCb+/NjIoRqEmA8LsmIb6OgPcECL+9NzMqRqA6AcJv7g0EfCKQivB7zY5tmrZ4gV5Ykqvh3U+2A+/e7TtUCd4447m0h9+VFRV6/N039faqQtWpVVu3jT3f3u7ElNcTH8xTm6ZN9fvxl5hSEnUYLED4bfBwKA2BOAUIv+OE4zQEDBYg/DZ4OJSGQJwChN9xwnEaAgYKEH4bOBRKQiAegWSG3y9aT1EvXijrwxlH98nR6N59o+6bne7w+/CRI7p3zmv6ZON6NahXT/ddMCGt+41HzvH3b7ys8TkDNGnYyHhGzDkBFCD8DuDQadn3AoTfvh8xDQZQgPA7gEOnZd8LEH77fsQ0GCABwu8ADZtW/S3gdvi9ctsWTV+8UM8vXayze/TW6N456tnu2FuZpDP83nfokG579UWt37VTrRs30X0XXqYOLVoYM/Rrnnta915wqc7u2duYmijEfAHCb/NnRIUIxCpA+B2rGMcjYL4A4bf5M6JCBGIVIPyOVYzjETBXgPDb3NlQGQIxCbgVfv9zyUf2XtnFR0rtJ7yt0Lt2rVqOaklX+L1lzx7d/tqL9odudm3VWvdfdJmaNmjgqOZkH2TtiT7pmSf1zg236sTWbZN9Odb3mQDht88GSjsISCL85jZAwH8ChN/+mykdIUD4zT2AgH8ECL/9M0s6CbhAIuF34dbNduD9wtJcjer17YdXnty2Xcyi6Qi/12zfpttfn6FDhw/rlM5ddcfYC1WvTp2Ya0/GCWu2b9W9c17XktvuUZYhNSWjT9ZMngDhd/JsWRmBdAkQfqdLnusikDwBwu/k2bIyAukSIPxOlzzXRcB9AcJv901ZEYG0CMQafldWVuofH39o7+V9pLzcfsJ7dJ++yszIiLv+VIffuevX6f45M3WkvMwO7a8/e7QyMjPjrt/NE+d/tlpvrliu2b+8xc1lWStgAoTfARs47QZCgPA7EGOmyYAJEH4HbOC0GwgBwu9AjJkmAyJA+B2QQdOm/wWcht/5m7/UtMULNOOTjzW2T1878O7u0nYcqQy/X8tbqicXvKdKSVcNHaEfDBpizJBnfJKrrw8UaeqPfmxMTRTiTQHCb2/OjaoROJYA4Tf3BwL+EyD89t9M6QgBwm/uAQT8I0D47Z9Z0knABY4VfpeVl+u5jz+0P8DSeo3uk2Pv5+32KyXhd2Wl/vj+O5pTmKdamZm66ZxxOrNHL7dbiXu9P773ljq3PE63j7sw7jU4EYGQAOE39wIC/hMg/PbfTOkIAcJv7gEE/CdA+O2/mdJRcAUIv4M7ezr3mUC08HvZlxvsp7xfy1umMVbg3aevuh3XJmmdJzv8trY3sbY5sbY7qV+3ru46/xJlH39C0vqJdeE7XvuXJpxymn40+PRYT+V4BKIKEH5zYyDgPwHCb//NlI4QIPzmHkDAfwKE3/6bKR0FV4DwO7izp3OfCYTC7wMlh/WP3A81PXeh6tSqrXN759j7Yafilczwu6ikWL+b+ZKsD7hs1aix7r1wgjq1bJWKthxd4yfTn9Ifvv9DjTipp6PjOQgBJwKE306UOAYBbwkQfntrXlSLgBMBwm8nShyDgLcECL+9NS+qReBYAoTf3B8I+ETgs68364/vvqs3ludpjLWXd+++6tLquJR2l6zwe+f+/br1lee1fd83OqFlKz148Q/UvEHDlPZW3cV2Fu3XxL9P1aLf/M7e7oQXAm4KEH67qclaCJghQPhtxhyoAgE3BQi/3dRkLQTMECD8NmMOVIGAGwKE324osgYCaRIoLi3Vs7mL7P81qV9Po3rl6MyTe6epGikZ4fe6r7brjtdf0v7iQ8o+vqPuOv/79pYnJrxWbN2sR96Zo6W33aPMzEwTSqIGnwkQfvtsoLSDgCTCb24DBPwnQPjtv5nSEQKE39wDCPhHgPDbP7OkkwAJ5K7/XNM+WqC3VhVqbHZfndsrR307tdeB4jKVlVekTcLt8PuTjet1z+xXVVpWZn+o5Y3njFNtQ0Lmd1ev0Aefrdbr192UNm8u7H8Bwm//z5gOgydA+B28mdOx/wUIv/0/YzoMngDhd/BmTsf+FSD89u9s6cxnAgdKSvSc9ZT3x4vUJKuBvZf3WT16VXVp/aHbT+H326sK9Pi8N1VZWanLBw3RlUNHGDPRf3z8kQ6WluhPl080piYK8acA4bc/50pXwRYg/A72/OnenwKE3/6cK10FW4DwO9jzp3t/CRB++2uedONDgQ8//0zTFi/Q+2tXVe3l3aF5i+906qfw++8fzdeMpbnKzMjQr7432t7OxZTXY/Pmqlf7Drp51DhTSqIOHwsQfvt4uLQWWAHC78COnsZ9LED47ePh0lpgBQi/Azt6GvehAOG3D4dKS94X2Fd8SM/lfqhncxeqZaPGGt07RyNP6nnMxvwQfpdVVOihN9/QwnVrVLd2bd01/hL1O6GzMQP9zSsvaOLQEbrslMHG1EQh/hYg/Pb3fOkumAKE38GcO137W4Dw29/zpbtgChB+B3PudO1PAcJvf86VrjwqYIW+0xYv1MJ1a//9lHeO2jdr7qgbr4ff1od33jnzJRVu3awm9RvogYsuU9fjWjvqPdkHVVRWatIzU/WXH07SkG7dk3051kegSoDwm5sBAf8JEH77b6Z0hADhN/cAAv4TIPz230zpKLgChN/BnT2dGyKw9+BBex/vZxcvVLumzey9vId37xFzdV4Ov3cV7dftr/9Lm3bv0vHNW+j+Cy9T6yZNYjZIxgnbvtmrn0z/q5bcdrfjH0Qkow7WDKYA4Xcw507X/hYg/Pb3fOkumAKE38GcO137W4Dw29/zpbtgCRB+B2vedGuQwAdrV9lPeeeu/9x+ytv6X5smTeOu0Kvh95e7d2nKKy9o76GD6tGuve69YIIa1qsXt4ObJ+Zv2qi/zJ+n3Cl3u7ksayHgWIDw2zEVByLgGQHCb8+MikIRcCxA+O2YigMR8IwA4bdnRkWhCNQoQPhdIxEHIOCewK4DRXoud5Gm5y5Sx+Yt7b28h514kisX8GL4Xbh1k+6c+bKsLU+sp91vPnec6tSq7YpHoou8vbJAuRu+0Es/+1WiS3E+AnELEH7HTceJCBgrQPht7GgoDIG4BQi/46bjRASMFSD8NnY0FIZAzAKE3zGTcQICsQu8u2alpn20QJ9u2mgH3tZT3sc1dndbD6+F3++vWaVH3pmt8ooKXTJgkH4y/KzYYZN0xvTFC+26HrvsiiRdgWURcCZA+O3MiaMQ8JIA4beXpkWtCDgTIPx25sRRCHhJgPDbS9OiVgSOLUD4zR2CQJIEvtq/T8/mLrKf9O7aqrXO7ZOjIV2T92GJXgq/n1/ykayAOSMjQ9edcY7G5fRP0hRiX/bht2ZpYOcuuv7sMbGfzBkIuCxA+O0yKMshYIAA4bcBQ6AEBFwWIPx2GZTlEDBAgPDbgCFQAgIuCRB+uwTJMgiEBKztMqbnLlTBls0abe3l3buvWjZqlHQgL4TfFRUV+p9339TbqwpVt3Zt/XbcRTqlc9ek2zi9wK9f+oeuHfk9XdR/kNNTOA6BpAoQfieVl8URSIsA4Xda2LkoAkkVIPxOKi+LI5AWAcLvtLBzUQSSIkD4nRRWFg2awLZv9n77lPfHH6pHm3Ya1Ttbp3U5MaUMpoffh48c0e/feEX5mzeqcVaW7rtwgrq3aZdSo+ouVlpWpknTntQzE6/RwE5djKiJIhCwBAi/uQ8Q8J8A4bf/ZkpHCBB+cw8g4D8Bwm//zZSOgitA+B3c2dO5CwJzVyzX9MULtHrHdo3pnWM/6d28QUMXVo59CZPD732HDum2V1/U+l071a5pM9130QS1a9o89iaTcMbmPbv1389P08e33a3WLu/DnoRyWTJgAoTfARs47QZCgPA7EGOmyYAJEH4HbOC0GwgBwu9AjJkmAyJA+B2QQdOmewJb9u6x96v+x8cfqs/xHTSqV44GGbB1h6nh95Y9e3T7ay9qZ9F++0nv+y68VI2z6rs3kARW+mTjej390XwtuuXOBFbhVASSJ0D4nTxbVkYgXQKE3+mS57oIJE+A8Dt5tqyMQLoECL/TJc91EXBfgPDbfVNW9KnArII8O/T+4uuv7Ce8R/fOUdP6DYzp1oTw+9mPF6i8olwju/dWl1attWb7Nt3++gwdOnxYg7t215Qx59t7fZvwml2Yp4Itm/T81b8woRxqQCCqAOE3NwYC/hMg/PbfTOkIAcJv7gEE/CdA+O2/mdJRcAUIv4M7ezp3IPDl7l16NnehvZd3/46dNapXtrF7Qqcz/D5QelDNGmbp/TVrtHbHDp3ft5/q1amtW/71kjbt3qWx2f31izPPkTIyHKgn/5CnP5xvh/APXXJ58i/GFRBIQIDwOwE8TkXAUAHCb0MHQ1kIJCBA+J0AHqciYKgA4behg6EsBOIQIPyOA41T/C8wc/kyTftooTbt2a0xfXJ0bu++9oc0mvxKV/hdVlGqxes/0/2zZx/F07djR90xfrzeKlytSwacagzdA3Nn6vQTT9J1Z44ypiYKQaA6AcJv7g0E/CdA+O2/mdIRAoTf3AMI+E+A8Nt/M6Wj4AoQfgd39nQeIWB9GOOzixfZe3lbe3if2ztH/Tp28oxTusLvA6VFuvXll/TFzp3fsXp4wgT179BNR8orjHD81YvP6sbvjdH4vgOMqIciEKhJgPC7JiG+joD3BAi/vTczKkagJgHC75qE+DoC3hMg/PbezKgYgeoECL+5NwIv8GreUvsp7+37v9GY3n3t0LthvXqec0lH+F0rM0Pb9u/SxL/9NarXmOxs/eyMs1Q3M71PzR8qLdWkZ6bqxZ/+QjkdTvDcbCk4uAKE38GdPZ37V4Dw27+zpbPgChB+B3f2dO5fAcJv/86WzoInQPgdvJnTsaTPd+7Q9Nxvn/Ie1u0key9vr4ei6Qi/P/tqm9o3b6RLn3gi6n112amn6sohpytTddJ2323YtVO/fumfWjLlHjVv2DBtdXBhBOIRIPyOR41zEDBbgPDb7PlQHQLxCBADgYiVAAAgAElEQVR+x6PGOQiYLUD4bfZ8qA6BWAQIv2PR4ljPC7y0bImmLV6g3QcOaHSfHI3unaOsOnU935fVQKrCb+sp6nmrCzW7IM/eE93a2mT64sUq3Lz5O45PXHGlTmzVXmUVlWkxzl2/Ts8vXaz3b7ojLdfnoggkKkD4nagg5yNgngDht3kzoSIEEhUg/E5UkPMRME+A8Nu8mVARAvEKEH7HK8d5nhFYs2Obns1dpH9+/JFGntTD3takd/sOnqnfaaHJDr/X7tim2YX5mv/ZapWWldlltW3STNeddZbq1qmlP86bpy1799q/n5GRofH9+mnS6acrK7OB0xZcPW5m/jJ9Zj3hP/laV9dlMQRSKUD4nUptroVAagQIv1PjzFUQSKUA4XcqtbkWAqkRIPxOjTNXQSAVAoTfqVDmGmkRmPFJrqYtXqj9xYc0qleOxvTpq7q1a6elllRcNBnhd0lpqd5bu8p+ytv6QFDrVSszU6d16aaxOf01sGNnK+nW4fLDKqs4ot0HilSwZYsu7N9fuw8cUrP6TVSZhoe+n1zwnpo2aKD7LpyQCnqugUDSBAi/k0bLwgikTYDwO230XBiBpAkQfieNloURSJsA4Xfa6LkwAq4LEH67TsqC6RRYuW2LnrOe8l7ykc7u0dt+yrtnu+PTWVLKru1m+L1x99d6PX+Z5q9dreIjpXYPrRs30eg+fTWmTz81axD9ae4/vDNLZeVluiBnkHq2T4/7PbNf1Tk9s/XTEWelzJ4LIZAsAcLvZMmyLgLpEyD8Tp89V0YgWQKE38mSZV0E0idA+J0+e66MgNsChN9ui7JeWgSeX/KR/ZR3cWmpzu2drdG9+6p2rVppqSVdF000/C4tO6L3P1utOQX5+uyr7XYbmRkZOqVzV43L7q9Bnbva25kc63XjjOe0evtWPXrpj9ISfv/388/o9rEX2j/04IWAHwQIv/0wRXpA4GgBwm/uCAT8J0D47b+Z0hEChN/cAwj4R4Dw2z+zDFwnhVs369nFC/XPJYvtD660As+T27YLnEOo4XjD7y1792jm8mV6d/UKWR9mab1aNGqk0b1yNDa7n1o2auzYNF3h9/7iYk2aNlWvX3eTegXkSX/HQ+FATwsQfnt6fBSPQFQBwm9uDAT8J0D47b+Z0hEChN/cAwj4R4Dw2z+zDEwnz338oaZ/tEBHKsp1bq8ceysO6wnloL9iCb/LKso1f+0azSnM06rtW206S3DACV00rm9/nda5mzIzM2MmTUf4/fnOHbrj9Ze0ZMrdapSVFXPNnICAyQKE3yZPh9oQiE+A8Ds+N85CwGQBwm+Tp0NtCMQnQPgdnxtnIWCiAOG3iVOhpu8I5G/+UtMXL9SLn+RqXHY/+ynv7q3bIhUm4CT83r5vr2Yuz9O81YU6UFJin928QUOd0ztb47P7q1XjJgmZpjr8XrRurV7N/0Tv3DAlobo5GQFTBQi/TZ0MdSEQvwDhd/x2nImAqQKE36ZOhroQiF+A8Dt+O85EwDQBwm/TJkI9VQLlFRX6x8cf2nt5W08lW3t5n9u7L0LVCFQXfluOiz5fq9kFebK2irFelmffjp3sHyQM6XaSasXxlHe0MlIZfr/86VJt3rtbT1/1U+4JBHwrQPjt29HSWIAFCL8DPHxa960A4bdvR0tjARYg/A7w8GnddwKE374bqfcbWvblBj2bu1BWuGl90KIVenc7ro33G0tyB5Hh9879+zWrYJneXlmofSXF9tWbZNXXOb366Ly+A9S2STPXK0pV+P3EB/PUpmlT/X78Ja73wIIImCRA+G3SNKgFAXcECL/dcWQVBEwSIPw2aRrUgoA7AoTf7jiyCgImCKQ0/C4uKdWdDz+t2e/m2r3fc8tkXTx2xDEdvvhym6655RFt/2q32rVpqakP3aRundrb5+zdV6Rrb31MhavX279+5vFbNahfD/v/h58XukB2z6564sEb1LxpY23b/W0YyMsMgdKysqqnvOvWrmXv5X1Or2wzivNIFdYfuvcfKtXCzz6z9/LO27RRlf+uvc/xHe2nvId37+HaU97RWFIRft8582Wd33eAJg0b6ZHJUCYC8QsQfsdvx5kImCpA+G3qZKgLgfgFCL/jt+NMBEwVIPw2dTLUhUDsAikNvx+dOsOu8MZrJlQF1zddM6EqsI4s3wqwb3/gKd035eqqwDt0TChIHzywlx2gRx57rHOtNQi/Y79ZknHG0o1faPriRZq5/NOqvby7tDouGZfy9Zq7DxRp3poCzczP056DB+1erQ9/PLtHH13Qb4DaNW2ekv6THX5f89zfdO8FE3R2z94p6YeLIJBuAcLvdE+A6yPgvgDht/umrIhAugUIv9M9Aa6PgPsChN/um7IiAukSSFn4bT2lPeX+p3Tzz39QFWSHh+GRAKFw+9LxZ0QNx61w++G/vKAHbrvafpK7pjA8cn3C73TdclJxaan+seRD+wMsG9Stp3N7Zevsnn3SV5BHr1xRUaElG9fbT3lbW8VUVH77nHfPdsdrbJ9+OqNHT9XOrJXS7pIVfu85eECTnnlS79xwq07kg05TOlMull4Bwu/0+nN1BJIhQPidDFXWRCC9AoTf6fXn6ggkQ4DwOxmqrIlAegRSFn5HexL7lTkLlLtsle66ebLqZ9U9SiBySxPri+POHlx17NL8NXpk6oyqbUysr4eH6ZHbnoRveWIdS/id+hsud/3nduD91soCjenTV+f2zlGnlq1SX4jHr/jNoYOavWK53izM164DRXY3DerW1ejsHHuP9PZNW6Stw2SE32u2b9W9c17XktvuUVadOmnrjQsjkA4Bwu90qHNNBJIrQPidXF9WRyAdAoTf6VDnmggkV4DwO7m+rI5AKgVSGn6HP6ltNXms8Lu6J7vbtm5hb5tihd//euODo4LzYz1Jbn1tx849VceXHqlIpXNgr1VUUqKnFy3Q1Pnz1bxBA52X01fn9mEv75hviMpK5W74Qq8uW6ZFn68Le8q7nS7qP1CjevdRw6w6Kq+Q/v0AeMyXcOOEn05/RoVbNuvJKycqu0PHhJect2qFXs/P14dTbk94raMWyHB3OVaLTaC8vFK1ajEEJ2q1a2WovKIyre9rJ3VyDAIIOBeonZlhfx+vCH0wh/NTEz7S+u9JrUz++5swJAsgECGQzvc1w/CGAP/99cacwqu0v19WSuXp/Au299ioOJpAGv7MxyCOFkhp+B25f3cs4bdVdvjT3p9v2HrMJ78jBx0Zpu/af5h7IYkCi9at1TMfLdQ7q1bovJx+9pPeHVu0TOIV/bn0/uJizS7M16zlefpq/z67yfp16urMHr100YCB6tKqdVXjjevX1qHD5XZQlq7XL59/Vqu2bdH/XH6FerfvkFAZzy9ZrK+LivS3iT9JaJ2oJ6ePyP1ePLiixU/04mxw1hMn1vv6SBk/sHUmxlEImC/QuEEdHT5SLh7EMH9WVIiAU4FGDeqorKxCJaXlTk/huIAJ8Odf7w28Uf3a9t+tiw/zvvbe9AyrmL/8pn0gKQu/Y93zO9rx4U97b/tq1zH3/K4p/GbbE/fvvX3Fh/TPjz/S9NyFatWwkUb1ztHIk3q6f6EArJi/eZO9l/dH69epvPzbb7ZdW7XWuJz+OuvkXsqqe/Q2QdbXrX9ueaC4TGXW499perm17ckf33tLnVsep9vHXZimTrgsAmYIsO2JGXOgCgTcFGDbEzc1WQsBMwTY9sSMOVAFAm4KsO2Jm5qshUB6BVIWfltthm9LEtrT+6ZrJlR9oGXk1iThv7bOv/PhpzV4YC9dPHZEjR9w+dYHS3Rilw7Vfrgm4bd7N97CdWs0ffEiLVi3RmP/vZd3+2bN3btAQFY6ePiw3ly5XHMK87Xtm71213Vr19YZ3XtqbE4/ndy2/TEl/BJ+3/HaDE04ZbB+NPj0gEyeNhGoXoDwm7sDAf8JEH77b6Z0hADhN/cAAv4TIPz230zpKLgCKQ2/i0tK7QB79ru5tvg9t0y2g+zQKzL8jjz+x5ePtff7Dr0iPxTzmcdvrQrSrafEJ17/YNWx4R+Waf0m4XdiN/3egwf13Mcf6tnchWrXtJlG9crW8O49Els0oGev2LZZcwry7L28j5SX2QontGxlP+V9To8+qh/lKe9oVH4Iv38y/Sn94fs/1Aj+xUBA3w20HSlA+M09gYD/BAi//TdTOkKA8Jt7AAH/CRB++2+mdBRcgZSG3yYxE37HN40P1q7Ss7mLtHj9Oo3t088Ovds2bRbfYgE+61BpqeatLtTsgjxt2rPblqhTq7aGdz9JY7P7x7VftpfD76+L9uuqv0/Vot/8zt7uhBcCCHwrQPjNnYCA/wQIv/03UzpCgPCbewAB/wkQfvtvpnQUXAHC7+DOvtrO53+2Wp98uaHq66VlZfp000YVbNmkpvXra1TPPpowaAhycQis2b5Nswvz7C1iLFfr1aF5C43Ntn6QkKOG9erFseq3p3g1/F6xdbMeeWeOlt52jzIzM+PunxMR8KMA4bcfp0pPQRcg/A76HUD/fhQg/PbjVOkp6AKE30G/A+jfTwKE336apku93P3GK5q68L2jV6u0Pp/629dPh5+liwYMculq/l+mpLRU765Zae/lvX7XTrvh2rVqaWjXkzQup59yOpzgCoIXw+93V6/QB5+t1uvX3eSKAYsg4DcBwm+/TZR+EJAIv7kLEPCfAOG3/2ZKRwgQfnMPIOAfAcJv/8zStU7Cn/y2/v+yjes1oFMX9Wx3vH2NU07ooh7tjv3hi64V4+GFNu7+Wq/nL9MHa1appOyI3Ym1P/qYPv00pk9fNcrKcrU7r4Xf//j4Ix0sLdGfLp/oqgOLIeAnAcJvP02TXhD4VoDwmzsBAf8JEH77b6Z0hADhN/cAAv4RIPz2zyyT0slds17Rk/Pf1dXDz9TFA05NyjX8tGhp2RG9v3a1/ZT3Z19tt1urlZmp07qeqPOy+6t/x05SRkZSWvZS+P3YvLnq1b6Dbh41LikWLIqAXwQIv/0ySfpA4D8ChN/cDQj4T4Dw238zpSMECL+5BxDwjwDht39mmZROCL+dsVofWvnG8mV6b81KWR9mab1aN2mq0b1z7Ce9mzVo4GyhBI7ySvj9m1de0MQhw3UZ+8YnMG1ODYoA4XdQJk2fQRIg/A7StOk1KAKE30GZNH0GSYDwO0jTple/CxB++33CCfZH+F09YFlFueavXWN/gOXq7VvtAzMzMjSoczedl9NfAzt1UUaSnvKOVpXp4XdFZaUmPTNVf/nhJA3p1j3BO5PTEQiGAOF3MOZMl8ESIPwO1rzpNhgChN/BmDNdBkuA8DtY86ZbfwsQfvt7vgl3R/j9XcLt+/Zq5vI8zVtdqAMlJfYBLRs10ujefe3Qu1mDhgm7x7OAyeH3tm/26ifT/6olt92t9s2ax9Me5yAQSAHC70COnaZ9LkD47fMB014gBQi/Azl2mva5AOG3zwdMe4ESIPwO1Lhjb5bw+1uz8ooKLfx8jeYU5Ktw62b796ynvK0PAh2X3U+ndu6mzMzM2IFdPMPU8Dt/00b9ef48fTzlbhe7ZSkEgiFA+B2MOdNlsAQIv4M1b7oNhgDhdzDmTJfBEiD8Dta86dbfAoTf/p5vwt0FPfzeuX+/3ihYprdXFmp/SbHt2bxBQ43qnaPzsvupVeMmCRu7tYCJ4ffbKwuUu+ELvfSzX7nVJusgECgBwu9AjZtmAyJA+B2QQdNmoAQIvwM1bpoNiADhd0AGTZuBECD8DsSY428yiOG39ZT34vXrNKcgT/mbv1SlpAxJ/Tp20tic/hrStbtqpfkp72gTNS38XvrlevuJ+ccuuyL+G5AzEQi4AOF3wG8A2velAOG3L8dKUwEXIPwO+A1A+74UIPz25VhpKqAChN8BHbzTtoMUfu8q2q9Zhfmynlbee+igTdQkq75G9c7W+JyBat3EnKe8TQ+/B3bqqrN69NL13xvj9FbjOAQQiCJA+M1tgYD/BAi//TdTOkKA8Jt7AAH/CRB++2+mdBRcAcLv4M7eUed+D78rKiq0ZON6zS7M06dfblBFpfWct5R9fEeNzemn4Sf2MPIpb5PC7xtnPKfV27ceXVKG9az8t6/Xf36jTunc1dH9xkEIIHC0AOE3dwQC/hMg/PbfTOkIAcJv7gEE/CdA+O2/mdJRcAUIv4M7e0ed+zX8/ubQQc1esVxvFuZr14Ei26JxVpbO7pmt8/v2V7umzR35mHRQurY9ueHFZ7Vmx7b/UIQF34TfJt0h1OJFAcJvL06NmhE4tgDhN3cIAv4TIPz230zpCAHCb+4BBPwjQPjtn1kmpRNfhd+Vlfpk0wbNKcjXxxs+r3rKu1e74zUuu79GnNxDtTNrJcUxFYumOvxe//VOzVmRr9mF+frRacM0adhI9WjbPhWtcg0EAiNA+B2YUdNogAQIvwM0bFoNjADhd2BGTaMBEiD8DtCwadX3AoTfvh9xYg36IfzeX1KsuSuWa25hvr7av88GaVCvns7u0Vvn9x2oDs1bJIZkyNmpCr/nrV5he1ofZjlp6AhdMWS4IQKUgYD/BAi//TdTOkKA8Jt7AAH/CRB++2+mdIQA4Tf3AAL+ESD89s8sk9KJZ8Pvykrlb9ms2QWfavGGz1VeXm77nNSmncbl9NMZJ/VU3dp1kmKWrkWTGX5v+2av5hTm2x8IOja7ryYNHamBnbqkq1Wui0BgBAi/AzNqGg2QAOF3gIZNq4ERIPwOzKhpNEAChN8BGjat+l6A8Nv3I06sQa+F3wdKSvTWqgI7qLUCW+tVv05dndmjl8b3HaDOLY9LDMTgs5MRfn/0xWeaU7hcXxXts5/yvmrICNWvW9dgBUpDwF8ChN/+mifdIGAJEH5zHyDgPwHCb//NlI4QIPzmHkDAPwKE3/6ZZVI68Ur4vWLbZs1enqcPv1inI+VltkW349poXHY/nXlyL2UFILB1K/y2PgzU+uGBtZf3wM5dNHnoGRpxUo+k3F8sigACxxYg/OYOQcB/AoTf/pspHSFA+M09gID/BAi//TdTOgquAOF3cGfvqHOTw+9DpaV6599PeW/as9vup17tOhp5Ug+Ny+lvb3ESpFei4fenmzZq7op8rdy2VVcNGa6JQ0fouMZNgkRIrwgYJ0D4bdxIKAiBhAUIvxMmZAEEjBMg/DZuJBSEQMIChN8JE7IAAsYIEH4bMwozCzEx/F6zfZtmF+Zpwbo1Ki379invTq1aaVyf/vpezz6B3ZYjnvC75MgRzSnM05wVy9WpZStNHnaGxvTpa+bNSFUIBFCA8DuAQ6dl3wsQfvt+xDQYQAHC7wAOnZZ9L0D47fsR02CABAi/AzTseFo1JfwuKS3VvDUr7O04Nuz62m6lbq3aOv2kkzWuTz/1at8hnvZ8dU4s4ffq7dvsp7wXrlurKwafronDRvh6P3RfDZpmAiVA+B2ocdNsQAQIvwMyaNoMlADhd6DGTbMBESD8DsigaTMQAoTfgRhz/E2mO/z+fOcOzSrI0/y1q1VSdsRupGPzFhqb3U/n9MpRw3r14m/OZ2c6Cb+twNt6yrth3XqaNGykLh14ms8UaAcBfwkQfvtrnnSDgCVA+M19gID/BAi//TdTOkKA8Jt7AAH/CBB++2eWSekkHeH34bIj+mDtas0uyNO6nTvsvmrXqqVh3U7SeTn91Of4E5LSq9cXrS783rj7a80tXK43CvL0g0GD7dC7N0/Ke33c1B8QAcLvgAyaNgMlQPgdqHHTbEAECL8DMmjaDJQA4Xegxk2zPhcg/Pb5gBNtL5Xht/WhlW8sX6b31qyU9WGW1qt9s+Ya3aefxvTOUaOsrETb8fX5keH3+2tXae6K5SouLbU/vNL6EMvMzExfG9AcAn4TIPz220TpBwGe/OYeQMCPAoTffpwqPQVdgPA76HcA/ftJgPDbT9NMQi/JDr/LKsr1wZrVmrMiX6u3b7U7qFWrlgZ3PVHn9emvfh1PkDIyktCZ/5a0/tD9xVe7NXP5p5pdkK+ze/bWpKEjdWqXbv5rlo4QCIgA4XdABk2bgRLgye9AjZtmAyJA+B2QQdNmoAQIvwM1bpr1uQDht88HnGh7yQq/t+/bq9fzP9W7a1boQEmJXWabJk01Jrufzu2Vo2YNGiRaeqDOz13/ueatKdCGr3fpqiEjdNXQ4WqcVT9QBjSLgB8FCL/9OFV6CroA4XfQ7wD696MA4bcfp0pPQRcg/A76HUD/fhIg/PbTNJPQi5vhd3lFhRauW6PZhflasXWzXW1mRoZO63Kixub00ykndOEp7xhmWFRSrDmF+bZnn+M76vpR39OQLj10pKwihlU4FAEETBYg/DZ5OtSGQHwChN/xuXEWAiYLEH6bPB1qQyA+AcLv+Nw4CwETBQi/TZyKQTW5EX7v2P+NZi3/VO+sWqH9JcV2d60aNdbo7H4a16evmjVoaFDH5peyfMsmzS3MV97mL3XlkOH2ft7tmjZTq6b1tO/gEcJv80dIhQg4FiD8dkzFgQh4RoDw2zOjolAEHAsQfjum4kAEPCNA+O2ZUVEoAjUKEH7XSBTsA+INv62nvBevX6fZBXlavvlLVf77Ke+BnbpobHZ/ndq5Kx++GMOtdaS8XHMK8zRnxXI76J40bKTG5ww4agXC7xhAORQBjwgQfntkUJSJQAwChN8xYHEoAh4RIPz2yKAoE4EYBAi/Y8DiUAQMFyD8NnxA6S4v1vB7V9F+zSrM19srC7T30EG7/OYNGurc3jk6L6e/WjZqnO6WPHX9z77aobkr8jVv9UpdMXiY/QGW3Vq3idoD4benRkuxCDgSIPx2xMRBCHhKgPDbU+OiWAQcCRB+O2LiIAQ8JUD47alxUSwCxxQg/OYGOaaAFX7PLczT6N59dfGAU6MeW1FRoSUbv7D3nv70yw2qqKxUhqT+J3S2n/Ie0vVEnvKO8T6zfnhgPeVdu1YtTR42Uj8YNKTGFQi/ayTiAAQ8J0D47bmRUTACNQoQftdIxAEIeE6A8NtzI6NgBGoUIPyukYgDEPCMAOG3Z0aV2kIzMzO088AelVeW6b3Vq9W6cRPVyqitlg2bqNLaw0TSN4cOalZBnt5cuVy7Dxywf69pVn2N6p2t83IGqnWTJqkt2uNX27xnt+asyNesgnxd1P8UTRo6Qn07dnLcFeG3YyoORMAzAoTfnhkVhSLgWIDw2zEVByLgGQHCb8+MikIRcCxA+O2YigMRMF6A8Nv4EaW+wIwMaU/xXv1t4QK9UVCgz3fs0Ilt2mjESSfp/H79VLh5h2YX5GvJhs/tp7ytV06HEzQuu5+GnXiyamVmpr5oD19xwbo1mrtiufYdOqRJw0boisHDVbd27Zg7IvyOmYwTEDBegPDb+BFRIAIxCxB+x0zGCQgYL0D4bfyIKBCBmAUIv2Mm44QUCzSuH3tulOISXb9cUXFZXGsSfsfF5u+T9pUU6cVPFuuumTO/bTT0qLek344fr/fWrNGH69apcVaWvtczW+f3G6C2TZr5G8Xl7nYdKNKcwnx7q5jTTzxJk4adoaHduid0FcLvhPg4GQEjBQi/jRwLRSGQkADhd0J8nIyAkQKE30aOhaIQSEiA8DshPk5OgQDht3Nkwm/nVoE58pvD3+jKvz6lZV9++Z3we2SPHjqnZy/tPlCsUb1yAmPiVqNLN663P8Dyi6936qqhI3TVkOH2B4K68SL8dkORNRAwS4Dw26x5UA0CbggQfruhyBoImCVA+G3WPKgGATcECL/dUGSNZAoQfjvXJfx2bhWYI63wu/dv7/hPv2FPfjepX19/mzhZjeo2CoxHoo0ePHzYDrytp7xPatPO/gDLc3plJ7rsd84n/HadlAURSLsA4XfaR0ABCLguQPjtOikLIpB2AcLvtI+AAhBwXYDw23VSFnRZgPDbOSjht3OrwBy5t+Qb3fLSDM0pKPi257Dw++KBA3X5qYMJvx3cDSu2brb38l6y8Qv96LTTNWnYSHVo3sLBmfEdQvgdnxtnIWCyAOG3ydOhNgTiEyD8js+NsxAwWYDw2+TpUBsC8QkQfsfnxlmpEyD8dm5N+O3cKjBHHjh8SEu+/ExX/PWv3wm/n7jiCh3f9DjVqVUnMB6xNGp9AOicwjzNKVyuFg0bafLpI3Vhv1NiWSLuYwm/46bjRASMFSD8NnY0FIZA3AKE33HTcSICxgoQfhs7GgpDIG4Bwu+46TgxRQKE386hCb+dWwXqyANHirR572699umneiMvT9Ze39/r1Vv169RTo7ru7FHtJ9Avvv5Kc1Ys19zC5bpi8DBNHDpSJ7dtl9IWCb9Tys3FEEiJAOF3Spi5CAIpFSD8Tik3F0MgJQKE3ylh5iIIpFSA8Dul3FwsDgHCb+dohN/OrQJ3ZO1aGXpzVb527turw2UVOq3zSSqrqAicw7Eanrd6hb21ifXEt7WtyY9OG5Y2H8LvtNFzYQSSJkD4nTRaFkYgbQKE32mj58IIJE2A8DtptCyMQNoECL/TRs+FHQoQfjuEkkT47dwqkEfeNesVPTn/XV09/ExdPODUQBpENr3tm72aU5ivWYX5GpvdV5OGjtTATl3SbkP4nfYRUAACrgsQfrtOyoIIpF2A8DvtI6AABFwXIPx2nZQFEUi7AOF32kdAATUIEH47v0UIv51bBfJIwu//jP3Dzz/T3BX52llUpElDR+jKIcNVv25dY+4Lwm9jRkEhCLgmQPjtGiULIWCMAOG3MaOgEARcEyD8do2ShRAwRoDw25hRUEg1AoTfzm8Nwm/nVoE8Mujh995DB+2nvGcX5mtQ566aPGykhnfvYeS9QPht5FgoCoGEBAi/E+LjZASMFCD8NnIsFIVAQgKE3wnxcTICRgoQfhs5FooKEyD8dn47EH47twrkkUENvz/dtNF+ynvV9m2aOHSErhoyXK0aNTb6HiD8Nno8FIdAXAKE33GxcRICRgsQfhs9HopDIC4Bwu+42DgJAaMFCL+NHg/FSeIbQg4AACAASURBVKou/H7j7UX62z9n6bG7f6kuJ7Q/ptU3+4p04+//qFVrNxx13BXfH63rJl9S9XvWmvc9Pu07a7Vt3dLRddwaWFFxWVxLEX7HxRack4IUfpccKdWcwuWasyJfnVq20uRhZ2hMn76eGTbht2dGRaEIOBYg/HZMxYEIeEaA8Nszo6JQBBwLEH47puJABDwjQPjtmVEFttBEw+9QoH379Vdp/KjTqxxDgfievfurgu3qAvU/P/2y3lmwNGUBOOF3jLf7tt3FMZ4RzMODEH6v3r5Vc1cs18LP1+qKwafbT3p3bnmc5wZO+O25kVEwAjUKEH7XSMQBCHhOgPDbcyOjYARqFCD8rpGIAxDwnADht+dGFriCEwm/Py1Yq5/f+gf95cFfa0DOyVHt3l24VF07HW8/PV5d+O1kHTcHQ/gdoybhtzMwP4ff1l7eVujdqF6WJg0bqe8PPNUZiqFHEX4bOhjKQiABAcLvBPA4FQFDBQi/DR0MZSGQgADhdwJ4nIqAoQKE34YOhrKqBOINv4tLSvXg/367hcmtv7xK9bPq1qhK+F0jkZkHEH47m4vfwu+Nu7+2tzZ5o+BT/fDUofZT3r3bd3CGYfhRhN+GD4jyEIhDgPA7DjROQcBwAcJvwwdEeQjEIUD4HQcapyBguADht+EDory49/zesGmbbvjd/+rHPzzvqO1OjkUaLfyOJ0RPdGw8+R2jIOG3MzC/hN/vr11lP+VdfKRUk4aOtD/AMiMjwxmCR44i/PbIoCgTgRgECL9jwOJQBDwiQPjtkUFRJgIxCBB+x4DFoQh4RIDw2yODCnCZ8T75HQq/f3fjpGq3PIlkre4DL63jIvcMT+ZICL9j1CX8dgbm5fD7q/37ZG1tMqswT9/r2ccOvU/t0s1Z4x48ivDbg0OjZARqECD85hZBwH8ChN/+mykdIUD4zT2AgP8ECL/9N1O/deR2+B0ZcLdt3bLGD7wMfThmx3bHOd5CJZE5EH7HqEf47QzMi+F37vrP7ae8t+zdY29rYj3l3Sgry1nDHj6K8NvDw6N0BKoRIPzm1kDAfwKE3/6bKR0hQPjNPYCA/wQIv/03U791lGj4faxtTyK3Oaluz2/LNJUfekn4HeNdTPjtDMwr4ff+4mLNWZGv2YX56tuhoyYNO0NnntzLWZM+OYrw2yeDpA0EwgQIv7kdEPCfAOG3/2ZKRwgQfnMPIOA/AcJv/83Ubx3FG3472aub8Nsndwvht7NBmh5+L9+ySXML85W/ZZOuHHy6/aR326bNnDXns6MIv302UNpBQBLhN7cBAv4TIPz230zpCAHCb+4BBPwnQPjtv5n6raN4w2/LIfS0dnX7dccaft/96N+rtkhJpjNPfseoS/jtDMzE8Lu0rMzey3vuyuVq17SZJg0bqfE5A5w15OOjCL99PFxaC6wA4XdgR0/jPhYg/PbxcGktsAKE34EdPY37WIDw28fD9UlriYTfFkFoj+8rvj9a102+5CiVPz/9st5ZsLTGPb9DH555zohB31kjGcyE3zGqEn47AzMp/P7sq+126P3e2lW6wnrKe8gIdWvdxlkjATiK8DsAQ6bFwAkQfgdu5DQcAAHC7wAMmRYDJ0D4HbiR03AABAi/AzBkj7d4rPD7vsenRe2u18ld9Ojvf6FmTRvbXw99YOWqtRuOOj4yEI/8MMzwg6t7ejwZvITfMaoSfjsDMyH8fmtlgf0BlnVq1dLkYSN12aAhzooP2FGE3wEbOO0GQoDwOxBjpsmACRB+B2zgtBsIAcLvQIyZJgMmQPgdsIF7sN3qwm8PtuK4ZMJvx1TfHkj47QwsXeH35j277Q+wnFWQp4v7D7K3NsnpcIKzogN6FOF3QAdP274WIPz29XhpLqAChN8BHTxt+1qA8NvX46W5gAoQfgd08B5qm/Db+bAyKisrK50f7p8jCb+dzTLV4ff8z1brzZUF2ld8SJOGjtCVQ0bYT3zzqlmA8LtmI45AwGsChN9emxj1IlCzAOF3zUYcgYDXBAi/vTYx6kWgZgHC75qNOCK9AoTfzv0Jv51bBfLIVITfXxcVaU5hnmavyNeI7j00cehIDe3WPZDeiTRN+J2IHuciYKYA4beZc6EqBBIRIPxORI9zETBTgPDbzLlQFQKJCBB+J6LHuakQIPx2rkz47dwqkEcmM/xeuvELey/v9V/v1FVDR+iqISPUrEGDQDq70TThtxuKrIGAWQKE32bNg2oQcEOA8NsNRdZAwCwBwm+z5kE1CLghQPjthiJrJFOA8Nu5LuG3c6tAHul2+H3w8GHNKcy3n/Lu0badJg87Q9/r2SeQtm43TfjttijrIZB+AcLv9M+AChBwW4Dw221R1kMg/QKE3+mfARUg4LYA4bfboqzntgDht3NRwm/nVoE80q3we8XWzfZT3ks2fqErBg+39/M+vnmLQJomq2nC72TJsi4C6RMg/E6fPVdGIFkChN/JkmVdBNInQPidPnuujECyBAi/kyXLum4JEH47lyT8dm4VyCMTCb/LKyrsp7znrMhXy0aNNXnYSF3Y75RAOqaiacLvVChzDQRSK0D4nVpvroZAKgQIv1OhzDUQSK0A4XdqvbkaAqkQIPxOhTLXSESA8Nu5HuG3c6tAHhlP+P35zq80d0W+3lxZoB+ddromDRuhk9q0C6RfKpsm/E6lNtdCIDUChN+pceYqCKRSgPA7ldpcC4HUCBB+p8aZqyCQSgHC71Rqc614BAi/nasRfju3CuSRsYTf81avsLc2qays1KRhI/Vfpw0LpFm6mib8Tpc810UgeQKE38mzZWUE0iVA+J0uea6LQPIECL+TZ8vKCKRLgPA7XfJc16kA4bdTKYnw27lVII+sKfze9s1ee2uTWYV5Oi+7vyYOG6kBJ3QOpFW6myb8TvcEuD4C7gsQfrtvyooIpFuA8DvdE+D6CLgvQPjtvikrIpBuAcLvdE+A69ckQPhdk9B/vk747dwqkEdWF34v+nyt3lxRoJ1F++0Pr7xy6HDVr1M3kEamNE34bcokqAMB9wQIv92zZCUETBEg/DZlEtSBgHsChN/uWbISAqYIEH6bMgnqqE7AK+H3pwVr9fNb/2C30evkLnr0979Qs6aN4xpsUXFZXOcRfsfFFpyTwsPvM07upTkrlmt2QZ5O63qiHXoP794jOBiGd0r4bfiAKA+BOAQIv+NA4xQEDBcg/DZ8QJSHQBwChN9xoHEKAoYLEH4bPiDKkxfC7w2btumG3/2vfnfjJA3IOTnq1P789Mv27183+ZIap0r4XSPR0Qds210c4xnBOXz64oWauXyZ3fDG3bu0/Zu9yqpTV2UVFWrbpIl+dfZo/ZD9vI27IQi/jRsJBSGQsADhd8KELICAcQKE38aNhIIQSFiA8DthQhZAwDgBwm/jRkJBEQJuhN8ZGdLmvbtVp1amatWqpfKyCrVp0sw16zfeXqRX5y6o9mnvUDh+zohBhN+uqYctRPhdverdb7yiqQvf+88BlZWS9Y749+vO8y7WT0eclYyxsGYCAoTfCeBxKgKGChB+GzoYykIgAQHC7wTwOBUBQwUIvw0dDGUhkIAA4XcCeJyaEoFEw+89Bw/oUFmJpn34oV759FO1bNRI5/Xtqx+ceqraNm6uiorKhPuwwu9P8lfr1l9epfpZ/9kqOXwrFOsiV3x/NOF3SHtp/hpNvP5B+5fZPbvqiQdvUPNj7BNTXFKqOx9+WrPfzbXPueeWybp47Aj7/xN+V38Pb9z1tbbt21vtAZ1btVb7pu79JCjhdxML2AKE39wICPhPgPDbfzOlIwQIv7kHEPCfAOG3/2ZKRwgQfnMPmC6QaPj9TXGRBtxzt3YVFR3V6siTT9b/XP5DdW3ZJiECK/i+7/FpR61x+/VXafyo06t+z8ptH/zfaWrdqgXht6XyxZfbdPsDT+m+KVerW6f2emXOAuUuW6W7bp581E8PQoKh4HvwwF5VgXe4OOF3QvcwJxsoQPht4FAoCYEEBQi/EwTkdAQMFCD8NnAolIRAggKE3wkCcjoCBgoQfhs4FEo6SiAy/D54uET/8+47jpROaNlCbZs20cV//nPU47948EFN/3CxDpfV/AGTjepl6ZdnnxN1nZq2PSH8jmCzwu6Nm3foxmsm2F+JDMMjlSOPj/w64bej9wMHeUiA8NtDw6JUBBwKEH47hOIwBDwkQPjtoWFRKgIOBQi/HUJxGAIeEiD89tCwAlpqZPj91f596n77bxxp3Dx6tL7ctUszPvkk6vG/GTNGX3z9tV6q5uvhJ7Vp3ETr7n+I8NuRfA0HPTp1hn1EKPzeu69I1976mG66ZoIG9evxnbOt4//2/Jyq32/XpqWmPnST/dS49SL8dmMqrGGSAOG3SdOgFgTcESD8dseRVRAwSYDw26RpUAsC7ggQfrvjyCoImCRA+G3SNKglmkAiT353Oa6VmtTP0uVTp0bFXX3vvXrpk0918PDhGvF58rtGIucHWGF2545tq7YwOVb4Hdry5NLxZ1QF49aT4DPe+KBqn/B9B484vzhHIuABgUb1a6v4cLnKXfhQAg+0S4keFoj4DF0Pd5L80htm1VZJKe/r5EtzBQRSJ9CgXm0dKS/XkbLEP0Qo1qqtPyJk/uczzGM9neMRQKAagfr1aqu8vEKlZRUYIRBVgD//eu/GqF+vlv1369IjvK+9N71gVFyvTmZCje45WKQed9yuopKSo9YZ3K2b/jZxkrq2ap3Q+tbJr7+50N62+vF7fhn1Mxut/Pbex55Rm+Na6Jc/+X6N1zsc5/sxo7LS+s+w+a9YnvyOFn5HhuUHS2ret8Z8FSpE4D8CWXVr2X/gduMTeXFFIJkC1jcdshdnwll1M+2AjB9qOfPiKAS8IGD9RaWsPD3va8IXL9wh1OhFAet9bX2vtt7bvBCIJsCff713X9StnSnr++aRcsJv700vGBXXqZ1o+H1A63d9rb8uWKDX8vLUokEDnde3ryaffro6tGgp64nuRF+vzV2ol2fP1//e96tqw+97Hv27HX7/6upLa7zckTh/yOyZ8DvWPb+jPSk+5f6ndPPPf2BvfcK2JzXeUxzgMQG2PfHYwCgXAQcCbHviAIlDEPCYANueeGxglIuAAwG2PXGAxCEIeEyAbU88NrAAlhu57Uk8BMVHSvX1gf1qWK+O/Yja4SNl6tC8pWsPVfKBlzFOJfIDLq0wPHfZKt1182TVz6prP0Yfvq3J0vw1mvLAU1X7fEceT/gd4wA43HgBwm/jR0SBCMQsQPgdMxknIGC8AOG38SOiQARiFiD8jpmMExAwXoDw2/gRBb5AN8LvZCMSfschbAXaE69/0D4zu2fXqv27rV9Hht+h3/vtQ09HPZ7wO44BcIrRAoTfRo+H4hCIS4DwOy42TkLAaAHCb6PHQ3EIxCVA+B0XGychYLQA4bfR46E4SV4Ovz8tWKuf3/qH78yx18ld9Ojvf6FmTRtHnXFRcXxbWHtm2xO372zCb7dFWS/dAoTf6Z4A10fAfQHCb/dNWRGBdAsQfqd7AlwfAfcFCL/dN2VFBNItQPid7glw/ZoEvBB+19RDrF8n/I5RjPA7RjAON16A8Nv4EVEgAjELEH7HTMYJCBgvQPht/IgoEIGYBQi/YybjBASMFyD8Nn5EgS+Q8Nv5LcCT386tOBIBowUIv40eD8UhEJcA4XdcbJyEgNEChN9Gj4fiEIhLgPA7LjZOQsBoAcJvo8dDcR7Z9sTtQfHkd4yiPPkdIxiHGy9A+G38iCgQgZgFCL9jJuMEBIwXIPw2fkQUiEDMAoTfMZNxAgLGCxB+Gz+iwBfIk9/ObwGe/HZuxZEIGC1A+G30eCgOgbgECL/jYuMkBIwWIPw2ejwUh0BcAoTfcbFxEgJGCxB+Gz0eiuPJ75juAcLvmLg4GAFzBQi/zZ0NlSEQrwDhd7xynIeAuQKE3+bOhsoQiFeA8DteOc5DwFwBwm9zZ0Nl3wrw5LfzO4Hw27kVRyJgtADht9HjoTgE4hIg/I6LjZMQMFqA8Nvo8VAcAnEJEH7HxcZJCBgtQPht9HgojvA7pnuA8DsmLg5GwFwBwm9zZ0NlCMQrQPgdrxznIWCuAOG3ubOhMgTiFSD8jleO8xAwV4Dw29zZUNm3Ajz57fxOIPx2bsWRCBgtQPht9HgoDoG4BAi/42LjJASMFiD8Nno8FIdAXAKE33GxcRICRgsQfhs9Hooj/I7pHiD8jomLgxEwV4Dw29zZUBkC8QoQfscrx3kImCtA+G3ubKgMgXgFCL/jleM8BMwVIPw2dzZU9q0AT347vxMIv51bcSQCRgsQfhs9HopDIC4Bwu+42DgJAaMFCL+NHg/FIRCXAOF3XGychIDRAoTfRo+H4gi/Y7oHCL9j4uJgBMwVIPw2dzZUhkC8AoTf8cpxHgLmChB+mzsbKkMgXgHC73jlOA8BcwUIv82dDZUhEKsA4XesYhyPgKEChN+GDoayEEhAgPA7ATxORcBQAcJvQwdDWQgkIED4nQAepyJgqADht6GDoSwE4hAg/I4DjVMQMFGA8NvEqVATAokJEH4n5sfZCJgoQPht4lSoCYHEBAi/E/PjbARMFCD8NnEq1IRAfAKE3/G5cRYCxgkQfhs3EgpCIGEBwu+ECVkAAeMECL+NGwkFIZCwAOF3woQsgIBxAoTfxo2EghCIW4DwO246TkTALAHCb7PmQTUIuCFA+O2GImsgYJYA4bdZ86AaBNwQIPx2Q5E1EDBLgPDbrHlQDQKJCAQ2/E4EjXMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEzBYg/DZ7PlSHAAIIIIAAAggggAACCCCAAAIIIIAAAgggEIcA4XccaJyCAAIIIIAAAggggAACCCCAAAIIIIAAAgggYLYA4bfZ86E6BBIS+OLLbbr9gad035Sr1a1T+4TW4mQEEDBDgPe1GXOgCgTcFNi7r0jX3vqYbrpmggb16+Hm0qyFAAJpEuB9nSZ4LotACgX4c3kKsbkUAgkIEH4ngMepCKRCwPqGes0tj2j7V7vty2X37KonHrxBzZs2rrr8K3MW6LcPPW3/etzZg3XXzZNVP6uu+GaciglxDQQSEwi9x39+1QW6eOwI3teJcXI2AmkXWJq/RhOvfzDq9+zqvl8TkqV9bBSAQLUCkX8Wv+eWyY6+X/O+5qZCwDwB6/vwxs07dOM1E44q7ljfu60D+fu2ebOkIgRiESD8jkWLYxFIg4D1jXjztp1Vf8h+dOoM7di5pyrgtr7+yNQZVYG49XXrZX1DJ/xOw8C4JAIxCIT/hTr8L9O8r2NA5FAEDBKIfO+Gl3as9zUhmUFDpBQEwgQi35uRv+Z9ze2CgDcEwsPtH18+9qjwO/LvzFbQnbtsFX/f9sZoqRIBRwKE346YOAgBcwSi/SG7c8e2VeF4+Nf3fFN01LYn1T1hak53VIJAcASsv0BPuf8p/ffkizR9xlsaPLDXUT/k4n0dnHuBTv0hEHpP3/zzH0Tdasz64XR172tLIHzbk1DAdmq/Ht95Os0fWnSBgDcEIkOx4pJS3fnw01Xfs3lfe2OOVIlASCDak9+Rvxf5vj/W+5y/b3NvIeANAcJvb8yJKhGoEgj/SbT1m+F/ALd+Hf7N2vp1aM/vFs0a20FbdX8phxgBBFInEP7kWJ8eXY96H0f+xZr3dermwpUQSEQgcmsEa63Q02U1va+t79Gh8Dv034RLx5/B/t+JDIRzEXBJwAq+5rz3saY+dJO94sN/eUEP3Ha1surVO+afw3lfuzQAlkHARYFo4Xf4v5y2LnWsP6fz53IXh8FSCKRQgPA7hdhcCoFEBap7+iT8L8jRwu+bfnaZvTUKH6SV6AQ4H4HEBUIhWOh9GxmKRX69uj9k875OfBasgICbAta/vPrXGx9U/TPp0F+eJ4w/Q2POGmyHZNV9vw6FZNbe/7PeWXzUvwRxs0bWQgCB2AXsf1X5fy9q19799mfwhLYpq+n7Ne/r2K05A4FkC1QXfof/y6xo4Td/3072ZFgfgeQKEH4n15fVEXBNIPRE2QNTrq56EqymJ8msi4c+LDP8gzBdK4qFEEAgZoHQH6gLV6//zrnWX6hDIVn4NiiRP9TifR0zOycgkHSByPDbumDoX2vd+osf6cE/PndUqB3+vg6FZNZ/F6J9sHXSi+cCCCAQVcB6n4ae9LY+bD7aD7Wq+37N+5qbCgHzBJLx5Dd/LjdvzlSEQKQA4Tf3BAIeEIgWfIfKrmkPMuubsRWYWx+aGe2TrT3QPiUi4GuBaD/E4n3t65HTnE8FIkOyUPgd+t7rZG9g6ynxju1bH/UEuU+5aAsBTwhE+6FW+BYJvK89MUaKRKBKIBl7fvP3bW4wBMwXIPw2f0ZUGHCByK1OIjmO9Snz0T6swzr/xmsmBFyV9hEwRyBa+M372pz5UAkCTgVC7+W2rVvY32fD/9n0oH49dKz3deSx4Z/vUT+rrtMSOA4BBFwWiHwAJfzJ74vHjuB97bI3yyGQbIFo4Xfk35kjvwfz5/JkT4X1EUi+AOF38o25AgIJCVjffH/70NPfWeOZx2+t2v4k/Jjw7U2q2yM89BfzhArjZAQQcEUgWvhtLcz72hVeFkEgpQKR2xqF9gYOFVHd+zoy/LaOt54o3bFzT9Ue4ilthIshgECVgBV8Tbz+wapf877m5kDAewKR72Org/C/T4d/Pdr2Y/y53Hszp2IEwgUIv7kfEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBHwnQPjtu5HSEAIIIIAAAggggAACCCCAAAIIIIAAAggggADhN/cAAggggAACCCCAAAIIIIAAAggggAACCCCAgO8ECL99N1IaQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEECD85h5AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8J0A4bfvRkpDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAoTf3AMIIIAAAggggAACCCCAAAIIIIAAAggggAACvhMg/PbdSGkIAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgPCbewABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAdwKE374bKQ0hgAACCCCAAAIIIIAAAggggAACCCCAAAIIEH5zDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAgj4ToDw23cjpSEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABwm/uAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAHfCRB++26kNIQAAggggAACCCCAAAIIIIAAAggggAACCCBA+M09gAACCCCAAAIIIIAAAggggAACCCCAAAIIIOA7AcJv342UhhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIv7kHEEAAAQQQQAABBDwvsHdfka699TFNGH+GLh47wuh+luav0cTrH7RrzO7ZVU88eIOaN21sdM0UF5vAK3MWaMYbHzDb2Ng4GgEEEEAAAQQQcF2A8Nt1UhZEAAEEEEAAAQT8LfDo1Bn62/Nzoga3X3y5Tdfc8ogemHK1BvXrkTIIr4TfsfjEcmws0MUlpbrz4aftU+66ebLqZ9V1fHoouH/m8VtTOl/HBRpyIOG3IYOgDAQQQAABBBAIvADhd+BvAQAQQAABBBBAAIHYBKzwe0neau3au18/v+qCo560TlZgW1OFXgm/YwlFk2VJ+F3T3ZT412OZc+JXYwUEEEAAAQQQQACB6gQIv7k3EEAAAQQQQAABBGISsMLvHTv3KKdXN82at/iorR2SFdjWVKCXwu/cZascPXGdLsuarPl6zQKE3zUbcQQCCCCAAAIIIJAKAcLvVChzDQQQQAABBBBAwEcCofD7hp9eqht+/2ed2q+Hbrxmgt1hZGAbesq4besWVcdYx0ULq0OB4U3XTNCUB57S9q9222vec8tk++ny0HYr1u+1a9NSUx+6Sd06tbePCV9v4+Yd9rYs0Y4LjcG61m8f+nbrD+v148vHHlVfqJb7p1yt2x54SoWr12vc2YNrDK3Dawyv3fr/kdeM/Hr4LRJyDBmEvhbabiQ0gysnnKvrf/cn28rqYdIPxth7n1v1hr8itykJnR/a9iR8bgs/Lqjyi9yTPFogH62W6noL3+/cOia7Rxf7XxA42SYn8tzIuUXzjZxZdfdJqM893xTZ2/aE3Ku7LyLv0eqOi9zP/Vj3R/h9HD4/9oX30X88aQUBBBBAAAEEUi5A+J1yci6IAAIIIIAAAgh4WyA8OJ37Xq7+Mu31qiA60fDbCqTDA8vwwDMUglt6keFtKNS0QsPwoNfeoiV/zVFPp0f+Xujc8BA/FKQ6DR6jbSUSsgjfGiaWJ4KP9eR3KESNFu7+/YW5uvaqC6v28o62T3d14bcV+ob8jtVTeFgdrZZo1wyZhs/H6R7i0Y6z5hbeq7V+x/atq/Yij1Z/tPskdNzsd3OP2sc+mn+oh3B3J3N2cn9Euw+te/3J597Q2cMHVv2gx9v/9aB6BBBAAAEEEEAgtQKE36n15moIIIAAAggggIDnBcKD05LDh+0njUPBcaLh94w3PjgqqK5uOxMrDLWeDg89/V3dcZG/H3leaBjW7z8ydUbVtWMJqa01jrVueJ2xrFtT+G1tPePkAyuj2Rzrye/wDyqNrPdYT36H1xJ5zerm43Rrl8h6nb6JIuuvro5oc4n2rxaqm1/k79f061D91nGhbXBWrFl/1D3ttEeOQwABBBBAAAEEEKhegPCbuwMBBBBAAAEEEEAgJoHIINIK8EJPf1sLWdtGhJ4Mjmfbk/CtIhINvyOvX12IaoWwtz/wlO6bcrX9hG0sIbXV87HWDfeIZd14w+/wJ5nDBxu+NUcs4fexnuyvrvfIp5ir++GA0/A79MR15PYikTdutK1RwrfISVb4Hdlf+Jyz6tXTnQ8/rcitf0I/NAn90CW05UqrFk2P+gFQTG9ODkYAAQQQQAABBBA4SoDwtLLSCAAABCtJREFUmxsCAQQQQAABBBBAICaB6rYcsZ7+vmD06caH36H9wKM1HdqSI5aQ+ljhd2TYGsu68YTfofA3fFuOaNtpeC38DhmHzy481A4P/MO3VQn/wYz1Q410ht/WtirRXuF9RAvvw7f7iemNysEIIIAAAggggAACIvzmJkAAAQQQQAABBBCISSDaU86hkPHmay/Tw0+86LknvyMBYgmpjxV+RwbYsawba/gdbV9pqza/hN/hMwr1ZP2e9S8FPt+wVROvf/Co/d6tr5kUfkd78rumN15oP/XIDyyt6Ty+jgACCCCAAAIIIPCtAOE3dwICCCCAAAIIIIBATALRwu+qMLKyUrv27q8Kv6sLhqM9gRstGE5025PIALm67TcSDb9N2PO7pi1mwj/QM9VPflcX5Dvd9iTaDRpuvmfv/qj7Zacq/I62FVD4/vWx/NAjWsg/YfwZunjsiJjepxyMAAIIIIAAAgggQPjNPYAAAggggAACCCAQo0B1+1uHb9ngZOuJwtXrFb6lgxvhd3jAG+1J6NDvbdq286h9la3ff2Laa5r0gzFq3rRxzHt+R7tWKNj9+VUXVAWXsYSg0Z7YDo2quhlErh++HUg69/wO/RBkSf6aKvfqtiqJdjta/Q4/LUfhH8YZ7YNXw0Pi0P2Y7D2/Q9eJvOfDw+/QLE9o3/qoDym1fv/vL8zVtVddKOsDLxd+XKAbr5lQReD0hzUxvoU5HAEEEEAAAQQQCIwAT34HZtQ0igACCCCAAAIIuCNQXfB6rDAztH2DVUF2z666f8rVuu2BpxQeVroRfjdt3FCLlhRWNVrdBySGPkAxXCT82FhC6vA1wvu0fj9yv+ZY1w0F6Nu/2m1fJhSwVjeDUMgc2hvbCn6tDx+1PlQxnU9+h4f24bVFbpNT3R0abS/s8H3NrfMirax5du7YturDWN3a8/u3Dz19VJnh4XroC9XNOfL+CL9HQgG59UOh0Cva2u68i1kFAQQQQAABBBAIhgDhdzDmTJcIIIAAAggggAACCBgnYAXWtz/wlO6bcrWscNr0V6w/vDC9H+pDAAEEEEAAAQT8LkD47fcJ0x8CCCCAAAIIIIAAAgYIWMGx9QrtXV3dHuUGlFptCYTfJk+H2hBAAAEEEEAAge8KEH5zVyCAAAIIIIAAAggggEDSBWraaibpBbhwAcJvFxBZAgEEEEAAAQQQSKEA4XcKsbkUAggggAACCCCAAAIIIIAAAggggAACCCCAQGoECL9T48xVEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFIoQPidQmwuhQACCCCAAAIIIIAAAggggAACCCCAAAIIIJAaAcLv1DhzFQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEUChB+pxCbSyGAAAIIIIAAAggggAACCCCAAAIIIIAAAgikRuD/A48XdAM0BDrnAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the train sizing's results\n", "atom.plot_learning_curve()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.2" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }