{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example: Imbalanced datasets\n", "------------------------------\n", "\n", "This example shows how ATOM can help you handle imbalanced datasets. We will evaluate the performance of three different Random Forest models: one trained directly on the imbalanced dataset, one trained on an oversampled dataset and the last one trained on an undersampled dataset." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load the data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Import packages\n", "from atom import ATOMClassifier\n", "from sklearn.datasets import make_classification" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Create a mock imbalanced dataset\n", "X, y = make_classification(\n", " n_samples=5000,\n", " n_features=30,\n", " n_informative=20,\n", " weights=(0.95,),\n", " random_state=1,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run the pipeline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<< ================== ATOM ================== >>\n", "Algorithm task: binary classification.\n", "\n", "Dataset stats ==================== >>\n", "Shape: (5000, 31)\n", "Memory: 1.22 MB\n", "Scaled: False\n", "Outlier values: 570 (0.5%)\n", "-------------------------------------\n", "Train set size: 4000\n", "Test set size: 1000\n", "-------------------------------------\n", "| | dataset | train | test |\n", "| - | ------------ | ------------ | ------------ |\n", "| 0 | 4731 (17.6) | 3785 (17.6) | 946 (17.5) |\n", "| 1 | 269 (1.0) | 215 (1.0) | 54 (1.0) |\n", "\n" ] } ], "source": [ "# Initialize atom\n", "atom = ATOMClassifier(X, y, test_size=0.2, verbose=2, random_state=1)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
x0x1x2x3x4x5x6x7x8x9...x21x22x23x24x25x26x27x28x29target
0-0.535760-2.4260451.2568360.374501-3.241958-1.239468-0.208750-6.0159953.6986690.112512...0.044302-1.93572710.8703530.286755-2.4165070.556990-1.5226353.7192011.4491350
1-3.311935-3.149920-0.801252-2.644414-0.704889-3.3122560.7145152.9923455.0569103.036775...2.2243590.451273-1.822108-1.4358010.036132-1.3645831.2156635.2321611.4087980
23.8211991.328129-1.000720-13.1516970.2542531.263636-1.0884514.924264-1.225646-6.974824...3.5412221.686667-13.763703-1.3212561.6776870.774966-5.0676894.663386-1.7141860
35.9311263.3388300.5459062.296355-3.9410883.527252-0.1587703.138381-0.927460-1.642079...-3.6344427.853176-8.4575980.000490-2.612756-1.1382060.4971504.351289-0.3217480
4-2.829472-1.227185-0.7518923.056106-1.988920-2.219184-0.0758825.790102-2.7866712.023458...4.0579541.178564-15.0281871.627140-1.093587-0.4226551.7770116.660638-2.5537230
\n", "

5 rows × 31 columns

\n", "
" ], "text/plain": [ " x0 x1 x2 x3 x4 x5 x6 \\\n", "0 -0.535760 -2.426045 1.256836 0.374501 -3.241958 -1.239468 -0.208750 \n", "1 -3.311935 -3.149920 -0.801252 -2.644414 -0.704889 -3.312256 0.714515 \n", "2 3.821199 1.328129 -1.000720 -13.151697 0.254253 1.263636 -1.088451 \n", "3 5.931126 3.338830 0.545906 2.296355 -3.941088 3.527252 -0.158770 \n", "4 -2.829472 -1.227185 -0.751892 3.056106 -1.988920 -2.219184 -0.075882 \n", "\n", " x7 x8 x9 ... x21 x22 x23 x24 \\\n", "0 -6.015995 3.698669 0.112512 ... 0.044302 -1.935727 10.870353 0.286755 \n", "1 2.992345 5.056910 3.036775 ... 2.224359 0.451273 -1.822108 -1.435801 \n", "2 4.924264 -1.225646 -6.974824 ... 3.541222 1.686667 -13.763703 -1.321256 \n", "3 3.138381 -0.927460 -1.642079 ... -3.634442 7.853176 -8.457598 0.000490 \n", "4 5.790102 -2.786671 2.023458 ... 4.057954 1.178564 -15.028187 1.627140 \n", "\n", " x25 x26 x27 x28 x29 target \n", "0 -2.416507 0.556990 -1.522635 3.719201 1.449135 0 \n", "1 0.036132 -1.364583 1.215663 5.232161 1.408798 0 \n", "2 1.677687 0.774966 -5.067689 4.663386 -1.714186 0 \n", "3 -2.612756 -1.138206 0.497150 4.351289 -0.321748 0 \n", "4 -1.093587 -0.422655 1.777011 6.660638 -2.553723 0 \n", "\n", "[5 rows x 31 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Let's have a look at the data. Note that, since the input wasn't\n", "# a dataframe, atom has given default names to the columns.\n", "atom.head()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fitting FeatureSelector...\n", "Performing feature selection ...\n", " --> rfe selected 12 features from the dataset.\n", " --> Dropping feature x1 (rank 8).\n", " --> Dropping feature x2 (rank 11).\n", " --> Dropping feature x4 (rank 3).\n", " --> Dropping feature x6 (rank 16).\n", " --> Dropping feature x7 (rank 14).\n", " --> Dropping feature x10 (rank 19).\n", " --> Dropping feature x12 (rank 13).\n", " --> Dropping feature x13 (rank 12).\n", " --> Dropping feature x14 (rank 9).\n", " --> Dropping feature x16 (rank 10).\n", " --> Dropping feature x18 (rank 17).\n", " --> Dropping feature x19 (rank 2).\n", " --> Dropping feature x20 (rank 4).\n", " --> Dropping feature x22 (rank 7).\n", " --> Dropping feature x23 (rank 5).\n", " --> Dropping feature x24 (rank 18).\n", " --> Dropping feature x25 (rank 6).\n", " --> Dropping feature x26 (rank 15).\n" ] } ], "source": [ "# Let's start reducing the number of features\n", "atom.feature_selection(\"RFE\", solver=\"RF\", n_features=12)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Training ========================= >>\n", "Models: RF\n", "Metric: balanced_accuracy\n", "\n", "\n", "Results for RandomForest:\n", "Fit ---------------------------------------------\n", "Train evaluation --> balanced_accuracy: 1.0\n", "Test evaluation --> balanced_accuracy: 0.5556\n", "Time elapsed: 0.893s\n", "-------------------------------------------------\n", "Total time: 0.893s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 0.895s\n", "-------------------------------------\n", "RandomForest --> balanced_accuracy: 0.5556 ~\n" ] } ], "source": [ "# Fit a model directly on the imbalanced data\n", "atom.run(\"RF\", metric=\"ba\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Branch: master\n", " --> Pipeline: \n", " --> FeatureSelector\n", " --> Models: RF" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# The transformer and the models have been added to the branch\n", "atom.branch" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Oversampling" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "New branch oversample successfully created.\n" ] } ], "source": [ "# Create a new branch for oversampling\n", "atom.branch = \"oversample\"" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Oversampling with SMOTE...\n", " --> Adding 3570 samples to class 1.\n" ] } ], "source": [ "# Perform oversampling of the minority class\n", "atom.balance(strategy=\"smote\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datasettraintest
047313785946
13839378554
\n", "
" ], "text/plain": [ " dataset train test\n", "0 4731 3785 946\n", "1 3839 3785 54" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "atom.classes # Check the balanced training set!" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Training ========================= >>\n", "Models: RF_os\n", "Metric: balanced_accuracy\n", "\n", "\n", "Results for RandomForest:\n", "Fit ---------------------------------------------\n", "Train evaluation --> balanced_accuracy: 1.0\n", "Test evaluation --> balanced_accuracy: 0.7672\n", "Time elapsed: 1.619s\n", "-------------------------------------------------\n", "Total time: 1.619s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 1.619s\n", "-------------------------------------\n", "RandomForest --> balanced_accuracy: 0.7672 ~\n" ] } ], "source": [ "# Train another model on the new branch. Add a tag after \n", "# the model's acronym to distinguish it from the first model\n", "atom.run(\"rf_os\") # os for oversample" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Undersampling" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "New branch undersample successfully created.\n" ] } ], "source": [ "# Create the undersampling branch\n", "# Split from master to not adopt the oversmapling transformer\n", "atom.branch = \"undersample_from_master\"" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datasettraintest
047313785946
126921554
\n", "
" ], "text/plain": [ " dataset train test\n", "0 4731 3785 946\n", "1 269 215 54" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "atom.classes # In this branch, the data is still imbalanced" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Undersampling with NearMiss...\n", " --> Removing 3570 samples from class 0.\n" ] } ], "source": [ "# Perform undersampling of the majority class\n", "atom.balance(strategy=\"NearMiss\")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Training ========================= >>\n", "Models: RF_us\n", "Metric: balanced_accuracy\n", "\n", "\n", "Results for RandomForest:\n", "Fit ---------------------------------------------\n", "Train evaluation --> balanced_accuracy: 1.0\n", "Test evaluation --> balanced_accuracy: 0.6706\n", "Time elapsed: 0.238s\n", "-------------------------------------------------\n", "Total time: 0.238s\n", "\n", "\n", "Final results ==================== >>\n", "Total time: 0.238s\n", "-------------------------------------\n", "RandomForest --> balanced_accuracy: 0.6706 ~\n" ] } ], "source": [ "atom.run(\"rf_us\")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Branch: undersample\n", " --> Pipeline: \n", " --> FeatureSelector\n", " --> Balancer\n", " --> Models: RF_us" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Check that the branch only contains the desired transformers \n", "atom.branch" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAADnCAYAAACXBMsLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAyJ0lEQVR4nO3deZxjVZ338c+vF6DZGmgRAZGLIMLDI7SsxgelUUEDygR11IRBGKM+4jI6EtAZHAfREdCMowIqSA24kELReQIoEQFtliFAQ9Oyb6MBBJRm6Wan6eY8f5yT7lR1bV2V1Eluvu/Xq1+/usldfpW6nfxyzrnnmnMOEREREeldM2InICIiIiJTo4JOREREpMepoBMRERHpcSroRERERHqcCjoRERGRHqeCTkRERKTHqaATERER6XEq6ERERER6nAo6ERERkR6ngk5ERESkx6mgExEREelxKuhEREREepwKOhEREZEep4JOREREpMfNip2AiEi/K1Wzs4FPAYcAG0ROp5c54B7g1HKudl/sZGIrVbOzgLOAnWLnkmI3lHO1UuwkAMw5FzsHEZG+FT50LwKysXNJkaeBt5VztRtjJxJTqZrNANfGzqMPbFrO1Z6OnYRa6ERE4irhi7mlwGeAR+Km09NmAv8A5IDzS9XsbuVc7cW4KUW1Q4hXACfFTCSFNgeqwDPhX3Qq6EREIilVsxsBXwiLR5Rztcti5pMGpWr2v4Gbgf8FHAmcHTejqJoF3U3lXO2qqJmkTKma3TP82Cjnal3R1amLIkRE4nk3sBlwvYq59ijnaiuAU8Lih2Pm0gWSEBsRc0irZrH8p6hZtFBBJyISz9tD/K+oWaTPRcDLwJtL1eyGsZOJKAmxETGHtEpCbETMYQgVdCIi8ewe4vVRs0iZcq62HLgTP6Zu18jpxJSE2DWtSCmShNiImMMQKuhEROJ5dYiNmEmkVCPEV4+1UlqVqtmZwPZh8f6YuaRUEmIjYg5DqKATEYlnoxCjT3mQQs3XdKMx10qvrYHZwF/LudrzsZNJIY2hExGRtXTFVXIp0++vaRJi1xQcaVGqZg210ImIiMg0aLYgNWImkVLz8C2/TwHL4qayhgo6ERGR9ElCbETMIa1Wd7d2yxx0oIJOREQkjZIQGxFzSKskxEbEHNaigk5ERCR9um7QfookITYi5rAWFXQiIiLpk4TYiJhDWiUhNiLmsBYVdCIiIilSqmZnAduFxQdi5pJSXdn6qYJOREQkXbYBZgGPlHO1F2Ink0JJiI2IOaxFBZ2IiEi6dGULUhp06xx0oIJOREQkbZIQGxFzSKtXAnOAJ8M9g7uGCjoREZF0SUJsRMwhrZIQGxFzGJEKOhERkXTRXSI6JwmxETGHEamgExERSZckRI2ha78kxK57bVXQiYh0WKma3b5Uzf5dGFDdcWbmzGxJ+HeHmX1yAtssMLOF05CetEmpmn1vqZrddYSnkhAbw59oOTduMbPFZrZ/O3Mys4aZJeOuOPH9tZ7LS8zskHbte5TjHT1O/l3b+qmCTkSk8zYGfgJcVapm95iOAzrn5jvn5gMHAKea2abTcdzJMrNZsXPoQfsBt5Sq2XKpmt0UVs9B92rAAQ+OtFE4N3YHzgTOnq5kJ6t5Lod/l0x0u0meU0ezpiAeSfO5xiT23VH6DyQi0malanY2sH7LQ3NC3B9YXKpmvwd8eZrS2Rh4HngJwMz+GTgcWA94CPiwc+6x1g3MbDvgp8AmYb1vOud+FJ5bCNwAvAV4FXCyc+6s8NyBwKn4330lkHPOPWhm7wWOD/t6FCg65x4ys3OBFcAbgEeA93bmJUi1WcCxQKFUzR4HXAvMBB4q52ovjrPtVcB/NBfM7DTgTcAGwK3AR5xzL5jZ0cD7gJeBnYF7gb91zr1oZtsD5wGbh2Nby/72B77NmnOt6Jx7OOzv/WF/uwLXA2fgz53t8Ofb90ZL2szWA76DPwcBvttyDjaAnwFvA/6fmf0k7Hvr8Fqd5Jz7f2a2C3BO+F3XA04ANgL2Bs42s2eADzrn7h52+CTExmj5xaKCTkSkjUrV7G7AdfhCaiQzgE8DH8J/kHSEmS3Bf7DvDBznnHs+PHWWc+7rYZ0S8AXguGGbPwZknXPPmdlcYLGZXeyceyI8v4VzLhMKv9vM7D+BzfAf7Ac55243sw0BZ2avAz4FLAjFwRFAGciHfe0MHOCcW9Hml+CAEM8rVbPntXnf3eKPLT9vjS/CbwnLExnjdRhwQcvyV5rFvZmdDhTxxRD4Qmd3/LlRwxd4FeC7wKBz7gwzOwz4aNh+feB84HDn3CIzOxY4LWwHsBe+kH8SWAyU8EXYVsDtZnaWc25l2NeSlhz3BY4Jv+/u+PPuJjO7zjnX/N1XOef2CdteDpScc0vMbB6wKHwp+SS+EBw0MwM2dc4tN7OPASc65xYOf7FK1ewMVNCJiPSNAr6Yewnf+gS+1WLDYestx7cOdETobsXMtgbqZnatc+5GIGNm/wRsGo5/3wibzwK+bWb74ltRtsIXXteF5y8Ix3jQzJ7Ct9TNBxY5524Pzz0Xjn8wsBtwnf/cZCbwVMuxLuhAMdfPmq1y94+2QiiQ5gFz8d22TYeZ2TH482IuQ2uEhc65pWH7RcBrw+NvBY4EcM5dZGbLwuO7AEudc4vC8gC+Fax1f83i8RbgmlDAPWRmT+PPqT+H/c4flv8C4Bzn3MvAE2Z2IbCANcXseWG9jfGteOeGc4/wO+0IXAN8ycxeC1wa/m+MZyt86/Pj5Vzt6QmsP61U0ImItNe7QnxPOVe7FFa32t0WHn8e+BrwLXw3Y0c55x4xs+uBA83sVuDHwJucc3eb2Xvw3XXDfR5fyL3RObfSzG5iaPHZ2pW3irE/S2YAv3DOfXqU55+d6O+yjq7EtwIeUc7VKh06RlSlavZUfFc2wJ3AZ/Atk/swRgudc26+mc0ATsGfD/uECwG+CuwdzpnP4FvRmib6N3fD4vDHR9vfupxT4+27eU7NwH+peqNzbvg6N5rZdcA7gTPMrOqcO3mMY0IXt86BLooQEWmbUjW7FbAn8AJ+fNJwvwB2KedqX5+ue2ya2Sb4D+Z78UXZDOARM5uJ71IbyVzg4VDM7QdM5EKOOrC3me0Wjruhmc0BLgNyzSsHzWw9M9t9Kr+TDPEMvrtyj3KudgUTnFYjtG59CZhnZofiW2yfBx4L3eVHTvD4VwJHAJjZu/Fj6QDuBrY0s2ZR+BHgdxPc53gWAkeZ2Qwz2xzfdbxw+ErOuaeAm/FdtIQc9zRvJ+BB59wP8ePx9g2rPIV/LUaShNh1U5aAWuhERNrp4BCvLOdqz7c8vgw4qJyrXT5dibSMO5qD79ashsfL+K6ppcDvWfNB1up04JfhYoZbgUUjrDOEc+7xMD7u3DBofQV+/NRdZvapsL9Z+M+dM1jTPSaTdznw7XKu1trSm4TYGG9j59wKM/sycIJz7s1mdgVwF/7ClRsYfRxoq88C54W/8bXAA2HfL5pZHjgznA8PMfoXiHX1A/zFFM1z6Bst4+eGOwI4zcw+ge/ufwA4FPgAcISZrcC3DjaLvrOBb5rZSax9UUTXTlkCKuhERNrpnSH+pvXBcq72EP4DbVo450ad784591V819rwxxfixyHhnPsj8MZRtl8wbDkZto99RtjmQuDCER4/erQ8ZXzlXO2yER4es+gYfm44536Kv5gC59z/HWWbc4FzW5ZPbPn5fvzV2yNtdzX+Yorx9nf0sOeT0fINj62gpdVttG3D8oNAboRVvx7+Dd/+IuCikfaNulxFRNIvXAE3YkEnMh1K1ex6wLb48Y8jzkEnU5KE2JVdriroRETaY0/gFfguneFzV4lMh+3wV1T/uZyrvRQ7mRTq6i5XFXQiIu3RvLr1N+VcbfgVdSLTIQmxETGHVAot8NuHxVGnhIlJBZ2ISHuou1Vi6+oWpB63NTAbWFrO1To11c6UqKATEZmiUjW7GZDB3+6qXVMziKyrJMSuHOPV45IQu/a1VUEnIjJ1b8dPiXBtOVdbHjsZ6VtJiI2IOaRV17d+qqATEZm65vi5S6NmIf2u64uOHpaE2IiYw5hU0ImITEGpmjU0fk66QxJi13YL9rAkxK59bVXQiYhMza746SIeBZbETUX6VamaXR/YBn8f1GmbxLqPdH3rpwo6EZGpWd3dWs7VXo6aifSz5pQaD5ZztZVRM0mnJMRGxBzGpIJORGRqNH5OukESYtd2CfaqUjU7E3hNWOzKOehABZ2IyKSVqtkNgbcCDvht5HSkvyUhNiLmkFbbALOAv5RztedjJzMaFXQiIpN3ALA+cFM5V1s6ie2bd5TQe3H7NV/TfrlrRxJiI2IOadX14+dAbyIiIlOx+nZfk9z+mRA3bUMuMlTzNX1mzLXSo1l0qMu1/ZIQGxFzGJcKOhGRyZtqQfdgiK9tQy4yVPM1fSBqFtMnCbERMYe0SkLs6mJZBZ2IyCSUqtkdgJ2B5cD1k9zNkhAz7chJvFI1Ow//t1kB3BU5nemShNiImENaqctVRCTFmpMJXz6FaSKaF1J8IExQLO3xfsCAK8u52ouxk+m0UjU7B3gV8BLwcOR00igJsRExh3GpoBMRmZypdrc2t30UeAPwvilnJJSq2Y2BL4bFcyOmMp2ac9A9UM7VVkXNJJ2SELu6y3VW7ARERHpNqZpdD3h7WJz0/HPlXO3FUjX7FeAM4JxSNbst8Jc2pNivZgKfwH8A3wL8PGo20ycJ8aVSNfvBmImkkOHvBANdPh5TBZ2IyLp7M7AxcEc5V3twvJXH8QPgTcCRwLenuC/x/gJ8oI/umLBliLsA58dMJMX+3O3d9yroRETWXTu6WwEo52ovl6rZo4BLgEPw89rJ5N0NnF7O1R6Nncg0qgHfB+bFTiTFur5QNuf6Zc5FEZH2KFWzNwPzgYPLudplkdMREdFFESIi66JUzW6NL+aeB66Om42IiKeCTkRk3Rwc4sJyrvZC1ExERAIVdCIi66Zt4+dERNpFBZ2IyASVqtmZwEFhUQWdiHQNFXQiIhO3F/5Kwj8B90bORURkNRV0IiITt7q7tZyraYoAEekaKuhERCauWdBN+u4QIiKdoIJORGQCStXs5sB+wErgd5HTEREZQgWdiMjEvAP/nnlNOVd7OnYyIiKtVNCJiEyMpisRka6lgk5EZBylatbQ+DkR6WIq6ERExve/gW2AvwB/iJyLiMhaVNCJiIzvnSFequlKRKQbqaATERmfxs+JSFdTQSciMoZSNbsx8BbAAZdFTkdEZEQq6ERExrYAWA9YVM7VHo+ci4jIiFTQiYiMrTl+Tt2tItK1VNCJiIxN4+dEpOupoBMRGUWpmt0J2Al4ElgUOR0RkVGpoBMRGV2zu/Xycq62MmomIiJjUEEnIjI6jZ8TkZ4wK3YCIiLdqFTNrg+8LSx29HZfmcGKAYcBhwLrd/JYfeBu4Af1fOGJ2InEFs6rL+GHDUhnLKrnC6fHTgLAnNOk5yIiw5Wq2bcBVwC3lnO13Tt1nPCheybwsU4dow/9GVhQzxf+J3YiMWUGK3sBN8bOow9sUs8XnomdhFroRERG1ry6taOtc0ARX8w9B3wVeKTDx0uzmcDHgf2An2cGK/vW84VVkXOKaccQbwC+FzORFNoEOA14AXg2ci6ACjoRkdF0fLqSzGBlPeCksPixer5Q6dSx+kVmsPIL4DZgT+B9wM/jZhRVEuI19XzhRzETSZvMYKXZat+o5wtd0dWpiyJERIYpVbPbAG/At5pd08FDHQxsDdwBDHbwOH2jni88BZwSFv8+Zi5dYIcQGzGTSKkkxEbEHIZQQScisrbm1a2/K+dqL07DcX7WLd/yU+KCEA8MraD9KgmxETGHtGoWy3+KmkULFXQiImubrrtDzA+x3uHj9JV6vrAUuBd/xfAukdOJKQmxa4qOFElCbETMYQgVdCIiLUrV7EzgoLDY6QsiXhNiX1+N2SHN1/Q1Y66VUuHq6SQs3h8xlbRKQmxEzGEIFXQiIkPtA2wO/E85V7uvw8faJMTlHT5OP2q+ppuMuVZ6bQVsADxezxeejp1MCqnLVUSky01XdyuAhfjyNByr3zRfUxtzrfRKQmxEzCHNkhAbEXMYQgWdiMhQ01nQiXRK17UgpUVmsLIZMBd/FfxjcbNZQwWdiEhQqmbnAfsCLwEL42YjMiVJiI2IOaRVEmLXzEEHKuhERFodhO+iu7qcq0W/lY/IFCQhNiLmkFZd2fqpgk5EZI3mvHDqbpVel4TYiJhDWiUhNiLmsBYVdCIiQKmaNTR+TtKjK1uRUiIJsRExh7WooBMR8XYHXgU8jL8XqEhPygxWZgDbh0XNQdd+XVksq6ATEfGarXOXlnO1rhnoLDIJrwLWA5bW84VnYyeTQkmIjYg5rEUFnYiIp/FzkhbNFqRGzCTSaNgdOBrxMlmbCjoR6XulanYTYH/8ZLSXR05HZKqSELuqSzAlNsfffeRp4InIuQyhgk5EBA4EZgPXl3O1rnqTFpmEJMRGxBzSanXrZzfNQQcq6EREoGX8XNQsRNpDXa6dk4TYiJjDiFTQiUhf03QlkkJJiOpybb8kxEbEHEakgk5E+t1O+BaNJ4AbO3GAzGBl68xgZf9O7HskZubMbEn4d4eZfXIC2ywws4XTkJ60SWawsiAzWNlyhKeSEBvDn2g5N24xs8Vm1tbz0swaZpaMu+LE99d6Li8xs0Pate9Rjnf0OPl35ZQloIJORKTZOvfbcq62qkPH2AK4OjNY+UlmsLJ1h44xhHNuvnNuPnAAcKqZbTodx50sM5sVO4celAXuyQxWPpUZrMwCyAxWZgKvCc+POAddODd2B84Ezp6WTKegeS6Hf5dMdLtJnlNHs6YgHknzucYk9t1RKuhEpN9N5/i5vwPuzgxWjs0MVmZPw/EANgaeB14CMLN/NrNFZvYHM7vEzF4xfAMz287MrgwtOLeZ2VEtzy00s2+YWd3M/mRmH2957kAzuyHs+yYz2y48/l4zuy7s7zdmtm14/FwzO8vM6sDPO/w6pNVmwOnAjaEVeBv8BT5/recLz4+z7VWsKf4ws9PCuXGrmVXMbIPw+NFmdrGZXWhmd5rZRWa2fnhuezO7xsxuN7Mf4u+F3Nzf/mZ2Y2gNrJnZNi37+1XYz71m9lMzy5jZVeGcGrNF2czWM7Pvh3PztmHnYMPMTjWzRcDx4Vy+KPxeN5vZ4WG9XcI5fHPIPWdmRwB7A2eH1sDXj3D4JMTGOK/ttNM3IhHpW6VqdgP8Fa7QpoIuM1jZGbgYmNfycOuX502AMlCkg+/BZrYEmAnsDBznnGt+uJ/lnPt6WKcEfAE4btjmjwFZ59xzZjYXWGxmFzvnmlcAb+Gcy4SC7TYz+098YXEecJBz7nYz2xBwZvY64FPAAufcC+FDswzkw752Bg5wzq1o80twQIjnZQYr57V5393ijy0/7wFcDfw2LE+kS/Aw4IKW5a845x4DMLPT8efoGeG5vfF3U3kMqAHvAyrAd4FB59wZZnYY8NGw/frA+cDhzrlFZnYscFrYDmAv4A3Ak8BioAS8DdgKuN3MznLOrQz7WtKS477AMcDWIZ/NgJvM7Drn3C1hnVXOuX3CtpcDJefcEjObBywKQws+CXzXOTdoZgZs6pxbbmYfA050zi0c/mINm4Ou67pcVdCJSD/bH5gD/KGcqz3Spn3+B75IGc/W+IKrI0J3K2a2NVA3s2udczcCGTP7J2BTYAPgvhE2nwV828z2xc/NtxX+d7ouPH9BOMaDZvYU/s4E84FFzrnbw3PPheMfDOwGXOc/N5kJPNVyrAs6UMz1sx1DHPWWX6FAmgfMBfZreeowMzsGf17MZWiNsNA5tzRsvwh4bXj8rcCRAM65i8xsWXh8F2Cpc25RWB4AThi2v2bxeAtwTSjgHjKzp/Hn1J/DfucPy38BcI5z7mXgCTO7EFgANAu688J6GwNvAc4N5x7hd9oRuAb4kpm9Frg0/N8YzyuAjYDl9Xxh2TjrTjsVdCLSz9p6dWtmsHIQcAi+YNkLWBae2hn47/Czw49bOgG4B19Qdoxz7hEzux440MxuBX4MvMk5d7eZvQc4doTNPo8v5N7onFtpZjfhP+SbXmz5eRVjf5bMAH7hnPv0KM936tZUV+JbAY+o5wuVDh0jqsxg5VTg+LD4GL61dTvgRMZoQXLOzTezGcAp+PNhH/MXAnwV2DucM5/Bn8NNE/2bu2Fx+OOj7W9dzqnx9t08p2YAK/Dn8fB1bjSz6/B3iDnDzKrOuZPHOCZ0cXcraAydiPS3thV0YTD6v4fFr9fzhfvq+cJj9XzhMWB5ePwGYL96vvDxer6wdKrHnAgz2wT/wXwvviibATxiZjPxXWojmQs8HIq5/fDdeeOpA3ub2W7huBua2RzgMiAXCobm+Kfdp/I7yRAv48fQ7VzPF/4T2D483hhro9C69SVgnpkdim+xfR54LHSXHznB418JHAFgZu/G30kB4G5gSzNrFoUfAX43wX2OZyFwlJnNMLPN8V3HC4ev5Jx7CrgZ30VLyHFP83YCHnTO/RD4Dr4rF/yXsdEuIEpCbEz9V2g/tdCJSF8qVbPb4bsCnwGubcMu/x4/Juh+/AdEq2fxY4vOqecLL7fhWONqGXc0B9+tWQ2Pl/FdU0uB37Pmg6zV6cAvzey9wK3AohHWGcI593gYH3euma2Hbxk53Dl3l5l9KuxvFv5z5wzWdI/J5N0E7FnPF/7Q8lgS4rhjvJxzK8zsy8AJzrk3m9kVwF3Ao/gvHxtPIIfPAueFv/G1wANh3y+aWR44M5wPDzH6F4h19QNgV9acQ99oGT833BHAaWb2CXx3/wPAocAHgCPMbAW+dbBZ9J0NfNPMTgI+6Jy7u2VfXTtlCYCt3QopIpJ+pWq2iH/zvqicq/3NVPaVGaxsgm8B2wrI1/OF8ye43ZP4Qd1b1POFJ6eSgwyVGaxUSHmX60gyg5U/4guP19fzhXti55MmmcHK9/CF3+fq+cLwL23RqctVRPpVO8fPHY8v5q4DftaG/YmsszAXXXMakgdi5pJSSYiNiDmMSgWdiPSdUjU7CzgoLE5pupLMYGU7/JQLAJ/vtht2S1/ZFt+t+HA9X3ghdjIplITYlV2uKuhEpB/thx/4f285V/vjeCuP49/wFxv8vJ4v1KecmcjkJSE2IuaQSsPmoBt1SpiYVNCJSD96Z4hT6m7NDFb2xl8NuAL44lSTEpmi5qD9RswkUuqV+AuMnqznC8vHWzkGFXQi0o+mPH4ufGNvTlPynXq+0JXdMNJXkhB1LrZfEmLXvrYq6ESkr5Sq2S3xtzF6ET+H1mTl8LPkPwZ8feqZiUxZEmIjYg5p1fWtnyroRKTfHIS/gfjV5VxtUncpyAxW1gO+ERZP7MbbAElf6vqio4clITYi5jAmFXQi0m/aMV3JJ4Gd8JOwnjXljETaIwmxa7sFe1gSYiNiDmNSQScifaNUzc4ADg6LkyroMoOVLYAvh8Xj6vnCS+3ITWQqMoOV2cCr8fc1fTByOmmUhNi1xbIKOhHpJ3vgJwD+M3DHJPfxL/j7VV4B/LpNeYlM1avxn+kP1fOFFbGTSaGu785WQSci/WR1d2s5V1vnCYAzg5XXAZ/Ct4Icq0mEpYt09X1Ge1lmsDID2D4sNiKmMiYVdCLST5oF3WTvDnEqMBs4Z9gN0UViS0JsRMwhrbYC1gceq+cLz8ROZjQq6ESkL5Sq2U2BNwOrgMvXdfvMYOUA4HDgOXy3aztZm/cn/feaJiE2IuaQVl3f3Qoq6ESkf7wNmAVcV87Vlq3LhqHLpTmJ8Kn1fOHhNuXUnDZl4zbtT9ZovqaTmpqmB/VE0dGjkhAbEXMYlwo6EekXU5mu5AhgL+Ah1hR27fBQiEkb9yleEuJDY62UIkmIGkPXfkmIjYg5jEsFnYikXqmaNSY5fi4zWNmQNXeCOKGeL7SzxefWEPdp4z77XmawsgmwK757/c7I6UyXJMRGxBzSKgmxq4tlFXQi0g9ej79K7THgpnXc9vP4KSEWAz9pc15XhPjeNu+3370HmAlc1+YCvCuFO5dsC7yMn5JH2qsnurNV0IlIP3hniL8t52ovT3SjzGDlVcAXw+Kx9XxhwttO0MXAU8CbM4OVBW3ed18KE+x+ISz+NGYu0+g1+ItAHtRE1x2RhNiImMO4ZsVOQERkGkx2/NxXgY2AC+v5wsK2ZgTU84VnMoOVMnASMJgZrHwCeKTdx+kjM4HPArsD9wM/ipvOtElCXJ4ZrOwbM5EUMnpgDjpQQSciKVeqZucAC8Libye6XWawsjvwEWAlcHz7M1vtVHx+bwOqHTxOP3kOyNfzhedjJzJNtglxd+D6mImk2KP1fOG52EmMRQWdiKTdW4ENgJvLudpfJ7JBZrBiQBk/LOX0er5wT6eSq+cLKzKDlUOAfwQOxU9gKpN3N3ByPV+Y7K3detHv8a3P82InkmLnxk5gPCroRCTtmuPn1qW79V3AQcAyfHdoR9XzhReBU8I/kXVSzxceBLKx85C4dFGEiKTdOo2fywxWZrFmrrmv1vOFxzuSlYhIG6mgE5HUKlWz2+PnI3saqE9ws4+Gbf4InNGh1ERE2koFnYikWbO79YpyrjbudA6Zwcpc1nSxHh+6QkVEup4KOhFJs3UdP/dPwJbANcB/dSQjEZEOUEEnIqlUqmZnA+8Ii+Pe7iszWEmAz4XFY+v5gutMZiIi7aeCTkTS6k3ApsBd5VytMYH1T8ZPGXJePV+4oZOJiYi0mwo6EUmr5tWtE2mdexPwIeAF4J87mZSISCeooBORtJrQdCVhEuFvhcVv1fOFBzqalYhIB6igE5HUKVWzrwT2xLe4XTnO6u8HMsCjaGJfEelRKuhEJI0ODvHKcq426v08M4OV9fH3UgX4l3q+8HTHMxMR6QAVdCKSRhO9O8RngB2A24H/7GhGIiIdpIJORFKlVM3OYM38c6NeEJEZrLwC+FJYPLaeL6zsdG4iIp2igk5E0uaNwCuAB4C7xljvX4G5wKX1fGHcK2FFRLqZCjoRSZvV3a3lXG3EyYEzg5VdgGOAl4HSdCUmItIpKuhEJG0mMn7um8BM4Ox6vnBb51MSEeksFXQikhqlanYufgqSVcDvRlonM1h5O/Bu4Bngy9OXnYhI56igE5E0eTu+5e3acq62fPiTmcHKTODfw+LJ9Xzhr9OZnIhIp6igE5E0Ga+79cPAHsCDwH9MS0YiItNABZ2IpEKpmjXGKOgyg5WNgX8Li1+s5wujTjgsItJrVNCJSFrsCmwHLAWWjPB8CdgaWAScP31piYh0ngo6EUmLZuvcpeVc7eXWJzKDlW2B48Pi5+v5wpDnRUR63azYCTSZ2a+BQ2LnIUNc4pw7NHYSsVixuBOQAzaOnEpaLQd+4QYGHmzT/pp3hxhp/NzXgDnAL+v5wjVtOp5I17Ni8e+AnWLnkWKL3cDARbGTADDnRpx3c9qZWXckIkM45yx2DjFYsXgkMADMjp1Lyj0HfMgNDFw8lZ2UqtkNgSeA9YCtyrna0uZzmcHKG4GbgJXArvV84X+mciyRXmHF4m6A5lnsrFXAXDcw8GzsRLqmha5prAKiWfT1a5HRLhN5Hfu5wLZicU/8jdpnAYPAPXEzSq35wN8A51uxuIcbGLhvCvs6AFgfuHFYMWf4aUoMOE3FnPSZ14d4B3BBzERSaA5+GMfLQFdcYNV1BZ1IFzgF/3/jNDcw8A+xk0krKxYNqAAfAk4CClPY3erxc8Mefw9wIL717mtT2L9IL0pCvNwNDJwYMY/UsWLxf+ELuvvdwEBXjMnVRREiLaxY3AE4CN8V+K+R00k1NzDggC/gv+G+34rFzaewu7XGz2UGK7Pxt/gC+Eo9X3hyCvsX6UU7hNiImURKJSE2IuYwhAo6kaGaLT2/dgMDKgA6zA0MPABciR+r+PbJ7KNUze6A71paDlzX8tQngJ3xXebfn1qmIj0pCbERMYe06rpiWQWdyFB7hXh11Cz6S/O13mvMtUbXbJ27vJyrrQTIDFY2B04Mjx9fzxdemnx6Ij0rCbERMYe0SkL8U8wkWqmgExkqCVEXQkyfe0PcYcy1RjfS+LkTgC2AhUBXTCkgMp3CGNXm/6muKTpSJAmxETGHIVTQiQw1N0R1t06f5ms9d8y1RlCqZtdjTVftpQCZwcqOwD8ADji2ni/07RXb0tfmARsBy93AwLLIuaRREmIjYg5DqKATGar5f2JV1Cz6S/O1nsx0RBn8xM93lHO1B8Jjp+DH5P24ni8sbkN+Ir0oCbERMYc067rWTxV0ItLLmt2tvwHIDFb2B96PnxfqhFhJiXSBJMSuKTjSworFTfAtoC8Cf42czmoq6ESkl60eP5cZrMzATyIM8M16vvBQpJxEukHXXYWZItuH2DVz0IEKOhHpUaVq9lX4u008D1yFn6B4X+AR1sw/J9KvkhAbEXNIq67rbgUVdCLSuw4OceF/P3+kASeH5S/V84VnIuUk0i2SEBsRc0irJMRGxBzWooJORHpV6/i5zwGvAf4A/ChWQiJdpCtbkVIiCbERMYe16F6uItJzStXsTEIL3dKV2y9izRx0x9bzBV2hLH0tzEGXhMX7I6aSVkmIjYg5rEUtdCLSi/bCX2XWuOeltxwFbAL8qp4vXBE3LZGusCUwB3jSDQwsj51MCnVl66cKOhHpRe8EeNHNuR7sY/i57I6Lm5JI19AVrp2VhNiImMNaVNCJSC96F8ADL81/Hf597Af1fOGuuCmJdI0kxK5qQUoDKxbnApvjr65/NHI6Q6igE5GeUqpmNwfe5ByrHl+1/Z7AU8BXIqcl0k2SEBsRc0irJMSGGxjoqtsKqqATkV7zDmDGM+4VL65iNsDX6vnC0sg5iXSTJMRGxBzSKgmxETGHEamgE5Fe8y6Ax1dttyG+S+m0uOmIdB2NoeucJMRGxBxG1JcFnZk5M1tiZreY2WIz238ajnmumR09zjqbmdnnOp2LgBWLs61Y3HOdtllz3jT/HTKpY5vlzGz+ZLYdZ79HhnP6D2Z2p5kdO4FtFprZgkkeb76Z5Saz7WSVqllzzhd0y1ZtA/DFer7wwnTmINItrFjcw4rFDUZ4KglxrTF0nf78M7OGmSXjrjjx/bXlfXcdjnf0OPk3n+u68Yl9WdABOOfmO+d2B84Ezo6dT7AZfoJU6bxZwI1WLH7fisUtJrpROG+a/y6Z5LFz+FtWrRMzG3XeSDPbFn+nhLc75/YA9gAmm99Ezcf/LutkrN9jAnYzY5sVbg7Pus3rwAVT2JdIrysAt1mxeGjzgTAH3ep7jY60UZd+/o1qsu+7k3yvOZo1RdtIurb1s28LuhZX4WeYB8DMTjOzRWZ2q5lVzGyD8PgSM9sp/HyNmf0g/PxuM/vp8J2a2QZm9hMzu8vMLgNe2fLc35vZDWZ2s5ldZWY7hqf+A9gmHOtnY+UjbWHAJ4B7rFj8uBWLM9d5B2abm9l54e95i5l9Ijw+x8wuM7ObzOx2M/tiePxA4DDgpPB3PtDMTjSzE1v2ubo1N/x8lpnVgZ+H8+r0luOdFDZ7JfACsBzAObfCOXdnyz6PCefRzWb2czPbdITfZTszu6hlvcNbnvt0OAf/YGaXmNkmwEnAYeH3OK7lOLeb2W1mdoaZzR7p91jX17nphZc3+hDAk6u2Buzz9XyhqwYli0SwI/ArKxYvsmJxR+BVwAbA425g4Olxtp3o59/RZnaxmV0YWv8vMrP1w3Pbh8/E283sh/j31eb+9jezG8N7Vc3MtmnZ36/Cfu41s5+aWSZ8Hv7JzD45VtJmtp6ZfT+8z9xmZh9vea5hZqea2SLg+NHe18xsFzOrh8duN99zcgSwN3B2eF97/QiHT0JsjPPaTjvdKcJ/uLZ+y/+Kc+4xADM7HSgCZwALgQVm9jCwIf6PDrAgPDfcMcD6wK7AtsDtrPkgu8g5d044xvuBU4C/Bf4ReKNzbv4E8umsgw6C7bbDisV++MCch/+m+nFgo7FWNLMlLYv74ovwQefcr8xsDlA3syuBe4C/dc4tC298/21mFzvnfm9mFwELnXPnhn0eME5+OwMHOOdWhMLvLufcp81sJvArM3sncBlwN3C/mf0OuBw4L2yzAHgrkHHOrTSzE4B/Cv9anQOUnHNLzGwesMjMFuLP9Y8Bbwm/zzzn3NNm9mVggXPu6PB7zAeOx0/6uwz4L3zB3Bzjtvr3aD3oVvNmbf6O+S8wZ/aKd37sgvyY59ucmS8B8OATG3Ld9VfU7XLNIyx97Y8tP78Hf/eUSlieSJfgRD//wL8P7A48BtSA94VjfRf/HniGmR0GfDRsvz5wPnC4c26R+SEgp4XtwL9PvAF4ElgMlIC3AVsBt5vZWc65lWFfS1py3Bf/+bp1yGcz4CYzu845d0tYZ5Vzbp+w7eWM/L72SeC7zrlBMzNgU+fccjP7GHCic27hKK9ZEmJjtBc1lr4t6MIJMg+YC+zX8tRhZnYM/hvOXNa8RguB9+P/iFcBu5jZ1viC7gcjHOKtwDnOOQf8OXzINr3ezL6Gb1WZwdgtpaPlI+23F/D4WCsMK7Yxs0OB+eHvCf5vtAtwL/AvZvYO/DfWV+PfvG6fRF4XtBRBhwIbmdlHw/LGwOudc5cCh5rZnvg3xWPx3TEHhW3+D3Cjf99iPeCWlv1jZhsDbwHODeuAP9d2xE/ie65zbll4DUZ7jQ4Aqs65J8I+zwU+zJqC7oLhxRzAtq+cvcNWcx5gzWHHttLNZskd4zU8iPSl9fFFGoxxy69JfP6B/xK6NGy/CHhtePytwJEAzrmLzGxZeHwXYKlzblFYHgBOGLa/ZvF4C3BNKOAeMrOn8S2Nfw77nT8s/wX4z9eXgSfM7EL8Z3Hzfe28sN5Y72vXAF8ys9cClzrnbhzt9Vp93GJx8/C6PIsvbLtK3xYHzrn5ZjYD3zr2Y2Af8wMhvwrs7Zx7xMw+g/+QB1/EfQdf0C0E/oofP/QK59x963j484CjnXNXmtkbgItHWmmcfDrrsssAcM5N8GO2t1ixOAd4ruWhxcCngdPxb3QTNQN4R/ONafX+zY7Ct86+yTn3vJn9Ev8mOZKV+CKrafh6zw473odHe/Nxzi0GFpvZj4G/hm+kM/DfRMvj/B4r8C3EQ1rJzOxDY2w35PDjLD/LCBbf+fzixkPbseUWM299465z/n28g6xysxcv+/apt04wJ5HUsmLxVHyrOPj/v98AXsLPyzhqC90kPv8AXmz5eRWj1w9uWBz++Gj7m+j+J7Lv5nvNqO9r+C+41+G/sJ5hZlXn3MljHBO6eA466OOCDsA597KZfQm4K7S0PIif/fkxM9sQ/63jjrDuE2b2JHAE8C18QXc+cPUou78SKJjZxcA2wIHAheG5ucAD4eePt2zzFLCxmVk4+TYdLR9pmyeAfwbOdgMDq6xYXNftf42/5dQXAMxsZ+Av+L/x0lDM7YBvKWsW7k/h/7ZNfwT+Lmy/Ff6b5m/GON4/mtlRoft0W/yb3wxg25Zvw/Px3Z7L8BdHfNfMznHOPW5mGwHbOedW31nBOfeUmd2M78r4XshlT+BmfPfKt8L2zS7Xx0f4Pa4CPmt+XN9y4CigtWV6VE88tYonnlr18F3/8v0fTWR9ERni18Dn3MDAfVYsnhUea4y1wbp8/o3jSvzn4vfN7N34uyiAHwKypZnt5Zy7CfgIE3w/mICFwFHh83UuvlXy8OErjfO+tiPwP865H5rZs/hhT7D2+1qrJMRGW36LNuvrgg784PEwFugE59ybzewK4C78LT1uwHdpNS3Ejxl6IjQ5b8HI4+fAd8PuBdyJL96ubXnuOOD3ZvY4/j9iM5cnzOxXwG1mdptz7oPj5CNTcyZwghsYGLObdRyfBb5tZrfiu1aX4t8YfgK838zuwH9TvrJlm/OAc8zsI/hxk78E8mZ2J3AfsIjRfR1/NevNoQvhGeDv8W/EJ5vZq/HfdFcA73POrQKuMLNvA7+zNf0OX8GfV62OAE4zf2HHTPx5e6hz7grzg52vMbNV4fH34N+cjw/dN+c5575pZmXWfMm5Cv8ai0hn/Al4jxsY+FXLY0nLc2Nax8+/0XwWOM/MPoX/nHsg7PtFM8sDZ5rZesBD+DF57fADfA9Is4v1Gy3j54Yb8X0N+ABwhJmtwL9nHhPWPxv4Zvhi+kHn3N0t+0pC7LopSwBs7VbIOMzMwdhdfBNZR8an13p0VizeBOwJ7O0GBm6KnU8/sGLxXfhWwEvdwMC7Yucj0susWLwHeB2wmxsYUI9OG1mx+F3gM0DJDQyMOzxkumnaEhERkRSwYnEG48xBJ1OShNiImMOoVNCJiIikw9b4C6wedQMDI16EJFOShNiImMOoVNCJiIikQxJiI2IOqRTuwNG8S0RXjqFTQSciIpIOSYiNiDmk1Rb4i0Sexk+G3HVU0ImIiKRDV7cg9bgkxK6cgw5U0ImIiKRFEmIjYg5plYTYtcWyCjoREZF0SEJsRMwhrZqtn42YSYxFBZ2IiEg6dH3R0cOSEBsRcxiTCjoREZEeZ8XiTOA1YVFz0LVfEqK6XEVERKRjtsHfzvMvbmDg+djJpFDXt36qoBMREel9XV9w9KowB10SFhvxMhmbCjoREZHel4TYtV2CPewVwIbAcjcwsCxyLqNSQScyMoudQB/Ray0ydUmIjYg5pFUSYlcXyyroRIZqjj3ZMGoW/WVOiC9EzUKktyUhNiLmkFY90Z2tgk5kqEdC3C5qFv2l+Vo/MuZaIjIW3SWic5IQGxFzGJcKOpGh7ghxr6hZ9Jfma3171CxEelsSYiNiDmmVhNjVxbIKOpGhFob47nBlk3SQFYuzgXeFxStj5iLSq6xYnIVv6XbAA5HTSSN1uYr0oKuBh4HXAX8TOZd+cBSwJb517rbIuYj0qlcDM4GH3cDAi7GTSaEkxEbEHMY1K3YCIt3EDQystGLxVOA7wJlWLD4G3B05rTQyYD7w72H539zAgIuXjkhPS0J8xIrFLWMmkkI9MQcddGFBZ2bjvqlPZB0Zn17HUZ0BvBs4CN9iJ531M+D82EmI9LDmLb/2Bh6NmUiKPeEGBp6KncRYuqmguwQ4JHYSMsQlsROIwQ0MrLJi8TDgX4EPARtHTimtlgE/Ak5R65zIlNyA70mYFzuRFPth7ATGY87pfVRERESkl+miCBEREZEep4JOREREpMepoBMRERHpcSroRERERHqcCjoRERGRHqeCTkRERKTHqaATERER6XEq6ERERER6nAo6ERERkR6ngk5ERESkx6mgExEREelxKuhEREREepwKOhEREZEep4JOREREpMepoBMRERHpcf8fM2zWAXNeuAoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Visualize the complete pipeline\n", "atom.plot_pipeline()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Analyze the results" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
accuracyaverage_precisionbalanced_accuracyf1jaccardmatthews_corrcoefprecisionrecallroc_auc
RF0.9520.65620.55560.20000.11110.32521.0000.11110.9107
RF_os0.9560.62150.76720.57690.40540.55420.6000.55560.9251
RF_us0.5090.36870.67060.15780.08570.15450.0870.85190.8258
\n", "
" ], "text/plain": [ " accuracy average_precision balanced_accuracy f1 jaccard \\\n", "RF 0.952 0.6562 0.5556 0.2000 0.1111 \n", "RF_os 0.956 0.6215 0.7672 0.5769 0.4054 \n", "RF_us 0.509 0.3687 0.6706 0.1578 0.0857 \n", "\n", " matthews_corrcoef precision recall roc_auc \n", "RF 0.3252 1.000 0.1111 0.9107 \n", "RF_os 0.5542 0.600 0.5556 0.9251 \n", "RF_us 0.1545 0.087 0.8519 0.8258 " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "atom.evaluate()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "(%{x}, %{y})RF - test", "legendgroup": "RF", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF" }, "line": { "color": "rgb(0, 98, 98)", "width": 2 }, "marker": { "color": "rgb(0, 98, 98)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines", "name": "test", "showlegend": true, "type": "scatter", "x": [ 1, 0.9814814814814815, 0.9629629629629629, 0.9259259259259259, 0.9074074074074074, 0.8518518518518519, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8148148148148148, 0.8148148148148148, 0.7777777777777778, 0.7777777777777778, 0.7407407407407407, 0.7407407407407407, 0.7222222222222222, 0.7037037037037037, 0.6851851851851852, 0.6481481481481481, 0.5925925925925926, 0.5555555555555556, 0.5370370370370371, 0.5370370370370371, 0.5, 0.46296296296296297, 0.46296296296296297, 0.4444444444444444, 0.4074074074074074, 0.3888888888888889, 0.37037037037037035, 0.35185185185185186, 0.35185185185185186, 0.3148148148148148, 0.2962962962962963, 0.2777777777777778, 0.25925925925925924, 0.2222222222222222, 0.16666666666666666, 0.12962962962962962, 0.1111111111111111, 0.07407407407407407, 0.05555555555555555, 0.037037037037037035, 0.018518518518518517, 0 ], "xaxis": "x", "y": [ 0.054, 0.07076101468624833, 0.09252669039145907, 0.10989010989010989, 0.1320754716981132, 0.1503267973856209, 0.1717557251908397, 0.1939655172413793, 0.21951219512195122, 0.24725274725274726, 0.26785714285714285, 0.3103448275862069, 0.3308270676691729, 0.36666666666666664, 0.38181818181818183, 0.40384615384615385, 0.43010752688172044, 0.4878048780487805, 0.4936708860759494, 0.5, 0.5285714285714286, 0.5303030303030303, 0.5423728813559322, 0.625, 0.6590909090909091, 0.7435897435897436, 0.75, 0.7352941176470589, 0.7575757575757576, 0.8, 0.7857142857142857, 0.84, 0.9090909090909091, 0.9047619047619048, 0.95, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "yaxis": "y" }, { "hovertemplate": "(%{x}, %{y})RF_os - test", "legendgroup": "RF_os", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF_os" }, "line": { "color": "rgb(56, 166, 165)", "width": 2 }, "marker": { "color": "rgb(56, 166, 165)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines", "name": "test", "showlegend": true, "type": "scatter", "x": [ 1, 1, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9444444444444444, 0.9259259259259259, 0.9074074074074074, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8518518518518519, 0.8148148148148148, 0.8148148148148148, 0.7962962962962963, 0.7777777777777778, 0.7777777777777778, 0.7777777777777778, 0.7407407407407407, 0.7407407407407407, 0.7222222222222222, 0.6851851851851852, 0.6851851851851852, 0.6851851851851852, 0.6851851851851852, 0.6666666666666666, 0.6481481481481481, 0.6481481481481481, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6111111111111112, 0.5925925925925926, 0.5740740740740741, 0.5555555555555556, 0.5555555555555556, 0.5185185185185185, 0.5, 0.48148148148148145, 0.48148148148148145, 0.46296296296296297, 0.4444444444444444, 0.4444444444444444, 0.4444444444444444, 0.4074074074074074, 0.4074074074074074, 0.3888888888888889, 0.37037037037037035, 0.35185185185185186, 0.3333333333333333, 0.3333333333333333, 0.3148148148148148, 0.2962962962962963, 0.2777777777777778, 0.2777777777777778, 0.25925925925925924, 0.24074074074074073, 0.2037037037037037, 0.18518518518518517, 0.14814814814814814, 0.1111111111111111, 0.09259259259259259, 0.037037037037037035, 0 ], "xaxis": "x", "y": [ 0.054, 0.05856832971800434, 0.06370192307692307, 0.07123655913978495, 0.07737226277372262, 0.08660130718954248, 0.09532374100719425, 0.10379241516966067, 0.11279826464208242, 0.12560386473429952, 0.13829787234042554, 0.15028901734104047, 0.1625, 0.16887417218543047, 0.18050541516245489, 0.1891891891891892, 0.2, 0.21076233183856502, 0.22705314009661837, 0.23979591836734693, 0.2554347826086957, 0.26136363636363635, 0.2634730538922156, 0.275, 0.2792207792207792, 0.2857142857142857, 0.3, 0.32061068702290074, 0.3252032520325203, 0.3305785123966942, 0.33620689655172414, 0.3425925925925926, 0.3523809523809524, 0.3627450980392157, 0.37, 0.3673469387755102, 0.3684210526315789, 0.3977272727272727, 0.4, 0.40476190476190477, 0.43037974683544306, 0.4594594594594595, 0.4722222222222222, 0.4857142857142857, 0.5, 0.5074626865671642, 0.5483870967741935, 0.5689655172413793, 0.5614035087719298, 0.5740740740740741, 0.6, 0.6122448979591837, 0.6222222222222222, 0.6585365853658537, 0.65, 0.6666666666666666, 0.6578947368421053, 0.6486486486486487, 0.7058823529411765, 0.7272727272727273, 0.7333333333333333, 0.7586206896551724, 0.75, 0.8, 0.8260869565217391, 0.8181818181818182, 0.9, 0.8947368421052632, 0.9411764705882353, 0.9375, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "yaxis": "y" }, { "hovertemplate": "(%{x}, %{y})RF_us - test", "legendgroup": "RF_us", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF_us" }, "line": { "color": "rgb(115, 175, 72)", "width": 2 }, "marker": { "color": "rgb(115, 175, 72)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines", "name": "test", "showlegend": true, "type": "scatter", "x": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9444444444444444, 0.9444444444444444, 0.9444444444444444, 0.9444444444444444, 0.9259259259259259, 0.9074074074074074, 0.8888888888888888, 0.8888888888888888, 0.8888888888888888, 0.8888888888888888, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8333333333333334, 0.8333333333333334, 0.8148148148148148, 0.7962962962962963, 0.7777777777777778, 0.7407407407407407, 0.7407407407407407, 0.7407407407407407, 0.7407407407407407, 0.7037037037037037, 0.6851851851851852, 0.6851851851851852, 0.6666666666666666, 0.6481481481481481, 0.6111111111111112, 0.5740740740740741, 0.5370370370370371, 0.5185185185185185, 0.5, 0.48148148148148145, 0.4444444444444444, 0.3888888888888889, 0.3888888888888889, 0.37037037037037035, 0.37037037037037035, 0.37037037037037035, 0.2962962962962963, 0.2037037037037037, 0.16666666666666666, 0.12962962962962962, 0.12962962962962962, 0.1111111111111111, 0.1111111111111111, 0.1111111111111111, 0.09259259259259259, 0.07407407407407407, 0.05555555555555555, 0.018518518518518517, 0 ], "xaxis": "x", "y": [ 0.054, 0.05421686746987952, 0.05454545454545454, 0.054933875890132246, 0.055441478439425054, 0.05572755417956656, 0.056016597510373446, 0.05619146722164412, 0.05672268907563025, 0.057203389830508475, 0.057692307692307696, 0.05806451612903226, 0.058315334773218146, 0.05888767720828789, 0.05934065934065934, 0.05947136563876652, 0.060066740823136816, 0.06002265005662514, 0.06077981651376147, 0.06113033448673587, 0.06177156177156177, 0.0624263839811543, 0.06302021403091558, 0.06257521058965103, 0.06295399515738499, 0.06349206349206349, 0.0647571606475716, 0.06540880503144654, 0.06649616368286446, 0.06718346253229975, 0.06842105263157895, 0.06914893617021277, 0.07017543859649122, 0.07133058984910837, 0.07112970711297072, 0.07172995780590717, 0.07275320970042796, 0.07380607814761216, 0.07396449704142012, 0.07324364723467862, 0.07261724659606657, 0.07465007776049767, 0.07643312101910828, 0.07766990291262135, 0.07755775577557755, 0.07859531772575251, 0.07993197278911565, 0.08145580589254767, 0.08274647887323944, 0.0852994555353902, 0.08687615526802218, 0.08695652173913043, 0.08984375, 0.09236947791164658, 0.0968421052631579, 0.10065645514223195, 0.10430839002267574, 0.10747663551401869, 0.11057692307692307, 0.116751269035533, 0.12073490813648294, 0.1232876712328767, 0.1278409090909091, 0.13538461538461538, 0.14052287581699346, 0.14334470989761092, 0.14336917562724014, 0.1520912547528517, 0.1646090534979424, 0.17391304347826086, 0.18181818181818182, 0.19072164948453607, 0.20218579234972678, 0.20930232558139536, 0.22151898734177214, 0.23404255319148937, 0.2421875, 0.26126126126126126, 0.2828282828282828, 0.2967032967032967, 0.3333333333333333, 0.35294117647058826, 0.3387096774193548, 0.3684210526315789, 0.4166666666666667, 0.47619047619047616, 0.5128205128205128, 0.5, 0.5, 0.5294117647058824, 0.5384615384615384, 0.6363636363636364, 0.75, 0.8571428571428571, 1, 1, 1, 1, 1, 1 ], "yaxis": "y" } ], "layout": { "font": { "size": 12 }, "height": 600, "hoverlabel": { "font": { "size": 16 } }, "legend": { "bgcolor": "rgba(255, 255, 255, 0.5)", "font": { "size": 16 }, "groupclick": "toggleitem", "traceorder": "grouped", "x": 0.01, "xanchor": "left", "y": 0.01, "yanchor": "bottom" }, "margin": { "b": 50, "l": 50, "pad": 0, "r": 0, "t": 35 }, "shapes": [ { "layer": "below", "line": { "color": "black", "dash": "dash", "width": 1 }, "opacity": 0.6, "type": "line", "x0": 0, "x1": 1, "xref": "x domain", "y0": 0.054, "y1": 0.054, "yref": "y" } ], "showlegend": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "font": { "size": 24 }, "pad": { "b": 15, "t": 15 }, "x": 0.5, "xanchor": "center", "xref": "paper", "y": 1, "yanchor": "top" }, "width": 900, "xaxis": { "anchor": "y", "automargin": true, "autorange": true, "domain": [ 0, 1 ], "range": [ 0, 1 ], "title": { "font": { "size": 16 }, "text": "Recall" }, "type": "linear" }, "yaxis": { "anchor": "x", "automargin": true, "autorange": true, "domain": [ 0, 1 ], "range": [ 0.0014444444444444426, 1.0525555555555555 ], "title": { "font": { "size": 16 }, "text": "Precision" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABZsAAAJYCAYAAAAE1Tj9AAAAAXNSR0IArs4c6QAAIABJREFUeF7s3QeYHWXZxvF792zvJbvpjRA6BEhI6AGJ0kQQERQVCEgVqXYQUT6UTz66dKkiCCpSpCm9JyEhBEihpNftvZ/d75rZbEhI2bPnzJwp7/9cV65dkpn3fZ7f84J6M86m9PT09IgPAggggAACCCCAAAIIIIAAAggggAACCCCAAAIJCKQQNiegx60IIIAAAggggAACCCCAAAIIIIAAAggggAACtgBhMwcBAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIGEBwuaECVkAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgLCZM4AAAggggAACCCCAAAIIIIAAAggggAACCCCQsABhc8KELIAAAggggAACCCCAAAIIIIAAAggggAACCCBA2MwZQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEhYgLA5YUIWQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECBs5gwggAACCCCAAAIIIIAAAggggAACCCCAAAIIJCxA2JwwIQsggAACCCCAAAIIIIAAAggggAACCCCAAAIIEDZzBhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQSFiBsTpiQBRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQImzkDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEDYnTMgCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAoTNnAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBhAUImxMmZAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABwmbOAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDCAoTNCROyAAIIIIAAAggggAACCCCAAAIIIIAAAggggABhM2cAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIGEBwuaECVkAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgLCZM4AAAggggAACCCCAAAIIIIAAAggggAACCCCQsABhc8KELIAAAggggAACCCCAAAIIIIAAAggggAACCCBA2MwZQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEhYgLA5YUIWQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECBs5gwggAACCCCAAAIIIIAAAggggAACCCCAAAIIJCxA2JwwIQsggAACCCCAAAIIIIAAAggggAACCCCAAAIIEDZzBhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQSFiBsTpiQBRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQImzkDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEDYnTMgCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAoTNnAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBhAUImxMmZAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABwmbOAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDCAoTNCROyAAIIIIAAAggggAACCCCAAAIIIIAAAggggABhM2cAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIGGBUIXNq6tbEwZhAQQQMFsgKyOinMyIaho7zIagewQQSFggNVUqK8jSurq2hNdiAQQQQGBISbYqalvV3YMFAgggkJhASX6Gmtu61N7ZndhC3I0AAghIGlaavYkDYTPHAgEEENhIgLCZ44AAAk4JEDY7Jck6CCBgCRA2cw4QQMApAcJmpyRZBwEELAHCZs4BAgggsA0BwmaOBwIIOCVA2OyUJOsggABhM2cAAQScFCBsdlKTtRBAgLCZM4AAAggQNnMGEEAgCQKEzUlAZgsEDBLgyWaDhk2rCLgsQNjsMjDLI2CYAGGzYQOnXQQQGJgATzYPzIurEUBg6wKEzZwOBBBwUoCw2UlN1kLAbAHCZrPnT/cIOC1A2Oy0KOshgECoBAibQzVOmkHAUwHCZk/52RyB0AkQNodupDSEgGcChM2e0bMxAqEUIGwO5VhpCgEEnBIgbHZKknUQQICwmTOAAAJOChA2O6nJWgiYLUDYbPb86R4BpwUIm50WZT0EEAiVAGFzqMZJMwh4KkDY7Ck/myMQOgHC5tCNlIYQ8EyAsNkzejZGIJQChM2hHCtNIYCAUwKEzU5Jsg4CCBA2cwYQQMBJAcJmJzVZCwGzBQibzZ4/3SPgtABhs9OirIcAAqESIGwO1ThpBgFPBQibPeVncwRCJ0DYHLqR0hACngkQNntGz8YIhFKAsDmUY6UpBBBwSoCw2SlJ1kEAAcJmzgACCDgpQNjspCZrIWC2AGGz2fOnewScFiBsdlqU9RBAIFQChM2hGifNIOCpAGGzp/xsjkDoBAibQzdSGkLAMwHCZs/o2RiBUAoQNodyrDSFAAJOCRA2OyXJOgggQNjMGUAAAScFCJud1GQtBMwWIGw2e/50j4DTAoTNTouyHgIIhEqAsDlU46QZBDwVIGz2lJ/NEQidAGFz6EZKQwh4JkDY7Bk9GyMQSgHC5lCOlaYQQMApAcJmpyRZBwEECJs5Awgg4KQAYbOTmqyFgNkChM1mz5/uEXBagLDZaVHWQwCBUAkQNodqnDSDgKcChM2e8rM5AqETIGwO3UhpCAHPBAibPaNnYwRCKUDYHMqx0hQCCDglQNjslCTrIIAAYTNnAAEEnBQgbHZSk7UQMFuAsNns+dM9Ak4LEDY7Lcp6CCAQKgHC5lCNk2YQ8FSAsNlTfjZHIHQChM2hGykNIeCZAGGzZ/RsjEAoBQibQzlWmkIAAacECJudkmQdBBAgbOYMIICAkwKEzU5qshYCZgsQNps9f7pHwGkBwmanRVkPAQRCJUDYHKpx0gwCngoQNnvKz+YIhE6AsDl0I6UhBDwTIGz2jJ6NEQilAGFzKMdKUwgg4JQAYbNTkqyDAAKEzZwBBBBwUoCw2UlN1kLAbAHCZrPnT/cIOC0Q+LD582Wrde1tf9MffnWmigvzN/FZXd3qtBfrIYCAYQKEzYYNnHYRcFGAsNlFXJZGwEABwmYDh07LCLgkQNjsEizLImCoQGDD5tr6Rp37ixv04YLF2n3n7XT7NRcTNht6iGkbATcFCJvd1GVtBMwSIGw2a950i4DbAoTNbguzPgLmCBA2mzNrOkUgGQKBDZv7cHiyORnHhD0QMFeAsNnc2dM5Ak4LEDY7Lcp6CJgtQNhs9vzpHgEnBQibndRkLQQQCG3Y/Ke3/q7m9igTRsBVgbTUYkVSC1zdg8W9FUhPS1F6JFUt/PPE20EMYPfc1DSVZGQO4A7/Xrrb8JHKz8ryb4FUNiABwuYBcXExAgj0I0DYzBFBAAGnBAibnZJkHQQQsARCGzb/5IkjmTACrgss6Zyk1V07u74PGyCAQOwCFatWa/GCBbHf4OMr8zIzdcaBB+snRxyhsnz+xZaPRxVTaSkpsv/lVUdXd0zXc5G5AtHuHkVSU8wFoPOYBDLSU9XZ2a2emK7mIgQQ6BPgn7Gbn4X0SIosl27+gcLfKAgg4IBAZnrqJquk9PT0BOofL1t7jcaZfz/FAR6WQGDLAlmRJmWmtmpJywStbtsBphALWOGQ9QnWPxlDPJBttZYWkdLTpYYmpVZVBx5hbUO9FldVbuhj+v4H6aKvHqnhRcWB783UBlJSpaKcDNU2dZhKQN8xCvSoRykibI6Ry9jLSgoyVNvYwX9HMfYE0Hi8AlbgwT9hN9XLz0lTW0dUnV2BioPiPQLchwACLguUFmSEM2y2ulpd3eoyH8ubKvDq4ns0Z9UzmrrddE0cfoypDEb0zTubgzPmF1cu1e3z39dhw8fovF33Ck7h26j0+Y/n6eaXntcHK5fbV6VFIvrWnpN0wbQjNKa0LBQ9mtQEr9Ewadr0ioD7ArxGw31jdkDAFAFeo2HKpOkTgeQIhPY1GoTNyTlApu5C2GzO5AmbgzPrMIbNffqvf7JQN730vN5d8pn9W6kpKTpqtz118VeP1E5DhgVnSIZXSths+AGgfQQcFiBsdhiU5RAwWICw2eDh0zoCLggENmyurW/Uub+4QR8uWLyB5YzvHqVLzj5xw1/zZLMLJ4YlbQHCZnMOAmFzcGYd5rC5bwpzli3RDS8+p5cXzd8wmEN33EWXTDtSe48eG5xhGVopYbOhg6dtBFwSIGx2CZZlETBQgLDZwKHTMgIuCgQ2bI7FhLA5FiWuiUeAsDketWDeQ9gcnLmZEDb3TWPh2tW64b/P6dmP5qp7/QvFp4wZpwsOO1yH7LhLcIZmWKWEzYYNnHYRcFmAsNllYJZHwCABwmaDhk2rCCRBgLA5CchsET4BwubwzXRrHRE2B2fWJoXNfVNZWl1pv17j8Tmz1NXdbf/2bsNG2KHzkbvtab9ug49/BAib/TMLKkEgDAKEzWGYIj0g4A8BwmZ/zIEqEAiLAGFzWCZJH0kVIGxOKrenmxE2e8o/oM1NDJv7gNbU1+mWl1/Q32a+o/Zol/3b48rKdf5XDtfxe06yf7AgH+8FCJu9nwEVIBAmAcLmME2TXhDwVoCw2Vt/dkcgbAKEzWGbKP0kRYCwOSnMvtiEsNkXY4ipCJPD5j6gyqZG3fnai3rwnTfV3NFu//bwomKdO3WaTp6yvzLT0mOy5CJ3BAib3XFlVQRMFSBsNnXy9I2A8wKEzc6bsiICJgsQNps8fXqPW4CwOW66wN1I2ByckRE2fzGrhtZW/fmtV3XPm6+orqXF/oNBuXk66+DDdOr+BysvMzM4gw1RpYTNIRomrSDgAwHCZh8MgRIQCIkAYXNIBkkbCPhEgLDZJ4OgjGAJEDYHa16JVEvYnIhecu8lbN7cu6WjXQ+886b9tLP11LP1KcjK0mn7Hayzp05TUU5Ocodk+G6EzYYfANpHwGEBwmaHQVkOAYMFCJsNHj6tI+CCAGGzC6gsGX4Bwubwz7ivQ8Lm4MyasHnrs+qIdumRGW/rttde1MraGvvC7PQMnTx5f51/6FdVXlAYnEEHuFLC5gAPj9IR8KEAYbMPh0JJCARUgLA5oIOjbAR8KkDY7NPBUJa/BQib/T0fJ6sjbHZS0921CJv79412d+vxObN0yysv6PPKCvuG9EhEJ+w9WRdMO0Kjikv7X4Qr4hYgbI6bjhsRQGALAoTNHAsEEHBKgLDZKUnWQQABS4CwmXOAQBwChM1xoAX0FsLm4AyOsDn2WXX39Oi5j+bq5pde0EerV9o3pqak6Ou776ULpx2hnYYMi30xroxZgLA5ZiouRACBGAQIm2NA4hIEEIhJgLA5JiYuQgCBGAUIm2OE4jIENhYgbDbnPBA2B2fWhM3xzerlhR/bofOsZYs3LHDYTrvqosOO0N6jx8a3KHdtUYCwmYOBAAJOChA2O6nJWgiYLUDYbPb86R4BpwUIm50WZT0jBAibjRiz3SRhc3BmTdic2KzeXfypbnrpeb3+6aINC+07dntdcNgRmrrDToktzt22AGEzBwEBBJwUIGx2UpO1EDBbgLDZ7PnTPQJOCxA2Oy3KekYIEDYbMWbC5oCNmbDZmYFZr9W44b/P6oWP56ln/ZITRozSjw/9mo7YbYJSUlKc2cjAVQibDRw6LSPgogBhs4u4LI2AYQKEzYYNnHYRcFmAsNllYJYPpwBhczjnuqWueLI5OLMmbHZ2VtYPELzhxWf11NzZivb0xs7jywfrx4ceruP2mqSIlZzyGZAAYfOAuLgYAQT6ESBs5ogggIBTAoTNTkmyDgIIWAKEzZwDBOIQIGyOAy2gtxA2B2dwhM3uzGp5bbVueekF/X32DHVGo/YmI4tLdN4hX9V3Ju+njEiaOxuHcFXC5hAOlZYQ8FCAsNlDfLZGIGQChM0hGyjtIOCxAGGzxwNg+2AKEDYHc27xVE3YHI+aN/cQNrvrXtFQr1tffVF/nfGWWjs77M3K8vJ19tRpOnW/A5WTkeluASFYnbA5BEOkBQR8JEDY7KNhUAoCARcgbA74ACkfAZ8JEDb7bCCUEwwBwuZgzMmJKgmbnVBMzhqEzclxrmtp0Z2vvaj73nldjW1t9qaF2dk6ff+p+uFBX1FRTk5yCgngLoTNARwaJSPgYwHCZh8Ph9IQCJgAYXPABka5CPhcgLDZ5wOiPH8KEDb7cy5uVEXY7IaqO2sSNrvjurVVm9rbdf9br+mu119SdUuzfVlOeoa+v++BOnfqYSovKExuQQHYjbA5AEOiRAQCJEDYHKBhUSoCPhcgbPb5gCgPgYAJEDYHbGCU6w8BwmZ/zCEZVRA2J0PZmT0Im51xHOgqbZ0d9qs1bn/tJa2pr7NvT49EdOLEKTr/sMM1qrh0oEuG9nrC5tCOlsYQ8ESAsNkTdjZFIJQChM2hHCtNIeCZAGGzZ/RsHGQBwuYgT29gtRM2D8zLy6sJm73Ul7qiUfuHCP7plf9qaXWlXUwkJUXfmLC3LjjsSO0weIi3Bfpgd8JmHwyBEhAIkQBhc4iGSSsIeCxA2OzxANgegZAJEDaHbKC0kxwBwubkOPthF8JmP0whthoIm2NzSsZV/5g9U3965QV9WrFuw3YnTJysm046JRnb+3YPwmbfjobCEAikAGFzIMdG0Qj4UoCw2ZdjoSgEAitA2BzY0VG4lwKEzV7qJ3dvwubkeieyG2FzInru3PvCx/N000vP64OVy1WWl6+5V/zBnY0Csiphc0AGRZkIBESAsDkgg6JMBAIgQNgcgCFRIgIBEiBsDtCwKNU/AoTN/pmF25UQNrst7Nz6hM3OWTq5UmVjg/a86leEzZIIm508WayFAAKEzZwBBBBwSoCw2SlJ1kEAAUuAsJlzgEAcAoTNcaAF9BbC5uAMjrDZn7OqaKjXXv9zmcryCzT317/3Z5FJqoqwOUnQbIOAIQKEzYYMmjYRSIIAYXMSkNkCAYMECJsNGjatOidA2Oycpd9XImz2+4S+qO+lVct028dzdNiw0Tpvt70dKbyuo12NHR1q7upQU2enmjs71dTVobSUVB0+cqwje4R9EcLmLyZM2Bz2005/CCRXgLA5ud7shkCYBQibwzxdekMg+QKEzck3Z8cQCBA2h2CIMbZA2BwjlA8u21rYXN/Rvj4o7lBTV29g3NjZoZZopxra2zcJkhu7Ouw/t351dEe32dVBQ0booj328UHn/i6BsJmw2d8nlOoQCK4AYXNwZ0flCPhNgLDZbxOhHgSCLUDYHOz5Ub1HAoTNHsF7sC1hswfocW7ZFzZbt5dmZaupo0Pt/QTG/W2Vk5am/PRMFWZm2k8z932WNNSqNRrVbiWD9Iu99ld2JNLfUsb+OWEzYbOxh5/GEXBZgLDZZWCWR8AgAcJmg4ZNqwgkQYCwOQnIbBE+AcLm8M10ax0RNgdn1huHzVuqujA9Q/kZGcpPz1J+Rrry0zJUkJmpvL7ft/46I0N56ZnKT09XYUbmVptf3tSo3773hqzXbIzOK9AVkw5U0TauD46i85USNhM2O3+qWBEBBCwBwmbOAQIIOCVA2OyUJOsggIAlQNjMOUAgDgHC5jjQAnoLYXNwBre4sV4LaquUn26FxpnKS0tfHy5nynpC2elPdVurfjfnLa1sarSfpL5i4oEakZvn9DaBX4+wmbA58IeYBhDwqQBhs08HQ1kIBFCAsDmAQ6NkBHwsQNjs4+FQmn8FCJv9OxunKyNsdlo0XOu1dHXpqjlv6ZO6GmWnpenXex+gHYtKwtVkgt0QNhM2J3iEuB0BBLYiQNjM0UAAAacECJudkmQdBBCwBAibOQcIxCFA2BwHWkBvIWwO6OCSWHZnT7eumztTsyrX2O91vnTCZE0uH5rECvy9FWEzYbO/TyjVIRBcAcLm4M6OyhHwmwBhs98mQj0IBFuAsDnY86N6jwQImz2C92BbwmYP0AO4ZY+ku+fP1Qsrl9jVn7Xznjp85NgAduJ8yYTNhM3OnypWRAABS4CwmXOAAAJOCRA2OyXJOgggYAkQNnMOEIhDgLA5DrSA3kLYHNDBeVT208s+0/2LPrR3P3bMeJ2yw24eVeKfbQmbCZv9cxqpBIFwCRA2h2uedIOAlwKEzV7qszcC4RMgbA7fTOkoCQKEzUlA9skWhM0+GUSAynh73SrdMG+Wunt6tF/5cF28xyRFUlMD1IGzpRI2EzY7e6JYDQEE+gQImzkLCCDglABhs1OSrIMAApYAYTPnAIE4BAib40AL6C2EzQEdnMdlz6+t0u/nvK3WaFS7FA/Sr/beX9mRiMdVebM9YTNhszcnj10RCL8AYXP4Z0yHCCRLgLA5WdLsg4AZAoTNZsyZLh0WIGx2GNTHyxE2+3g4Pi9tRVOjfvPeG6rvaNeIvHz9dtJBKsrI9HnVzpdH2EzY7PypYkUEELAECJs5Bwgg4JQAYbNTkqyDAAKWAGEz5wCBOAQIm+NAC+gthM0BHZxPyq5ua9WV772h1S3NKsnM0pWTDtLw3DyfVJecMgibCZuTc9LYBQHzBAibzZs5HSPglgBhs1uyrIuAmQKEzWbOna4TFCBsThAwQLcTNgdoWD4ttaWrS394/x1Zr9bITkvTr/c+QDsWlfi0WufLImwmbHb+VLEiAghYAoTNnAMEEHBKgLDZKUnWQQABS4CwmXOAQBwChM1xoAX0FsLmgA7OZ2VHu7t1w7z39E7FKqWlpOrSCZM1uXyoz6p0pxzCZsJmd04WqyKAAGEzZwABBJwSIGx2SpJ1EECAsJkzgECcAoTNccIF8DbC5gAOzccl37/oQz297DO7wrN23lOHjxzr42qdKY2wmbDZmZPEKggg8GUBwmbOBAIIOCVA2OyUJOsggABhM2cAgTgFCJvjhAvgbYTNARyaz0t+YcUS3bVgrl3lsWPG65QddvN5xYmVV9nYoD2v+pXK8vI194o/JLaYpDX1dapqalR1U6OqmppU2dSo2pYmrWuoV1Vjo37z9eO1wxB/PjWemiqVFWRpXV1bwg4sgAACCBA2cwYQQMApAcJmpyRZBwEECJs5AwjEKUDYHCdcAG8jbA7g0AJQ8syKNbrug5nq6unWfuXDdfEekxSxksgQfvoLm2tamu2Q2AqMKxob7O9rmtd/bwXJzc29v9/cqMa2/kPa7cvK9dyFP1dORqbvNAmbfTcSCkIg0AKEzYEeH8Uj4CsBwmZfjYNiEAi8AO9sDvwIacALAcJmL9S92ZOw2Rt3E3ZdVFejq+a8pdauLu1SPEi/2nt/ZUcioWu9L2y2GjtuwkRVNzeqsrFR1c29TyUP5FOQlaVBeQUqzc1TaV6eBuXl279SU1LsZR6bPUMra2t07ISJuu170weydFKuJWxOCjObIGCMAGGzMaOmUQRcFyBsdp2YDRAwSoCw2ahx06xTAoTNTkn6fx3CZv/PKMgVrmpu0pXvvaGa9jaNyMvXbycdpCIfPpGbiPHGYfOX18nLzFRpbv6G4NgKka3XbZTm5/f+/kah8uCCwn7LmLdyuY68+Y/2dX/81nf1vSkH9HtPMi8gbE6mNnshEH4Bwubwz5gOEUiWAGFzsqTZBwEzBAibzZgzXTosQNjsMKiPlyNs9vFwQlJabXubfjv7Ta1oalRpVrZ+M/FADc/NS0p39Z0dqm9vU1FmlgrSM1zZs7m9TX959y37CeTy/AIV5eTY3w8rKnZlv/vffl2XPfGYvfZ/LvqFdh02wpV94lmUsDkeNe5BAIGtCRA2czYQQMApAcJmpyRZBwEELAHCZs4BAnEIEDbHgRbQWwibAzq4gJXd0tWlP7z/jubXViknLU2XTTxAOxWWxNVFazSquvZW1Xe0209M13W0qbZ1/deOdjtcru1olxVy931+sudk+93RYfmcfv+demH+hxpZXKIXL7lM1hPUfvgQNvthCtSAQHgECJvDM0s6QcBrAcJmryfA/giES4CwOVzzpJskCRA2JwnaB9sQNvtgCAaVcMO8WXpz7Uq745/tOUVTyodt6L6qrdUOjuva2+2vVphcbf1ee7sa7O97A+WO7uiAxcIWNje1t+vwG6/R0upKHb7L7rr3tLMHbOLGDYTNbqiyJgLmChA2mzt7OkfAaQHCZqdFWQ8BswUIm82eP93HKUDYHCdcAG8jbA7g0AJe8gOLPtRTyz6zuxiRm6e6jnY1dXbG3JX1zueSzCwVZmapJCPLfkVGcdYX3xdlZWpwVq693h8/mKEZ61YrbGGz1dsn69bqiBuvUXu0S1cd+22dfsDUmA3dupCw2S1Z1kXATAHCZjPnTtcIuCFA2OyGKmsiYK4AYbO5s6fzBAQImxPAC9ithM0BG1hIyn12xee6Z8G8Dd1kpEZUbIXGmVn2DxC0wuTirOzeIHn97/V9HQhBmMNmy+GRmW/rJ/94WGmRiJ467xJNGDl6IDyOX0vY7DgpCyJgtABhs9Hjp3kEHBUgbHaUk8UQMF6AsNn4IwBAPAKEzfGoBfMewuZgzi0MVVs/MDCSmqLizGxlRyKutBT2sNlCu/DRB/WP2TM1pKBQr1x6uQqys12xjGVRwuZYlLgGAQRiFSBsjlWK6xBAoD8Bwub+hPhzBBAYiABh80C0uBaB9QKEzeYcBcJmc2ZtYqfXfjBD765brUsnTNb+g8PzAwI3nmVrZ4eOuul/9UnFOh2yw8766w9/5NmoCZs9o2djBEIpQNgcyrHSFAKeCBA2e8LOpgiEVoCwObSjpTE3BQib3dT119qEzf6aB9U4K2BC2GyJWT8ocNr1f5AVPP/66ON0ztRpzkLGuBphc4xQXIYAAjEJEDbHxMRFCCAQgwBhcwxIXIIAAjELEDbHTMWFCHwhQNhszmkgbDZn1iZ2akrYbM326XlzdM5D9yotNVVP/ehST97fTNhs4t9l9IyAewKEze7ZsjICpgkQNps2cfpFwF0BwmZ3fVk9pAKEzSEd7BbaImw2Z9YmdmpS2GzN9xf/fER/mfGW/f7mFy/+lYpzc5M6dsLmpHKzGQKhFyBsDv2IaRCBpAkQNieNmo2N4jEpAAAgAElEQVQQMEKAsNmIMdOk0wKEzU6L+nc9wmb/zobKEhcwLWzuikZ15M1/1Pw1q7T/uPF67KwLlJKSkjhkjCsQNscIxWUIIBCTAGFzTExchAACMQgQNseAxCUIIBCzAGFzzFRciMAXAoTN5pwGwmZzZm1ip6aFzdaMV9RWa9r1v1dTe7t+fsQxuuArhydt9ITNSaNmIwSMECBsNmLMNIlAUgQIm5PCzCYIGCNA2GzMqGnUSQHCZic1/b0WYbO/50N1iQmYGDZbYi98PE+nP3CXUlNS9Pi5F2mfMeMSg4zxbsLmGKG4DAEEYhIgbI6JiYsQQCAGAcLmGJC4BAEEYhYgbI6ZigsR+EKAsNmc00DYbM6sTezU1LDZmvWVT/9Td7/xisry8vXKpZcn5f3NqakpKivI0Lq6dhOPGz0jgIDDAoTNDoOyHAIGCxA2Gzx8WkfABQHCZhdQWTL8AoTN4Z9xX4eEzebM2sROTQ6brfc3f+PW6/TByuX2+5sfPesC+0lnNz+EzW7qsjYC5gkQNps3czpGwC0Bwma3ZFkXATMFCJvNnDtdJyhA2JwgYIBuJ2wO0LAodcACJofNFtba+jodet3/qKGtTRdPO1I/+drRAzYcyA2EzQPR4loEEOhPgLC5PyH+HAEEYhUgbI5ViusQQCAWAcLmWJS4BoEvCRA2m3MkCJvNmbWJnZoeNlszf3XRfH3/ntvs8T929oX2U85ufQib3ZJlXQTMFCBsNnPudI2AGwKEzW6osiYC5goQNps7ezpPQICwOQG8gN1K2BywgVHugAQIm3u5rnnuKd3yyn9UnJOjV37ya/s9zm58CJvdUGVNBMwVIGw2d/Z0joDTAoTNTouyHgJmCxA2mz1/uo9TgLA5TrgA3kbYHMChUXLMAoTNvVTdPT06/rYbNGvZYu0zejs9ft7Frry/mbA55qPJhQggEIMAYXMMSFyCAAIxCRA2x8TERQggEKMAYXOMUFyGwMYChM3mnAfCZnNmbWKnhM1fTL2yqVGH/t9Vqm1p0fmHfk2/PPIbjh8JwmbHSVkQAaMFCJuNHj/NI+CoAGGzo5wshoDxAoTNxh8BAOIRIGyORy2Y9xA2B3NuVB2bAGHzpk5vf/6pTrrrZvtJ57+ecZ4O2XGX2CBjvIqwOUYoLkMAgZgECJtjYuIiBBCIQYCwOQYkLkEAgZgFCJtjpuJCBL4QIGw25zQQNpszaxM7JWzefOo3vvicrv3PMyrIytIrl16uIYVFjh0NwmbHKFkIAQQkETZzDBBAwCkBwmanJFkHAQQsAcJmzgECcQgQNseBFtBbCJsDOjjKjkmAsHlzpp6eHp14182ynnKeMGKUnvrRpUqLRGLy7O8iwub+hPhzBBAYiABh80C0uBYBBLYlQNjM+UAAAScFCJud1GQtYwQIm40ZtQibzZm1iZ0SNm956rXNzZp2w++1tqFeZx50qK485luOHA/CZkcYWQQBBNYLEDZzFBBAwCkBwmanJFkHAQQsAcJmzgECcQgQNseBFtBbCJsDOjjKjkmAsHnrTB+sWKZv3Hqdurq7de+pZ+nwXfeIyXRbFxE2J0zIAgggsJEAYTPHAQEEnBIgbHZKknUQQICwmTOAQJwChM1xwgXwNsLmAA6NkmMWIGzeNtUdr72oq555QnmZmXrxkl9pZHFpzLZbupCwOSE+bkYAgS8JEDZzJBBAwCkBwmanJFkHAQQImzkDCMQpQNgcJ1wAbyNsDuDQKDlmAcLm/qm+9+db9eonC7TL0OF67oKfJfT+ZsLm/r25AgEEYhcgbI7diisRQGDbAoTNnBAEEHBSgNdoOKnJWsYIEDYbM2re2WzOqI3slLC5/7E3tLbqazf+QStqa3Tqfgfp9988qf+btnIFYXPcdNyIAAJbECBs5lgggIBTAoTNTkmyDgIIWAKEzZwDBOIQIGyOAy2gt/Bkc0AHR9kxCRA2x8Sk+WtW6cib/6iuaDSh9zcTNsfmzVUIIBCbAGFzbE5chQAC/QsQNvdvxBUIIBC7AGFz7FZcicAGAcJmcw4DYbM5szaxU8Lm2Kd+/9uv67InHrPf3/zCRb/QmNKy2G9efyVh84DJuAEBBLYhQNjM8UAAAacECJudkmQdBBCwBAibOQcIxCFA2BwHWkBvIWwO6OAoOyYBwuaYmDZcdOZf/qxnP5yrKWPG6ZGzzldmWvqAFiBsHhAXFyOAQD8ChM0cEQQQcEqAsNkpSdZBAAHCZs4AAnEKEDbHCRfA2wibAzg0So5ZgLA5Zir7wpaOdh1x0//q88oKHbrjLnrojPMGtABh84C4uBgBBAibOQMIIJAkAcLmJEGzDQKGCPBksyGDpk1nBQibnfX082qEzX6eDrUlKkDYPHDBioZ6HX3LtVpdX6ev7LiL7jvtbKVFIjEtRNgcExMXIYBAjAI82RwjFJchgEC/AoTN/RJxAQIIDECAsHkAWFyKQJ8AYbM5Z4Gw2ZxZm9gpYXN8U19eW61j/3SdKhobdMSue+juU85UakpKv4sRNvdLxAUIIDAAAcLmAWBxKQIIbFOAsJkDggACTgoQNjupyVrGCBA2GzNqETabM2sTOyVsjn/qS6oq7MC5uqVZ39p7H9100ilK6SdwJmyO35s7EUBgcwHCZk4FAgg4JUDY7JQk6yCAgCVA2Mw5QCAOAcLmONACegthc0AHR9kxCRA2x8S01Ys+rVin4267TnUtLTp58v669oSTt7kgYXNi3tyNAAKbChA2cyIQQMApAcJmpyRZBwEECJs5AwjEKUDYHCdcAG8jbA7g0Cg5ZgHC5piptnrhgjWrdOyt16u5o13T9z9Y/3PciVu9lrA5cW9WQACBLwQImzkNCCDglABhs1OSrIMAAoTNnAEE4hQgbI4TLoC3ETYHcGiUHLOA02Fze3dUq5qbtLalSWtamrS6uVFrmpvt78tzcvWd7XfRXqXlMdcXlAvnLFuiE++6Ra2dHTrn4K/o118/foulEzYHZaLUiUAwBAibgzEnqkQgCAKEzUGYEjUiEBwBXqMRnFlRqY8ECJt9NAyXSyFsdhmY5T0V+OMHMzRj3Wr9ZM/J2q98eEy1dHRHtbK5SRUtzVq9PlBe29Ki1S2Nqu9o73eNcQVFdui896DB/V4bpAtmLPlM373rT2qPduknXz1KF3/1qM3KJ2wO0kSpFQH/CxA2+39GVIhAUAQIm4MyKepEIBgChM3BmBNV+kyAsNlnA3GxHMJmF3FZ2nOBbYXNK5oa7TB5bUuzVjU32F+tJ5Rr2tu2WfeI3DwNy83X8Nx8DcnJ0+DsXKWmSI0dHfrn4kVa3Fhn32+FzieO21mTyoZ47uBUAW98ukg/uPc2dUaj+vXR39Q5Uw/bZGnCZqekWQcBBCwBwmbOAQIIOCVA2OyUJOsggIAlQNjMOUAgDgHC5jjQAnoLYXNAB0fZMQn0hc0TBw1RaVaW1rY2a3Vzk6raWrd5f2lWtobn5mloTu+vkXkFGpqTawfL/X3eq1yrv302X0sa6zeEzmF60vnlhR9r+v13qqu72/6BgdYPDuz7EDb3dzr4cwQQGIgAYfNAtLgWAQS2JUDYzPlAAAEnBQibndRkLWMECJuNGbUIm82ZtYmd9oXNW+o9OxLRqLxCDcnNtZ9SHpZrPaWcp+3yCx2hskLnv37ykZY3N4YudH7+43k688G71dPTo5tOOkXfmjjZ7pGw2ZGjwyIIILBegLCZo4AAAk4JEDY7Jck6CCBgCRA2cw4QiEOAsDkOtIDeQtgc0MFRdkwCN8ybpZVNjRqckyvr9RdDrNdfWE8r5+apID0jpjUSvejtdav06Gfz7fdAW5+wvNP5n7Nn6sJHH1RKSopuPfk0fWPCRMLmRA8L9yOAwCYChM0cCAQQcEqAsNkpSdZBAAHCZs4AAnEKEDbHCRfA2wibAzg0Sg6cQI+kt9autEPn1S3Ndv3jC4t10va7aK/S8sD101fwwzPf1k//8bAiKSm665QzddTuE1RWkKF1df3/IMXANk3hCCCQNAHC5qRRsxECoRcgbA79iGkQgaQK8GRzUrnZLCwChM1hmWT/fRA292/EFQg4JdDd06M31qzUY58vsN8fHYbQ+b63XtPlT/5daampun/6OfrOlL0Im506MKyDgOEChM2GHwDaR8BBAcJmBzFZCgEEeI0GZwCBeAQIm+NRC+Y9hM3BnBtVB1sg2tOj19as0N8/W6CKtpbAh843vfic/vifZ5QeiejfF1yo3YZuF+wBUT0CCPhCgLDZF2OgCARCIUDYHIox0gQCvhHw1ZPNs+Yu1GkXXWPj7L7zdrr9motVXJi/Vazr73xM9zzy7FavX13d6htoCgmXAGFzuOa5rW4Im82ZNZ36TyDa3a2XVy/XPxYvVFVb73+mB/X1Glf9+3Hd8frLykpL08Nnnq8pY7f3HzgVIYBAoAQImwM1LopFwNcChM2+Hg/FIRA4Ad+EzZ8vW63L/nC3rv7lmRo3epgef/Z1vTt7vn7709OVnbX5Dyn68p9v6XrC5sCdx8AUTNgcmFElXChhc8KELIBAwgJd3d16cdVS/XPxItW0twU2dL78icd039uvKzs9Q4+d9WPtPXpswjYsgAAC5goQNps7ezpHwGkBwmanRVkPAbMFfBM2W2Hx0hVrdcnZJ9oT+XL4/OUxWU81W5++662noq+787FNnoYmbDb7cLvZPWGzm7r+Wpuw2V/zoBqzBTp7uvXfFUv0j8WLVN/R+0P2digq0Ynjdg7EDxJMTU3R5U/8Tfe8+YZyMzL15I8u0c5Dh5s9VLpHAIG4BQib46bjRgQQ+JIAYTNHAgEEnBTwTdj85fC4tr5R5/7iBl169onaZ8+dNuvZCqPP/tl1OuorU+zA2bp/zMghOv6ogzdcS9js5FFhrY0FCJvNOQ+EzebMmk6DI9DRHdXzKxbrX4s/UUNnx4bQ+aRxO2vP0nLfNmKFzWUFGTrpjrv0zzmzVJSTo8fPuVg7Dhnq25oTLayts0NLq6s0vKhE+VlZiS7H/QggsJEAYTPHAQEEnBIgbHZKknUQQMAS8FXYvHFY3F/Y3NrWod9ce6/qG5v15swPt/iO547OKFNGwBWBf8+/S28veUpH7/JDHTD2OFf2YFF/CKSkpiiSkqKuaLc/CvJJFV3dPUqLpPqkGsowVaAtGtUTn32qhxbOV2NHb+h87Ljtdcnek3xJkiIpLZKizmiPvnvH7Xr8/TkalJen137+C21fPtiXNcdSVEVDg5ZUVWlxZYU+r6zU5xUVdsBsfV3X0GAvMa6sXE9feKH9lU//AtHuHkVSrRPDB4GtC6Snpaqrq1s9ICGAwIAEotFuRVL577Ebo1n//cT6z54eI/6BYkSTA/p7gosRcFogIz2yyZIpPT3e/ONloE82f/lJZus1HI89/eomr9GorO/9v9jyQcBpgZc++7PeW/FvfWX86dpnxDecXp71fCSQmZaqzIxUNbR0+agqf5RCDOKPOVCF1Brt0tNLP9Njny5Ue3dUh40YrYv28F/gbP3Lq+LcdNU09gbjJ999m/674COV5+fr2Qt+qtGlg3w7ziVVlVpeXaUl1ZV2kLyk0gqUq7W0qlIt658u76/4vMws/fnUM3TYTrv2dyl/jgACMQiUFmSqprHdkHAoBhAuQSBGATvxSCFw3JirICddbR1RdXSZ8IAN/ysmxr9VuAyBuAXKCjM3udezsHkg72zue6r528ccsuEVG1t6xzOv0Yj7XHBjPwK8RsOcI8JrNMyZNZ0GX+CTuhr9bvabao1GtV/5cF08YR/7/5ngl0/fazTW1fX+y/DOri794N7b9MZnn2hYYZGe/NGlGlZU7Em5ze1tWlZTrWVVlVpaY4XIFVpeU6WlVVVaXV8r64c0bulj6Q4pLNKokkEaU1KqMWXlGmV9LS3T6JJBKs7NVVc0qkv+/pD96pDUlBT97Ihj9ONDv+ZJn2yKQJgEeI1GmKZJLwh4K8BrNLz1Z3cEwibgm9dofDkstsLnd2fP129/erqyszL05SeXrSeb11bUbPXPrUERNoftuPqnH8Jm/8zC7UoIm90WZn0EnBVY1tSgy2e+ppauLvuHBv587/2UnuKP/6vsl8Nmq/P2rk6dcMdNmrN8qUYVl9o/NLC8oNBZlPWrrWuo17KaKi2rqtLS6sre76utv65UdUvzVvfMjKRpVGmpHShbAfLYsjKNLi3r/evSUmVE0mKq9y/vvqnLn/y7HT4fudsE/em7pyorPSOme7kIAQQ2FyBs5lQggIBTAoTNTkmyDgIIWAK+CZutYmbNXajTLrrGnszuO2+3ySsxvhw29z3d/MxL727xesJmDribAoTNbur6a23CZn/Ng2oQiEVgRVOjfjPrddV3dmjnolJdMekAZaRu+t6wWNZx+pothc3WHtZTxVbgPG/VCo0tLdOT51+q0ty8AW9vhbjW08jWE8rW6y2s113YTydXW6/AqFZbV+dW1yzOybED5DElg3qfTC4r15hS6/tBGlJQqBSHnhCfs2yJTrnvdtW2tGiHwUP0l9PP04jikgH3yg0IICARNnMKEEDAKQHCZqckWQcBBHwXNjs9Ep5sdlqU9foECJvNOQuEzebMmk7DJbCurVlXzHxDVW2tGl9YrCsmHqictNiewHVLYmths7VfY1ubvnnb9VqwdrXGlw/W0+f/VPlZWZuVYl23pKpii08or6mvU/dWfvSG9ToR6xUd1nuhraeT7ddcDLKeTC6zv8/L3PS9am4ZWOtadZ5y7+2av2aVCrKydP/0czRl7PZubsnaCIRSgLA5lGOlKQQ8ESBs9oSdTREIrYCvnmx2Wpmw2WlR1iNsNu8MEDabN3M6Do9ATXubLpvxmiraWjQqr0D/M/lg5aale9bgtsJmq6ja5mYdf/v1+qRinXYZOlzTD5hq/1C+vieUrZC5oa1tq/Vnp2dodEmpRpUO0naDel9zMWaQ9Q7lEo0dVO5Z31vb+Ed/vU9PfDDb/uOrjj1Bpx9wiO9qpCAE/CxA2Ozn6VAbAsESIGwO1ryoFgG/CxA2+31C1OdLAZ5s9uVYXCmKsNkVVhZFIGkC9R3tumLW61rZ3KQRuXn63T4HqzAjeU/xbtxof2GzdW1lU6O+eev1WlJduUWjsrx8+0nkkVaAXDZYo4tLe59QLhmksvyCpLk6tdFtr/xXVz/3pL3cSROn6PqTfuDU0qyDQOgFCJtDP2IaRCBpAoTNSaNmIwSMECBsNmLMNOm0AGGz06L+XY+w2b+zoTIEYhVo7urU5TNf1/KmBpVn5ejqKVNVkrn5KypiXS/e62IJm621rddMXP7EYxpcUGg/nbxdmfV0cqn9DuUw/kC9VxfN1zkP3aPG9nZNGDFK9592tms/JDHe2XEfAn4UIGz241SoCYFgChA2B3NuVI2AXwUIm/06GerytQBhs6/H42hxhM2OcrIYAp4JtHR16Xez39Sn9bUalJWt300+SIOzcpNaT6xhc1KL8slmy6or9d27b7XfRV2ak6uHfvgj7TFilE+qowwE/ClA2OzPuVAVAkEUIGwO4tSoGQH/ChA2+3c2VOZjAcJmHw/H4dIImx0GZTkEPBTo6I7qd++9pQV11SpMz7CfcB6ak5e0igibt01t/fDDc/7yZ7366UKlRyK67oTv6VsTJydtPmyEQNAECJuDNjHqRcC/AoTN/p0NlSEQRAHC5iBOjZo9FyBs9nwESSuAsDlp1GyEQFIEOnu69b9z3tH71RXKS0+33+E8Oi857zombO5/xD09Pbrm+af0p1f+a1982v4H63ffOEGR1NT+b+YKBAwTIGw2bOC0i4CLAoTNLuKyNAIGChA2Gzh0Wk5cgLA5ccOgrEDYHJRJUScCsQtEe3p07dwZmlW5RtmRiK6YeKB2KCqJfYE4ryRsjh3uuQ/n6vxHHlBbV6emjBmne049S8W5yX3tSezVciUC3ggQNnvjzq4IhFGAsDmMU6UnBLwTIGz2zp6dAyxA2Bzg4Q2wdMLmAYJxOQIBEeju6dHNH76nN9auVEZqRL+etL92KRrkavWEzQPj/WTtGp18z632D0wcWlikB08/V7sMHT6wRbgagRALEDaHeLi0hkCSBQibkwzOdgiEXICwOeQDpj13BAib3XH146qEzX6cCjUh4IxAj6TbPpqtl1cvV1pKqn6x177aa9BgZxbfwiqEzQOnrW1u1in33a45y5cqI5Km204+TUfuvufAF+IOBEIoQNgcwqHSEgIeCRA2ewTPtgiEVICwOaSDpS13BQib3fX10+qEzX6aBrUg4I7AvQvn6ZnlnyuSkqKfTJiiyeVDXdmIsDk+1q5oVFc89Q898M4b9gLnHTJNvzzyWKWmpMS3IHchEBIBwuaQDJI2EPCBAGGzD4ZACQiESICwOUTDpJXkCRA2J8/a650Im72eAPsjkByBxxYv1KOfLZAVX164+z46aOgIxzcmbE6M9J+zZ+qSvz+kru5uHTBuvO459WzlZ2Ultih3IxBgAcLmAA+P0hHwmQBhs88GQjkIBFyAsDngA6R8bwQIm71x92JXwmYv1NkTAW8E/r38M9238EN78/N221uHDRvtaCGEzYlzzlm2RKfdd4eqW5o1umSQ/nLGeRpXVp74wqyAQAAFCJsDODRKRsCnAoTNPh0MZSEQUAHC5oAOjrK9FSBs9tY/mbsTNidTm70Q8F7gpdXLdNtHc+xCpu+0u74+anvHiiJsdoayoqFe37vnNs1fs0o56Rm6+9QzdcgOOzuzOKsgECABwuYADYtSEfC5AGGzzwdEeQgETICwOWADo1x/CBA2+2MOyaiCsDkZyuyBgL8E3lizUjd+OMsu6sTtdtJJ2zsTZA4kbG7p6lJjZ7sGZ+f6C8cn1XREu3ThIw/qqXlz7Fef/OTwr+uiw47wSXWUgUByBAibk+PMLgiYIEDYbMKU6RGB5AkQNifPmp1CJEDYHKJh9tMKYbM5s6ZTBDYWmFmxRtd+MEPdPT06etQ4nb7THgkDbSlsbo12aWVTo5Y3N2h5Q4NWNNdrRVOjatrbNHXYKF2w28SE9w3zAne89pJ+/+wTivb0aNpOu+rOH5yhrPSMMLdMbwhsECBs5jAggIBTAoTNTkmyDgIIWAKEzZwDBOIQIGyOAy2gtxA2B3RwlI2AAwLzaip19ey31dXTra8MG6XzdptoP0Ubz6e9O6qVLY2q72rRh+uqtaLJCpYbVdXWutXlCJtjk379k4U666E/q7GtTbd9b7qOnUBAH5scVwVdgLA56BOkfgT8I0DY7J9ZUAkCYRAgbA7DFOkh6QKEzUkn92xDwmbP6NkYAV8IzK+t0lWz31ZHd1QHDR2hi3bfZ5t1WddZTyZbv5Y31Wt5U4P95HJlW8tW7yvPytWIvDyNysvXiLxCrWxu0BNLPtUhw0bqx7tN8oWD34s4/+H79K+5swmb/T4o6nNUgLDZUU4WQ8BoAcJmo8dP8wg4LkDY7DgpC5ogQNhswpR7eyRsNmfWdIrA1gQ+b6jTb2a9rtZoVPuUDdVPJ0xWd4rsENn6tazJevVFgx0wV7Q2q2cLC0VSUjQkJ0/bFxVqUEauRuQXaGRuvobn5ikjNbLJHa+uXqZbPprDazQGcCTPe/g+PTl3tm797mk6bi8C+gHQcWmABQibAzw8SkfAZwKEzT4bCOUgEHABwuaAD5DyvRF45fN79P7qZ3TIuOnae9gx3hTBrkkRIGxOCjObIOB7gSWN9bryvTfU1Nmp7EjEDp639hmdV6DhufkamV+g0bkFGmZ9n5evWH9A4OtrVuimD9/jyeYBnIogP9nc0tGuxVWVWlpVoaVVVVpcuU6r62uVk5GpguxsFWTlqDg3V/lZWSrIzlFBVrYKs7J7/yzb+j7H/srHPAHCZvNmTscIuCVA2OyWLOsiYKYAYbOZc6frBAXeXvqI3l3xd40r2UfH7vrLBFfjdj8LEDb7eTrUhkByBVY2N9lPONd1tNtPI4+wnky2X39RaIfJVsA8LCdvq0URNrs3L7+HzU3t7fq8cp2WVluhcqWWVFVoWXW1HSxXNTc5ApOfaYXT68No6+v6MLogM1tFOX1/nbM+qP7izwszs1WYk+NIDSySXAHC5uR6sxsCYRYgbA7zdOkNgeQLEDYn35wdQyDQ3FGju2eepe6ebk2fdIuKs4eHoCta2JIAYTPnAgEENhaoaW+zf2BgedbAw7lYw+bXVq/QzR/xZPNATp4fwmbrBxRagfIS6ynl6ko7SF5uBcpVFappad5qO1lp6Ro9aJDGlAzSdmXlyk7P2OzaaHe3GtpaVd/aooZW62ur6tt6v7d+tXR2DIRri9daYXW+9cR0lhVO9z1J3fvktBVW59tPWfc9Vd0bVheuf/La+nM+yRcgbE6+OTsiEFYBwuawTpa+EPBGgLDZG3d2DYHAcwtv1ILK17X7kGn66vjzQtARLRA2cwYQQMBNgVjDZt7ZPPAp/Oiv9+mJD9z/AYFWaLyk0nrdRW+gbD2hbL8Co7rSDoC39inIytKY0jL719hBZRo9yPp+kP3XgwsKB97wFu6obm5SQ2tLbxBthdDrw+j6lhY7mLZ/z/qzlmbVt1l/bn3f4tiT1XnWk9Xrw+reJ6yt135YgXSO9hs3XkfvvpcjfbLIFwKEzZwGBBBwSoCw2SlJ1kEAAUuAsJlzgECcAlUty/Tg7IuVmpKms/b9s3LSCuJcidv8LMCTzX6eDrUhECwBwmb35uXkk82V1g99tILkyr4nlCt6g+XqSllPL2/tU5aXr7GDyjWqtFTbWV9LBvUGyyWD7Hcu+/nT1tlhB9F1G4fUdmjdsj6Ubl7/NLUVWPc+UV3X0qKG9t6v/X2+uedE/enk6f1dxp8PUICweYBgXI4AAlsVIGzmcCCAgJMChM1OarKWcQKPf3SVlta+r8kjj9eBY75vXP8mNEzYbMKU6RGB5AgQNrvnPNCwuaKh3g6PrVdeLKuqtJ9OXl5Tpc8q1uCq6fMAACAASURBVG3zlRQjiks0uqR0w1PK48oHa2SJFS6XKWsLr79wr2N/rWy9k9p6Ytp6Wrr3dR+9T03PWPKZHpn1jgib3ZkXYbM7rqyKgIkChM0mTp2eEXBPgLDZPVtWNkBged08/ePDK5URydI5+96ntNRMA7o2q0XCZrPmTbcIuClA2Oye7nkP36cn587Wrd89TcftNUk9PT1a11C//onkKvv9yUurq3pff1FVudVAOT0S0aj1YbL1RPLY8nL7XcrWKy+sJ5XTIhH3mgjhyv96f5bOf+QBHTdhom79Hk82Oz1iwmanRVkPAXMFCJvNnT2dI+CGAGGzG6qsaZTAA7MvUnXLck0dO10TRxxjVO8mNEvYbMKU6RGB5AgQNrvn3Pdk86jiUmVnZmhZVZXaujq3uGFOeoZGlw6yf1lPJI+236Pc+/qLkcWl7hVp4MpPzH1PP3r4fp5sdmn2hM0uwbIsAgYKEDYbOHRaRsBFAcJmF3FZ2gyBTyrf0r8XXqfcjGKdOfkupabw1FOYJk/YHKZp0gsC3grEHjav0C0fvadDho3Uj3eb5G3RAdm9L2zuK7coJ0djS3vfl2y/N9n64XyDen8gX1k+P2MhWWMlbHZXmrDZXV9WR8AkAcJmk6ZNrwi4L0DY7L4xO4RcoEfdumfWeWpoq9CRO16oncunhrxjs9ojbDZr3nSLgJsCAw2bY6klOy1NuWnpyomkKSctXdnp6b1/nWb9dZpy0jPtr9bv9V2bbf15eppyUtOVn5ERyza+v+bFBR+puaPdfuXFdmWDlZ+V5fuaTSiQsNndKRM2u+vL6giYJEDYbNK06RUB9wUIm903ZgcDBOaufk4vf363SnNG6dSJNxrQsTktEjabM2s6RcBtgVjD5rqOdn1WX6uWrk41d3WqpatLzZ0dau37vqtTrV1d9nuHW6Jd9jXWX8f7yUiNfBFOp2X0BtGRvsA6Q7kZvd9bIXWu/fu9YXV2JF256b1/Zq3BB4EvC/DOZnfPBGGzu76sjoBJAoTNJk2bXhFwX4Cw2X1jdjBAoKu7XXfO+KHau5p1/G6/1pjivQzo2owWCZvNmDNdIpAMgVjD5nhraY1GewNoK4i2gumo9bVDLZ3W1y61dnWoubNTzdHecNr63gqwm+0/61RDZ0e8W9v35VnBcyRDuVZYvf5Jauur9VT1mIJCTRs+JqH1uTl4AoTN7s6MsNldX1ZHwCQBwmaTpk2vCLgvQNjsvjE7GCLwzrJH9c7yRzWqaA+dsPuVhnQd/jYJm8M/YzpEIFkCbofNTvVhPVndF0K3rX+quje4/uIpa/t7K8SOdqg92q2mznY7tG7p7FR7d3SzUnYqLNHVU3jNlFMzCso6hM3uToqw2V1fVkfAJAHCZpOmTa8IuC9A2Oy+MTsYImA91XzHu2co2tOhUybeoEE5ow3pPNxtEjaHe750h0AyBYISNjth0tRpPVndqUV1Nbpx3iztWFii3xM2O0EbqDUIm90dF2Gzu76sjoBJAoTNJk2bXhFwX4Cw2X1jdjBIwHpvs/X+5p3KDtRRO11iUOfhbZWwObyzpTMEki1gUtjcZ2uFzb+a+ZrGFxbrmimHJJuc/TwWIGx2dwCEze76sjoCJgkQNps0bXpFwH0Bwmb3jdnBIIH69grdO/Ncu+Ozptyt3IwSg7oPZ6uEzeGcK10h4IUAYTNhsxfnzss9CZvd1SdsdteX1REwSYCw2aRp0ysC7gsQNrtvzA6GCTyz8HotqnxTew07WoeOO8Ow7sPXLmFz+GZKRwh4JUDYTNjs1dnzal/CZnflCZvd9WV1BEwSIGw2adr0ioD7AoTN7huzg2ECVS3L9ODsixVJydA5+96jzLRcwwTC1S5hc7jmSTcIeClA2EzY7OX582JvwmZ31Qmb3fVldQRMEiBsNmna9IqA+wKEze4bs4OBAv/48Eotr5unA0Z/V1NGfdtAgfC0TNgcnlnSCQJeCxA2EzZ7fQaTvT9hs7vihM3u+rI6AiYJEDabNG16RcB9AcJm943ZwUCBpbXv6/GPrlJ2WoHOnnK3UlPTDVQIR8uEzeGYI10g4AcBwmbCZj+cw2TWQNjsrjZhs7u+rI6ASQKEzSZNm14RcF+AsNl9Y3YwVOCB2RepumW5pm1/tvYYerihCsFvm7A5+DOkAwT8IkDYTNjsl7OYrDoIm92VJmx215fVETBJgLDZpGnTKwLuCxA2u2/MDoYKLKh8Xc8tvFEFWeU6Y5/blaIUQyWC3TZhc7DnR/UI+EmAsJmw2U/nMRm1EDa7q0zY7K4vqyNgkgBhs0nTplcE3BcgbHbfmB0MFehRt+6acaaaO2p1zC4/1/jSKYZKBLttwuZgz4/qEfCTAGEzYbOfzmMyaiFsdleZsNldX1ZHwCQBwmaTpk2vCLgvQNjsvjE7GCwwZ9UzenXxPRqcN07f2+tagyWC2zphc3BnR+UI+E2AsJmw2W9n0u16CJvdFSZsdteX1REwSYCw2aRp0ysC7gsQNrtvzA4GC3R1t+vOGT9Ue1ezTtrjag0v3NlgjWC2TtgczLlRNQJ+FIikpqi0IEMVde1+LM+VmhbV1ehXM1/T+MJiXTOFsNkVZB8vStjs7nAIm931ZXUETBIgbDZp2vSKgPsChM3uG7OD4QJvLXtEM5b/XduV7KPjdv2l4RrBa5+wOXgzo2IE/CpA2EzY7Nez6VZdhM1uyfauS9jsri+rI2CSAGGzSdOmVwTcFyBsdt+YHQwXsJ5qvv3d6eru6dL0SbeoOHu44SLBap+wOVjzoloE/CxA2EzY7Ofz6UZthM1uqH6xJmGzu76sjoBJAoTNJk2bXhFwX4Cw2X1jdkBAL356h+at/Y92GzJNXxt/HiIBEiBsDtCwKBUBnwsQNhM2+/yIOl4eYbPjpJssSNjsri+rI2CSAGGzSdOmVwTcFyBsdt+YHRBQfXuF7p15rlJSIjpr3z8rJ60AlYAIEDYHZFCUiUAABAibCZsDcEwdLZGw2VHOzRYjbHbXl9URMEmAsNmkadMrAu4LEDa7b8wOCNgC/15wrT6pekeTRx6vA8d8H5WACBA2B2RQlIlAAAQImwmbA3BMHS2RsNlRTsJmdzlZHQGjBQibjR4/zSPguABhs+OkLIjAlgXWNn2mh9//mTIiWTpn3/uUlpoJVQAECJsDMCRKRCAgAoTNhM0BOaqOlUnY7BjlFhfiyWZ3fVkdAZMECJtNmja9IuC+AGGz+8bsgMAGgb/Pu0Ir6j/S1LHTNXHEMcgEQICwOQBDokQEAiJA2EzYHJCj6liZhM2OURI2u0vJ6ggYL0DYbPwRAAABRwUImx3lZDEEti2wpGa2/vXx1crNKNaZk+9SakoEMp8LEDb7fECUh0CABAibCZsDdFwdKZWw2RHGrS7Ck83u+rI6AiYJEDabNG16RcB9AcJm943ZAYFNBO5973zVta7WETteqF3Kp6LjcwHCZp8PiPIQCJAAYTNhc4COqyOlEjY7wkjY7C4jqyOAgCTCZo4BAgg4KUDY7KQmayEQg8D8ilf1/KKbVZozSqdOvDGGO7jESwHCZi/12RuBcAkQNhM2h+tE998NYXP/RolcwZPNiehxLwIIbCxA2Mx5QAABJwUIm53UZC0EYhDo7onq7plnqbmjVsfv9muNKd4rhru4xCsBwmav5NkXgfAJEDYTNofvVG+7I8JmdydO2OyuL6sjYJIAYbNJ06ZXBNwXIGx235gdENhMYPbKp/Takvs1smgPfXv3KxHysQBhs4+HQ2kIBEyAsJmwOWBHNuFyCZsTJtzmAoTN7vqyOgImCRA2mzRtekXAfQHCZveN2QGBzQS6utt1x7vT1RFt0ykTb9CgnNEo+VSAsNmng6EsBAIoQNhM2BzAY5tQyYTNCfH1ezNhc79EXIAAAjEKEDbHCMVlCCAQkwBhc0xMXISA8wJvLn1IM1c8rh3LDtTRO13i/Aas6IgAYbMjjCyCAAKSCJsJm037G4Gw2d2JEza768vqCJgkQNhs0rTpFQH3BQib3TdmBwS2KNDS1aC73v2henqiOmvK3crNKEHKhwKEzT4cCiUhEFABwmbC5oAe3bjLJmyOmy6mGwmbY2LiIgQQiEGAsDkGJC5BAIGYBQibY6biQgScF/jvp7frw7X/1V7Djtah485wfgNWTFiAsDlhQhZAAIH1AoTNhM2m/c1A2OzuxAmb3fVldQRMEiBsNmna9IqA+wKEze4bswMCWxWob6/QPTPPUSQlQ+fse48y03LR8pkAYbPPBkI5CARYgLA5eGFzS1eXljXVa3ljw/qvjaptb9WtB30twCcxeaUTNrtrTdjsri+rI2CSAGGzSdOmVwTcFyBsdt+YHRDYpsBT8/9Xn1XP0AGjv6spo76Nls8ECJt9NhDKQSDAAoTN/g2bO7qjWt7UqBVNDVrWWK8VjQ1a3tygmva2zU5cXlqGHvjK0QE+ickrnbDZXWvCZnd9WR0BkwQIm02aNr0i4L4AYbP7xuyAwDYF1jZ9poff/5my0wp09pS7lZqajpiPBAibfTQMSkEg4AImhs2f1NXolzNf046FJfr9lKm+mOByK1BuatCKxnr76/LGRlW0NW9WW0ZqRCPz8jUqr0Aj8wpVnpOt/5s7U3np6Xrg0K/7ohe/F0HY7O6ECJvd9WV1BEwSIGw2adr0ioD7AoTN7huzAwL9Cjz6wWVa1bBAh40/RxOG8H/N7RcsiRcQNicRm60QCLmAiWHzoroa/WrmaxpfWKxrpiTvyeYeSetamrTMelq5uUHLGurtJ5VXNzepu8f60y8+kdRUDc/O1aj8wt5f6wPm8uxcpWx0XWNnh0575RnxZHPsf6MSNsduFc+VhM3xqHEPAghsSYCwmXOBAAJOChA2O6nJWgjEKbC4Zpae+PgPKsgq1xn73K6UTf7nbZyLcpsjAoTNjjCyCAIISCJsdidsrm5r1fLmRvu9ysub6uwnlVc2N8p6NcbGHys4HpyT1xsm5xZodEGhRuYWaFhuniIpG8fKWz6uboTNVvBd0dqsFc2NWtnUKOupa+vrutZmfXPsDjp2zHilxlCbX/8Ge/KD2Trvr/dpp8FDdccPfqjx5YP9Wmog6yJsDuTYKBoBXwoQNvtyLBSFQGAFCJsDOzoKD5NAj3p033s/Vl3rah2z8880ftC+YWov0L0QNgd6fBSPgK8ETAybnXyNRlNnp5Y31Wup9cP6GuvtQHlZY51ao5uGytbQSzKz1r/+okBj8gs1Iq/ADpmtV2PE+7H2P/WVf8f9Go0VTY1a3dK4/hUevU9ZL22q32Y5OxSV6OI99lF5Vk68ZXt638raGp31lz/rg5XL7Tou/drRumTakZ7WFKbNCZvDNE16QcBbAcJmb/3ZHYGwCRA2h22i9BNYgY/XvqQXPr1Vg/PG6Xt7XRvYPsJWOGFz2CZKPwh4J0DYHNs7m9uiXfZTytbTvr1PK/e+W7m+o32z4VnvTx6VV7g+UM7X6LwCjc4vUnYk/lB5ayck1rDZCpCtYHnV+ndDr7aeWm5u2urBK8/O0YjcfI3KL9DI3EKVZWfLMnhg0Yda1dxk93LaThM0bfho7w5vAjtbT2/f+frLuvb5p9Ue7bKfbr715OnaddiIBFblVkuAsJlzgAACTgkQNjslyToIIGAJEDZzDhDwiUB3T1R3vnuGWrsadNIeV2t44c4+qczsMgibzZ4/3SPgpICJYfO23tnc1d2tlS2NWtHYqKVNdfZX6/3KFa0tm7FbgWvv08lWmFyokeu/L8rIdHJE21xr47D57qlH2k9Wb/zqCysct16J8eV3QvctWpaVoxH2+6CtX71PW1s/gDBzK09bWz4Pffqxnl72mb3EpLIhOn/XicrPyEhaz05utLymSj96+H7NWb7Ufm3JOYdM00+/erTS09Kc3MaotQibjRo3zSLgqgBhs6u8LI6AcQKEzcaNnIb9LPDeyif0+pIHtV3JJB2366/8XKoxtRE2GzNqGkXAdQETw+a+12hYTyCft+ve9hPKSxrqtLKpQatbmrdoPtZ67UVuvh0qW7+sgNYPr5Fo7urUKS//u99zYr3CwwqR+wLlUeufWs6KxBeqflxbpZs+fE/Wu6kL0zN03m4T7eA5iJ+enh498M4b+v2zT6q5o11jS8t06/ema8KIUUFsx/OaCZs9HwEFIBAaAcLm0IySRhDwhQBhsy/GQBEI9Ap0RFt114wz1BFt0/RJt6g4ezg0HgsQNns8ALZHIEQCJofNWxrjsJxc++nesQVF9usvhucWaERunm8n/uWwuTAj067bCpVH5uevD8jdeYVHS1eX7po/R2+sXWX7HDZ8tKbvtIey4wywvUZeU1+nC/72gN7+/FP7ByCett/BuuzoY5WVHsyntr3yJGz2Sp59EQifAGFz+GZKRwh4KUDY7KU+eyOwBQHryWbrCefdhkzT18afh5HHAoTNHg+A7REIkYCpYfN182bar72wflCf9RoM60nl7fKLAjfZju6oXlm93H5qeUxekXI8eP3DOxWrdPtH78sKvq2nvS/aYx/tWFQSOMu+gh99711d+dQ/1NDWphHFJbr5O6doytjtA9tPsgsnbE62OPshEF4BwubwzpbOEPBCgLDZC3X2RGAbAi1dDbrr3dMlpeqsff+snLQCvDwUIGz2EJ+tEQiZgIlhc8hG6It26jradeO8mfqwpsp+KvibY8brpO13sd+DHMRPVVOjLnnsIb208GO7/O/us5+u/MYJystM3vu4g+hm1UzYHNTJUTcC/hMgbPbfTKgIgSALEDYHeXrUHlqBFz75kz5e97ImjzheB479fmj7DEJjhM1BmBI1IhAMAcLmYMwpKFU+s/xz/WXRR+rs6Zb1nutLJ0zW0Bz/voakP9enPpity//1mKpbmlWeX6AbTzpFU3fYqb/bjP5zwmajx0/zCDgqQNjsKCeLIWC8AGGz8UcAAD8K1Lau0n3v/VgZkSyds+99Skvl6R6v5kTY7JU8+yIQPgHC5vDN1OuOVjY36bq572p5c6PSU1J1yo676ahR47wuK+7961tadNkTj+pfc2fba3xzr0m6+tgTVZiTE/eaYb6RsDnM06U3BJIrQNicXG92QyDsAoTNYZ8w/QVW4ImPf6/FNe9p6tjTNHHENwLbR9ALJ2wO+gSpHwH/CBA2+2cWYaok2t2thz+fryeXfKoeSbuXDNJFe0xWUUZw/0X1a58s1EWPPqiKxgYNys3T1d88UV/fY+8wjc2RXgibHWFkEQQQkETYzDFAAAEnBQibndRkLQQcFFjVsECPfnCZcjOKdfaUexxcmaUGIkDYPBAtrkUAgW0JEDZzPtwUWFhfoxs/mKXKthb7hxeev+tETRk8zM0tXV27qb3d/uGBj8x6x97nsJ121fUnfl+D8vJd3TdIixM2B2la1IqAvwUIm/09H6pDIGgChM1Bmxj1GiVw/RvH2/1ectDjRvXtp2YJm/00DWpBINgChM3Bnl8Qqm+NdumeBR/oldXL7XIPHDJCZ++ylx0+B/UzY8lnuuBvD2plbY0Ks7P122NO0LcnTQlqO47WTdjsKCeLIWC0AGGz0eOneQQcFyBsdpyUBRFwTuDGN09Qd0+3LjzwMUVSgvs/FJ0TSf5KhM3JN2dHBMIqQNgc1sn6r6/3Ktfqlo/eU1Nnp0oys/Tj3Sdpj5Iy/xUaY0VtnR26+pkndf87r6u7p0f7jxuvm79zqoYWFsW4QjgvI2wO51zpCgEvBAibvVBnTwTCK0DYHN7Z0lkIBAibvR8iYbP3M6ACBMIiQNgclkkGo4/6jnbdMG+mPqypsgu2fnDgD3bYVRmpkWA0sIUqP1i5XD/6631aUl2pvMxMXXbUcfrBvgcqJSUlsD0lUjhhcyJ63IsAAhsLEDZzHhBAwEkBwmYnNVkLAYcFCJsdBo1jOcLmONC4BQEEtihA2MzB8ELg+RWL9cCij9TRHdWQnDxdOmGytssv9KIUR/bs7OrStf99Rne+9pK6uru196gxuvXk0zSqZJAj6wdpEcLmIE2LWhHwtwBhs7/nQ3UIBE2AsDloE6NeowQIm70fN2Gz9zOgAgTCIkDYHJZJBq+PNS1Nuu6DmVrSWK/UlBR9Z/tddNyY8YoE+Ingj1ev1I//9oAWrV1jD+SKr39TZx98WPCGk0DFhM0J4HErAghsIkDYzIFAAAEnBQibndRkLQQcFiBsdhg0juUIm+NA4xYEENiiAGEzB8NrgYc/na9/LllklzG+sFgXT9hHg7NyvS4rof1vePE5/d9/nrHXmLbTrvrTydOVn5WV0JpBuZmwOSiTok4E/C9A2Oz/GVEhAkESIGwO0rSo1TgBwmbvR07Y7P0MqACBsAgQNodlksHu49P6Wl3/wSxVtDVv0khuWrqKMzNVlJml4oxMFWdmqzjL+j5bxZlZKrR/L0t56em+A7Cecj7l3tu1tqFeY0rLdN9pZ2uHwUN8V6fTBRE2Oy3KegiYK0DYbO7s6RwBNwQIm91QZU0EHBIgbHYIMoFlCJsTwONWBBDYRICwmQPhF4HWaJceXPSh5tdVq669TU2dnQMqrSwrxw6ii6wAOiNLRVlZKrFCajuU7v3e+pXMT21zs8544C7NWPq5ctIzdPN3TtGRu++ZzBKSvhdhc9LJ2RCB0AoQNod2tDSGgCcChM2esLMpArEJEDbH5uTmVYTNbuqyNgJmCRA2mzXvIHVr/aC92o421bW3q6bd+tqm2vbW9d+3q9b664421Xe0q7unJ6bWUiQVpGesf1I6yw6nCzMzVZqZbf9eUWamSqygOjNLWZG0mNbs76Jod7f+55kndNcbL9uXnnfINP3yyGPt91SH8UPYHMap0hMC3ggQNnvjzq4IhFWAsDmsk6WvUAgQNns/RsJm72dABQiERYCwOSyTNLcPK2hu6Oyww2crkK5ZH1DXtrX2ft9mhdS9vzp7umOGssLmL17f0ft0dKn15LQdSvc+JW09RV2QkalYYuPnPpyr8x95QG1dnTpg3Hjd+f0fqjg32O+m3hImYXPMR4wLEUCgHwHCZo4IAgg4KUDY7KQmayHgsABhs8OgcSxH2BwHGrcggMAWBQibORgmCViv5rBCZ+tp6Jr2VtW2W09IW1/7Aune71uj0QGxWKGzHT7b75Ze/9V6jUdGlnYvLVdOWu9T0p+sXaMf3He7VtbWaGhhkR48/VztMnT4gPby+8WEzX6fEPUhEBwBwubgzIpKEQiCAGFzEKZEjcYKEDZ7P3rCZu9nQAUIhEWAsDksk6QPJwU6uqO9r+uwQum2VtV1tKmmbf2rPNr6np5us5+o7u/zh8lTtUNRyYbLGlpbde5D9+jVTxcqI5Kmm77zA31jwsT+lgnMnxM2B2ZUFIqA7wUIm30/IgpEIFAChM2BGhfFmiZA2Oz9xAmbvZ8BFSAQFgHC5rBMkj68Eqhua7XfHd37Go92+3sroJ5dudYOrL8cNlt19vT06I/PP61bXvmPrLdNT9//YF15zLeUFol41YZj+xI2O0bJQggYL0DYbPwRAAABRwV8FTbPmrtQp110jd3g7jtvp9uvuVjFhflbbbi1rUO/ufZePfPSu/Y1V/3sdB1/1MEbrl9d3eooFoshkGwBwuZki2++H2Gz9zOgAgTCIkDYHJZJ0offBH4x41V9Wl+r30+eqh03erJ54zpfXPCRzn3oXrV0dmjvUWN0//RzVJqb57dWBlQPYfOAuLgYAQS2IUDYzPFAAAEnBXwTNn++bLUu+8PduvqXZ2rc6GF6/NnX9e7s+frtT09XdlbGZj33Bc37Ttxlk4B54wsJm508KqzlhQBhsxfqm+5J2Oz9DKgAgbAIEDaHZZL04TeBWMJmq+bPKys0/f477K/l+QW655QztffosX5rJ+Z6CJtjpuJCBBDoR4CwmSOCAAJOCvgmbLbC5aUr1uqSs0+0+/ty+Pzlpr98/ZZQCJudPCqs5YUAYbMX6oTN3qtTAQLhFCBsDudc6cp7gVjDZqvSlo52+wnnFxd+rPRIRL/7xgk6Zb+DvG8ijgoIm+NA4xYEENiiAGEzBwMBBJwU8E3YfP2dj9l99YXNtfWNOvcXN+jSs0/UPnvutFnP1vX3PPLsht8fOrhUd/7xUvup6L4PYbOTR4W1vBAgbPZCnbDZe3UqQCCcAoTN4ZwrXXkv8PMZr+qz+totvrN5a9Xd/PILuvaFf6u7p0ff2nsf/d+3v2f/EMEgfQibgzQtakXA3wKEzf6eD9UhEDQBX4XNY0YO2fBKjG2FzX2v0Pj2MYdsCKKtJ50fe/rVTd7z3NHVHbR5UC8Cmwhc/swx6u7p1lVHP6lISrD+B1BYRpmaIqWmpKir2/qxQnz6BKLRHkUiKYAggMAABKy/Y9IiKeqM8s+TAbAZeWm0u0fWv5zgE5vA2S/9RwtrarRzcYm+s/POOmT4yJhu/O/HH+v7d9+putZW7TFihJ748QUaXlQc071+uCg9LVVdXd32Dz7kgwACsQvwz9jNrdJSU+x/+cb/5In9HHElAghsXSAjLXWTP0zpsX5kswefgTzZvKWweUvhdFV9uwedsCUCzgn88dXj7bD5p4f8g7DZOdYBrZSRHlFWRqoamjsHdF/YL7b+g4IYJOxTpj+nBVJTU1SYm67axg6nl2Y9BIwWeG3NSt2/YJ6q2np/OPjI3HyduMPOOmRo/6HzytoafeeuW7Vo3RoV5+TowdPP0b7bbR8Iz9KCTNU0tsub//UWCCKKRGCLAvz32M1ZCnLT1doeVScP7PF3DQIIOCAwqPD/2TsPMLmq8+7/p7ftXXV3JSEkYYFEb8ZgXDAOsQ1YcQ0OdsJnHDuU4OCQ2MY2MZ8L+COJieyYuJKYYGy6C270YglJgLq0q7KSttfp7XvOmZnV7mrLzM6duefe+5/n2Wfauee87+89Euino/d6CpPNU9tXTLx67eplk04WFxJfoT2bRRxTT0J/7l++i1uu/8B4Kw220Sik/ulEHgAAIABJREFUAhyrIgG20dC/KrxBoP41YAQkYBYCbKNhlkoyDxUJJFMp/O7IQTy4f+e4dF5cUYkNy1fh/ObFs/4FaSQew40//TEe2bYZDpsN/3j5e/F/3nKpimlOioltNJQvEQMkAcMQYBsNw5SKgZKAIQgU1EZDCN6Xt+yct1CejcjUGwIK+fzipu24/ZZr4fO6MbVNxitbduJzX/3ueJ/mqePFWpTNhtiDDHIWApTN+m8Pymb9a8AISMAsBCibzVJJ5qEygUQqhd92HZDSeSAakaEuDlTg/ctX4/zmRbI11kyP7zzzO9zx+C8g5njXm07Dv33wGnhdbmXTpWxWtjQMjAQMR4Cy2XAlY8AkoDSBvGVzrk3FhisuHu+rrHVmQiB/7IY75bRTT0lP15NZfPbPX7tv2vGUzVpXh/PpQYCyWQ/qk9ekbNa/BoyABMxCgLLZLJVkHkYgIITxrw934qGOXRgsQDq/1LEXH//BdzAYCmFlcwu+/7Hr0FrfqGTKlM1KloVBkYAhCVA2G7JsDJoElCVQsGy++boN4zflUzarbGA82ax6hRjfXAQom+ciVPrvKZtLz5grkIBVCFA2W6XSzFMlAvF0Cr851IGf7d+FoVjmfi7ipPPVy1fjghlOOh8dHsK139+IbV2HUOnx4D8++glcvHK1SmnJWCiblSsJAyIBwxKgbDZs6Rg4CShJIG/ZnLsp37lnrCnZyWatCVE2a02U85WbAGVzuYmfuB5ls/41YAQkYBYClM1mqSTzMCKBWCqJXx3qwM87dmM4K50XZaXzhdNI53gigZsf/Al+tvkV2e/5pne8Gzdeehlss7ThKDcXyuZyE+d6JGBeApTN5q0tMyMBPQjkLZtFcKJn87GegfE+ynoEXMialM2F0OJYFQlQNutfFcpm/WvACEjALAQom81SSeZhZAJCOv/y0H78fP9ujMRjMhUhnd+/bDUuaDmxp/MPX3gGn3/kQcSTSVx80ip5yrnS61UCAWWzEmVgECRgCgKUzaYoI5MgAWUIFCSbp97ET5ksZgiEsln1CjG+uQhQNs9FqPTfUzaXnjFXIAGrEKBstkqlmacRCERTSTx5cD9+0bEbo1npvNAfwIbla06QzpsPdODjP/wuekZH0FrXgB99/Hosb2zSPU3KZt1LwABIwDQEKJtNU0omQgJKEMhbNuduEPjajv0zBj71pn56Z0jZrHcFuH6xBCibiyVY/PWUzcUz5AwkQAIZApTN3AkkoB4BIZ0fP7APD3fuxlg8LgNc4K/AhuWrcGHLYtizbTP6g2P42H/9BzYf7ITf5cY9H/hLvGvtOl0TomzWFT8XJwFTEaBsNlU5mQwJ6E4gb9mse6TzCICyeR7QeIlSBCib9S8HZbP+NWAEJGAWApTNZqkk8zAjgXAygScO7sPDHXsQTByXzu9ftgpvXpCRzolkUrbU+MELz0gE17/lUnzu8veOC+lyc6FsLjdxrkcC5iVA2Wze2jIzEtCDAGWzHtS5JgnkSYCyOU9QJRxG2VxCuJyaBCxGgLLZYgVnuoYkEEok8NjBvXi0cw/Ea/Fo8YuezqtwUVY6/2zTy/j7B+9HLJnABctPwsaPfAK1gUDZ86VsLjtyLkgCpiVA2Wza0jIxEtCFQMGyebp2Gqq1z8iR5MlmXfYUF9WQAGWzhjDnORVl8zzB8TISIIETCFA2c1OQgHEICNH8cMduPH5wL8LJpAy8yefHx1edJuXzyMgw/vK+e3F0eAgLqmvww2s/iTULFpU1QcrmsuLmYiRgagKUzaYuL5MjgbITKEg2ixsEXvfZb+L6a96DKy+/aDzYh554Gt/+wcPY+LWbsbx1YdmTmGlBymZlSsFA5kmAsnme4DS8jLJZQ5icigQsToCy2eIbgOkbkoDo4yxOOT96YC9Ef+fco8rlxklVNfjTzh3YtncPkpEovnH1h3DVGWeXLU/K5rKh5kIkYHoClM2mLzETJIGyEshbNocjMXzh6/ehpakON1234YQg79r4AI71DOD2W66Fz+suaxKUzUrgZhAlIEDZXAKoBU5J2VwgMA4nARKYkQBlMzcHCRiXgJDOvzq8H6/29mDHUN8JicTjcYwODGJ1XT1uuuCtWFFTV/JkKZtLjpgLkIBlCFA2W6bUTJQEykIgb9mca59x83UbcNa6VScE98qWnfjmxgdw7503ora6sizBz7UITzbPRYjfq06Asln/ClE2618DRkACZiFA2WyWSjIPqxNIpFLYMzKI7YP92N7fi13D/eOtNnJs/A4X1tTV45S6BqypbUB7ZQ0cNpum6PKRzeI0dldwDMdCYzgaGsOR4CiOhII4GhxDtceDty1qwyULW1HhcmkaGycjARIwFgHKZmPVi9GSgOoEKJtVrxDjszQBymb9y0/ZrH8NGAEJmIUAZbNZKsk8SOBEAntHBvH0wU48+MZWuCr8cE6Rt267A2tq67GmrlE+r66pLxpjTjZHkkkcDo6hR0jkrFA+GgrhSGgUw7FoXuuc07QQb1/SjvX1TXmN5yASIAFzEaBsNlc9mQ0J6E0gb9nMNhp6l4rrW5EAZbP+Vads1r8GjIAEzEKAstkslWQeJDAzgZFwGJ/88ffw0tHDqKmrw3mrT0HYacdgNDLpIiGfV9bU4pS6RpxS24CVNXVw2ewzTpxMpXA0HMLR0GhWKI+hLxrGgZFhDEyZe+IkHrsDC/wV2Z8AFlZUYkEg8z6eTOKXh/bjd10HxqV0g9eHty5sxaWL2yBe80ECJGANApTN1qgzsySBchHIWzaLgHiDwHKVheuQQIYAZbP+O4GyWf8aMAISMAsBymazVJJ5kMDsBNLpNL7+q8dwz+9+hTSAq04/Cze++z3oGB3BzsE+7Bjsk60spj7EaWdx6nl5VS16IkIsZ9pfHAkG0RsJzbro4kAFWvwVyDxXYlH2fZ3Hm1e5Xujpwq8O7sdrA8f7Ua+ta5CnnS9oXpzXHBxEAiRgXAKUzcatHSMnARUJFCSbRQK5E86P//bF8XzWrl6mVK/mXGDs2azilmNMhRCgbC6EVmnGUjaXhitnJQErEqBstmLVmbOVCTy143X87f3/hdFoFGsWLMIPr/0kFlTXSCSivcUbg33YPtCHNwZ6cTA4OicqIZMX+PxYXFGFFn8Ab1pQD2/ChQavf85r8x3QHQniVwc78IcjB8dPO/ucTlyyYCnevmQZllaocW+efPPhOBIggfwIUDbnx4mjSIAE8iNQsGzOb1o1RlE2q1EHRjF/ApTN82en1ZWUzVqR5DwkQAKUzdwDJGA9Agf6e/HR++7Fvt4e1Pr92PiRT+CCFStPADEWj2PHkBDPfTg8NoJmvzihHMiIZZ9ftr2Y+sjnBoHFEH++uwu/PjT5tPPyqhq8bXE73rxgCXwORzHT81oSIAGFCFA2K1QMhkICJiBA2WyCIjIF8xKgbNa/tpTN+teAEZCAWQhQNpulksyDBAojEIpF8ckf34endr4Bh82Gz13+XnzyLZcWNsk0o0stm3NL9oZDePLQ/kmnnUXP6fNbFsrezmtqGorOhROQAAnoS4CyWV/+XJ0EzEZgVtk8ODyKT956NzZccTEuuWC9fP3ajv0zMlCtnQZPNpttu1ovH8pm/WtO2ax/DRgBCZiFAGWzWSrJPEhgfgT+9fe/xtd++ShS6TTe9abT8G8fvAZel3t+kwEol2zOBZhMp/FSzxH85lAHtg30jsctTl2/bVEbLlm0FNVuz7zz4YUkQAL6EaBs1o89VyYBMxLgyWYzVpU5mYYAZbP+paRs1r8GjIAEzEKAstkslWQeJDB/As/t3Y1P/PA7GIlEsLK5Bd//2HVorW+c14Tlls0TgxSnnX95aB9+33UQw/GY/Eqc2j69oQVvW9yG9Q3N8j0fJEACxiBA2WyMOjFKEjAKAcpmo1SKcVqSAGWz/mWnbNa/BoyABMxCgLLZLJVkHiRQHIHDgwP46H3fxu7uY6j0ePAfH/0ELl65uuBJ9ZTNuWBzp52n9naucXtw8aKleMfidjT7AgXnxgtIgATKS4Cyuby8uRoJmJ0AZbPZK8z8DE2Asln/8lE2618DRkACZiFA2WyWSjIPEiieQCQew40//TEe2bYZ4vzvjW97F256++WwFXAaWAXZPJHEsdAYfn24A08dPoBgIj7+1bWrTsW7ly4vHhpnIAESKBkByuaSoeXEJGBJApTNliw7kzYKAcpm/StF2ax/DRgBCZiFAGWzWSrJPEhAOwL/+ezv8eXHfo5EKoWLT1olTzlXer15LaCabJ4Y9HPdh/Hg3p04GBzFVe0r8aGTTskrJw4iARLQhwBlsz7cuSoJmJVAQbL5ro0P4OUtO3HvnTeitroS+w4cwXWf/SaOdvfj3Zeei9tvuRY+7/xvcqE1ZN4gUGuinK/cBCiby038xPUom/WvASMgAbMQoGw2SyWZBwloS+Cljr34+A++g8FQCK11DbKP88qWBXMuorJsFsE/uH8n/nvvDlzVfjI+dNKaOfPhABIgAf0IUDbrx54rk4AZCeQtm8ORGL7w9ftw7hlrcOXlF2Hq+4eeeBqdh47hpus2KMOJslmZUjCQeRKgbJ4nOA0vo2zWECanIgGLE6BstvgGYPokMAuBo8NDUjhvPXwQfpcbpy5eKkeLthrVPh9q/QE0VFSiNhBAnb8CdRUVOKmlDkg5UeuvzPs0dDmLQNlcTtpciwSKI0DZXBw/Xk0CJDCZQN6yeXB4FJ+89W7cfN0GnLVu1fip5q9+7q/l+1e27MQ3Nz4wfupZBdCUzSpUgTEUQ4CyuRh62lxL2awNR85CAiQAUDZzF5AACcxGIJ5I4OYHf4KfbX6lYFBOhwN1fiGiA1JESyEtxHSgAvUVFaiV77OfZcf4XKX9F6mUzQWXkReQgG4EKJt1Q8+FScCUBOYtm6fKZcpmU+4PJqUzAcpmnQsAgLJZ/xowAhIwCwHKZrNUknmQQGkJhOMxDIyNYSAUxEAwiMFQ9vXo6PhnA8FRjETD6BkZxUBwDPFksuCgvE7XuJCWYjonpKWsnkZaByogpHa+D8rmfElxHAnoT4CyWf8aMAISMBOBvGWzSFr0bG5b0iLbaIjXx3oGxvs0izYaL27arlTfZp5sNtNWtWYuP916G0aivQjFhpFMH7+r91w0Au46+F1V8Lur4XNWweeqRsBz/LXfXQV/9nOPMzDXdJb+nrLZ0uVn8iSgKQHKZk1xcjISsDyBiT2bx6JRDITGMJiT1PJ5DP1jYxgU0lr8ZD8blAI7KG9KWOijwuORUlq288ielK4PVKJevM5K6sx3lXhxoBu/OLiPPZsLhczxJKADAcpmHaBzSRIwMYGCZHOuT/Pjv30RC5rrsfFrN2N568LxlhrXX/MeKaJVeVA2q1IJxqEFgVgyjHB8WIrnYHw48zo+jGA08zoYH5Tvw7ERRBKjSCOd17J2mxM+IaazP+K1z1UzQU5npLVV5TRlc17biINIgATyIEDZnAckDiEBEsibQLE3CBwJh6WQHj9FnRXS/cFRCCEtTkyLmxaKU9TihPVQOIRUOr//vxRJLGprxZIVK9B36DBS/YMTTksLGS1OTldlnsUp6vEWHxWo8vlkr2o+SIAEykeAsrl8rLkSCViBQEGy2WhAKJuNVjHGqxWBNFIIx0cRjmWFtJTTQwhGh6SQDsVHMs+xjKiOpyJ5L22zOaSYFiem5QlpV7U8OS2FtBTV4n1OXtfA6CenKZvz3hocSAIkMAcBymZuERIgAS0JFCubC40lnU5jSMhn2d4jI6DFa3GaWgjq46enM+0/7HXVaGptRVdHJw7t25f3cg6bTd4QUYjo2kDlJCEt+k/nbpAoJHVt9r04cc0HCZDA/AlQNs+fHa8kARI4kQBlM3cFCZCAJDAc7Z4gp0fk62BsSEpqeYI6K6bF60IfOSFd7W1Ca91pWFZ3Jqo9zYVOo8t4ymZdsHNREjAlAcpmU5aVSZGAbgTKLZsLTTTXs/myRW14S30LBsNB2dZDnJgWYjrzOiOtZasP8XkwiGAsWuhSWLekFaIHdTEPcZpa/D7ttNnhcDjgsNvlj9PugNNug128zn7nzH7nyH4nx8Mme1qLH8f4OFtmrux3ufkyc9vk3MfXEZ850FBRgdULFhWTCq8lgYIJUDYXjIwXkAAJzEJgVtk8ODyKT956NzZccTEuuWC9fP3ajv0zTrd29TLce+eNqK2uVAI6TzYrUQYGYUIC4cQIQrGRbCuPIQTjQwhHRzLPspXHKMbig/K1aP8x3aPa24L2uvVorzsDS6pPgdOu5okUymYTbmCmRAI6EaBs1gk8lyUBkxIwimy+qv1kfOikNQVV4djwkBTQoo2HPDU9sRe1lNUZMZ0T1JFE/vc2KSgQnQZfcvIafP7PrsTK5hadIuCyViNA2Wy1ijNfEigtAZ5sLi1fzk4CJABkbnIYH8bRkd3oHNiMg0OvI5mOTWLTWnMq2uvPQGvNetT7FyvDzeOyw+tyYDhkrj/EKAOYgZCAhQjY7UC134XBMf5+YqGyM1USKBkBIYeGRmMo/DZ/JQtp0sS5k83zkc3zjTAcjyGRTCGVSiGRTiGZTMobISbFa/FZMvMs3ieSycxnqaTsRS2+k2NTmc9z34nPUqn05Pmy4+R4MSfE9Um5biyZyKwvrhFrZNc+Yb7sd5kxabmumG9/bw+OjWT+JeGGM8/BP7zzCrRU18wXCa8jgbwIiP8/CceSiCVU/R0lrzQ4iARIQBEClM2KFIJhkICVCKRScRwa2YGOgU04MPgq+kOHJ6Vf5W1CW806tNWdjtbaU+Gye3XDw5PNuqHnwiRgOgI82Wy6kjIhEtCVgJlPNusKVufF44kEvvvsH3DP736J0UgEHocTH3/zxfjMWy9DpVe//yfWGQuXLzEBnmwuMWBOTwIWI1CQbH7oiafx7R88jI1fuxnLWxeOo9p34Aiu++w3cf0178GVl1+kDEK20VCmFAyEBGYlMBrtQ+fgZuwfeBWHhrYiljx+w0K7zYmFVSfLPs9tdevQ4G8tK03K5rLi5mIkYGoClM2mLi+TI4GyE6BsLjvysi44GAzirt88gR++9Kw8IV3j9+PvLr0Mf3XeRXA5nWWNhYuZnwBls/lrzAxJoJwE8pbN4UgMX/j6fWhpqsNN1204Ica7Nj6AYz0DuP2Wa+HzusuZw4xrUTYrUQYGQQIFEUilEzgysgv7Bzahc+BV9IUOTLo+4K5De63o9Xw6ltaug8fhK2j+QgdTNhdKjONJgARmIkDZzL1BAiSgJQHKZi1pqjvXgf5efPnxX+DJ17fKIBfX1snWGu9bfybETQ35IAEtCFA2a0GRc5AACeQI5C2bczcLvPm6DThr3aoTCL6yZSe+ufEB3iCQe4sESEBTAsHYIDoHX0XHwGYcGNqKaCI4Pr/dZseCypPRXn862mpPR1OgXdO1xWSUzZoj5YQkYFkClM2WLT0TJ4GSEKBsLglWZSd99WAnbvvFA9h6+KCM8ZQFi3Dbu9+Ht6w88c/myibBwJQlQNmsbGkYGAkYkgBlsyHLxqBJwJoE0kjh6OhudPRvlgK6e2zfJBB+VzXa6tZL8SxOP3ucgaJBUTYXjZATkAAJZAlQNnMrkAAJaEmAsllLmsaZ65Gtm/DVJx7BwcF+GfS57SvwpfdcjVMWqnODbePQZKQ5ApTN3AskQAJaEshbNotFRasM8ZipjcZM32kZcCFzsY1GIbQ4lgSMRyCcGMmK583oHNqCSHxsUhItlSdhWd0ZaKtdh5bKlfNKkLJ5Xth4EQmUlEAoMYJYIohoIiR/xOtIMohYIoTmyhVYVLW6pOvPd3LK5vmS43UkQALTEaBstu6+ED2c73v+j/jWU09iOByGaKbx3nVn4B/e9edYUltvXTDMfN4EKJvnjY4XkgAJTEOgINk8040AZ7pxoN7EKZv1rgDXJ4HyEjg2ukdK5/39m3BsdPekxb2uCrTVrJOnntvqT4ffWZVXcJTNeWHiIBLIm0AsGZbtcIQYzgli8T6aDCGaDMq/NJoskYVMHkMkK5aT6disa13Y/mGcvfiqvOMp50DK5nLS5lokYH4ClM3mr/FcGQ6HQrj7qSfx/ReeRjyZhMvhwDXnXYQbLr0MtYHi/4XfXOvze/MQoGw2Ty2ZCQmoQKAg2SwCzt0o8PHfvjge/9rVy5Tq1ZwLjLJZhS3GGEhAHwJCXnUMvirbbXT2b4I4CTnx0VyxDK0167Gs4QwsrJy51x1lsz7146rqEgjFh8dPFQtxHEmOIpIISyEcTYQRjY+NS2QhiGPJrEiWJ5GP91yfb4Zupx9eZwU8Dj/cjuN/kB6JdmM02ocL2z6Cs5dcOd/pS3odZXNJ8XJyErAcAcpmy5V8xoQPDfbjjscfxqPbNssxlV4v/vbid+CvL7oEHqeLoEhgTgKUzXMi4gASIIECCBQsmwuYW/ehlM26l4ABkIAyBHqDHegc2IL9A5twdHQnUunUeGyit/PS6tOwTN5ocD0C7trx7yiblSkhA9GAQDQppLCQv5kWFOJ0sZaniucK0WFzweP0y37qmR8/PI4A3A4/vK4AxL9AcNuFTM58L8Wy+D57jdvhm3GJZzt/jJcPPYQL2j6Ec5ZcPVcounxP2awLdi5KAqYlQNls2tLOOzFx88Dbfv5TvHrogJyjpaoaf//OP8NfnHku7DbRbIMPEpieAGUzdwYJkICWBCibtaTJuUiABAxBQAi3Q4NbsX9A9Hp+FWPRzA1Wco8Gf6u80aDo99zesAaVXg8GRmf/p/uGSJxBGpqA+AuSSGJ0/FRxJClODYv2EplTxZH48dYUuTYU0cQYYqkwIokxxBNhpJEuioHb4YVbiGBHICOBXVlx7MhIYyGLczJZCuSsUBbX+JxVsNvsRa0/28WUzSVDy4lJgAQUJUDZrGhhFAjride24I4nHkZnf6+MZmVTM/7x8vfi7WvWKhAdQ1CRAGWzilVhTCRgXAIFy+ZXtuzEx264U2b88Q9eLm8WOFMvZ72x8GSz3hXg+iRgDAL9oUPoHNws5XPX8A6k0onxwIUwW95wGhZXnSb7PVd6GoyRFKNUjsB4j+JkCBHZs1icLs6I4Jj4LNurWLzOnTyWp46zp4+T6XhROQnRK08IOyrgdYoWFBNEsbNCnizOnDSuyJwoHhfF4nRx5jObvAWRmg/KZjXrwqhIgARKR4CyuXRszTCzuIngD198Bnf95gkMhkIypbNal+H291yN0xYvNUOKzEFDApTNGsLkVCRAAihINosbAT7w6B9kf+bfP/cqOg8dk7JZPO7a+ACO9Qzg9luuhc/rVgItZbMSZWAQJGAoAvFUBIeGXpftNg4MvIrhaM+k+Ov8i2Wrjdba0+CyewyVG4PVjkDmlPHI+I3spCie0Js4lohkTiELcSzEcjJc9OKZFhQBKYp9zmq4HJ7MKWPZYkLI4Ur5LD7zin7Growklr2NpVyeuQVF0cEpMMGzHT/Gy4cfYs9mBWrBEEiABMpDgLK5PJyNvspoJIK7f/MENj7zu/FULjvlVHzz/R9Bjd9v9PQYv0YEKJs1AslpSIAEJIG8ZXPuxoDvv+JinLVuFYR4niibJ4ro2upKJfBSNitRBgZBAoYmEEwcw6HhV/HG0ZdxeGg7ij1damgYDL4oAkL2yj7FDiGIRbsJ3/gJ4tzJ4dzpYq+jUsrhnDz2u6qLWtsKFz/b8RO8fPhneHPbR3HWkvcpmTJ7NitZFgZFAoYlQNls2NLpEnjX4AC++uTD+PmWTZPWD7g9WFRTg4U1dVhUU4vFdfVYVC2e67CgphZLa+t1iZeLlpcAZXN5eXM1EjA7gbxl8+DwKD73L9/FLdd/AMtbF54gm0V7jW9ufECeeqZsNvu2YX4kYB0CU28Q2Dm0Bfv7NqE32GkdCMz0BAJ2uz0rjjOtKGSv4mzfYnGK2OcSN707foM7MYaP0hLgyebS8uXsJEAC6hGgbFavJkaIaNvhg/j6rx7D3p5uHBycfN+SmeJvrqqW0rmlukaK6UV19Wita4D4XIjp2gD/P8cItZ8tRspmo1eQ8ZOAWgQ0k83iZPOLm7azjYZa9WU0JEACRRKYKpuLnI6XkwAJlIgAezaXCCynJQESUJYAZbOypTFUYN0jwzgyNIjDQwOZ54EBHBkexLGRYRzs78NAKDhnPn6XG4tqa6V4Xlhbh8W14pS0eK7FguoatNY3zjkHB+hLgLJZX/5cnQTMRiBv2SwSF32Z25a04MrLL5p0sjnXYqOlqW68h7MKoNhGQ4UqMAYSMDYBymZj14/RW4cAZbN1as1MSYAEMgQom7kTykEgnkhIEd01NISurJAWLTnE666hQRwZGkI4Hps1FHF74YaKSiysycjnhdW1WFRbh4WyfUetfC9OSTvs9nKkxDWmIUDZzG1BAiSgJYGCZLNopfHJW+/GzddtwKEjPeM9m4WEfnnLTqVaaAhIlM1abhXORQLWJEDZbM26M2vjEaBsNl7NGDEJkEBxBCibi+PHq7UjIE4/ZwS0kM8D2dPRQzg6NIhDQwMQp6fzebRUVWNxTZ1s1yEktDgtLUR0RkjXoKmK97DIh+N8xlA2z4caryEBEpiJQEGyWUySO8X8+G9fHJ/z3Zeeq1T7jFxglM3c+CRAAsUSoGwuliCvJ4HyEKBsLg9nrkICJKAOAcpmdWrBSOYmIPpDC/ks2nR0DQ/i0EC/bNshT0gPDiI0x+no3ApLsi06FlRXyxsYinYdbQ2NuHjl6rmD4IgZCVA2c3OQAAloSaBg2azl4qWei7K51IQ5PwmYnwBls/lrzAzNQYCy2Rx1ZBYkQAL5E6Bszp8VR6pPYCgUkuJZnII+0N83LqGPDg/h0GC/7CE900P0jN5zx13qJ6lwhJTNCheHoZGAAQnkLZtzLTQ2XHGx7NlshAdlsxGqxBhJQG0ClM1q14fRkUCOAGUz9wIJkIDVCFA2W63izFdIZyGf5U0MhwZxYKDITQ4bAAAgAElEQVQPD21+BXabjbK5yO1B2VwkQF5OAiQwiUDBsln0az5r3SpDYKRsNkSZGCQJKE2Aslnp8jA4EhgnQNnMzUACJGA1ApTNVqs4851KIBSN4qR/vhk+txt7v8KTzcXsEMrmYujxWhIggakE8pbNuV7N556xhiebuY9IgAQsQ4Cy2TKlZqIGJ0DZbPACMnwSIIGCCVA2F4yMF5iMAGWzdgWlbNaOJWciARIA8pbNAtZDTzyNzkPHcNN1GwzBjiebDVEmBkkCShOgbFa6PAyOBMYJUDZzM5AACViNAGWz1SrOfKcSoGzWbk9QNmvHkjORAAkUKJtF3+bP/ct3ccv1H8Dy1oXK86NsVr5EDJAElCdA2ax8iRggCUgClM3cCCRAAlYjQNlstYozX8rm0u0ByubSseXMJGBFAnmfbM7dIPC1Hftn5LR29TLce+eNqK2uVIIlZbMSZWAQJGBoApTNhi4fg7cQAcpmCxWbqZIACUgClM3cCFYnwJPN2u0AymbtWHImEiCBAk82Gw0YZbPRKsZ4SUA9ApTN6tWEEZHAdAQom7kvSIAErEaAstlqFWe+UwlQNmu3JyibtWPJmUiABPKUza9s2YmP3XDnOK8vf/ZaQ9wkkLKZW5wESKBYApTNxRLk9SRQHgKUzeXhzFVIgATUIUDZrE4tGIk+BCibteNO2awdS85EAiSQh2zOiebvf+tWnLVuFXLtNDZccbHywpmymVucBEigWAKUzcUS5PUkUB4ClM3l4cxVSIAE1CFA2axOLRiJPgQom7XjTtmsHUvORAIkkIdsvmvjA5LTTddtGOclBPQ3Nz6gVH/m6YpJ2cwtTgIkUCwByuZiCfJ6EigPAcrm8nDmKiRAAuoQoGxWpxaMRB8ClM3acads1o4lZyIBEphDNs90ijn3+c3XbZCnnVV9UDarWhnGRQLGIUDZbJxaMVJrE6Bstnb9mT0JWJEAZbMVq86cJxKgbNZuP1A2a8eSM5EACeQpm6dK5XAkhi98/T6ce8YapVtpUDZzi5MACRRLgLK5WIK8ngTKQ4CyuTycuQoJkIA6BCib1akFI9GHAGWzdtwpm7VjyZlIgAQom7kHSIAESGBWApTN3CAkYAwClM3GqBOjJAES0I4AZbN2LDmTMQlQNmtXN8pm7VhyJhIgAcpm7gESIAESoGzmHiABExCgbDZBEZkCCZBAQQQomwvCxcEmJEDZrF1RKZu1Y8mZSIAE8pTNr+3YnxertauXKXXTQLbRyKtsHEQCJDALAZ5s5vYgAWMQoGw2Rp0YJQmQgHYEKJu1Y8mZjEmAslm7ulE2a8eSM5EACcwhm40OiLLZ6BVk/CSgPwHKZv1rwAhIIB8ClM35UOIYEiABMxGgbDZTNZnLfAhQNs+H2vTXUDZrx5IzkQAJUDZzD5AACZDArAQom7lBSMAYBCibjVEnRkkCJKAdAcpm7VhyJmMSoGzWrm6Uzdqx5EwkQAKUzdwDJEACJEDZzD1AAiYgQNlsgiIyBRIggYIIUDYXhIuDTUiAslm7olI2a8eSM5EACVA2cw+QAAmQAGUz9wAJmIAAZbMJisgUSIAECiJA2VwQLg42IQHKZu2KStmsHUvORAIkQNnMPUACJEAClM3cAyRgAgKUzSYoIlMgARIoiABlc0G4ONiEBCibtSsqZbN2LDkTCZAAZTP3AAmQAAlQNnMPkIAJCFA2m6CITIEESKAgApTNBeHiYBMSoGzWrqiUzdqx5EwkQAKUzdwDJEACJEDZzD1AAiYgQNlsgiIyBRIggYIIUDYXhIuDTUiAslm7olI2a8eSM5EACVA2cw+QAAmQAGUz9wAJmIAAZbMJisgUSIAECiJA2VwQLg42IQHKZu2KStmsHUvORAIkQNnMPUACJEAClM3cAyRgAgKUzSYoIlMgARIoiABlc0G4ONiEBCibtSsqZbN2LDkTCZAAZTP3AAmQAAlQNnMPkIAJCFA2m6CITIEESKAgApTNBeHiYBMSoGzWrqiUzdqx5EwkQAKUzdwDJEACJEDZzD1AAiYgQNlsgiIyBRIggYIIUDYXhIuDTUiAslm7olI2a8eSM5EACVA2cw+QAAmQAGUz9wAJmIAAZbMJisgUSIAECiJA2VwQLg42IQHKZu2KStmsHUvORAIkQNnMPUACJEAClM3cAyRgAgKUzSYoIlMgARIoiABlc0G4ONiEBCibtSsqZbN2LDkTCZAAZTP3AAmQAAlQNnMPkIAJCFA2m6CITIEESKAgApTNBeHiYJMSOOMrt+HYyPCk7Gr8fpy37CScv2IlzmtfgdULFpk0e+3SomzWjiVnIgESoGzmHiABEiABymbuARIwAQHKZhMUkSmQAAkURICyuSBcHGxiAgcH+vDcvj14fu8uvLB/L44OD03Ktt4fwLlZ+Xz+spOwsmWBiWnMLzXK5vlx41UkQALTE1hY75v0hS2dTqfNAutIf9gsqTAPEiABnQh43Q74PQ4MjMZ0ioDLkgAJ5EOAsjkfShxDAiRgJgKUzWaqJnPRksCB/l48v38v5XMBUCmbC4DFoSRAAnMSoGyeExEHkAAJWJkAZbOVq8/cjUSAstlI1WKsJEACWhCgbNaCIuewAgEpn/ftwXP7duOFfXtOaLshTj6ft3wlzl9+knxe2dxiBSyTcqRstlzJmTAJlJQAZXNJ8XJyEiABoxOgbDZ6BRm/VQhQNlul0syTBEggR4CymXuBBOZHoLO/V0rnmeRzQ6Ai03bDQvKZsnl+e4lXkQAJTE+Aspk7gwRIgARmIUDZzO1BAsYg8GzHj/Hy4YdwYdtHcPaSK5UM2mG3ob7KjZ6hqJLxMSgSIAFjEaBsNla9GK26BMblc7bn89QbDubk8wXihoPLV+KkpmZ1k5lnZJTN8wTHy0iABKYlQNnMjUECJEAClM3cAyRgeAI52VzvX4Ir3/TPqPQ0KJcTZbNyJWFAJGBoApTNhi4fg1eYQEdfj7zRoLjhoOj93D0yPCnaxorKSSefzSCfKZsV3pAMjQQMSICy2YBFY8gkQALlI8CTzeVjzZVIoBgCo9E+/HTbP2Ek0gO/qwYfWHcHarxq3W2esrmYCvNaEiCBqQQom7knSKA8BHLy+bk9u/BCx8zyWZ58XnYSVhjw5DNlc3n2ElchAasQoGy2SqWZJwmQwLwIUDbPCxsvIgFdCITiw/jfbV9Af+ggvK4KXL32djQF2nWJZbpFKZuVKQUDIQFTEKBsNkUZmYQBCezv7c6efN6N5/fvQc/oyKQsxMlnIZ3PN5B8pmw24EZkyCSgMAHKZoWLw9BIgAT0J0DZrH8NGAEJFEIglgzjf1/7ArpH98Jl9+DKUz+PRZWrC5miZGMpm0uGlhOTgCUJUDZbsuxMWkEC+crnXM/n5Y1NymVB2axcSRgQCRiagFKy+ZUtO/GxG+6UQNeuXoZ777wRtdWVcwLOXff9b92Ks9atGh9/pD8857UcQAIkQAKzEaBs5v4gAeMRSKSieHj7nTgwuBV2mwt/vuYWLKs7U/dEKJt1LwEDIAFTEaBsNlU5mYyJCOzr7cEL+3bj+X178Py+3egdG52UnTj5fP7ylTh/+UnyhoMqyGfKZhNtQKZCAgoQUEY27ztwBLd99bu443N/jeWtC/HQE0/jxU3bcfst18Lndc+IaqKgpmxWYEcxBBIwGQHKZpMVlOlYhkAqncRjO76Bvf0vwQYb3rXqRqxqvFDX/CmbdcXPxUnAdAQom01XUiZkUgJzyeemyqpM243lmZ9ljc1lJ0HZXHbkXJAETE1AGdks5HLnoWO46boNEvhU+TxdFcSYr3/7f/DZT30Q//jV7+Lm6zbwZLOptyuTI4HyE6BsLj9zrkgCWhFII43f7L4Xr3c/Jae8ZPknsH7h5VpNX/A8lM0FI+MFJEACsxCgbOb2IAFjEtjdfQwv7t+DF/btwXN7d6E/FJyUyJ9u+woWVNeUNTnK5rLi5mIkYHoCysjmuzY+IGHnZPPg8Cg+eevdJwjkXEUmyui6msppx7KNhun3LxMkgZIToGwuOWIuQAIlJ/Bc5/146dCDcp1zllyNC9o+VPI1p1uAslkX7FyUBExLQHXZ/FDHbvxkzxu4qn0lPnTSKaatAxMjgWIJCPks2m786+9/jaPDQ6BsLpYorycBEtCbgFKyuW1JC668/CLJZDbZLL773L98F7dc/wHZcmOmsbFESm++XJ8ESMDgBOw2wG6zIZFKGzwTbcNPJtNwOGzaTsrZSKCEBF7ofBSPvv4fcoUzl7wT7zvt07K9RjkfYjWnw4Z4kr+flJO7EddKptIQfznBBwnMRsDltCORSEHV31F+vHM7vvvathlTqHK74XU44XM64Xc64XM54XO45GuveC0/d8ln8Z383OlCwOmC1+GA1yXGOuBzOFHt8XCzkEDeBFT9PXbZP9yCrqEh7Lvza1hcW5t3PloMdNptSKXT4B95tKDJOUiABNxO+yQItnQ6rcv/rxRyslmcar7us9/E0e7+Eyo4sW9z33CUFSYBEiCBogi4XQ543XaMBONFzWO2i8V/KKhBzFZV8+ezvedZPPrGNyHaa6xsOAfvfdNnYbc5ypa43W5DdcCFwdFY2dbkQiRAAuYlUF/lwcBoFPr86W1urn84cgiPdOxGJJlCLJlENJVANJFEOJmY++J5jPjx265AtXvme/3MY0peYlICqv5/7Km3/6M82bz183dgYU15ZXNVwIVwNIk4D+yZdNczLRIoL4GG6sl/CaybbJ5Pz+YcqplONrONRnk3E1cjATMSYBsNM1aVOVmZwP6BP+GR7V9HKh1Ha+1peM+aW+G0l+dEHNtoWHnnMXcS0J6A6m005so4lEgglspIaPEvUqOpJGLJBKIpIacTiAlJLb4XnwlZnXuW48T7pPx+W3+vfP6vS96NKhdl81zc+b26BM78ym04OjKMV277ChayZ7O6hWJkJEACcxJQpo3G1BsCCvn84qbtuP2Wa+HzuiHeP/DoH3DvnTeitrpyUmKUzXPWmQNIgATmSYCyeZ7geBkJKEyga3QHHtr2JcRTUTRXrsD7194Ot8NX8ogpm0uOmAuQgKUIGF02a1Wsa//wBIZjUXzvLe9Cjcer1bSchwTKToCyuezIuSAJkECJCCgjm0V+r2zZiY/dcKdMde3qZZPEMmVziXYApyUBEpiVAGUzNwgJmJNAT7ADD772BUTiY6j3L8X7T70dfld1SZOlbC4pXk5OApYjQNmcKTlls+W2vmkTpmw2bWmZGAlYjoBSsllr+myjoTVRzkcC1iNA2Wy9mjNj6xAYihzFA9s+j7FoP6q8TfiLU7+CSk9DyQBQNpcMLScmAUsSoGymbLbkxjdx0pTNJi4uUyMBixGgbLZYwZkuCZBAYQQomwvjxdEkYDQCwdgg/mfrbRiOHIPfVYMNp30Zdb5FJUmDsrkkWDkpCViWAGUzZbNlN79JE6dsNmlhmRYJWJAAZbMFi86USYAE8idA2Zw/K44kAaMSCMdH8eBrX0RvsANupx8bTv0ymgLtmqdD2aw5Uk5IApYmQNlM2WzpXwAmTJ6y2YRFZUokYFEClM0WLTzTJgESyI8AZXN+nDiKBIxOIJ6K4GfbvoQjozvhsnvw3jfdhiXVb9I0LcpmTXFyMhKwPAHKZspmy/8iMBmAM75yG46NDONPt30FC6pryppdXaUbwUgC0XiqrOtyMRIgAXMSoGw2Z12ZFQmQgEYEKJs1AslpSMAABJLpOB7Z/jV0DGyCzebAe9b8A5bVnalZ5JTNmqHkRCRAAgAomymb+QvBXARysllkVeP3Y3ljM5bW1WNZYzPa6xvR3tCIFU0tqPB4NE+csllzpJyQBCxNgLLZ0uVn8iRAAnMRoGyeixC/JwFzEUgjhSd2fAu7+p6FDTa8c+Wnsab5Yk2SpGzWBCMnIQESyBKgbKZs5i8GcxG4+6kn8erBTnT09WJ/X8+MydX5A2hvbJLyWQjptvoGtDc0YXljE/zu+YloymZz7SVmQwJ6E6Bs1rsCXJ8ESEBpApTNSpeHwZFASQikkcbv9/0nthx5Us7/5va/xFmL31v0WpTNRSPkBCRAAhMIUDZTNvMXhHkJpNJpHB7sx/6+XnQK+dzbg44+8dOLQ4P9SKSmb3fRWFEpxXN7fUPmRHSjOBHdhGUNjfC63DMLbLbRMO9mYmYkoAMBymYdoHNJEiAB4xCgbDZOrRgpCWhN4MVD/4vnO/9bTrtu4bvw1uV/XdQSlM1F4ePFJEACUwhQNlM28xeFNQkkUykpnIV4FgJaiujeHimmu4YGkEynpwXTXFU93o5DiGghoKWYbmxES42fPZutuZ2YNQmUhABlc0mwclISIAGzEKBsNkslmQcJzI/Aa8d+g9/suVdeLNppvHPl38IG+7wmo2yeFzZeRAIkMAMBymbKZv7iIIGpBBLJJA4M9KOzf4KIzp6I7hoahDgxPfVhA7Cwpla25Wity56Izono+ga4nE6CJgESIIGCCFA2F4SLg0mABKxGgLLZahVnviRwIoG9fS/isZ3fQCqdQnvdGfLGgXZb4X/womzm7iIBEtCSAGXzZNl83yXvRvUsbQK0ZF/IXLFUEqFEAqFEXD6H5etY9jmOUDKBYCw26buPnrwWrRVVhSzDsSQwJwEhojv6+7LtOLInorMi+ujwEKY7D2232TIiOtsXepnsFZ35aa2rh9PhmHNdDiABErAeAcpm69WcGZMACRRAgLK5AFgcSgImJtA5uAUPv3EnkukYFlefgg2nfrngbCmbC0bGC0iABGYhQNk8WTa/p20FPPb8/yLQbrfDabNB/N7stNnhsNnhtItnG8a/k5/Z5Hcuu/24IM6K40gigbFEDKF4HOGkkMgJ+VqK5WQcY/H4vPbwV86+CKtr6ud1LS8igfkQCPjseP3wEew6lukLvb+3e7xNR/fI8LQiWvxaWVRTN6kvdEZEN2JJLUX0fOrAa0jALAQom81SSeZBAiRQEgKUzSXByklJwJAEjo7swn9v/ZyM/W/P/wncDl9BeVA2F4SLg0mABOYgQNk8WTYbYcMEnC54nU74HA54HS64p5wK7RgdkkKbstkI1TRXjHWz3CAwEo9hb28PDvSLmxX2YV/PsfET0r1jozOCEC05vvOXn8CbFi42FyxmQwIkMCcByuY5EXEACZCAlQlQNlu5+sydBE4k8G/PfwSxZAifOu9H8DgDBSGibC4IFweTAAlQNue1B3YOD0hBK26alkyLnzSSqfT460T280Q6hVQKSCAF0U4gIcel5LPoYztxnLweme8z84r50nDb7VIS+5wOeBwu+J0O+MYFspDITvhcLnjs4nOnFMtehxNVebb3+KeXn8GOoT7K5rwqz0FaEphNNs+2Tjgew57uYzgw0IfO/oyIPtDfL5/7Q0E8eN3f4bzlJ2kZKuciARIwAAHK5ilFqvTl/0+vDFDfsoQ4Gk6UZR0uQgJ6EKBs1oM61yQBdQlQNqtbG0ZGAlYjwJPN5qv4ba88jZ2D/fjyWW/GmtoG8yXIjJQlMF/ZPFNCGzbeg+f27cZP/+bTuHDFycrmzcBIgARKQ4CymbK56J1F2Vw0Qk6gMAHKZoWLw9BIQAcClM06QOeSJEAC0xKgbDbfxqBsNl9NjZIRZbNRKsU4ScAYBCibKZuL3qmUzUUj5AQKE6BsVrg4DI0EdCBA2awDdC5JAiRA2WyRPUDZbJFCK5gmZbOCRWFIJGBgApTNlM1Fb1/K5qIRcgKFCVA2K1wchkYCOhCgbNYBOpckARKgbLbIHqBstkihFUyTslnBojAkEjAwAcpmyuaity9lc9EIOYHCBCibFS4OQyMBHQj82/MfRiwZxt+e/xO4Hb6CIrDiDQKHI8cQig3D76lFtaepIF4cTAIkMDsBttEw3w6hbDZfTY2SEWWzUSrFOEnAGAQomymbi96plM1FI+QEChOgbFa4OAyNBHQgQNkMDEe7EYoOIxgfRCg+jFBsCGOxQfkcjo+Mv46nIpMq5Hb60RRoR1NgGZoq2tFU2Y4Gf6sOVeSSJGAOApTN5qjjxCwom81XU6NkRNlslEoxThIwBgHKZsrmoncqZXPRCDmBwgQomxUuDkMjAR0ImFU2HxfIQwjFh6Q4DsqfwVkFshYlaK5YjsZAGxqzAloIaZfdq8XUnIMETE2Astl85aVsNl9NjZIRZbNRKsU4ScAYBCibKZuL3qmUzUUj5AQKE6BsVrg4DI0EdCBglJ7NqXQCY1Fx8ngQwezpY3EKeSw6INtaCKEsZLJ4Fm1B8n0ICex318DvqpbPgdyzfF0Dn6daPvtdNSe0GQnGBtAT7ETvWCd6xvajN9iJofBRpJGetLwNNlT7FqAp0AYpoiva0FSxTK7JBwmQwHEClM3m2w2UzearqVEyomw2SqUYJwkYgwBlM2Vz0TuVsrlohJxAYQKUzQoXh6GRgA4E9JTNxwVyRhJnZPGwPH0cjGY/k2J5sCCBLHpPCzk8URYHhFCWUjnzud9TjQp3HRw2l6bUk+kYekY70RvqRM/ofvncN3YA8VT0hHVELKL9hpDPQkILGS2ktJDTfJCAFQlQNpuv6pTN5qupUTKibDZKpRgnCRiDAGUzZXPRO5WyuWiEnEBhApTNCheHoZGADgS0ls1SIGf7Hcv2FVIeZ9pXBKPZE8iyrUVhAtnjDMhTxz5XLQLu7GljTw2kRBankbOnjys8tbDbnDqQnHlJcdJ5OHxUnoLuGe1Ab7BDvhYno6c+xElr0YJD9H9urFgmBXSjfynsdm2luFKAGAwJZAlQNptvK/zTy89gx1AfvnL2RVhdU2++BJmRsgQom5UtDQMjAUMSoGymbC5641I2F42QEyhMgLJZ4eIwNBLQgUA+sjmVTmIsNoBwTNxE7/gp5HBsCLH0CAaDA9mTyYUJZJ+zEr6sOBbS2OeqQYW7Fn53pqWFkMjyFLK7BnabQwc6pV0ymgiiW7bf6Mi04Rg7gP7wYaTTyUkL22121PoWy1PQzUJASwndDnGDQj5IwEwEKJvNVM1MLjnZPDWzCpcLAacbmWcX/E4XAi5X5r3Lg4DTCb/Ljcrx79zys1oP+9+bb5eUJiPK5tJw5awkYFUClM15yuZ/v+9n+NGDvzxhn9x2wzW44h0XTvr80V8/izu+9YNp99Sak9tx1xc/jZrqStPsOcpm05SSiUxDgLKZ24IESGAigdwNAi9Z8XHEEuEJJ5CFWB4s+ASyz1klZfHxE8e1CHhqpTQOuGvhc1fJE8oBdx0LMQOB7rF96AseQG/wAHrGhIjei1gycsLoKk9jtg3HMjRXtKMh0AbxGR8kYFQClM1GrdzMcf/njq14baAHwUQCwXgcsdTkv0ybb8bV7oyQrnB74Hc4pbgOuJwIuITAFmI6K6+dbvjF5/K9G1Uu93yX5HUGI0DZbLCCMVwSUJwAZXMBsnnTa7smieLN23bh+lu/gY9efRk+de1V4zMJ2fy9+x/D3V/6DNqXLlR8CxQfHmVz8Qw5g7oEKJvVrQ0jIwE9CORk82xrZ1pUVCPgOd6yQojjSm8NWmqaEIv6snK5Ro8ULLHmSKQXfSEhn/eje6xD3pRwJNp9Qu6i3Yg4+SxacWRuRtiKBn+rJRgxSeMToGw2fg3nyiCVTmMsEUcoHsNYIoFQPI5gMoZgPIFQIoaxWByhRBxjiRhC8QSCiTiCCfG9+DyBSDIx1xJzfu91OOEXojoroMWJanmyWp60zghr+ePMnLQeP3XtdMPndLKr/pyE1RhA2axGHRgFCZiFAGVzEbJZXCpOPE+V0JTNZvnlwTxIAKBs5i4gARKYSODR7V+Hy+lFhSvTvsLnzraycFbBJ+Sys2pGYA67DfVVbvQMnXjzO1IuPYF4KiLbcPSIk9BjB9EbOoDu0b3TLtxcsQKNgVYpokUrjoaKNrjsntIHyRVIoAAClM0FwLLoUCGrhXgOJuOZZymuhZwWMrr0stpus6HG7ZHtPOq9PtR5fKjz+lDv8aJWvPZ4Uef1SlHNh74EKJv15c/VScBsBCibKZuL3tM82Vw0Qk6gMAHKZoWLw9BIwGAEKJvVLFh/6DB6gh3oG+tET3A/ekc7EEqMnBBsjW+h7P28vP5MrG56i5rJMCpLEaBstlS5dUt2JC5OTWdOVkcSCYwmovIU9Vg8jnAihlEhseMxKbLDiWT2+4zcjubZBsRtd2TFc0ZAN3i9qPH4soLai1qvF83egG4MrLAwZbMVqswcSaB8BCibi5DN4UgMd96T6c1862eugc+b6WnFk83l28BciQRKTYCyudSEOT8JWIcAZbNxah2Jj+HY2J5MH+jR/egPHZJtOXKP5fXn4J0nfQpeV4VxkmKkpiNA2Wy6kpoyoe5wEAPRCPoiYfRHIuiPhNAfDWNQfBYOye/yfYg2HXVucRpanI72ZU5M+/xo9Pmxvr4p32k4bhoC2svm/4fn9u3B/173dzh/+UlkTgIkYDEClM1FyOaZpPJMNwhsaao3ZR9nnmy22O8aFkuXstliBWe6JFBCApTNJYRbpql39D6D3+65V96AUPTmvmzVZ9BWs65Mq3MZEphMgLKZO8IsBIRwHogKGR2WIrovHMZAJCxFtPhMPM92s0SP3YH73/bnZsGhSx5ay+b3b/x/eH7fHjRWVOKDZ52HD597IRbX8mbHuhSXi5KADgQomwuQzT968JeTRr/z4rMnnWjOfcmTzTrsZC5JAiUiQNlcIrCclgQsSICy2RxFH4v14/Edd6NrZLtM6LQFl+Hi5R+Dw5b5F258kEC5CFA2l4s011GBgGjbIYW0ENNZKd0TCuLZo4chekNTNhdXJa1l8+92voH/+ONT8nRz7nHhipX4izPPw5Wnn1VcsLyaBEhAeQKUzVNKVOlzTlu0qTcCzJ1evu2Ga3DFOy6cdA1ls/L7ngGSQN4EKJvzRsWBJEACcxCgbDbPFkkjjU2HH8GznfcjlY6jxrsAf7bm72VPZz5IoA3Y5VkAACAASURBVFwEKJvLRZrrqEpAnHb+4FOPyPA2LFs1KUy73Q6vwwG/0wWPwwGvwwmf0ymfJ772O6f/87+qOZcqLq1lcy7Ow4MD+MmLz+Knm15C98iw/LjW78dVp5+DvzzvzVjeyPYnpaop5yUBPQlQNs9TNovLhID+zdOvnNAag7JZzy3NtUlAWwKUzdry5GwkYGUClM3mq77o4/zY9m9gINwFm82B81v/AmctvhJ2m918yTIj5QhQNitXEgZUZgITZXMxS4sbFAox7XW44HU6EBCC2u6Ax+WEb8LnQlxLWe0Un+fEtQNepys77vh3xcSjx7Wlks25XJKpFMRp5/tffl4+J1Ip+dXpS9vwoXMuwHvXnQGfi/9CSI/ac00SKAUByuYiZHPuBoGHjvbiri9+GjXVlXI2yuZSbFXOSQL6EKBs1oc7VyUBMxKgbDZjVYFUKo6nO3+MzV2PygSbK1bgitW3oMrbaM6EmZUyBCiblSkFA9GRwKv9PYglEogkk4ikEogmM6+jiTgiyVTmfSLzXUyMSR4fI18nkoinM+JTy4eQ1ROltE+KanHaOiO0c7La58q9zzyL7/W42WGpZfNEtn1jo/ifl1+Q4vnAQJ/8qsLjwZ+fdgY+fM4FWLekVctScC4SIAEdCFA2T4GebxuN3GUdB4/gxs/fg9PWLB/v30zZrMNO5pIkUCIClM0lAstpScCCBCibzV30rpE38NiOuxGMDcBl9+LiFR/H2uZLzZ00s9OVAGWzrvi5uMkIhBIZCS3ldEpIaSGsM3I6J6mlnE4lEU7EEct+J8dlJXZOZEeTqazUTs56Y8OZEH7nostQ7/WVlXA5ZXMusXQ6jRf278X9Lz2Lx1/bilgyIb9a1bwAHz73Alx9+jmo8pWXQ1mhczESMDEByuYiZbO4fPO2Xbj+1m8gd8PAp55+Gd+7/7ET2muYdR+NhjP/UeCDBMxIgLLZjFVlTiSgDwHKZn24l3PVaDKMX+26B3v7X5LLLqs7E+9c+Wn4XJl//cYHCWhJgLJZS5qciwRKRyAsJbaQ0pnniBDbKSGkxenr5LjMfmDfDogbIVpFNk8kPhIO48HNL+EnLz6Hnd1H5VduhxPvXnsaPnTOhThv2QrYbLbSFYkzkwAJaEqAsnkKzplONmtK3WSTUTabrKBMZxIBymZuCBIgAa0IUDZrRVL9eXb0PoPf7t2IWCIEv7MKl636O7TVrlc/cEZoKAKUzYYqF4MlgTkJ/M0fn0R/NIKNF12GBgucbJ4JyJZDB/CTl57DI1s3YSwalcNa6xrwobPPxwfOPg8NFfwL3Dk3EweQgM4EKJspm4vegpTNRSPkBAoToGxWuDgMjQQMRoCy2WAFKzLcsVg/Ht9xN7pGtsuZTm15B96y/K/gsnuKnJmXk0CGAGUzdwIJmIsAZfPkeobjMfxiyybc/9Jz2HywU37ptNvx1lWnSPEsnh123pDXXL8KmI1ZCFA2UzYXvZcpm4tGyAkUJkDZrHBxGBoJGIwAZbPBCqZBuGmksbnrETzTcT9S6TiqPM3481M+i6ZAuwazcwqrE6BstvoOYP5mI0DZPHNF9/X24IcvPIOfbX4Jg6GQHNhcVY2/OOMcfPjcC7G4ts5s24H5kIChCVA2UzYXvYEpm4tGyAkUJkDZrHBxGBoJGIwAZbPBCqZhuP2hw3h0+//FQLgLdpsd5y7dgLOXXC1f80EC8yVA2TxfcryOBNQkQNmcX10e27YZP3rxWTy7d7e8YGVzC35/8z/ldzFHkQAJlIUAZTNlc9EbjbK5aIScQGEClM0KF4ehkYDBCFA2G6xgGoebSsXxdOePsbnrUTlzc8UK/Nnqm1DtbdF4JU5nFQKUzVapNPO0CgHK5sIq/erBTlx177fQ2tBA2VwYOo4mgZIToGymbC56k1E2F42QEyhMgLJZ4eIwNBIwGAHKZoMVrEThdo28gcd23I1gbED2b754+bVY2/L2Eq3Gac1MgLLZzNVlblYkQNlcWNV3HjuCS+/6F5zcvAC/u/m2wi7maBIggZISoGymbC56g1E2F42QEyhMgLJZ4eIwNBIwGAHKZoMVrIThRpNh/GrXPdjb/5JcpbVmHS5fdSN8rsoSrsqpzUaAstlsFWU+VidA2VzYDqBsLowXR5NAOQlQNlM2F73fKJuLRsgJFCZA2axwcRgaCRiMAGWzwQpWhnB39j6Dp/ZuRCwRgt9ZhctW/R3aateXYWUuYQYClM1mqCJzIIHjBCibC9sNlM2F8eJoEignAcpmyuai9xtlc9EIOYHCBCibFS4OQyMBgxGgbDZYwcoU7lisH4/vuBtdI9vliqKlhmitIVps8EECsxGgbOb+IAFzEaBsLqyelM2F8eJoEignAcpmyuai9xtlc9EIOYHCBCibFS4OQyMBgxGgbDZYwcoc7qauh/HH/T+Qq3qcAaxteZtsr9Fae1qZI+FyRiFA2WyUSjFOEsiPAGVzfpxyoyibC+PF0SRQTgKUzZTNRe83yuaiEXIChQlQNitcHIZGAgYjQNlssILpEG5f6AAe2/51DISPTFp9ac1atNWeLsVzY6BNh8i4pIoEKJtVrApjIoH5E6BsLowdZXNhvDiaBMpJgLKZsrno/UbZXDRCTqAwAcpmhYvD0EjAYAQomw1WMB3D3dH7DA4ObEHH4KsIxYcmReJzVqKtbr3s7dxat172eubDmgQom61Zd2ZtXgKUzYXVlrK5MF4cTQLlJEDZbEDZ/O/3/Qw9fQO49TPXwOd1a75fHv31s/j5k0/jri9+GjXVc98VnbJZ8xJwQoUIUDYrVAyGQgIGJ0DZbPAC6hT+YLgLB4dew4GhbTg09BqiieCkSBr8rWirE+021mNx9Wo4bC6dIuWy5SZA2Vxu4lyPBEpLgLK5ML6UzYXx4mgSKCcBymbK5hP2G2VzOX8Jci3VCVA2q14hxkcCxiFA2WycWqkaaRop9Ix14uDQNhwc2oqu4Z1IpKLj4TpsbiypXoPWunVoq1mH+sBSVVNhXBoQoGzWACKnIAGFCFA2F1YMyubCeHE0CZSTAGUzZTNlczl/xXEtwxGgbDZcyRgwCShLgLJZ2dIYNrBUKo4jo7txYHCrPP3cPbYHqXRqPB+/q0b2eW4XLTdq18PnmvtfrBkWhgUDp2y2YNGZsqkJ/PUfn8RANILvXHQZ6r2+suZaV+lGMJJANH78vyFlDWAei1E2zwMaLyGBMhGgbDaYbBYtNH704C8nRf3Oi88eb6kxNDyKm774r9i+q0OOaWmqx91f+gzaly4cv2bqGPHFmpPbZduMZ17aiju+lbkTeu6R+26mlhpso1GmX61cRhcClM26YOeiJGBKApTNpiyrUknFkmEcHn4DBwbFyedt6A8dnBSfuLmgkM/iZoOLq1bBbmfLDaUKWGAwlM0FAuNwElCcQE42izDddgeafD40+gJo8vnR5KtAs9+HJm8ATV4/Kt3attOkbFZ8czA8EjAYAcrmKQWr9DknfdI9MoLvPfvHspd1QVU1/urCi6Zdd6aezR0Hj+DGz9+Dj3/oz3DFOy6U14qWGN+7/7Fx4ZwTzWesPRmfuvaq8fm//9PH8Zbz1kspzTYaZS83F1SYAGWzwsVhaCRgMAKUzQYrmAnCDSVGcHjoNXQObEXn0KsYi/aPZyV6Owvx/KaWS7Gi/hwTZGu9FCibrVdzZmxuAg/s34n9w0PoDgfREw4hkkzMmLDP4UCj148mfwCN3gBaAn753Oz3SyHtd072GnORo2yeixC/JwESKIQAZfMcsnnr4UN48/+9oxCmmow9bfESPPMPt+Utm8ORGO685wdoaqibJJFzn5+5brUU0Ju37cKX7vqvE047T1yIslmTEnISkxCgbDZJIZkGCShAgLJZgSJYPIShyFEcHNyGA4Ov4eDw1vGbDVZ5GrF2wduxtuXt8LuqLU7JOOlTNhunVoyUBOZDYCQeQ08oiGPhILrDIXQHx9AdyYjovkgYqXR6xmkrXC55ArrRnzkJ3SyexQnprJAWJ6cnPiib51MhXkMCJDATAcrmOWSzUU425041f/6mv8Lpp548KStxElo8xEnm3Li62irZNmO61hiUzfwNgwSOE6Bs5m4gARLQigBls1YkOY8WBFLpBPb0v4gtXU+ia2SHnNJmc+Ck+nOxbuFlWFx9ihbLcI4SEqBsLiFcTk0CBiBwLDSG7nAYx8Jj6AmN4VgoJEW0eB9KzHwq2utwYllVzXiGbpsd9QEvfA4XAk43Kl2Znyq3BxXytUu+9kwR1HojYs9mvSvA9UlgZgKUzXPIZhU3z3RtNHIS+VjP8X8eOTH2iX2dxenm62/9xqTUbrvhmkmtN37+5NMzyuipTNizWcVdwpi0IkDZrBVJzkMCJEDZzD2gKoH+0GFs7noMO3v+iHgqKsOs8y3CaYsuw5qmt8LjKO+NqlTlpFpclM2qVYTxkIA6BIRsFtJZtOToDoXRHRrNvg6hJxKa9VT0TFmI09DixHSVy4NKtwuV8tmNSqcbVR6P/LxCvHe5sp97Cm7nUQhByuZCaHEsCZSXAGWzyWTzdCeb59pSuZsOfvvOv5enonmyeS5i/N5KBCibrVRt5koCpSVA2Vxavpy9eALRZBjbu3+LV4/8EkPhI3JCp92DVY0XYv2iy9EYaC9+Ec6gGQHKZs1QciISsBQB0XwjGI9jJB6FaNUxGosi6UihLxjGQDiMkVgMo/GY/E6+jkURTMTnxegLZ16IU+sa53XtXBdRNs9FiN+TgH4EKJtNIptn6tmcz9bK3TTwfe+6SJ5upmzOhxrHWIUAZbNVKs08SaD0BCibS8+YK2hH4MDgVmw58gT2D2xCGik5cXPFCtliY1XThXDY3NotxpnmRYCyeV7YeBEJkMA0BPLp2TwUi2JUiuiolNBSVMejGI4KaZ37LiuqYzF5g8MvnfVmnFLbUBLmlM0lwcpJSUATApTNBpTNQgZ/7/7HTrjJX649xsSWGCI98XnXsd7xGwS+8KfXJ91EcOpNA3Pz5E46z7XT2EZjLkL83sgEKJuNXD3GTgJqEaBsVqsejCY/AqPRPmw58iReP/ZbhBMj8iK3049Tmt6K9QsvQ41vYX4TcZTmBCibNUfKCUnAsgTykc2FwPnCK8/i9cFe8GRzIdQ4lgTMQ4Cy2YCyWYSca30hXk/sx5w7pbx9V8d4Zi1N9eNieq7vcxcJoX3Ht34g3645uX3W/s2Uzeb5DYGZnEiAspm7ggRIQCsClM1akeQ8ehBIpeLY1fc8Xj3yBI6N7hkPQdxIcN3Cd2FF/dmw25x6hGbZNSmbLVt6Jk4CmhOgbNYcKSckAUsToGw2qGxWaddSNqtUDcaiNQHKZq2Jcj4SsC4Bymbr1t5smfcGO7Cp6zHs6nkWyXSmj6ffVYO1LW/DqQvegUpPaf7JtNk4FpsPZXOxBHk9CZBAjgBlM/cCCZCAlgQomymbi95PlM1FI+QEChOgbFa4OAyNBAxGgLLZYAVjuHMSiMTH8Hr3b7H1yJMYjvbI8TbY0V53uuzt3Fq7HjbY5pyHA+ZHgLJ5ftx4FQmQwIkEtJbNn3/lGbwx2IcvnvlmrK0rzV9AsmczdzIJqEuAspmyuejdSdlcNEJOoDABymaFi8PQSMBgBCibDVYwhlsQgY6BTXi163F0Dm0Zv67K24TTFrwTZy1+X0FzcXB+BCib8+PEUSRAAnMT0Fo2f+FPz+D1gb65F57HCLfdAafdBlsaGAiOwWmzo7WuDg6bHU67HS7x7LDLz8V78ewSz9kf+X3uc6dj/Htx/XTjHHY7PA476jw+tPgC84iYl5CA9QhQNlM2F73rKZuLRsgJFCZA2axwcRgaCRiMAGWzwQrGcOdFYDhyDJu7nsAb3b9FLBken8Nl96ApsAxNFe2oDyxBfcVS+V58zsf8CFA2z48bryIBEjiRgNay+Q9HDuLg2AiSqTQS6RTiqaR8TiQz7xOpFBLpJBKpNOLyc/FZdkz2GjFGXpcdo0rdql1u1Hv9aPD50ODxod4XQIPXiwafH/UeLxq9flVCZRwkoBsBymbK5qI3H2Vz0Qg5gcIEKJsVLg5DIwGDEaBsNljBGG5RBJLpGHb2PIvXj/0Ox0b3Qryf7lHlaUZTRSsa/K1oqlyOhsAS1HgXFLW2VS6mbLZKpZknCZSegNayuVQRxybI513dR/GB7/4bljU243sf+xvEpcBOISkldVZoi9fZzzLSe/LniWRGcMdTaXmdENyxdHKCJM/MF00m0RcNoz9y/C9RZ8uxLiudxWnoZr8PtV4hpv1o8PpQ7/Wh1uMtFSLOSwJKEKBspmwueiNSNheNkBMoTICyWeHiMDQSMBgBymaDFYzhakYgjTRGIt3oDR7I/Ix1yGdxCnq6h8vuRUPFUjT429BU0YaGilY0+tvgdvg0i8kME1E2m6GKzIEE1CBgFNk8kZZePZsHoxH0i59IGAPRMPoiIQxEItnXEQxEwhBSfK5HkzwJLQS0B3VePxp9ftmmY31D81yX8nsSUJ4AZTNlc9GblLK5aIScQGEClM0KF4ehkYDBCFA2G6xgDLfkBBKpKPqyArpnrCPzOnQAsURo2rVFD2hxAroxIE5Bt8nXNb6Flr0JIWVzybcoFyAByxCgbNa21GPxOAaklM6chhaCujcclCJaiGohqcWY6R4/ewfvc6BtNTibHgQomymbi953lM1FI+QEChOgbFa4OAyNBAxGgLLZYAVjuLoRGIn2SvHcFzqAnlEhoTsxGD6GNFInxOS0e2QP6EYhoSvaMy05AsvgscApaMpm3bYoFyYB0xGgbNanpMdCY1JK94TD2Lj9VXkimrJZn1pwVW0JUDZTNhe9oyibi0bICRQmQNmscHEYGgkYjABls8EKxnCVIpBMx9EXPCgldM9YJ3qDHVJGR+Jj08ZZ6WlAQ0C03xCnoNvREGhDrW8BbLArlVcxwVA2F0OP15IACUwkQNms734QvaQ/8NTDcNhseODt79U3GK5OAhoQoGymbC56G1E2F42QEyhMgLJZ4eIwNBIwGAHKZoMVjOEagkAwNjClF3QnBsJHkE6f2C/TYXPJGxAK8Sx7QQfa0BxYBrfTb4hcpwZJ2WzIsjFoElCSAGWzvmWhbNaXP1fXngBlM2Vz0buKsrlohJxAYQKUzQoXh6GRgMEIUDYbrGAM17AEUukE+kOHs6egMyege8c6EYoPT5tTwF0n+0A3BtrQWNEmn2t9i2C3qX0KmrLZsFuUgZOAcgQom/UtCWWzvvy5uvYEKJspm4veVZTNRSPkBAoToGxWuDgMjQQMRoCy2WAFY7imIyBabnQH98se0L3iZ+yAlNKp9Ik3abLbXKj3L0ZjRVZCB9rRXLEMHmdAGS6UzcqUgoGQgOEJUDbrW0LKZn35c3XtCVA2UzYXvasom4tGyAkUJkDZrHBxGBoJGIwAZbPBCsZwLUNAiOe+0CEpoeUNCUMHIdpzTPdYVHXK+McuuwteVyV8rir43dXwOSvhc1fC58y9roLfVVMyjpTNJUPLiUnAcgQom/UtOWWzvvy5uvYEKJspm4veVZTNRSPkBAoToGxWuDgMjQQMRoCy2WAFY7iWJhBLhNAT7MiegBYnoQ/IGxQm07GCuYie0D5nlZTSvqycFmJaCGqv+GyKpPa6KmCDbc51KJvnRMQBJEACeRKgbM4TVImGUTaXCCyn1Y0AZTNlc9Gbj7K5aIScQGEClM0KF4ehkYDBCFA2G6xgDJcEpiEQTQQRTowgHBvNPCdGEY6NyH7QkfgowvERhMWz/G4E0XgQaaQLYilEs9dZkRHTzmp43ceFtN8lTk1XweeuwuK6BoQjbnic1fA4fAWtwcEkQAIkMJEAZbO++4GyWV/+XF17ApTNlM1F7yrK5qIRcgKFCVA2K1wchkYCBiNA2WywgjFcEtCAQBopRBJjGQEtRfQIIlJQj0pBnRHXWWktxwwjlgwXvLLN5sickM6dnhatPGRLjyknqCecrnbZPQWvwwtIgATMSYCyWd+6Ujbry5+ra0+AspmyuehdRdlcNEJOoDABymaFi8PQSMBgBCibDVYwhksCOhFIpZNZIZ2V0Inh7EnqUYRiwxlhHR9FHGMYDWfex1PRgqN1O3yo9DSiytuIam8TqjxN8nWV/KwJ4hQ1HyRAAtYgQNmsb50pm/Xlz9W1J0DZTNlc9K6ibC4aISdQmABls8LFYWgkYDAClM0GKxjDJQHFCUzt2Twa7cu09ciekB5v95E9UZ1r+SE+D8YG58zOYXOh0tuIGk8TKjwNqPE3o9LdiCpfI6rcjaj0NMw5BweQAAkYgwBls751omzWlz9X154AZTNlc9G7irK5aIScQGEClM0KF4ehkYDBCFA2G6xgDJcEFCdQ7A0CQ4kRjER6MBrpxUi0ByPhXgxHe+Vn4v1c7TxE644qdz0qxano7InozAnpzGlpcWrabnMoTpHhkQAJCAKUzfruA8pmfflzde0JUDZTNhe9qyibi0bICRQmQNmscHEYGgkYjABls8EKxnBJQHECxcrmudKLpyIYjnRjOCufMzI6K6cjvbLf9GwPcaNDv7tWyudqIZ9lu45m+V6I6BpfM8TpaT5IgAT0J0DZrG8NKJv15c/VtSdA2UzZXPSuomwuGiEnUJgAZbPCxWFoJGAwApTNBisYwyUBxQmUWjbPlX4yHcdQuBuj4jR0tBfD2dfD8qR0L0KxQaSRnnUan7MqcwpaiGjRM1q06BDPQlB7muB2+ucKg9+TAAloQICyWQOIRUxB2VwEPF6qJAHKZsrmojcmZXPRCDmBwgQomxUuDkMjAYMRoGw2WMEYLgkoTkBv2TwXHnGjQymiI5kT0SPhHozExPs+2aZjLNqHVDo16zTiJoa5GxeOy2jRssPdhEpfE/zOqrnC4PckQAJ5EKBszgNSCYdQNpcQLqfWhQBlc56y+d/v+xl+9OAvTyjSbTdcgyveceGkzx/99bO441s/mLaga05ux11f/DRqqit1KXgpFqVsLgVVzqkKAcpmVSrBOEjA+AQom41fQ2ZAAioRUF0258NKnIAWNzbM9InOnI6W/aMjfRiKHJ1zCtGGQ5yMrvUtxOLqU7Cw+mQsrFw153UcQAIkMJkAZbO+O4KyWV/+XF17ApTNBcjmTa/tmiSKN2/bhetv/QY+evVl+NS1V43PJGTz9+5/DHd/6TNoX7pQ+6opNiNls2IFYTiaEqBs1hQnJyMBSxOgbLZ0+Zk8CWhOwAyyeS4owdigPB0tT0ZH+mQPaXFSWgjp0UgfRF/p6R6LqlZjYfWqjICuWg2PwzfXUvyeBCxNgLJZ3/JTNuvLn6trT4CyuQjZLC4VJ56nSmjKZu03KmckAb0IUDbrRZ7rkoD5CFA2m6+mzIgE9CRgBdk8F99wfFSeiD42uhtdIztxZGSnPCU99dHgb8XimjVYWHmylM/iNDQfJEACxwlQNuu7Gyib9eXP1bUnQNlsANkcjsRw5z0/wK/+8PJ4tN++8+9x+qknj7+fbkxLU31ZTlfzZLP2vzA5ozoEKJvVqQUjIQGjE6BsNnoFGT8JqEWAsnn6eoTiQzg8/Aa6hnbg8MgO9AUPII3JvaErPPVYXLUai6rXYFH1atT7l8IGm1oFZjQkUEYClM1lhD3NUpTN+vLn6toToGwuQjbnBK+Y4tbPXAOf1y1n0/Jk89DwKG764r/ijLUnj7fqyLXvyAnn2eJY1NI4SUprv4UAyuZSUOWcqhCgbFalEoyDBIxPgLLZ+DVkBiSgEgHK5vyqEUuGcXRkN7qGt6NrZAeOju5BIhWddLG4EeHCqlXy9POiqlVoqVwJ0Q+aDxKwCgHKZn0rTdmsL3+urj0ByuYiZPNMUnmmGwTO56SxmOvnTz59wk0FJ34+ODyKGz9/Dz5/01+VXCxPtwUpm7X/hckZ1SFA2axOLRgJCRidAGWz0SvI+ElALQKUzfOrRyqdQu/YfimeDw9vx5HhHQglRiZNZrc50Vy5DKL3szz9XLkaXlfF/BbkVSRgAAKUzfoWibJZX/5cXXsClM0FyOYfPfjLSaPfefHZk040577U6mRz7sRyU0PdpBsQinXE6eYv3fVfsk1GbXWlPP08MDhSlrYZU7chZbP2vzA5ozoEKJvVqQUjIQGjE6BsNnoFGT8JqEWAslm7egyEu2S/5yPDu3BkZAfE+6mP5oplaK87EzabHRXuWtR4W1Dla0K1p1m7QDgTCehEgLJZJ/DZZSmb9eXP1bUnoJRsfmXLTnzshjtllmtXL8O9d94oRep0j4ljxffvvvRc3H7LteOtLMRnR/rDBROr9DmnvWbqjQBzp5dvu+EaXPGOCyddUw7Z3HHwyKTTzLn3x3r6x2P56NWXnSCpCwaSxwWUzXlA4hDDEqBsNmzpGDgJKEeAslm5kjAgEjA0Acrm0pVP3Hiwa2S7PPncNbwD3WN7Z12sytOMWt//b+9OwNuq7ryP/+VV8r4ktuPsYUkIJYSEJdCwTPsObYF02tJhWvq0acP05SkdGJa2L0ynlDLDNG8XysCUDu2w96WF0jIzFOhAFwiBECAUCoWEAIEstrN4tyV5kfU+58pSZFm2bOtK95x7v36ePHasq3P+5/O/EcnPh6NGqSxtkNqyOVLtb5Aqf6PUlDaxIzp3bWJkGwUIm23EnMFQhM0zQOMpWgtoEza//V6LfP3bP5EbrvmiHLGwWX716CZ5btvr4wLkuKZ6fH5zg5y0cpmoHcDf/O4d0tRQJ1defEECPJdhs5pEBdBPbHph3G7ifITNyTubFy9oHneTTRaG231HEjbbLcp4OgkQNuvUDWpBwGwBwmaz+0f1COgmQNicv45EooPS1rtTOkOt0hVsk85Qm3SHW6Ur3CbqTOjJPtR50LWBOVLpb5AaFUBbO6JVEN0gNYHx/47L36qYCYHDAoTNzt4NhM3O+jO7/QLahM0qPH53T1siLE4NnzMtPV04neuwOX7MxZ7Wg2POCG0hNwAAIABJREFUVLYrbFZrnsqZzTVpdn9PdgRHJsvpPk7YPF0xrjdJgLDZpG5RKwJ6CxA2690fqkPANAHCZj06pnZB94T3S2e4VbrV51CrdIf2S1e4VfoHOzMWWVk6S6r9jdavmkCT9XlJ7WopKSrL+FwuQMAuAcJmuyRnNg5h88zceJa+AtqEzTfe9oClFN+ZrN707ktX/0CuuvgCa/dypo/U56vrcx02qznix1ccv/yIxPnNdobNXd291nnMq49bmjgSQ+1qvuTq78mtG79ivSGgquEXD/9BLr3orxPHiKQes5HJL5vHCZuz0eO5ugsQNuveIepDwBwBwmZzekWlCJggQNhsQpdE2oN7rBC6K9QaC6Ktr9usMHqij785/gbrzQn5QCBfAoTN+ZKeeJ7zH3/IevCXZ3/c+WKoAIEsBbQKmxfNb5JPnHOGtaTphM3q/Obv3/bAuDOeB4dHps2j/iGY7uOmH/9CXnhlu/zbv1w+7hxpNf9FV/5fOecDa+SbX/mC/OYPz8m/3/PfcuvGK60jQbL9ULuUv/W9O+XR3z+XGOr2G/9PIoRP97i6MPmabGuY7PmRkWguh2dsBBwVUC8JBT6fDHOfj+lDJBKVwsL0r5eONozJEdBYQP2JKSr0yVCE/25q3CYtSlN/t5ro76RaFEgRWggUFxXI8PCI8IqiRTtmVERnaL909rdJe7BFOvr3y6utm6Uj2CoXn/ZdWVi3fEZj8qTMArzGjjcqKvDJSDQqJv2T58/79smq66+T5c3N8sdvfitz4zW/4sxf/HxMhbV+vzQGAlLnD0h9ICCzAgGZHSizftUF/DLLH5Ca0lLNV0V5XhUoKSoYs3RfNBp15O8rM93ZrILea779E7ntO1eNC3YPdQ9Mu69lpYXTfo7XnxAciHidgPW7WKCkuFD8JQXS0z/k4lVOf2nqPxREzdN34xneFigo8El1ebF09g56G4LVI4CALQL1VaXS0TsgzvzrzZYlMEiKwE9f+gfrTQk/c8INMr/mWHxyJMDfY8fDVpUXS2ggIkMz2LCXozZlHPaN1hY547v/LMua5sjTX/tGxut1v+Anr78i7eHQ6K+wHAwHp1TybH+Z1Pn91q/60jIrhFZfq7C6XgXVpX4pKyqe0lhchIBdArOqx/4gxLGweSZnNk8WNCsgO4/RsAtcjaPeWPDeB3+TccjPfvLDiaMzMl7s4AUco+EgPlPnXIBjNHJOzAQIeEaAYzQ802oWikBeBDhGIy/MeZ3k/le+Lvt63pALVvyzzKtmZ3Ne8T0+Gcdo6HkDdA8NSkc4JB0DIekIh6U9HIx9tn4fko7BsPQNZd4U5S8skrrSUqktDUhd6Wgw7S+TWvV16WgwXRKQooKxu1H1VKEqEwS0OUYj9Q0BU9/wT/3+gYefTByVMdHRGcnouobNJtwY06mRsHk6WlxrmgBhs2kdo14E9BUgbNa3N1SGgIkChM0mdm3ymgmb3ddTU1ZE2GxKp8bXORQdsXZDq/D50EA4KZSOhdGxsDpsHZOS6aOiuFjqSlQAPbo7ujRg7Y62dkqPBtXVJaVS6OP/cc1k6fXHtQmbVSNUgPz5yzdaPTnumCVjzmBODZvVsRu3/+zRMf2b01g/5jgNwub83N6EzflxZhZnBAibnXFnVgTcKEDY7MausiYEnBMgbHbOPlcz3//KP8q+ntfl2Ia/kLk1y2V22UKZVbFACn0luZqScRGwBAib3X0jqJi5e3Dg8A7pgZC0h0Z3TKuvrZA6JMHh4YwQ6v2MVOBs7Yge3RldH4jvkh7dOV3il8oSXrcyYrr4Aq3CZrudCZvtFk0/HmFzfpyZxRkBwmZn3JkVATcKEDa7sausCQHnBAibnbPP1czxsDl1/Gp/k8wqmy+zKxbL7IoFUl+2SOoC2b8Rfa7WwbjmCRA2m9ezXFQ8OBKRQ9Yu6fCYoztUGB0/ukOF1pEp7JIuLSiUeRWVMt/6VS3zyitlfmWlNPjLee+fXDRPszEJm1MaUhko0qxF+pdD2Kx/j6hw5gKEzTO345kIIDBWgLCZOwIBBOwUIGy2U1OPsYZGwtLev0cOBXfLob7d0h7aLYf6d0v/YOe4AtVu51nl82RW2UKZXbFI6ssXyqzyBVJeXKPHYqjCKAHCZqPa5Xix6lgOdY50+2go3Wkd4TF6jvToLulQJJK2zmJfgcyvqJK5FRWysKLa+lqF0k2BcsfXRQH2CRA2EzZnfTcRNmdNyAAaCxA2a9wcSkPAMAHCZsMaRrkIaC5A2Kx5g2wsb3A4KAeD70l7/+5YEN2/x/o6NNwzbpZAUZUVOs9S4XPFIpldpr5eIEUFpTZWxFBuEyBsdltHnV+P2gG9p69X9vT3yJ7eHtnd1yt7+3ukd2gwbXElaid0eYXMraiUBVYIXSnzyyulIVAu6ugOPswSIGwmbM76jiVszpqQATQWIGzWuDmUhoBhAoTNhjWMchHQXICwWfMG5aG8/qEu6RjdCX2w7z3pCO6VQ8F3ZTASHjd7VWmjzB4NoevK50v/QIcEiitjv4qqxF9cIYGiauszH94TIGz2Xs+dWrEKoff298ruvh7ZY/3qlb19PdIzQQitdkLPVUdwqPC5stoKoNXXjYTQTrVwSvMSNhM2T+lGmewiwuasCRlAYwHCZo2bQ2kIGCZA2GxYwygXAc0FCJs1b5CD5fUNtMuh4B451P+etRNa7YJuD+6V4ZGBKVUVKBoNoYurxV9UIYHiKgmUVFmhdDyg9lshtfpFQD0lVM0vImzWvEEeKC85hG7p65V3R8PoiXZCK5JFFdWypKpaltXOkqOr66wQmg89BAibCZuzvhMJm7MmZACNBQibNW4OpSFgmABhs2ENo1wENBcgbNa8QRqW1x1uk/bgHit47g13SHi4W0LDvRIa7Il9HuqdciCdurx4QO1PBNJjA2ornB4NqOPXaEjk2ZIImz3beu0X3jc0JLv7uuW9vh5RIbT6rHZEp9sJHSgslGU19XJ0bb0sq66Xo2pqJVDI+7I50WTCZsLmrO87wuasCRlAYwHCZo2bQ2kIGCZQUOCT2VUlsr9rajvLDFse5SKAQJ4FCJvzDO6R6UZGhiQ4pMLnHgkOqQC6J+VXr/VYckA9Eh2ato5PCkZ3TceO7wiUVIq/qFJUKF1WXJ32iI/S4nLxCWe3Tht7Ck8gbJ4CEpdoJaBC6F293fJmd4e80XlIdnZ3iPpe6seCiio5prZejq6ul6U1tTKnjKOC8tFIwmYDw+Yf3vFLOXCoQ66+bL0E/CW23ycPP75ZHnpsk9x43aVSU535f0MgbLa9BQyokQBhs0bNoBQEDBcgbDa8gZSPgGYChM2aNcTD5QxGQlYAHR4cDaJHQ+qgtWM6Hlb3Sng0pA6meWPDqfLFzpaOHekR3y1dWVIvpy369FSH4Lo0AoTN3BZuEGgJ9smOrg7Z3tkuO7rbZW9fr0RTFlZVXCJH19TJMTWz5OiaWjmyulbUmxPyYa8AYTNh87g7irDZ3j9kjGa2AGGz2f2jegR0EiBs1qkb1IKA+QKEzeb30MsrGBjul9BQt3V0RyyQjh3jYe2oHox9PzzUKyqYVtep6yf6KC4olUvf/zMvc2a9dhPD5h1trfKBG2+Qoxub5A9X/WPWBgzgPoHg8LC181n92t55SN7s7pTQ8PCYhRb4fLK4stra+bystk6W1tTJbH+Z+zDyvCLCZsJmwuY8/6FjOrMECJvN6hfVIqCzAGGzzt2hNgTMEyBsNq9nVJydgBU8D/ZI2Dpfukf6Bzvld2/9WAibs3NVzzY5bFb1V/r98qkTT5X1p50ui2c1ZA/CCK4UULuc1W5ntevZ2v3c1S4twfE/yKot9cvS6jpZVltvfV5SVSNFBQWuNMnVogibDQub1REa9z74mzFVf+iskxNHanR198qV190ir+/YZV3T1FAvP7j+Mlm8oDnxnNRr1APLly62js14eusrcsNNd48ZP/7YREdqcIxGrv54Mq4OAoTNOnSBGhBwhwBhszv6yCoQ0EWAsFmXTlCHUwJDkbDc8uyFUlRYKpedxs7mbPpgYtjcPxCWW37/uNy39RlpTwoMTzviKPncqafLuhWrsiHhuR4RUOc8q/B5R2e7bO/qkJ3dnTI4Ehmz+gZ/mcwKlEmRzyf1/oA0lJVbu58bA2VSHwhIo7/cI1pTXyZhs2Fhsyp3ojObd+1ukSuuvVkuuvA8WXf2Wmtl6kiM2+/7dSJwjgfNq49bKl/ecH5i9Xfd/4iceeoJVijNMRpT/wPEle4XIGx2f49ZIQL5EiBszpc08yDgDQHCZm/0mVVOLEDYbN/dYWLYHF/9cCQij772styzZbNseWdnAqWxqlouPOlU+eypp4v6mg8EpiIQiUZld1+Ptet5e5cKoTvlQHjiY3zUmOoojrpSvxVAzw6UWZ9VIK1C6oZAwPp9ocd2RhM2Zwib9/X3yU1/fHEq96St1zRXVMgVK09MO2a6sDkUHpSNN98tDbPqxoTI8e+fuPIYK4B+6U875Pob7xy32zl5IsJmW1vJYIYLEDYb3kDKR0AjAcJmjZpBKQi4QICw2QVNZAlZCRA2Z8U35skmh83JC3n74AG5+9lN8ottz0lPOGw9VOjzyV8uP04+d+oZcsZRS8Xn89kHx0ieEFA7nQ+EQnIwHJT2cFAOBINyaCAoh9T3QiFpHwxJZGRkUgt1NIcKomO7pAPSGKhIBNONZWVS7HPXMR2EzRnC5p3dXfLlJ5/I+x+gI6tr5Naz/nLKYXN8V/O1V35BVq1YOuZ5KpxWH2onc/y6utoq69iMdEdjEDbnvd1MqLEAYbPGzaE0BAwTIGw2rGGUi4DmAoTNmjeI8nIuQNhsH7Fbwua4yMDwkPzny9us4PmVvbsTUIvqZ8tn16yVT510qtSU8SZw9t1BjNQxEJb2cCyQVgH0oVC/HAyH5JD6fTgo6riOyT4qi0vkuLrZctXxJ7sCk7A5Q9gcigzLzq7OvDfbX1gkR9fUTjtsbjvQnvY5yec6q93Nl1z9vTHXff3y9WOO3njosU0ThtGpE3Bmc95vDybMowBhcx6xmQoBlwsQNru8wSwPgTwLEDbnGZzptBMgbLavJW4Lm5Nl/tyyV+585in5r5e3SXBo0HqotLBI1q1cJevXnC6rFi62D5KREJhEYG9/n3SMBtKHQkHreA4VUKtd0/tD/dJcVi63rD3bFYaEzRnCZh27nO4Yjcl2NmdaQ/xNB2/d+BVrVzQ7mzOJ8biXBAibvdRt1opAbgUIm3Pry+gIeE2AsNlrHWe9qQKEzfbdE24Om+NKveGwPLhtq9zz3NPy5v62BN6xc+bK+tPOkI+fcKKUlZTah8pICExRYF9/r1z2zG9lTlmF/Nva9CccTHEobS4jbHZJ2DzRmc1TudPibxr48Y+cYe1uJmyeihrXeEWAsNkrnWadCORegLA598bMgICXBAibvdRt1ppOgLDZvvvCC2FzstbWXW/JPc8+LY+89rIMRSLWQ5WlpXL+6lNk/alnyNGNTfbhMhICGQQImw27RVraQ9OuuDJQNO3n5PsJKgy+/b5fj3uTv/jxGMlHYqja1Pf3tR1MvEHglhdfG/MmgqlvGhgfJ77TOdP6OEYjkxCPmyxA2Gxy96gdAb0ECJv16gfVIGC6AGGz6R2k/mwFCJuzFTz8fK+FzfGVdwT75edbn5V7n9ssuzsPH0l6yqIj5HOnnS7nvm+lFBfpnxHZdycwkhMChM1OqGcxp1vDZkUSP/pCfZ18HnN8l/LrO3Yl5Joa6hPBdKbH409SgfYNN91t/Xb50sWTnt9M2JzFTcpTtRcgbNa+RRSIgDEChM3GtIpCETBCgLDZiDZRZA4FCJvtw/Vq2BwXjEaj8tSbb8g9W56W377xmkSiUeuhWeUV8qmTT5XPrjld5tXW2QfOSAgkCRA2G3Y7uDls1qkVhM06dYNa7BYgbLZblPEQ8K4AYbN3e8/KEciFAGFzLlQZ0yQBwmb7uuX1sDlZsq27y9rpfN/zz8qB3h7roSq/X5bPmSc+n08aKqtkXl2dNFfXysL6WdJYVS1zq2uluqzMvoYwkqcECJsNazdhc34aRticH2dmcUaAsNkZd2ZFwI0ChM1u7CprQsA5AcJm5+yZWQ8Bwmb7+kDYPN5yOBKRx19/Ve7Zskk2v/WmxPY6T/xRUVoqzTW1MremTuaqz7V1Vgg9t7ZWmmvrpLmqRooKC+1rGiO5RoCw2bBWEjbnp2GEzflxZhZnBAibnXFnVgTcKEDY7MausiYEnBMgbHbOnpn1ECBstq8PhM2TWw4MD8mejg7Z19UpLV0dsrdTfR37/b7OTmnt7pLByPCkgxT4fDK7sioWRFuBdI3MrasfDaRjwXRtebl9TWUkYwQIm41pVaxQwub8NIywOT/OzOKMAGGzM+7MioAbBQib3dhV1oSAcwKEzc7ZM7MeAkMjA3LLM5+2ilmz4AI9isqyisKCIikp9EtRYUBKCkulpLDM+lysPheUSklRmRSpz4WBLGca+3TC5uw5D/b2xMLn0RB6rxVOd0iLFUh3SHuwP+MkZcUl0qxCaLUTurpW5iWH0er7NXXsjs6oaN4FhM2G9YywOT8NI2zOjzOzOCNA2OyMO7Mi4EYBwmY3dpU1IeCcAGGzc/bMrIfA8MiA3DwaNutRUX6rKC7wS3Gh3wqeVUBdnOZzaWFAiotij6vr1PWlhWVSVlwtFaX1UloU20lL2Jz73g0ND8ueznZp6e4+vCu6o3306y4rkB7IsDvap960sKIy6YiOOplXG9spbR3hUVsn9eUVuV8MM9gqQNhsK2fuByNszr2xmoGwOT/OzOKMAGGzM+7MioAbBQib3dhV1oSAcwKEzc7ZM7M+As++93N9irGhkmh0RAYi/TIYCctgJCTDw2FRO7gHhoMyFAklvh+JDtkwm1i7pCtK6qS2bJaUldRJWXGdVJTUS2VpvVSW1FuBdHlJrS1zMUhmgfb+Pit0tnZDW8d1xHZF7+uOfT7U15vx7Gh/UfHo2dGxndDWUR1JR3fMq6mT4qKizMVwRd4ECJvzRm3PRITN9jhmGoWwOZMQj5ssQNhscveoHQG9BAib9eoH1SBgugBhs+kdpH4EshMYGO4XdW71gAqlI6OhdCQoQ8MhGRwJy+BwaDSojl13OKwOS3CwQ/oGO61AeyofKnRWAXRFsQqg66SydNbhzyW1Uu1vmsowXJOlgHrTwtgxHbGd0CqE3tuhdkuPhtJdXRIaGsw4y6zyithRHaMhtNodnfzmhupsaT7yJ0DYnD9rW2YibLaFMeMghM0ZibjAYAHCZoObR+kIaCZA2KxZQygHAcMFCJsNbyDlI6CBQCQ6KH0DHVJQ3CftvYekM9gufYMd0j/Yaf3qG+iU4GCnhIZ7M1YbKKqU8hIVRMd2RFcHGqSqtFFqA3OkNtBs+znTGQvy6AWd/f2JndDWjmjrqI6uxNEd6mzpkWh0Up2SwiKZU63OjlZHdMSO6ZhnhdPqjQ1rZUF9vahr+LBHgLDZHse8jULYnB9qwub8ODOLMwKEzc64MysCbhQgbHZjV1kTAs4JEDY7Z8/MCLhNYCpnNvcOHIoF0IOxAFqF1Orr/iH1+27pG2y3Hp/oQ4XRtYG5VghdWzbX2g1d62+U2rL5os6W5iM/Amp3dEtPl7SondHqmI7R3dHqzQ1bRndN9w8OZCymtqwsdkxH/IiO2rpYOF0dOzu6obJKfD51yjQfmQQImzMJafY4YXN+GkLYnB9nZnFGgLDZGXdmRcCNAoTNbuwqa0LAOQHCZufsmRkBtwlMJWye6pr7h7qsMLp3oF3ag3ulM9ginaFW6Qq3TBhGqzcqrFMBtNoJXTZXav1NUhNokmr/HAkUV051aq6zSaA7GDy8O1qdH905ujt69OiOAz3dEsmwO7qurFwuPOU02fD+s6Sxqtqmytw5DGGzYX0lbM5Pwwib8+PMLM4IEDY7486sCLhRgLDZjV1lTQg4J0DY7Jw9MyPgNgE7w+bJbIZHBqzguTPUIl3hVukI7ot9HWyd8KgOFUTXqKM4VADtn2OF0TXq67ImCRRxtrBT9+KeznZp7e6SvR0d1ufdHYesNzbc2xV7g8O+gcO7o8877gTZsPZMOWXxkU6Vq/W8hM1at2d8cYTN+WkYYXN+nJnFGQHCZmfcmRUBNwoQNruxq6wJAecECJuds2dmBNwmkK+weTI39UaHHf27pSvcZu2G7lAhdCi2K3poJJz2qSWFfllUu0rOO+YrbmuJ0euJjIzIE6+/Knc++5RsfuvNxFqOnTNXNqw9Sz6x6iTOfE7qMGGzYbc7YXN+GkbYnB9nZnFGgLDZGXdmRcCNAoTNbuwqa0LAOQHCZufsmRkBtwnoEDZPZqrOgu4Mt8bC52CrdTxHbGf0XqkrmyefX32z21rimvXsOnRAbt/8pDy4bav0ju52VkdsfPqU0+Qijtiw+kzYbNjtTticn4YRNufHmVmcESBsdsadWRFwowBhsxu7ypoQcE6AsNk5e2ZGwG0CuofN6bzb+3fL3S9dbh2lcXzzh8dcUlhQJMUFpVJc6JfiwoCoHdAlhQEpKiy1PpcUqO/7RR3RwUd+BIKDA/Lgtuet3c5v7m+zJi30+eTDxx4vF51+lqeP2CBszs89aNsshM22UU46EGFzfpyZxRkBwmZn3JkVATcKEDa7sausCQHnBAibnbNnZgTcJmBy2GxHL/zFFVJScDiMVkF0PJBW4bT6/dKGtdJUwZnDdnhveXun3PnMU/I/r/9JhkdGrCGXjx6xcb4Hj9ggbLbjrsrjGITN+cEmbM6PM7M4I0DY7Iw7syLgRgHCZjd2lTUh4JwAYbNz9syMgNsETAyb1TnO+7pfl8FIWIYiYRkcCcnQ8ID19cBwSIbU79X3rcfV94MyOKI+x78fmlYb/9eRF8uKOR+a1nO4eHKBg709cvezm+SnW5+Rg3291sW1ZWVy4Snv99QRG4TNhv1JIWzOT8MIm/PjzCzOCBA2O+POrAi4UYCw2Y1dZU0IOCdA2OycPTMj4DYBE8NmO3owZIXPKoxW4fSADEZCMhwZksHh/lhIPRKW7Qeeln09bwhhsx3i6ccYjkTkkddelrue2STPv/u2dZE6YuND7zteLnr/mbJmyVG5m1yDkQmbNWjCdEogbJ6O1syvJWyeuR3P1F+AsFn/HlEhAqYIEDab0inqRMAMAcJmM/pElQiYIODVsHkqvfntzn+XP7U9Lh888mI5np3NUyHL6hp1nvN/PP17eeiPL0pwaNAa65imZrlo7VnyiVUnSWlRcVbj6/hkwmYduzJJTYTN+WkYYXN+nJnFGQHCZmfcmRUBNwoQNruxq6wJAecECJuds2dmBNwmQNg8cUcJm52523vDYbn/xS3Wbudd7QetImrUERsnnyZ/u/YvpLGq2pnCcjArYXMOUHM5JGFzLnUPj03YnB9nZnFGgLDZGXdmRcCNAoTNbuwqa0LAOQHCZufsmRkBtwkQNhM263pPR6NR2bRzh9z17FPy2zdek5Fo1Dpi4+xjV1jnOp96hPlHbBA263r3TVAXYXN+GkbYnB9nZnFGgLDZGXdmRcCNAoTNbuwqa0LAOQHCZufsmRkBtwkQNhM2m3BP7+3skLu3bJKfP79FOoL9VslrFh8ppcVFclTDHDm6scn6taxprlT6/SYsyaqRsNmYVsUKJWzOT8MIm/PjzCzOCBA2O+POrAi4UYCw2Y1dZU0IOCdA2OycPTMj4DYBwmbCZtPu6Qe3PW8ds/Hqvj2ijtxI/ZhdUSnLmuZYIfRS9bmxSY5pmitVgYB2SyVs1q4lkxdkZ9j8wzt+Kfc++JtxE3798vWy7uy1Y77/8OOb5Yab7k5b3PKli+XG6y6VmupKwzQnLpew2TWtZCFpBAibuS0QQMAuAcJmuyQZBwEElABhM/cBAgjYJUDYTNhs173kxDgHe3tEvbHgjgOt8mbb6K8DrdIZDKYNoVX4fLTaCa0+q53Qjc1SXVbmROnWnK3BPvm7zU9Ic1m53LL2bMfqsHPi5vqxob4vqg5EccmH3WHztld3jAmKX/rTDrnk6u/JZz/5YfnyhvMTaipsvv2+X8sPrr9MFi9odokmYbPrG8kC0woQNnNjIICAXQKEzXZJMg4CCBA2cw8ggICdAoTNhM123k+6jHWwr1d27m+TN/e3yo62FiuQVl/Hj+BIrlPthFa7n5c2qgA6tht6aWOz9aaEuf6Ih83xeRZUVMm88kpZUFktCyuqZH5Fpcwpq8h1GbaOT9icwlkZKEoLrHY2p4bN6sJ03ydstvUeZTAEHBUgbHaUn8kRcJUAYbOr2sliEHBcgJ3NjreAAhBwjQBhM2Gza27mKSykvb8vtgNahdD71ec22bm/VQ7194179qzyCjnKCqAPB9FqR3R9uX3hb3s4JNe+8LS0hWLnUE/0saSyWuZWVMqiihpZUFkl8yoqpcGf+zB8CqTjLiFs1jxsVrunr7/xznG7pFWg/dBjm9LutE5eUuqu65ncJJmewzEamYR43GQBwmaTu0ftCOglQNisVz+oBgHTBQibTe8g9SOgjwBhM2GzPnejc5V0BYOyY3+L7EgKotXOaLVDOvWjrqzc2gFthdBNzYmvZ1XM/MjcoeiItPb3yd7+XuvXnt4e63NLf58MR0fSwgQKC2VuRZUsLK+SBVVVMr+8WhZUVEptqbNvkEjYnEXYHAoPysabY2czX33Zegn4S6yv7dzZPNWwOX6kx60bvyKrViy16ujq7pX/98vHZcOF6xK15eKPLWFzLlQZUxcBwmZdOkEdCJgvQNhsfg9ZAQI6CRA269QNakHAbAHCZsJms+/g3FbfHQzK9v0t1pEcVhB9QB3L0Zo2hK4tK5OjG1X43GSdCb1UnQ3d2CSzK6tmXORINCoHQv2yNx5E9/XInr5e2dffI6FIJO24FcXFMl8F0OoYjsoq6ziOBRXVor6fjw+q3X8AAAAgAElEQVTC5izC5olC5YneILCpoX7a5zhPNWxWx3kcONQxJvTOxw2k5iBszpc08zghQNjshDpzIuBOAcJmd/aVVSHglABhs1PyzIuA+wQImwmb3XdX535FPaFQIoTe3toiO9UbFB7YL/t7usdNrs5+tt6U0NoJrT43y9ENjdJQVZ1VoeoIjn39fbKnv0f2WiF0nxVC9wwNph23urhE/nb5SjmtcW5W82Z6MmHzNMLmex/8zZirP3TWyWnDXSd2NscD7nwcm5F6UxE2Z/pjxuMmCxA2m9w9akdALwHCZr36QTUImC5A2Gx6B6kfAX0ECJsJm/W5G82vpDcclu1t+0bPgm6LfT1BCF3l91shtHpzwrVHLZWPrTzRFoC+oSHZqwJodSRH3+iRHMFeORQOyUXLjpdzFiyxZZ6JBiFsnkbYnPwGgfFw9+uXr5d1Z68dM4oTYbMqQO1uTg7EZ7KTeiZ3G2HzTNR4jikChM2mdIo6EdBfgLBZ/x5RIQImCRA2m9QtakVAbwHCZsJmve9Qd1QXD6F3HtgfO5Jj9HzotqSd0OoNCS84aY187tTTZX5tva0Lv337K/Lo7ndkw9IVcu7CI2wdO3UwwuYZhs3xcPeJTS+kffO+2+/79bSPzEjX6akeo5H6XHVe85XX3WJ9+8brLpWa6pkfUp7pDiRsziTE4yYLEDab3D1qR0AvAcJmvfpBNQiYLkDYbHoHqR8BfQQImwmb9bkbvVdJ38CAbHtvl9z73NPy2GuvJAA+sHS5fGbNWvnwsStsQSFstoVRpKU9NO2RKgNFaZ+jdg0n72xWF8XfIHBP68Exga6dO5t37W6RK669Wa698guJN/5Tc6s5Hnps06RB8kRB9bRRMjyBsNluUcbTSYCwWaduUAsCZgsQNpvdP6pHQDcBwmbdOkI9CJgrQNg8ce+e2Pnv8mrb41LjnyPlJXU5bXJhQYF88rhv5XQOBtdbQJ33fMczT8rPtj4r7cF+q9i5NbXymVPeb/2aVTHzjaSEzTb1PtdhsyozHgYfv/yIxPnNdobN8R3Kq49bKl/ecL4lEz/CY/nSxYmwWYXhp574vjGBdL7eNJCw2aYblmG0FCBs1rItFIWAkQKEzUa2jaIR0FaAsFnb1lAYAsYJEDZnDpvz1dQrT/9VvqZiHo0FhoaH5b9feUnufPYp+eOe96xKiwoL5cPLV1hHbLz/yKOnXT1h87TJ0j8hH2GzmlntIL7k6u9J/A0Df7vpebHrGI3kQLvtQLu1UHVOtPpI3tkcryFZYqI3MLSJNzEMYbPdooynkwBhs07doBYEzBYgbDa7f1SPgG4ChM26dYR6EDBXgLB5ar2LRAdlJBqVaHREJBqVkeiIRH0jEh39XlRGYt+TqIj6HB2REVGXquvV17HH1O9jv6Iy4ovIyEhEfvGna60iCJun1gsvXfXnlr3yH5v/IP/1x20yEBm2ln7E7AYrdL5g9RqpCgSmxEHYPCWmzBfZGTZnns27VxA2e7f3Xlg5YbMXuswaEciPAGFzfpyZBQGvCBA2e6XTrBOB3AsQNufeeLIZIiND8q/P/I0U+Arl8rW/cLYYZtdWoCsYlPuef1bu2bJJ9nR2WHX6i4rloytXyfpTz5CV8xdOWjths02t1TVsVsdb3PvgbzKu8rOf/HDi6IyMFzt4AWGzg/hMnXMBwuacEzMBAp4RIGz2TKtZKAJ5ESBszgszkyDgCQHCZufbfOPTn7CKuGDFP+W8mMrSeqn2N+V8HibIjYDaXf+7N16Tu555Sp7auV3to7c+3tc8T9afdoZ8bOVqKSspHTc5YbNN/dA1bLZpedoMQ9isTSsoJAcChM05QGVIBDwqQNjs0cazbARyJEDYnCNYhkXAgwKEzc43PR4256OSVXPXyVlLvpCPqZgjxwK7Ow7J7Zufkvtf3CK94bA1W2VpqZy/+hRrt/PRjYd/qEDYbFMzCJttgswwDGFzfpyZxRkBwmZn3JkVATcKEDa7sausCQHnBAibnbNnZgTcJkDY7HxH73/lGzkvom+wXbrDbWJX2Bw7w3pEoiMjEolGZEQi1tnU6uuo+r31S51SrT6r62Kf1XXqzGrrOnWO9Ugk8Rz1+0j82tHrrHHU1yOjZ2KPjhEZiZ1fnI+PYxvP0no3eHhoUH750gty5zNPyRttLQmSkxcdYZ3tfN5xK+Wet/4sj+5+RzYsXSHnLjwip2zN9WPPkfZF1QnlLvkgbM5PIwmb8+PMLM4IEDY7486sCLhRgLDZjV1lTQg4J0DY7Jw9MyPgNgHCZrd1NP16Xmp5WJ58+04pK66RKv/s0UBYBbixcFiFvFZYrMLhkVggHA+GVUg8PDLgDag0qzxzyXpprDgyp+svKiiRpsqjsp5j66635M5nNsljf35FhiMRa7z6snI5bc0pcrDAR9icrTBhc7aCU3s+YfPUnLjKTAHCZjP7RtUI6ChA2KxjV6gJAXMFCJvN7R2VI6CbAGGzbh3JTT3xsNmu0Qt9xdabGvp8PikoKJQCUV8XxL4nhVJgfV0gPl/8a/W4um70ewXqGYUio8+xrlXfKVCPj16jrrbmiH1OzKfGLyiyaykTjvPGgU3WbvB8fNQGmuULJ/6bbVMd6OmWu7c8bb2p4IHeHlm09Ghpmj9fiju75ex5i+Tc406Qxqpq2+ZLHoidzSmslYHc36w56aSDgxI2O4jP1DkXIGzOOTETIOAZAcJmz7SahSKQFwHC5rwwMwkCnhAgbPZEm6V34JB0DxywAt54mFtYoILhWLBb6Cuwgl/1uAqP41/Hri2Q4oLxbzrndrlNu+6W1p63crrM4eiA7O99S+wOm+NFq93Nj772sty14zXx1VTJu9t3SNveveITkdULFst5x58g561YJXOqa2xbJ2EzYXPWNxNhc9aEDKCxAGGzxs2hNAQMEyBsNqxhlIuA5gKEzZo3iPIQMEiAsNmgZlGq6wQ6QvvkrhcvlZpAs2ywcWdzKlT8DQKXFvrl1Tf+LH/c/a4kn6N8/LwFVui87vgTZH5tfVbOhM2EzVndQOrJhM1ZEzKAxgKEzRo3h9IQMEyAsNmwhlEuApoLEDZr3iDKQ8AgAcJmg5pFqa4T6Aq1yB0v/p3U+OfIhpN+aK1PnY9tvami+o06O1t97YtaX1tnaVufoxL1xX4f+566Wr0hY9LvrTFi1z787puy5eA++fjik+WjS1bJ/p5uefTVl61dz1vfeUsiSW/hd+ycuXLuihPko8evksWzGqZtTthM2Dztmyb1CYTNWRMygMYChM0aN4fSEDBMgLDZsIZRLgKaCxA2a94gykPAIAHCZoOaRamuE4iHzfla2DtDJ0nr8LIx01UUF0vBSFT6+vrlYFenhMMhGRoclMHBQWkqq5AzjzhKPrlitSxrap5SmYTNhM1TulEmu4iwOWtCBtBYgLBZ4+ZQGgKGCRA2G9YwykVAcwHCZs0bRHkIGCRA2GxQsyjVdQL5DptHfDUyFC2X4eiIDI+MTMtT7ZAu9PmkpLBQSgsLpaigQIp8hVKsPsd/+Qrkqg9+f8y4vqh6pks+WtpD014JbxA4bTKO0Zg+Gc8wSICw2aBmUSoCmgsQNmveIMpDwDABwmbDGka5CGgsQNiscXMoDQGbBH7/1u3ycusjNo02+TDf+9hjhM3JAiaEzT+845dy4FCHXH3Zegn4S2y/UR5+fLM89NgmufG6S6WmujLj+OxszkjEBQYLEDYb3DxKR0AzAcJmzRpCOQgYLkDYbHgDKR8BjQQImzVqBqUgkCOBrnCr9A10zHj0yEhEntu9S7bteU92HNwvg2qXc1GRFBcXS1nAL1XlFVJUXCyLCx8VV4fNm7f+aVLEJUceNe7x1LC5syNzI2rr6jI2y85x7vj5o3KwvVv+/m/PF3/p+LA523r+56kX5LHfb5V//ecrMobNal279+2ftnPqE955a2dGw3T9YpzDAvhMfgvN1KeutkoaZ9fJG2++a00w03FSq2OcSfrl88mSI47M+JrA68bkRBl9cM54j9n953SysDljv3j9yXu/Jpswb/3iz2l++m6o8+yqYnnp1TdlaGh4Qie7X8ey+nNhqHPe/rzb9TqPc35eN+zqlybjLF+6SFrb2qWzu5d/72S4g7R6XdXk/kkmwyc3uYSOecJL+/bIpnfflj+8s1M6QsFEiVeta3F32PzN6zdO2uWLv/z3GcPmbS9szfgfq9UnnZLxGjvH+c8nnpfO7n658KOnS2lJ0bi5s63n2Zd2yOZt2+W2716TMWxW6/rDU5un7Zz6hNt++K8ZDdP1i3EOC+Az+S00U59lS4+SE1aukJ/d/0trgpmOk1od40zcL5/PJ//7kssyvibo9LqhTqD68a03Z6xZp76b6KyAder7dOuZLGw2eV2T3fisa/KXhUw+Jv455fVw/L8vcvH3VeVc7Y/Kj267Q/r6+ye80fjvTnZ/P+R+zs/9PN3/nvLfnfQC2fx5/8yn/1qef2Gb7HzrHf69k+Fv9Nk4Jw/NONm9PvO6odfr8+rz1sljr74sj776ijQ0DsoLX71pTIM5szkwPrzNmB7k8QJ1hMa9D/5mzIwfOuvkxJEaXd29cuV1t8jrO3ZZ1zQ11MsPrr9MFi84/I6Rqdeo65YvXWwdm/H01lfkhpvuHjN+/LGJjtTgGI083gBMlXcBjtHIOzkTIuBaAY7RcG1rWRgCjghwjIYj7EyKgCsFOEbDlW1lUQg4ItDS1SknHnE4g1RFEDanhM2DkZC09ryd9wYVF5ZKc9X4Yz5UIROd2bxrd4tcce3NctGF58m6s9daNavzl2+/79eJwDkeNK8+bql8ecP5iXXddf8jcuapJ1ihNGc2573dTKixAGGzxs2hNAQMEyBsNqxhlIuA5gKEzZo3iPIQMEiAsNmgZlEqAgYINNcHxlRJ2JwSNrf2viM/3nJ53lvZVLlELj517LbzeBHpwuZQeFA23ny3NMyqGxMix79/4spjrAD6pT/tkOtvvHPcbufkBRI2573dTKixAGGzxs2hNAQMEyBsNqxhlIuA5gKEzZo3iPIQMEiAsNmgZlEqAgYIEDanNCn1DQI7gi3y8J9/mPdW1pU1ybpjL007b7qwOb6r+dorvyCrViwd8zx1vfpQO5nj16k3PVPHZqQ7GoOwOe/tZkKNBQibNW4OpSFgmABhs2ENo1wENBcgbNa8QZSHgEEChM0GNYtSETBAgLA5Q9isYw8nC5vbDrSnLTn5XGe1u/mSq7835rqvX75+zNEbDz22acIwOnUCzmzW8S6hJrsECJvtkmQcBBAgbOYeQAABOwUIm+3UZCwEvC1A2Ozt/rN6BOwWIGx2Wdicbmdzppsm/qaDt278irUrmp3NmcR43EsChM1e6jZrRSC3AoTNufVldAS8JkDY7LWOs14EcidA2Jw7W0ZGwIsChM0uCZsnOrN5Kjd1/E0DP/6RM6zdzYTNU1HjGq8IEDZ7pdOsE4HcCxA2596YGRDwkgBhs5e6zVoRyK0AYXNufRkdAa8JEDYbGDarMPj2+3497k3+4sdjJB+JoZanvr+v7WDiDQK3vPjamDcRTH3TwPg48Z3Omf5QcIxGJiEeN1mAsNnk7lE7AnoJEDbr1Q+qQcB0AcJm0ztI/QjoI0DYrE8vqAQBNwgQNhsYNquS40dfqK+Tz2OO71J+fceuxMqaGuoTwXSmx+NPUoH2DTfdbf12+dLFk57fTNjshpcC1jCRAGEz9wYCCNglQNhslyTjIICAEiBs5j5AAAG7BAib7ZJkHAQQUAKEzYaGzTrdvoTNOnWDWuwWIGy2W5TxEPCuAGGzd3vPyhHIhQBhcy5UGRMBbwoQNnuz76wagVwJEDYTNmd9bxE2Z03IABoLEDZr3BxKQ8AwAcJmwxpGuQhoLkDYrHmDKA8BgwQImw1qFqUiYIAAYTNhc9a3KWFz1oQMoLEAYbPGzaE0BAwTIGw2rGGUi4DmAoTNmjeI8hAwSICw2aBmUSoCBggQNhM2Z32bEjZnTcgAGgsQNmvcHEpDwDABwmbDGka5CGguQNiseYMoDwGDBAibDWoWpSJggABhM2Fz1rcpYXPWhAygsQBhs8bNoTQEDBMgbDasYZSLgOYChM2aN4jyEDBIgLDZoGZRKgIGCBA2EzZnfZsSNmdNyAAaCxA2a9wcSkPAMAHCZsMaRrkIaC5A2Kx5gygPAYMECJsNahalImCAAGEzYXPWtylhc9aEDKCxAGGzxs2hNAQMEyBsNqxhlIuA5gKEzZo3iPIQMEiAsNmgZlEqAgYIEDYTNmd9mxI2Z03IABoLEDZr3BxKQ8AwAcJmwxpGuQhoLkDYrHmDKA8BgwQImw1qFqUiYIAAYTNhc9a3KWFz1oQMoLEAYbPGzaE0BAwTIGw2rGGUi4DmAoTNmjeI8hAwSICw2aBmUSoCBggQNhM2Z32bEjZnTcgAGgsQNmvcHEpDwDABwmbDGka5CGguQNiseYMoDwGDBAibDWoWpSJggABhM2Fz1rcpYXPWhAygsQBhs8bNoTQEDBMgbDasYZSLgOYChM2aN4jyEDBIgLDZoGZRKgIGCBA2G9AkSkQAAecECJuds2dmBNwmQNjsto6yHgScFSBsdtaf2RFwkwBhs5u6yVoQcF6AsNn5HlABAghoLEDYrHFzKA0BwwQImw1rGOUioLkAYbPmDaI8BAwSIGw2qFmUioABAoTNBjSJEhFAwDkBwmbn7JkZAbcJEDa7raOsBwFnBQibnfVndgTcJEDY7KZushYEnBcgbHa+B1SAAAIaCxA2a9wcSkPAMIGCApHZVX7Z3xU2rHLKRQABHQUIm3XsCjUhYKYAYbOZfaNqBHQVIGzWtTPUhQACWggQNmvRBopAwBUChM2uaCOLQEAbAcJmbVpBIQgYL0DYbHwLWQACWgm4OmzWSppiEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABDwn4otFo1EPrZakIIIAAAggggAACCCCAAAIIIIAAAggggAACORAgbM4BKkMigAACCCCAAAIIIIAAAggggAACCCCAAAJeEyBs9lrHWS8CCCCAAAIIIIAAAggggAACCCCAAAIIIJADAePD5l89ukm+8Z07LJpzP7hGvvXVDRLwl+SAiiERQMAtAi+8vF0+f/lGaznHHbNEfrTxCqmtrky7vLffa5GLv/Z9ad3fPqXr3WLEOhBAYGoC03k9SR4x/tpyyfq/kk+cc8bUJuMqBBBwtUBnd6986eofyKtvvGOt866brpaTVi6bdM0zfQ1yNSSLQwABCYUH5ZvfvUMe+d1zlsY/fW3DpH/fSH39uejT58iVF1+AJAIIIJBRQP275ru3/ly+/Q9fTOQqRofN6i9X37/tgURQdONtD1gIvChmvBe4AAHPCqgXwq9/+ydywzVflCMWNov6gdVz216f8AdV6nVmT8uBxF/O1OtM24EOfrDl2TuIhSNwWGC6ryfxZyb/ECvTP/7wRgABbwjEg6E1q5dbf+dIfX1Jp5D6byFvSLFKBBCYikByNhIPkq+6+IK0P8BKff1J/f1U5uMaBBDwnkDyD6lSN/EZHTarF9BF85sSIRB/4fLezc2KEZiugAqX393Tlvih1FT+MZc8B68z0xXnegTcKzCT1xP1l7Jr/uUn8ncbPi73PPA/Eg+W3KvEyhBAYCoCqbuCMoU98deSr17yKeuH53wggAACcYF0rw+TbcxLF0azkY/7CQEEpirgqp3N6f4CNt3QaKpwXIcAAu4RSP2LU6af9KeuPNNOaPdIsRIEEMgkMN3Xk+TXm/ctW2L9762EzZmUeRwBbwik+2H2ZGFP6jFfSon/7d0b9wqrRCCTQLpcJNO/YeLHk6rje45cPNf6wTg/zMokzeMIIKAEXBk2//W6sxL/KwhhMzc6AghkEkj9PyKmEzbzGpNJl8cR8JbAdF5P4j8kj/+9JdOuRW9JsloEEFBh8y8efnLMMV2Thc2p18f/PnPBurM4B57bCQGPC6QLfjKFzfF/5yi6V7fv4odXHr+HWD4C0xFwZdicvCOIIGg6twPXIuBNgenuRIwrxXcQffuaL2Z8sx5vyrJqBLwnMJ3Xk9Q33knW4txm7907rBiBVIHp7mxOF05nCpNQRwABbwhMd2dz6rEb8R+INzXU8X5Y3rhlWCUCWQm4KmxWEpzZnNX9wJMR8KTATM5YJWj25K3CohHIKDCT15P4oOxszsjLBQh4SmC6ZzZPtHMx+X0pPAXIYhFAICEw3TObZ7ITGm4EEEAgLuC6sDl1BwCH2HOzI4BAJoHUn/Sn7gJSv3/g4SflRxuvkNrqyim9G3ymOXkcAQTcKZDp9WSyH1QRNrvznmBVCMxUIPU1IfX1JfWYjNSdh9M5FmymNfI8BBAwRyA5G0l9fUh9Pcn0+mLOqqkUAQScEHBd2KwQ4wfZq6/P/eCaMeecOYHMnAggoL+A+kHV5y/faBV63DFLEsFy/DUlOWxOfo1JXpl684yTVi7Tf7FUiAACORWY7PWEsDmn9AyOgOsEUo/bSf67RrozmVOv50ge190SLAiBGQvEfyD1yO+es8ZIfn1I93qS+qajvOHojOl5IgKeEUh3TGD8tcMXjUajnpFgoQgggAACCCCAAAIIIIAAAggggAACCCCAAAI5ESBszgkrgyKAAAIIIIAAAggggAACCCCAAAIIIIAAAt4SIGz2Vr9ZLQIIIIAAAggggAACCCCAAAIIIIAAAgggkBMBwuacsDIoAggggAACCCCAAAIIIIAAAggggAACCCDgLQHCZm/1m9UigAACCCCAAAIIIIAAAggggAACCCCAAAI5ESBszgkrgyKAAAIIIIAAAggggAACCCCAAAIIIIAAAt4SIGz2Vr9ZLQIIIIAAAggggAACCCCAAAIIIIAAAgggkBMBwuacsDIoAggggAACCCCAAAIIIIAAAggggAACCCDgLQHCZm/1m9UigAACCCCAAAIIIIAAAggggAACCCCAAAI5ESBszgkrgyKAAAIIIIAAAggggAACCCCAAAIIIIAAAt4SIGz2Vr9ZLQIIIIAAAggggAACCCCAAAIIIIAAAgggkBMBwuacsDIoAggggAACCCCAAAIIIIAAAggggAACCCDgLQHCZm/1m9UigAACCCCAAAIIIIAAAggggAACCCCAAAI5ESBszgkrgyKAAAIIIIAAAggggAACCCCAAAIIIIAAAt4SIGz2Vr9ZLQIIIIAAAggggAACCCCAAAIIIIAAAgggkBMBwuacsDIoAggggAACCCCAAAIIIIAAAggggAACCCDgLQHCZm/1m9UigAACCCCAAAIIuEzg7fda5OKvfV++fc0X5aSVy6Szu1e+dPUP5IJ1Z8knzjnDZatlOQgggAACCCCAAAI6CxA269wdakMAAQQQQAABBBDQRuBXj26Sb3znjnH1XPTpc+TKiy9wrE7CZsfomRgBBBBAAAEEEEAgRYCwmVsCAQQQQAABBBBAAIEpCKiw+da7/0tu+85VcsTCZusZ8aB31fuOkm99dYME/CVTGMneSwib7fVkNAQQQAABBBBAAIGZCxA2z9yOZyKAAAIIIIAAAgh4SCBd2KyWP9H380VD2JwvaeZBAAEEEEAAAQQQyCRA2JxJiMcRQAABBBBAAAEEEJgkVJ4obI6HwK372y2/445ZIj/aeIXUVlcmPEPhQfnmd++QR373XOJ78ev8paXjHlMX/dPXNow5i5mwmdsTAQQQQAABBBBAQBcBwmZdOkEdCCCAAAIIIIAAAloLTBQq33jbA/L8y9vHBMkvvLxdPn/5RrnrpqutN+1TH6nXxd/Ib0Fzw5gjOH7804flg6evlubGWfKju/9TvvCpjyQC6niwfMn6v0oEzoTNWt82FIcAAggggAACCHhKgLDZU+1msQgggAACCCCAAAIzFUgXNqcLleMh8gXrzhqzAzn+/asuvsAKoNV4Dzz85LjdzpPVF98J3dRQl3hTQsLmmXaU5yGAAAIIIIAAAgjYLUDYbLco4yGAAAIIIIAAAgi4UkCFw9/4zh1j1pbuaAwVQF/z7Z+MeSNB9aR4ULxm9XL5yAfWWEdkJIfGE6GpHdG3/+zRMQ+f+8E1id3QhM2uvN1YFAIIIIAAAgggYKQAYbORbaNoBBBAAAEEEEAAgXwLpO5sju9qvujT5yR2Gaua4t+fqD51/ZfWfyxj2BwPkWfVVSd2P8cDazX2t766QQL+EiFszvedwHwIIIAAAggggAACEwkQNnNvIIAAAggggAACCCAwBYF0x2jEdzsnn8080c7m5CnSHYeRWkK6s6AJm6fQKC5BAAEEEEAAAQQQcEyAsNkxeiZGAAEEEEAAAQQQMElgsjcIfPT3WxPHZkx0ZnPqWjOd2azC5rYDHWPePJCw2aQ7hloRQAABBBBAAAHvCRA2e6/nrBgBBBBAAAEEEEBgBgIThc3xcFkN+aONV0htdaX15n/qfOfkHc/qcfX9+c0N1hsExp+3oLlhTKD8458+LB88fbV0dPaMO/s5fn4zZzbPoIE8BQEEEEAAAQQQQCDnAoTNOSdmAgQQQAABBBBAAAE3CEwUNqu1pTtfOf691v3tieWnvqFgfKfyI797LnFNcpCc+qaEKsz+9RNbrGs5s9kNdxVrQAABBBBAAAEE3CVA2OyufrIaBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAEQHCZkfYmRQBBBBAAAEEEEAAAQQQQAABBBBAAAEEEHCXAGGzu/rJahBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUcECJsdYWdSBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAXQKEze7qJ6tBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQcESBsdoSdSRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAXcJEDa7q5+sBgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcESAsNkRdiZFAAEEEEAAAQQQQAABBBBAAAEEEAInZmoAAAANSURBVEAAAQTcJfD/AR3IDtN19iALAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "atom.plot_prc()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "(%{x}, %{y})RF - test", "legendgroup": "RF", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF" }, "line": { "color": "rgb(0, 98, 98)", "width": 2 }, "marker": { "color": "rgb(0, 98, 98)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines", "name": "test", "showlegend": true, "type": "scatter", "x": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0010570824524312897, 0.0021141649048625794, 0.0021141649048625794, 0.006342494714587738, 0.006342494714587738, 0.008456659619450317, 0.009513742071881607, 0.009513742071881607, 0.010570824524312896, 0.015856236786469344, 0.019027484143763214, 0.02854122621564482, 0.03276955602536998, 0.03488372093023256, 0.040169133192389, 0.04439746300211417, 0.056025369978858354, 0.06553911205073996, 0.07188160676532769, 0.080338266384778, 0.09408033826638477, 0.10570824524312897, 0.13002114164904863, 0.14482029598308668, 0.16913319238900634, 0.19767441860465115, 0.22938689217758984, 0.2748414376321353, 0.3403805496828753, 0.4281183932346723, 0.5391120507399577, 0.7357293868921776, 1 ], "xaxis": "x", "y": [ 0, 0.018518518518518517, 0.07407407407407407, 0.1111111111111111, 0.12962962962962962, 0.16666666666666666, 0.2222222222222222, 0.25925925925925924, 0.3148148148148148, 0.35185185185185186, 0.35185185185185186, 0.37037037037037035, 0.4074074074074074, 0.4444444444444444, 0.46296296296296297, 0.46296296296296297, 0.5, 0.5370370370370371, 0.5370370370370371, 0.5555555555555556, 0.5925925925925926, 0.6481481481481481, 0.6851851851851852, 0.7037037037037037, 0.7407407407407407, 0.7407407407407407, 0.7777777777777778, 0.7777777777777778, 0.8148148148148148, 0.8148148148148148, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8333333333333334, 0.8518518518518519, 0.9074074074074074, 0.9259259259259259, 0.9629629629629629, 0.9814814814814815, 1 ], "yaxis": "y" }, { "hovertemplate": "(%{x}, %{y})RF_os - test", "legendgroup": "RF_os", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF_os" }, "line": { "color": "rgb(56, 166, 165)", "width": 2 }, "marker": { "color": "rgb(56, 166, 165)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines", "name": "test", "showlegend": true, "type": "scatter", "x": [ 0, 0, 0, 0, 0, 0, 0, 0, 0.0010570824524312897, 0.0010570824524312897, 0.0021141649048625794, 0.0021141649048625794, 0.004228329809725159, 0.004228329809725159, 0.005285412262156448, 0.007399577167019027, 0.007399577167019027, 0.008456659619450317, 0.009513742071881607, 0.010570824524312896, 0.013742071881606765, 0.013742071881606765, 0.014799154334038054, 0.014799154334038054, 0.017970401691331923, 0.0200845665961945, 0.021141649048625793, 0.024312896405919663, 0.026427061310782242, 0.026427061310782242, 0.02959830866807611, 0.03488372093023256, 0.035940803382663845, 0.042283298097251586, 0.052854122621564484, 0.05391120507399577, 0.056025369978858354, 0.06342494714587738, 0.06553911205073996, 0.06659619450317125, 0.06871035940803383, 0.07505285412262157, 0.08139534883720931, 0.08562367864693446, 0.08773784355179703, 0.09408033826638477, 0.10359408033826638, 0.1109936575052854, 0.11733615221987315, 0.1226215644820296, 0.13002114164904863, 0.13742071881606766, 0.14482029598308668, 0.15750528541226216, 0.16913319238900634, 0.18604651162790697, 0.19873150105708245, 0.2219873150105708, 0.23995771670190275, 0.2653276955602537, 0.2832980972515856, 0.3107822410147992, 0.34249471458773784, 0.38266384778012685, 0.4323467230443975, 0.47463002114164904, 0.5317124735729387, 0.5909090909090909, 0.6680761099365751, 0.7304439746300211, 0.8234672304439746, 0.9175475687103594, 1 ], "xaxis": "x", "y": [ 0, 0.037037037037037035, 0.09259259259259259, 0.1111111111111111, 0.18518518518518517, 0.2037037037037037, 0.24074074074074073, 0.2777777777777778, 0.2777777777777778, 0.2962962962962963, 0.3148148148148148, 0.3333333333333333, 0.3333333333333333, 0.35185185185185186, 0.37037037037037035, 0.3888888888888889, 0.4074074074074074, 0.4074074074074074, 0.4444444444444444, 0.4444444444444444, 0.4444444444444444, 0.48148148148148145, 0.48148148148148145, 0.5, 0.5185185185185185, 0.5555555555555556, 0.5555555555555556, 0.5740740740740741, 0.5925925925925926, 0.6111111111111112, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6296296296296297, 0.6481481481481481, 0.6481481481481481, 0.6666666666666666, 0.6851851851851852, 0.6851851851851852, 0.6851851851851852, 0.7222222222222222, 0.7407407407407407, 0.7407407407407407, 0.7777777777777778, 0.7777777777777778, 0.7777777777777778, 0.7962962962962963, 0.8148148148148148, 0.8148148148148148, 0.8518518518518519, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.9074074074074074, 0.9259259259259259, 0.9444444444444444, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 1, 1 ], "yaxis": "y" }, { "hovertemplate": "(%{x}, %{y})RF_us - test", "legendgroup": "RF_us", "legendgrouptitle": { "font": { "size": 16 }, "text": "RF_us" }, "line": { "color": "rgb(115, 175, 72)", "width": 2 }, "marker": { "color": "rgb(115, 175, 72)", "line": { "color": "rgba(255, 255, 255, 0.9)", "width": 1 }, "size": 8, "symbol": "circle" }, "mode": "lines", "name": "test", "showlegend": true, "type": "scatter", "x": [ 0, 0, 0, 0, 0.0021141649048625794, 0.004228329809725159, 0.006342494714587738, 0.008456659619450317, 0.011627906976744186, 0.016913319238900635, 0.0200845665961945, 0.023255813953488372, 0.02959830866807611, 0.03805496828752643, 0.04334038054968287, 0.046511627906976744, 0.05496828752642706, 0.06765327695560254, 0.07505285412262157, 0.08668076109936575, 0.10253699788583509, 0.11416490486257928, 0.13002114164904863, 0.14376321353065538, 0.1543340380549683, 0.16596194503171247, 0.18076109936575052, 0.20084566596194503, 0.21458773784355178, 0.2357293868921776, 0.2526427061310782, 0.2653276955602537, 0.27801268498942916, 0.29704016913319237, 0.32452431289640593, 0.3382663847780127, 0.35412262156448204, 0.3678646934460888, 0.39112050739957716, 0.40380549682875266, 0.4175475687103594, 0.43446088794926, 0.45348837209302323, 0.47780126849894294, 0.492600422832981, 0.5105708245243129, 0.5221987315010571, 0.53276955602537, 0.5507399577167019, 0.5602536997885835, 0.5718816067653277, 0.5824524312896406, 0.5909090909090909, 0.6025369978858351, 0.6131078224101479, 0.6289640591966174, 0.6479915433403806, 0.6553911205073996, 0.6617336152219874, 0.6765327695560254, 0.6976744186046512, 0.7040169133192389, 0.7156448202959831, 0.7283298097251586, 0.7399577167019028, 0.7484143763213531, 0.7632135306553911, 0.7716701902748414, 0.7854122621564482, 0.7938689217758985, 0.8107822410147991, 0.8181818181818182, 0.8234672304439746, 0.8329809725158562, 0.8414376321353065, 0.8604651162790697, 0.8657505285412262, 0.8773784355179705, 0.8932346723044398, 0.9027484143763214, 0.904862579281184, 0.912262156448203, 0.9217758985200846, 0.9260042283298098, 0.9323467230443975, 0.9492600422832981, 0.9587737843551797, 0.9619450317124736, 0.9725158562367865, 0.9820295983086681, 0.9894291754756871, 0.9957716701902748, 1 ], "xaxis": "x", "y": [ 0, 0.018518518518518517, 0.05555555555555555, 0.1111111111111111, 0.1111111111111111, 0.12962962962962962, 0.12962962962962962, 0.16666666666666666, 0.2037037037037037, 0.2962962962962963, 0.37037037037037035, 0.37037037037037035, 0.37037037037037035, 0.3888888888888889, 0.3888888888888889, 0.4444444444444444, 0.48148148148148145, 0.5, 0.5185185185185185, 0.5370370370370371, 0.5740740740740741, 0.6111111111111112, 0.6481481481481481, 0.6666666666666666, 0.6851851851851852, 0.6851851851851852, 0.7037037037037037, 0.7407407407407407, 0.7407407407407407, 0.7407407407407407, 0.7407407407407407, 0.7777777777777778, 0.7962962962962963, 0.8148148148148148, 0.8333333333333334, 0.8333333333333334, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8518518518518519, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8703703703703703, 0.8888888888888888, 0.8888888888888888, 0.8888888888888888, 0.8888888888888888, 0.9074074074074074, 0.9259259259259259, 0.9444444444444444, 0.9444444444444444, 0.9444444444444444, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9629629629629629, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 0.9814814814814815, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "yaxis": "y" } ], "layout": { "font": { "size": 12 }, "height": 600, "hoverlabel": { "font": { "size": 16 } }, "legend": { "bgcolor": "rgba(255, 255, 255, 0.5)", "font": { "size": 16 }, "groupclick": "toggleitem", "traceorder": "grouped", "x": 0.99, "xanchor": "right", "y": 0.01, "yanchor": "bottom" }, "margin": { "b": 50, "l": 50, "pad": 0, "r": 0, "t": 35 }, "shapes": [ { "layer": "below", "line": { "color": "black", "dash": "dash", "width": 1 }, "opacity": 0.6, "type": "line", "x0": 0, "x1": 1, "xref": "x domain", "y0": 0, "y1": 1, "yref": "y domain" } ], "showlegend": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "font": { "size": 24 }, "pad": { "b": 15, "t": 15 }, "x": 0.5, "xanchor": "center", "xref": "paper", "y": 1, "yanchor": "top" }, "width": 900, "xaxis": { "anchor": "y", "automargin": true, "domain": [ 0, 1 ], "range": [ -0.03, 1.03 ], "title": { "font": { "size": 16 }, "text": "FPR" }, "type": "linear" }, "yaxis": { "anchor": "x", "automargin": true, "domain": [ 0, 1 ], "range": [ -0.03, 1.03 ], "title": { "font": { "size": 16 }, "text": "TPR" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABZsAAAJYCAYAAAAE1Tj9AAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Ql4XFd9P/zv7KN93yx5lbzKuyTb2RzH2RMgQEpYWgq0LIW3LSVlb2mhNCVAgfdf+kJLd1oC/wApEEgckjjOLlmS992SrX3ft9Hs73POjGRZtqUZ3Zk799753id+RtLce5bPuVbsr49+1xQMBoPgQQEKUIACFKAABShAAQpQgAIUoAAFKEABClCAAhRQIGBi2KxAj5dSgAIUoAAFKEABClCAAhSgAAUoQAEKUIACFKCAFGDYzBuBAhSgAAUoQAEKUIACFKAABShAAQpQgAIUoAAFFAswbFZMyAYoQAEKUIACFKAABShAAQpQgAIUoAAFKEABClCAYTPvAQpQgAIUoAAFKEABClCAAhSgAAUoQAEKUIACFFAswLBZMSEboAAFKEABClCAAhSgAAUoQAEKUIACFKAABShAAYbNvAcoQAEKUIACFKAABShAAQpQgAIUoAAFKEABClBAsQDDZsWEbIACFKAABShAAQpQgAIUoAAFKEABClCAAhSgAAUYNvMeoAAFKEABClCAAhSgAAUoQAEKUIACFKAABShAAcUCDJsVE7IBClCAAhSgAAUoQAEKUIACFKAABShAAQpQgAIUYNjMe4ACFKAABShAAQpQgAIUoAAFKEABClCAAhSgAAUUCzBsVkzIBihAAQpQgAIUoAAFKEABClCAAhSgAAUoQAEKUIBhM+8BClCAAhSgAAUoQAEKUIACFKAABShAAQpQgAIUUCzAsFkxIRugAAUoQAEKUIACFKAABShAAQpQgAIUoAAFKEABhs28ByhAAQpQgAIUoAAFKEABClCAAhSgAAUoQAEKUECxAMNmxYRsgAIUoAAFKEABClCAAhSgAAUoQAEKUIACFKAABRg28x6gAAUoQAEKUIACFKAABShAAQpQgAIUoAAFKEABxQIMmxUTsgEKUIACFKAABShAAQpQgAIUoAAFKEABClCAAhRg2Mx7gAIUoAAFKEABClCAAhSgAAUoQAEKUIACFKAABRQLMGxWTMgGKEABClCAAhSgAAUoQAEKUIACFKAABShAAQpQgGEz7wEKUIACFKAABShAAQpQgAIUoAAFKEABClCAAhRQLMCwWTEhG6AABShAAQpQgAIUoAAFKEABClCAAhSgAAUoQAGGzbwHKEABClCAAhSgAAUoQAEKUIACFKAABShAAQpQQLEAw2bFhGyAAhSgAAUoQAEKUIACFKAABShAAQpQgAIUoAAFGDbzHqAABShAAQpQgAIUoAAFKEABClCAAhSgAAUoQAHFAgybFROyAQpQgAIUoAAFKEABClCAAhSgAAUoQAEKUIACFGDYzHuAAhSgAAUoQAEKUIACFKAABShAAQpQgAIUoAAFFAswbFZMyAYoQAEKUIACFKAABShAAQpQgAIUoAAFKEABClCAYTPvAQpQgAIUoAAFKEABClCAAhSgAAUoQAEKUIACFFAswLBZMSEboAAFKEABClCAAhSgAAUoQAEKUIACFKAABShAAYbNvAcoQAEKUIACFKAABShAAQpQgAIUoAAFKEABClBAsQDDZsWEbIACFKAABShAAQpQgAIUoAAFKEABClCAAhSgAAUYNvMeoAAFKEABClCAAhSgAAUoQAEKUIACFKAABShAAcUCDJsVE7IBClCAAhSgAAUoQAEKUIACFKAABShAAQpQgAIUYNjMe4ACFKAABShAAQpQgAIUoAAFKEABClCAAhSgAAUUCRw7dgyGCZu7Bl2KMOJ1cUGWAzarGf0j0/D6g/Hqhu1SgAI6EijJdaJ7aFpHI+ZQKUCBeArkpNvh8vgw7QnEsxu2TQEK6EQgxW6B02HB8LhHJyPmMClAgXgLLMtLgVYzj3jPne1TgALXCuRm2DE57YPbq62/Pxx45mn09fYwbI73TcuwOd7CbJ8C+hNg2Ky/NeOIKRBPAYbN8dRl2xTQnwDDZv2tGUdMgXgLMGyOtzDbp4C+BLQaNvv9flgsFobN8b6dGDbHW5jtU0B/Agyb9bdmHDEF4inAsDmeumybAvoTYNisvzXjiCkQbwGGzfEWZvsU0JeAVsPmGUWW0Yjz/cSwOc7AbJ4COhRg2KzDReOQKRBHAYbNccRl0xTQoQDDZh0uGodMgTgLMGyOMzCbp4DOBNQOm1suX0JDfS0eftd7YTKZFtVi2LwokbITGDYr8+PVFDCiAMNmI64q50SBpQswbF66Ha+kgBEFGDYbcVU5JwooE2DYrMyPV1PAaAJqhM0jI8NorK9DQ30dMjIyUF2zB7v23BwRJcPmiJiWfhLD5qXb8UoKGFWAYbNRV5bzosDSBBg2L82NV1HAqAIMm426spwXBZYuwLB56Xa8kgJGFIhn2CwCZvFrYKAfVTW7UV2zG3n5BVExMmyOiiv6kxk2R2/GKyhgdAGGzUZfYc6PAtEJMGyOzotnU8DoAgybjb7CnB8Fohdg2By9Ga+ggJEF4hE2N108jx98/7syXBYhc3nFuiUTMmxeMl1kFzJsjsyJZ1EgmQQYNifTanOuFFhcgGHz4kY8gwLJJMCwOZlWm3OlQGQCDJsjc+JZFEgWgXiEzX29PSgsKo4JIcPmmDDeuBGGzXEGZvMU0KEAw2YdLhqHTIE4CjBsjiMum6aADgUYNutw0ThkCsRZgGFznIHZPAV0JhCPsDmWBAybY6l5nbYYNscZmM1TQIcCDJt1uGgcMgXiKMCwOY64bJoCOhRg2KzDReOQKRBnAYbNcQZm8xTQmUC0YfOF82exrLQM6ekZqsxUd2Fzc2sXvvm9n+BrX/wIcrKuIHUNulQBi7YThs3RivF8ChhfgGGz8deYM6RANAIMm6PR4rkUML4Aw2bjrzFnSIFoBRg2RyvG8ylgbIFIwubenm40NhxGw+FaGTS//4MfhsPhUAVGN2Hz8Og4Pv757+Dk2UvYsnENvv/4pxg2q3KLsBMKUCDWAgybYy3K9iigbwGGzfpeP46eArEWYNgca1G2RwH9CzBs1v8acgYUiKXAjcLm6elpNDbUobG+Dl6vF1XVu1C9a49qO5pn5qibsHlmwNzZHMvbk21RgAKJEGDYnAh19kkB7QowbNbu2nBkFEiEAMPmRKizTwpoW4Bhs7bXh6OjgNoC88PmiYlxPPXTn6Dp4nlUVe9GVc1ulC1fofawZvtj2BxnepbRiDMwm6eADgUYNutw0ThkCsRRgGFzHHHZNAV0KMCwWYeLxiFTIM4CDJvjDKyB5jvHTqN1+KQqI3H5ffD4A/AEfHD7/fAEAvD4/fAFAqr0n+yd+IMBBINBBIJB+Tr345mvBXD9r4fOBTKc2fji3k/C7Q2tWWdHO0aGh1C5ZZsmeA0TNosF0eJhNpnksLQ6Pi2acUwUMLqA+L6gx+8JPn8QVkvoexoPClAgdgIm8WeFoPhPm3+Wid1M2dJiAj5fEFYrv88u5mT0900wQfwn/kLJgwIUiK2AXv88q9e/P8R29YzZ2pGOg3i56Sl0j14y5gQ5q7gITPiy8f2Hn9Ds3x4MEzb3DE3HZQGVNpqX5YDNYsLAqBvif2w8KEABChTlONA77NYdhAjC5F+AeVCAAjEVyE63weXxw+3hbpKYwuqxMZP4Vwd+n9Xj0sVyzE67GU67BSMT3lg2y7YoQAGE/mFXj3+eLc51QquZB2+s6AXcvkkc734OjR1PY9I7IhuwmKxYnnsrzOZ0uAP+8I5j8TpvF3J4R7LYmbzUw2GxwC5+mS0QHzvMFtgsFtjM5qib9AfELl2xwTK0W3dm5+38nbkzu3dnd+7O7OrFlR2+4r35u33nn3+jHb+h80Lj0PphNplhNoe+E4mPxcYTs/h3Zvkqvh5+nflcfg0wm82h900mZKXk4kv7PgVPeGez1uZsmLC5a9ClNVs5HpbR0OSycFAUSKgAy2gklJ+dU0BzAiyjobkl4YAokFABltFIKD87p4AmBVhGQ5PLcs2g/MEgxr0ejHs8GPe5Me7xys8nvF6MeaYx7u7B1OQbMHtPwQSfvH46kI5u/wb0+ivgD9qimqjTbIHTbIXTYob42G4ywWYywS5CyQBgQRDmQBAmUR5DhML+APxeLzw+H7x+P9w+Lzx+H7y+cKgtv+6D2+eHx+eV54hX8bn4urhOhN/ifHGdVn9aVwSzdosVdqsI1a2w22ywiWDdZpWf26xWOMLv2+SrFQ6rDbbw+Q6rFaGvi2vsMpS3h68V517VtvhcXGsxyzaueX9e39EscFtrCxrqa9FwuBZ/+ujnUFxcMnv5jR4QGE378TyXYXM8dRk2x1mXzVNAnwIMm/W5bhw1BeIlwLA5XrJslwL6FGDYrM9146gpEE8Bhs3x1L3S9rTXA68/gGmfF6PT0xh1uzDi8WDM48a41y1DYxEkT/q9cPl8mArXPHYHRf3jQDg+vnas2eZulFjPIsfSOftzoiP+YnT7N2LIX4pgIIiAzyd/+bx++LxueL1euN0eeLwe+Dxe+EQQ7PXCN+eX3MqbwMMigm0ZsIZD3XAQK0JbGebOC1oXCoDFueJ9h1Xssp4TAFvM4T6uE/KK3dmi/5nX8DisFksCVZR1PTY2KsPlhvo6pKamorpmD6p37YHVar2qYYbNypxnrx4eHcfHP/8dnDx7pY7NH773ATz6sUfkOdzZHCNoNkMBCsRdgGFz3InZAQV0JcCwWVfLxcFSIO4CDJvjTswOKKA7ASOFzT6xW1bukg3tmhUPprvyKkpGhN8L76QN7bANhHbhzt15K94Xu3TFTlyvD96Af/Zz2bYsPxEuQWEKwhsIwm8GAjAhYDIhKOoWiLIRVgvMFgssNhus4pfVKl/lMzWiPESpCJ/HI4PhgNeNQkcbVqVdRrZjQrbkC5jRNJCDE+05GBwzhwJkjwfBRR7MJ0pchHbbhsJVEeTO7MK9aiftdYLXmfdnAmCH3S53+YqduqF2RIgbCodDH1vlDuDQOaEAeH6YLD532uxR6vD0hQSONNajsb4OvT3dMlyurtmN/ILCG17CsFml+4lhs0rQ7IYCFFAswLBZMSEboIChBBg2G2o5ORkKKBZg2KyYkA1QwHACSwmbFwxhfXNC3bmBb7hcgjv8/kx5BbfY8RsOcMV7oZIKoTIMM6UWZgPeuW3PBMIyCA71udS9uCL8tdrtoTDYLkJhEQ6LYNguw2Gb+Fh8Tbw3ExzbbLLObbSHrC8syk54/UDAJ0tQiFIU5iAg9pdaxKvY1QszHGYTHCYznBYrUmRA64fdeREwnwFMU7JriykLmdadyEmpgtOaHg6Ow2Ua5oS8VwfAIgy2yACYh7EFRMD80ou/RVXNbqxdtyGiyTJsjohJ+UkMm5UbsgUKUEAdAYbN6jizFwroRYBhs15WiuOkgDoCDJvVcWYvFIiVgCi9IINXWcs2HOKKYPV6O21n3he7ecO7cmdCWvfcz8Mhbmg3rx8WSxCjU+7Z+rqhINkb2s0r6ujODYD9Pojdw1o9RIkDp92BFKcDDocTTocDNrsNNrtDBslih7HFYoHJaoFJlEOwmBE0mUM7kZdwiFBY1DNOtdqQZrUh3WZDhs2ODJsD2Q4HshziNUW+ptscyLDbkW61QZSIiOYYcnWhof1/cbbvFfiDoQe8lmVtxs7SB1GeVyMe+RZNczyXAgsKMGxW6QZh2KwSNLuhAAUUCzBsVkzIBihgKAGGzYZaTk6GAooFGDYrJmQDBhQQ4elM8CofYBbeWRt6mJnYZRsqtRB6mNmcnbfXCYDdHs/VpRrC57jDAbAIcEVZhtCD067uKxTsXulLPBBOi4eISWcecBYqgzCn3q18mJkoyxCqtSvOEyUaQg9OC9XedYRr7c7stA2VU7i6Lq94T+w2DljMsjSF1xSEPwh4gkG4g35M+/2YDvjh8vsx5fdh0uvFhM8jX5eiJsJfERaLMDjDake6eLXZkW6zI9PuCH1styHDeiUwzhRBtim+IW/LyDEcaf8VxKs4LCY7Nhbehqqyh5CXWqbF24NjMoAAw2aVFpFhs0rQ7IYCFFAswLBZMSEboIChBBg2G2o5DTmZEY8b/a4p9E9Poc/lkkELj/gJWC1mWK0mTLu1uzMxfrNny1oUEKGrTzz8zO+//mvAf9V7/plzgwH4/QH4xWvgyq9AMCDbEV8LBILwzXlflC6Y+Vx8LOr5av2wmMywWMxyJ6zFbIHFbIbFbIL8uvhYvs68N+d15n15vvhlgdVshnnuteH30p02eLzB8Hkz54fbnte3CIVjeXiCfvlQvHGvB+MeL8Z9bkx4PBD/b5h/WE0elFjPA8HAgkOwitIT5lCtYLtFlKKYqRtsgV2UopBft8Ax87F4XUI5jFg6zG/LF3CjabAeI64u+Va6Iw87Sh7A1pJ74LCmxbNrtq0TgYsXzsk6zOUV61Cz+6aYjpphc0w5b9wYw2aVoNkNBSigWIBhs2JCNkABQwkwbDbUcupyMr3TkxhwuWSgPOB2oXdyAgPTLvS5ptDjmtTlnDhoClCAAhSIv4DYNTxTdiLbOoB07zMwBUMPw0uWozRjI3aWvQVr82MbJiaLn9Hm2dfbg8aGwzJkLioukXWYd1bVxHyaDJtjTnr9Bhk2qwTNbihAAcUCDJsVE7IBChhKgGGzoZZTc5MRNUN7p6YwIHYlT09h0DWFXrFLObxTecg9veiYxY8tFzhTkZ+SgkJnqvyRZR7xE+DO5vjZxqNlsfM2tONXvIodu/M+vu5u4Kt3Astdw3N3B8/dRSzbu7KrOB5zWKxNq9hxK3bch3feit23ou6ufJ373szX5ryKXb3iAW1X7/AN7eKVO4Hlrtw5O3VndwLPfM0k+0j2IyPVhvGpxPxUiVjruXWOM+w2pFvtMmQWO4/F8XrLE6hr/5n8ONWWhS3Fd8MU5/IVib4nzCYzKvJ3Iz91ZaKHwv4TLODxeNBQXysDZrfbjarqXTJkzszMitvIGDbHjfbqhhk2qwTNbihAAcUCDJsVE7IBChhKgGGzoZZT9cmMeT2hHcnT4TIXU6HXAVcoXJ7wLhxOiLqeOQ6nDJMLUlKR50xBUUqa/Fh8rSg1Vf5IMw/1BFizeenWosTLtMeLafHq9WDa6wu9+rxwecXXZr4+83HoXJfHfdW5sg2vR5aMmdtG6PrQey5fYh7CJurpOm2ixq4NKTa7/NgpX+d8bLXBabfBKV7F161WpDgccNrCX7OHvhZ6b965dhtS5lxns1qXviC8MmYCy/JSoMXMY9w9gKfP/j16xi/Iua7JrcZ96z8JJ8tIxGzt2ZC2BXw+H778l59Fdc0eGTAvX6HOPz4wbFbpvtDiN14x9YIsB2xWM/pHpuEV1fJ5UIACSS/AsDnpbwECUOAqAYbNvCFuJBAIBiF2HofCY1e4ZvLklXBZ1E8OLFzP1GoyI9+ZgoKUlFCgnJoWepXhcgrynalydyEP7QgYJWwWu32nfeGwdyaknR8CzwuERcjrkl8TAbEP0x7x8Ux4HA56ZaAcfj8cJIvrRDCs9t+2xO8dEfrKEFf+EoHvnM9lkHttsJtid8yGvHOD3dC5c9ubCYuvBMLigWw8kk9Ai2HzpaFGPHPuO/D4p2AzO7G/4sOoLNqffIvDGSe1QDAYlA/KVPtg2KySOMNmlaDZDQUooFiAYbNiQjZAAUMJMGw21HJGNRnxo/Fi93G/yxUqczE1iX73lc8Hp13wBxeOz1IslnBwHN6NLHclO1HgCO1UznY4of5fgaJi4MnzBOIRNou/DC+0S3dmx67c/TsvzJXh78xOX78IgMO7g+fvIp4Jh2Wg7JWlH9Q+Znb9zt2xK3f/Xmen79xgV+76vdFO3/k7h7nrV+1lZX8AtBQ2+4NevNT0bzjR81u5NkXpFXhww6PITinmWlGAAioJMGxWCZphs0rQ7IYCFFAswLBZMSEboIChBBg2G2o5r5rMpM8rdyPP1EfuE7WTwzuUxddHPe5FJ59ld1y1E7kgJQ2FKaH6yWJ3sqinzEN/AmLX72ywO3d3r9eDIALwB30YGHddXRLC54PLLco9eOGWoe+cXb+eUFmHmZIRV5WSELt+/T7VkcSu35kSDjLYjbSEw0xJCBH+hnf6pszdLWyzwyGDYe76VX1R2WHCBLQSNg9NdeLps9/A4FQ7TDBj1/J34qaV74GoX8yDAkYTOH3yOKbDNZi1NjeGzSqtCMNmlaDZDQUooFiAYbNiQjZAAUMJMGzW53KK/cYjosSFeNBeeDdynytc4iL88D2Xf+ESFyKMEzWSRSkLWeZC7EZOTZMP4ZspeyEewMUjvgJi129oN+/cWr9X1/SdW7bBNf/cCHf6zm1jsR3r8ZixQ9T6FXV8r7PTN2VOsCtD3DmlH+TO4Ln1f8P1gq+qETyvXrAIh8VDxXhQgAKxEdBC2Cx2Mr/U9O/wBz3IcBTgrRs/jeKMtbGZIFuhgEYEOjva0XC4Vj7wb+26DbjvgbeisEh7u/YZNqt0wzBsVgma3VCAAooFGDYrJmQDFDCUAMNmbS6nCAPlQ/fm7ESWZS5myl64XfAvUibAYbbM1kUWJS0KU9KQL15FDWVnKnKdKSxxcZ3l94oduuFdurPB7pzavLMPf5tTtsE9Z9fv/DIQc4Pk2ZIQc2oHexKw61f8I8KNdvqmOuxIc9hhMYXD4ZmyDTYrZmv92mxwhHcKz9/1O1szeM51oq5wImpKavN3N0dFAf0JJDJsdvsmceDCd9E8eFjCbSzcizsrPga7JUV/kBwxBa4jMDkxIcPlhvo6WK1WVO/aIx/453A4NOvFsFmlpWHYrBI0u6EABRQLMGxWTKhqA2dGBnBqaADBgNqPHVJ1muwsgQJOuwU+fwA+Pkg4gasAeIMB9M6GyVMYiaDERbrNJnchiwC5OCVNhsczn4twOdNmT+ic1O68bXgQnUNDaB8ZQvfIMCamXZj2+kIPfAvX8Z2pDSzLPVznoXHi3EQcS9n1K3f8ipIOMzV959cFnl/rN7yjOMPpXHCK8ajZnAhT9qk9gZ7xC7g0dER7A+OIFhXISLVhfMq76HnxOOFUz4uY8AzCbk3FPWs/gXX5N8ejG7ZJgYQI/Ph//hMXLpyT4XJ1zW4UFZckZBzRdsqwOVqxJZ7PsHmJcLyMAhRQXYBhs+rkUXc45vXgYGcrXuy4jK6pyaiv5wUUoIAxBHIdztmSFmJXcl5KKorEqyMFRampsJuTq0xA29AA2kWYLELl4SG0Dg2gY3gYHeLzkeGYLnq6fGDb1eUcrnnIW7i0g9i1K8o8pNodkB8vUOv3ert+RWCspYNhs5ZWwxhjcXnH8erlH+JU74vGmBBnobpAaWYlHtzwZ0h35KneNzukQDwFmpsuoLxiXTy7iEvbDJvjwnptowybVYJmNxSggGIBhs2KCePWwNGBXrzY0Yo3+zpn+0ixWLC3ZAXEQ7p4UCAeAtzZHA/V6Nu0WswyRBY7ksXD94qcadE3ovMrWgb7ZZgswuOO4SGIcLlzZES+do+OLDq7gvQMLM/Nw/KcPCzPzUWGI+WaWr8i2BU7gq/aDTz78Dc7RMic7AfD5mS/A2I7/2Ndz+K1lv+Bx++SDa/LvwW5qaWx7YStxV0gkTub0+052Fpyb9znyA4oQIHIBRg2R26l6EyGzYr4eDEFKKCiAMNmFbEj6GrIPY0XOlvwYkcLBqZDfxEzAdiSV4A7S1dhd9Ey2PiE7QgkecpSBVizealyvC4aAZ/fL3ckyzB5ZAhtgwPytSO8U7lvfAyB4I3LBZlNJhRmZMoguSwnB2U5eViRl4+y7FwZLIuv84Fw0azIjc9l2Bwbx2RvpXv8Il68+E/om7wsKfJSl+Ouij9CadbGZKfR5fwTWbNZl2AcNAUAXL7UjNVryg1pwbBZpWVl2KwSNLuhAAUUCzBsVkyouAHx4K/6vm4833EZxwf7MBOvFKak4o7Sldi/bCXynXzoiWJoNhCRAMPmiJh40iIC4qF6bcOhEhcdQ4Ph11D95PahQfSPj81+r7teUyJMLs7MkqFxaU5OaHdyXv6VcDk7l2GySnchw2aVoA3ajSiZ8crl/8Lp3oNyhinWDNyy6n3YUnI3TDAbdNbGnxbDZuOvMWcYG4FLTRflw/4a6+vw0MOP4OZb9samYY21wrBZpQVh2KwSNLuhAAUUCzBsVky45AZ6pibwXPtlvNzVhtHwQ6hEzdXdhSW4s2w1Nufmy13NPCigpgDDZjW19duXx+9D66AobyF2J88Jk8MlL/onxhecnMVkQkl2DkpndiKL1zk7k8XXLWYGUVq4Qxg2a2EV9DeGIAI40f1bvNbyI7h9kzCbzNhWfJ8MmsWD3XjoW4Bhs77Xj6OPr8DgQD8a6utwpOEwcnPzUL1rD6pqdse30wS3zrBZpQVg2KwSNLuhAAUUCzBsVkwYVQOegB9v9HTi+Y4WnBsZnL22PDMbd5atwm3Fy5FqtUbVJk+mQCwFGDbHUlO/bbl9XrQODMzuRA6Fyld2Kg8u8rBSq9mMZVk5KM0Jl7XIzcfy7FyU5eSiLDdXvscwWR/3B8NmfayTlkYpSmY8f+F7GJhqlcMqy9okS2bkppZpaZgciwIBhs0K8HipYQVOnzqBl196AePj46iu2Y2d1buQk5Nr2PnOnRjDZpWWmWGzStDshgIUUCzAsFkxYUQNXBofwQvtLXilpx0un09ek2mzy4f93VW2CsvTMyJqhydRIN4CDJvjLayN9qe9HrQMDshdyeLhe3J3sqyZHPp8aLEw2WLBsszs2frIc3cli7rJYteyKIXBQ/8CDJv1v4ZqzUCWzLj0nzjd91LozznOQuxb/UFU5O9RawjsRyUBhs0qQbMbXQkcOvg8Vq0ux6rVa3Q17lgMlmFzLBQjaINhcwRIPIUCFNCEAMPm+C3DlM+HV7rb8EJHCy6Pj8qORPiyI68Id5atRHVBCcSPkvOggJYEGDZraTWWPpYpj3s2TO6UD+ALl7oYDj2Qb2RqasHGbRZLqMRF+OF7y3PzQvWSww/fE/WUTfz+tfQF0tGSvOnZAAAgAElEQVSVDJt1tFgJGqoomXG86zm81vojeHxTsJod2L3iYVSXPQSLyZagUbHbeAowbI6nLtumgP4EGDartGYMm1WCZjcUoIBiAYbNigmvaqB5bARNo8O4ODqEl7raZt8rSU3HnaUr5QP/su2O2HbK1igQQwGGzTHEjGNTo1NToZ3IIjweHpRhsix1Ef58bHp6wd4dFutsiQuxE3nuzmQRKhdmZDJMjuP66alphs3aWq1LQ/XoGW/W1KAuDtRicCr0Z571+bdiX/mHkGbP0dQYOZjYCjBsjq0nW9O+gMfjgd1u1/5AEzRChs0qwTNsVgma3VCAAooFGDYrIxxyT6OxvwfHB/pwYqgPkz7vbIMOswW3FpfhjrKV2Jidp6wjXk0BlQQYNqsEvUg3w5OTaB8eRKcocTEyhPa5O5OHBzHudi/YgtNqQ1l4V7Kok7wiNz+0KzlcN7kwM0sbE+UoNC/AsFkbS3Sm9xAOdzyFoakObQxo3ijyUstw19qPozRzoybHx0HFVoBhc2w92Zp2BUQd5saGw5iemsJHP/Gn2h1ogkfGsFmlBWDYrBI0u6EABRQLMGyOjnDa78OpoQEcG+jD8cEedM2ra5pisWBzbiFqikpk0CwCZx4U0JMAw2Z1VmtwciJUH1kEyeEH78n6ybJu8hAmPQuHySk2+2yJCxEmLxcP4AuXuBAP5StgHXh1FjIJemHYnLhF9gc9ONH9Auo7/hcT7tBDhW1mByqL7oLTlpa4gc3rOctZiMqi/ZoZDwcSfwGGzfE3Zg+JE+jq6kTj4Vo01NdiTflaVFXvwuat2xM3IB30zLBZpUVi2KwSNLuhAAUUCzBsXpgwEAxClMY4PtSHY/19OD86CPG1mUPUXK7IzMH2giJszSvE2swc1mFWfFeygUQKMGyOjX7/xHhoV7IobSHC5KGB2ZIX7cPDcHk9C3aUZnfInciyxEW4XrIIk8XnZbl5yEtLj81A2QoFFhFg2Kz+LSLqHh/reRZH2p/GlG9MDiDVlo2qsrdia8l9cFhS1B8Ue6TAHAGGzbwdjCYgymTUvfkaGg7XyjJi1bv2oKpmD1JS+P02krVm2ByJUgzOYdgcA0Q2QQEKqCLAsPla5v7pKblz+ehgL04N9l9VGkOcXZyajm15BdiWJwLmAqRYrKqsFTuhgBoCDJsjU+4bG5XhsaybPDSEtjlhcsfwMKbnlNS5XosZDkfoAXwzQXJeXihIFruUc/KQk6adXYuRifAsowowbFZvZSe9I2js+CVOdD8Hjz9Udz3bWYKa5W9HZeE+mM182J56q8GeFhJg2Mz7w2gCP3vyCTgcThkyl5QsM9r04j4fhs1xJw51wLBZJWh2QwEKKBZg2Ay4/H6cGOyVdZePDfah1zV5lWu6zYbNOQXYUVCEHXlFyHPyX7gV33hsQLMCDJuBYDCIvvGx2V3JorRF2+AAOsMlL8SOZbfft+AaZjqdKMvJw/IcESDnYcVMmCzC5excZKWmavYe4MAoMFeAYXP874eR6W4cbvtfnOl7GYFg6NkPRekV2LXi7ajIuwkmmOI/CPZAgSgEGDZHgcVTKZAEAgybVVpkhs0qQbMbClBAsUAyhs3+YBAXR4dwbKAXx4f60TQ6fFVpDLPJhA3ZedieX4hteYVYk5EN8TUeFEgGgWQIm0WY3DM2KsNksSs5VOpiEB3idXhYhspev3/B5c5KSZE7kGd2IssSFyJczs3Dqrx8pNodyXC7cI5JIMCwOX6L3Dd5GXWtP0fT4JsIIlSia2XONuwqeyeWZ2+JX8dsmQIKBRg2KwTk5RQwmADDZpUWlGGzStDshgIUUCyQLGFz19QEjg/2yd3Lp4b65G7muUdZWjq25hXJgHlzbgEf7Kf4zmIDehUwQtgs6qp3jwxf9fA98TC+mfrJXWMj8C0SJuekpobC5PBO5LK80I5kESavzMuHeEAfDwokgwDD5tivcvvoKRxu/zlah4/Lxk0wY13+zdi98mHkp66MfYdskQIxFmDYHGNQNhc3gaNHGnD29Em87/0filsfbBhg2KzSXcCwWSVodkMBCigWMGrYPOnzynBZ7F4+MdgPUYd57pFps8sH+m3LL8LO/CJkcxei4nuJDRhDQA9hsz8QQNfocGhXsqiZLGonDw3IB/GJ3cndoyPwBQILLkhealooSJa7k3OwPDc/VD85O1eWvHAyTDbGDc1ZKBZg2KyYUDYgdi43Dx5GXfvP0TveJL9mMdmxuXg/asregUxnQWw6YisUUEGAYbMKyOxiyQKXmpvQ2FCHxvo6bNu+E7v33II1FWuX3B4vXFyAYfPiRjE5g2FzTBjZCAUooIKAkcJmUWv5xY5WHB3oxaXxkWv0NufmY0d+sXyonyiNwYMCFLhWINFhswiKhyYnMOZyzQ7u8mA/ai9dnC150TV67e/v+TPJT0vHyvwClGRmY2V+PkqzRKAsguU8rCsq5tJTgAIRCjBsjhBqgdPO9b2CN9uexLCrS57lsKZhW/G92Ln8bUi1ZirvgC1QQGUBhs0qg7O7RQWGhwbRUB8KmLNzclBVvRtVNbthNpsXvZYnKBdg2KzcMKIWGDZHxMSTKEABDQgYIWw+1NWOFztbcGZ44CrRFWkZ8qF+W/KKUJmTB7vZogFxDoEC2haIZdjcPzGO4YkJDE1NYGhyUobIQ1OTGBgfl18LvTcZ+jUxgSmvJ2KcgvSMUHicnSvLWpTm5GJlbj5KsnOwtrAo4nZ4IgUosLAAw2Zld0h9xy/w6uUfykZSbdmoLnsI25bdB5uZdd2VyfLqRAowbE6kPvueL1D7xms4dPB5VNeEAuac3DwiqSzAsFklcIbNKkGzGwpQQLGAXsPm9olxPNd+CYe6Wq+qvyx2Ld9Ruko+2C+LPwav+P5gA8kncKOweWRqCkOTIiQWoXE4OJ6YwODM12aCY/neOMamp5eEJ3Yk56anIzd15jUN+ekZWJadIwNlUfaivKBwSW3zIgpQIHoBhs3Rm81ccab3EA5c+Af56f7yj2D7svuX3hivpICGBBg2a2gxOBSIXc0MmBN7IzBsVsmfYbNK0OyGAhRQLKCnsNnl9+H1ng78tv0ymseu/Bh9oTMV+8tW4Y5lK5DvTFFswgYoYHSBSff0bGg8LHYbT07K0HhwYgKTnin0jY+jf3wSwyJInpzE8NQk/MFgVCwmAFmpqaHQODVNBsh5aenISUtDXlpGOFBOm31PnJeZwt+/USHzZAqoIMCweWnIl4eO4henH0MQAdy77o9RWbR/aQ3xKgpoUIBhswYXhUOiQAIFGDarhM+wWSVodkMBCigW0EPYfGFkCM93XMbrPZ1wB/xyzqIkxu7CEtxVthqVufkQwRYPCiSjgNfnw2C4PMVMaCxKUsyUrJAfzy1jMTkJj98XNVW6wyGDYxEW54rdx+I1NV3uOg7tRE4Lv5ch38tJTYPZxN+ZUUPzAgpoTIBhc/QL0jl6Fj87+WX4g17csup3sXv5w9E3wisooGEBhs0aXhwDDc3r9aLhcC127bkZFgvLIWp5aRk2q7Q6DJtVgmY3FKCAYgGths2TPi9e6mrF8x0t6JgYn51neWY27ixbhduKlyPValU8fzZAAS0J+AMBuYs4tJt4Qu40ngmNQx9f2Wksvz45iUmPO+opOCzWKzuLZXgcCohz0zNQlpOFzJRUZNhTQ19LC+1ItvIP+VE78wIKGEGAYXN0qzgw2YYfH/88vP5p7Fj2IO4o/8PoGuDZFNCBAMNmHSySjod47uxpGTKfPXMK1bv24B0Pv1vHs0mOoTNsVmmdGTarBM1uKEABxQJaCpvFD+mfHOrHC+0tqOvrgi8YkPPLtNmxt2QF7ipbheXpGYrnzAYooIZAMBjEmMs1u6tY7j4OB8QyNJ73cDyx+1icH12xCsBqNstdxHLH8Zw6x2KncV5GRuhrs7uRQx+n2m/8YKpYPiBQDWf2QQEKxFeAYXPkvmPT/Xji2Gcx5R3F+oJb8eCGRyO/mGdSQEcCDJt1tFg6GWpPTzca6+vQUF+L5ctXyof9bd2+Uyej5zAZNqt0DzBsVgma3VCAAooFtBA2j3jceLGzVYbMfdOTck7ix+/FQ/7uLl2F6oJiWMxmxXNlAxRQIjC3zrEMjcPlKebuPpY7kmNc51jWO5a7jjPDpSuulLEQtY9jXeeYYbOSu4TXUsB4AgybI1tTl3dcBs2j071YnVuFhzZ9HmYTf+w7Mj2epTcBhs16WzHtjre3pxs/eeKH8Pt8qKrZjeqaPUhLT9fugDmy6wowbFbpxmDYrBI0u6EABRQLJCpsFg8bOzrQK2sxHxnoRSD88LHi1HTcWboS+0tXInuB3ZeKJ84Gklpgbp1jGRaLmsZxqHOcZndcs6tY7DQO7Ti+8nC8nDm7jxNd55hhc1L/1uDkKXCNAMPmxW8KUTLjJ8f/Av2Tl1GWVYmHN/8VLGbb4hfyDAroVIBhs04XToPDbm25DKvVitKy5RocHYcUqQDD5kilFJ7HsFkhIC+nAAVUE1A7bB5yT+OZtmYc6mrDsHtazlM87G9P0TLcXbYKm3LyVZs7OzKuQO/YKJ45eQyXB/plkDw8r2TFlNezpMkXZWaFQuJwneO89HTkpWcgJyU1XAP5SsmKkqzsJfWR6IsYNid6Bdg/BbQlwLB54fWY8o3hmbPfQtvISRSlr8G7tn4VdkuKthaRo6FAjAUYNscYlM1RQOcCDJtVWkCGzSpBsxsKUECxgJph81OXL+CnzefgCfjluNdl5+Ku0lW4ubgUKRY+7E/xYiZ5Axd6e/Db0yfwzKljON7RtqhGngiN09NlTWNZ7zgtHflp6VdCY/leGnLC56Q7blzneNHOdHQCw2YdLRaHSgEVBBg23xh50jOMJ098CcOuLuSkLMN7tn0NKTY+W0KF25JdJFiAYXOCF0An3U9OTMBkMiE1LU0nI+YwlyrAsHmpclFex7A5SjCeTgEKJExAjbBZlMn417PH0esK1WPeW7IcD6/ZgLI01uNK2MIbpOMjrZfx7OnjOHDqBC4N9F01q1sr1mHv2o0yPM4TIbJ8gJ4IlTOQnZpqEIHYT4Nhc+xN2SIF9CzAsPn6qzfs6sRPT3wZE55BZKcsw7u3/g3S7Ll6XmqOnQIRCzBsjpgqKU88cewIGurr0N7eikc/80VkZGQmpUMyTZphs0qrzbBZJWh2QwEKKBaIZ9gswuV/O3sCjQM9cpzL0zLwR5t2YENOnuJxs4HkFPD5/Xi9+SIOnDqG586chCiXMXOk2uy4ff1GPLB5O+7etAUZTmdyIimcNcNmhYC8nAIGE2DYfO2C9k+24qcnvoRp3wTyU1fI0hnc0WywG5/TWVCAYTNvkPkCLZcvobGhDo31ddhUuQXVu/Zgw8ZKQiWJAMNmlRaaYbNK0OyGAhRQLBCPsNkd8ONnTefwq9Ym+IIBpNtseG/FJtxTthqJfviZYjA2oLrAlMeNl86fwbOnjuPFs6cwNh2q9S2OnNRUGSzfv3k7bl+3AQ4rH8ikdIEYNisV5PUUMJYAw+ar17Nz9CyeOv1ViIcCLsvcgHdWfgl2K2s0G+uu52wWE2DYvJhQcrzv8/nw8ksvyF3MGRkZqKrejaqa3fKBfzySS4Bhs0rrzbBZJWh2QwEKKBaIddj8Rm8n/uPcCYgHAZoA+dC/3127WQbOPCgQqcDQ1KSsv/zsyWN49eJ5uP2+2UtLs3Nw76ateGDLduxaXQ6L2RxpszwvAgGGzREg8RQKJJEAw+Yri90yfAy/PP138Ad9WJm9DQ9VfhFWM/98k0S/HTjVsADDZt4KQuDypWZcOH8W1TW7kZdfQJQkFmDYrNLiM2xWCZrdUIACigViFTZ3TI7je6eP4PzIkBzT2qwcfKJyJ1aks0aX4kVKkgY6h4dk/eVnTh5HQ0sz/MHg7MzXFRXj/sptuH/LdmwpXZ4kIomZJsPmxLizVwpoVYBhc2hlLg7U4tdn/x5BBLA+/xbcv+HPYDZZtLpsHBcF4irAsDmuvGycAroTYNis0pIxbFYJmt1QgAKKBZSGzS6/Hz+6cBq/7bgkw8FchxPvX78Fe4vLFI+NDRhf4Gx3Jw6EdzCf7u6cnbDYFV+1YjXu27IdD2zeipV53C2h1t3AsFktafZDAX0IMGwGTnY/j+ebvi8XbHPxXbi74uMwmcT/qXhQIDkFGDYnx7p7PB7Y7fbkmCxnqUiAYbMivsgvZtgcuRXPpAAFEiuw1LBZ7Dk92NWKH50/hVGvR5YyeOvKcjxSvhEOM3f6JHZVtdt7MBhEfeslPHvyOA6cOo624cHZwdosFtxSvg73b96G+zZvQ356hnYnYuCRMWw28OJyahRYgkCyh8117T/D6y1PSLmbV74He1Y8sgRFXkIBYwkwbDbWes6djd/vlw/5a6ivxb33vwXlFeuMO1nOLGYCDJtjRrlwQwybVYJmNxSggGKBpYTNzWPD+KfTx3BpfET2vzO/CB/euA1FKWmKx8MGjCfg9fnwatN5PHPyGJ4/cxIDkxOzk0x3OHDH+krct3kr7tywGRlOp/EAdDYjhs06WzAOlwJxFpgbNo+7B3C69yACwUCce9VG8yOubpzrf1UO5s6Kj2JbyX3aGBhHQYEECzBsTvACxKF7UXu54XAtTp44Jh/yV12zB6tWr4lDT2zSiAIMm1VaVYbNKkGzGwpQQLFANGHzmNeD/zl/Ci92tcp+C1NS8fFNO7A1r1DxONiAsQTGp6dx8PxpuYP5pfOnMeF2z04wPy0dd2/aIusv761YDxufWK2pxWfYrKnl4GAokHCBmbD5wJknZnf4JnxQKg/ggQ2PYkPBrSr3yu4ooF0Bhs3aXZtoRtbX24OG+jq5k7lkWSmqd+3B9h1V0TTBcykgBRg2q3QjMGxWCZrdUIACigUiCZtFLebn2i/hx01nMOXzwWmx4l1rNsiyGaJ8Bg8KCIGBiXE8d/qE3MH8evMFeP3+WZgVOXmyNIbYwVyzqhxm1rrU7E3DsFmzS8OBUSAhAt0TJ3Dg3Pcx7OqV/RdnrMOqnO0JGUsiOi3LqsSK7C2J6Jp9UkCzAgybNbs0EQ9sdHQE//JP/4jqmt1yJ3NGBh/qHjEeT7xGgGGzSjcFw2aVoNkNBSigWGCxsPnc8CC+d/oIOqdCpQ9uKy7DB9ZvQY6D5Q4U4xuggdbBfjxz6gQOnDyGI+0tCARFNe/QsamkVO5evq9yq/yYhz4EGDbrY504SgrEW0CUzDjY/G9oHqyTXaXasrF39e9jY9HtMIEPx4u3P9ungJYFGDZreXUiG5vP54OVP10YGRbPWlSAYfOiRLE5gWFzbBzZCgUoEH+BG4XNw+5p/Pu5E3ijt1MOYnlaBj5RuRPrsnPjPyj2oGmBk53tePbkMRw4cwLne7pnxyp2K9esXIP7t4Qe8Lc8J0/T8+Dgri/AsJl3BgWSWyAQ8KK+85eoa/s5fAE3LCYrblr9EHaUPAybmf/QnNx3B2dPgZAAw2beCRSgwFwBhs0q3Q8Mm1WCZjcUoIBigflhsz8QwC9am/Dz5nNwB/xIt9nwvrWVuLt0FUsfKNbWZwPinjh8uVmWx3juzAl0jgzPTsRuseK2tevlDuZ7K7ciN5UPidTnKl8ZNcNmva8gx0+BpQu0DB/Fi00/wOh0qGTG6twq3L/hoyjJLsXwuGfpDfNKClDAUAIMm7W7nK6pKTQ21CEjMwvbtu/U7kA5MkMJMGxWaTkZNqsEzW4oQAHFAnPD5saBHvz72RPocU3KYPnuslX4vbWbkcofsVLsrLcG3D4vDp0/iwOnj+P5MycxPDU1O4UMpxN3rq+UO5j3b6hEqt2ht+lxvAsIMGzm7UGB5BMQJTNeav5XNA0elpPPdpbgrrUfw4rsrZh5QCDD5uS7LzhjCtxIgGGz9u6Nk8ePorHhMFouN6Oqejf233Uv0tLTtTdQjsiQAgybVVpWhs0qQbMbClBAsYAIm491DOL7Z47i5FC/bG99di7+aNMOrEjngyIUA+uogdGpKbxw9hSePX1cBs0u75VdbAXpGXLnstjBfGv5OlgtFh3NjEONRoBhczRaPJcC+haYKZlR2/oz+IMe2C0puGnlI9ix7C0wm0Lf5xk263uNOXoKxEOAYXM8VKNvs621Re5ibqyvw/qNlaiq3oVNlXygafSSvEKpAMNmpYIRXs+wOUIonkYBCiRUQJTJeLazCT8+dw6+YAC5Dqd8+N+txWUJHRc7V0+gd2wUz546jmdPHUPtpSb4AoHZzlfnFeC+zVtx/+bt2LliFUwmPhBKvZVJXE8MmxNnz54poKbA/JIZlUX7sXfN7yPFevU/NDNsVnNV2BcF9CHAsDnx6/TNx7+KlJQUuYu5qmY37HZ74gfFESStAMNmlZaeYbNK0OyGAosIDE678EJHC52uI+APBvFCZwtGPW757ttXr8Uj5RvhMHPHqtFvmKa+Xhw4dRzPnDqGEx1tCM6Z8NbS5fLhfvdXbsO64hKjU3B+1xFg2MzbIlECE55BnOo9iEDAn6ghJE2/fROXcGmoQc63JHMd7qr4IxSkrbru/Bk2J81twYlSIGIBhs0RU8XlxGAwiIH+PhQUFsWlfTZKgWgFGDZHK7bE8xk2LxGOl1EghgJdUxP46/pXMeSejmGrxmtqb2kp3rOmEkUpfLCb8Vb3yoyOtrXI8hgiZG7u75t9w2IyYfeaCtwvAubN21GSlW1kBs4tAgGGzREg8ZSYCxzu+DnebPmpLOXAQx0BsYN5X/mHsLHw9gU7ZNisznqwFwroSYBhs55Wi2OlQPwFGDbH31j2wLBZJWh2Q4EbCLRMjOIr9a9hzOvB2qwc7Mjjv/pej2pdTh4eWLsC3UMM5I32m8nn9+ON5ovyAX8HTp+AKJcxczitNty+boMMl+/etAXZqalGmz7no0CAYbMCPF4atUDryAm82PQDjLi65LWFaauxJq8m6nZ4QXQCDmsKtpbcC5vZueiFDJsXJeIJFEg6AYbN8Vvy4aFBDAz0Y+26DfHrhC1TIMYCDJtjDHqj5hg2qwTNbihwHYELI0P4m8bX4fL7sC2vEJ/bvgcOPszshveKeEAgw2Zj/Faa8rjlg/1EeYwXz57C2PSVf0TISknBXRs344HN23H7+o1IsbGumzFWPfazYNgce1O2eK3ApGcIB5v+DRcH35RvptqycNvq92NT0R0wgfXhtXTPMGzW0mpwLBTQhgDD5tivQ8PhWvmgv+HhIbzzXe/BuvUbY98JW6RAnAQYNscJdn6zDJtVgmY3FJgncGKwD187+iY8gQB2F5bgz7fugsVsptMCAgyb9X17jExN4bkzJ/DsyWN45cI5uP2+2QkVZ2aF6i9v3o6b1lTw94K+l1q10TNsVo06KTsKBLxo7Pw1atuehDfghslkwc5lD+LmVe+JaJdtUqIleNIMmxO8AOyeAhoUYNgcm0VpbroAETIfaTiM6l175MP+1lSsjU3jbIUCKgowbFYJm2GzStDshgJzBI4M9ODxo7UQD77bV7ICf7x5J0wm7o5a7CZh2LyYkPbe7xwekuUxnjl5HPUtzfKenzkqCgplwCx2MG9bvlJ7g+eINC/AsFnzS6TbAbaNnMTzF7+H0eleOYflWVtw19qPISdlmW7nlAwDZ9icDKvMOVIgOgGGzdF5zT/71ZcP4pVDB1FQUIgqGTLvUtYgr6ZAggUYNqu0AAybVYJmNxQIC7zR04nvnKxHIBjE21evxfvXbqZNhAIMmyOESvBp53q68Oyp0AP+TnV1zI5G/HOKCJVFuPzAlm1YnV+Y4JGye70LMGzW+wpqb/yiZMaLzf+KpoFaObhsZwnuKP8DrM6t0t5gOaJrBBg286agAAXmCzBsVnZPvP7ay9i8ZRuy+GBuZZC8WjMCDJtVWgqGzSpBsxsKAHixswXfO31UWnx4w1bcv6KcLlEIMGyOAkvFU4PBIBpaL+HZk6EH/LUODcz2brVYcNPqclkeQ+xiLsrMUnFk7MroAgybjb7C6s1PlMxo6HwatW0/hS/ght3ixJ4V78bO0gdhNlnVGwh7UiTAsFkRHy+mgCEFGDYbclk5KQosWYBh85LporuQYXN0XjybAksV+HVrE/7j/El5uSibcccylg2I1pJhc7Ri8Tvf6/PhteYLeObkMTx/5iT6J8ZnO0u12eWD/cQO5rs3bUGG0xm/gbDlpBZg2JzUyx+zyc8vmbGpaB/2rv6AfBAgD30JMGzW13pxtBRQQ4Bh842VR0dHuGNZjZuQfWhKgGGzSsvBsFklaHaT1AI/unAaT7VcgMVkwqNbd2FPEWs+LuWGYNi8FLXYXNM3Nip3LPv8AfxP7Wt4/uwpTHrcs41npaTg3sqtuK9yG/at3wiH1RabjtlKxALiAWbn+l7BuHsw4mv0fqLTbpH3pM9/pRa43ufE8asr0D/ZiubBOtlpUXo57qz4CIoz1qk7CPYWMwGGzTGjZEMUMIwAw+arl9LtdqOhvhaN9XVYuXI1Hnrnuwyz1pwIBSIRYNgciVIMzmHYHANENkGBBQTqervwjeN1sJnM+MLOm7Etr4BeSxRg2LxEuAgvc/u8uNjXi0v9vbg00I+m3m5cHhzA+Z5uuLyea1pZlpWNB7bswD2btuCWCoYzETLH/DRRY7ax82mc6P4tPH5XzNtngxQwukCKNRN7yz+AysI7jD5Vw8+PYbPhl5gTpEDUAgybQ2SnTx5HY8NhXLxwDtU1e1BVsxtly1dE7ckLKKB3AYbNKq0gw2aVoNlN0gr8P689j56pCXxyaw32FpclrUMsJs6wORaKQNvwIC6JUHmgD019vWjuF7/60D06csMOUmx2rMkvwJqCImwsWYY71m/C1jL+ATU2K7K0VvomL6Oh45dyN/PMkeUsxvr8W2A2W5bWqM6u4s5mnS2YBodrt6Rg27J7YTOz3I8GlyfqITFsjpqMF1DA8ALJHDYP9Pfh9VdfRmNDHSrWrkdV9S5Ubtlm+GlRNTYAACAASURBVDXnBCmwkADDZpXuD4bNKkGzm6QUONBxGf9y5hhWpGfiOzffmZQGsZw0w+bINSfcblzs7ZYhclNfD5oH+mTAfHmgH26/77oNmU0mlGXnorywCGvyC1FRWITygiKsKShECZ9AHTl+HM8MIoDmwXo0tv8KneNnZ3tanbMTO0vfipU5yfUXCNZsjuPNxqYpoEMBhs06XDQOmQJxFkjmsPnnP/0xikuWoap6N5x8hkqc7zQ2rxcBhs0qrRTDZpWg2U3SCUz7fPjEa7/FqMeNv9h5M3bmFyWdQawnzLD5alGf34+WwQG5Q1mEys0iVA6/Dk5N3pA/JzUV5flFWFNYiIqCYpQXFMpwWYTKVkty7IiN9b0Z7/ZEeYzTvS+iseM3GHP3yu7EjszKov2oKn0bMp3JWZ6HYXO87zy2TwF9CTBs1td6cbQUUEMgmcNmNXzZBwX0JsCwWaUVY9isEjS7STqBnzafw0+az2J9di7+btftSTf/eEw4WcPm/vGx2VIXzXPKXrQPD8IXCFyX2m6xYlV+/uzO5IrCYpTnF2JdUQkyuLMhHrdnXNqccA+iofNXONXzwmw95uyUZdix7AFsLt6f9D/6z7A5LrcdG6WAbgUYNut26ThwCsRNgGFz3GjZMAV0KcCwWaVlY9isEjS7SSqBca8HH3vlANx+P76xZx/KM3OSav7xmqyRw2bxcD65KzlcP1mUvrjU3ycf1jfudl+X1ASgOCt7dmfy3LIXZTl5EGUxeOhToHvsPBo6nkbTYC1E6QxxrMrZgZ2lb8HKnO0wgWsrTBg26/P+5qgpEC8Bhs3xkmW7FNCvgNHC5tHRETTW16G9rRUf+IOP6ndhOHIKJEiAYbNK8AybVYJmN0kl8K9nj+PZ9ku4qWgZPr1td1LNPZ6T1XvYHAwG0TEyhEv9/Wge6IXcpRwufSEezhe8AV6GwyEfzCce0FcudigXFMody+LVabPHk5xtqygQCAZwcfANNHY8jZ7xi7Jnu8WJTUV3oKr0rRAP/+NxtQDDZt4RFKDAXAGGzbwfKECB+QJGCZsbGw7LkLm/rxdVNbux+6ZbkJOTywWnAAWiFGDYHCXYUk9n2LxUOV5HgesL9E5N4o9f+6188x9vvQdFqWmkipGAXsLmuQ/nm62j3L/ww/msZjOW5+SFdikXFIUfzheqpVyYmRUjQTajRQGPbwonep7H0a7fYNw9IIcoguWdpQ+gsuhOWZuZx/UFGDbzzqAABRg28x6gAAUWEtBz2Hyp6SIaG+pkyLyjqkaGzBVr13PBKUABBQIMmxXgRXMpw+ZotHiu1gTOdnfimZPHNDWs8/BiEEEUwYxyWDU1Nr0PJj3FigmXT5PT6BoZxqWBfrlTeaGH8+WlpsndyWKXckVRiXwV4fLaQj5AUpMLO29QU95RdIyewsBku+LhBoMBiJrM5/pfhz/oke2tyN6C7cseQEUefyIiEmCGzZEo8RwKJI8AdzYnz1pzphSIVECvYfNvnv4FOtpaZcAsfplYHi/SJed5FFhQgGGzSjcIw2aVoNlNTAXGp6fx+IFf4T/feCWm7SptLC0jA1t270LA78fR19+A1xMKkHgkl4DDYsVqUfIivENZhMni8/XFy5DucCQXhs5nK8LltuHj6Bg7i46RUxhydcZ8RhaTDZuL78SO0geRm1Ia8/aN3CDDZiOvLudGgegFGDZHb8YrKGB0Ab2GzZMTE0hLTzf68nB+FFBdgGGzSuQMm1WCZjcxE/hx/Zv4u9/8AkNTk7LN+yq3YlOJNgKak/BiHEGUwYwV3NUcszWfaUjLO5tz0tNRnl+ENQUFshwGD30KiHC5dfg4OsfOytfR6Z6rJiKC4ZLMdfKX+FjpkWLLwKai/XCwVMaSKBk2L4mNF1HAsAIMmw27tJwYBZYsoNeweckT5oUUoMCCAgybVbpBGDarBM1uFAuc6e7EZ372BI61t8q2VucV4PF3vge3aqRu1ZGBXjx25A2kW2345733wWllCQ3Fiz6vAb3UbI71vNle/ARmdi63jZxE++jpG4bLorxFWfZmLEtfC7NZecgcvxklV8sMm5NrvTlbCiwmwLB5MSG+T4HkE9Ba2Cwe8Hf82BHcdc/9ybcYnDEFNCDAsFmlRWDYrBI0u1mywEzJjP9+81X4g0FkOJ349D0P4oM37YXVYllyu7G8MBAM4s/fPIi2iTF8YN0WvG1VRSybZ1thAYbNvBWUCkx5R9A6fALtEYTLy7MrUZwRmx3MSsfN668vwLCZdwYFKDBXgGEz7wcKUGC+gBbCZo/Hg4b6WhxpOAyXy4U9N92C227fz8WiAAUSIMCwWSV0hs0qQbObqAWCwSCebKzDY7/+X/nANbPJhHdX78EXH3w7clPTom4vnhcc6mrDd081ItfhxPdvuxdWszme3SVt2wybk3bplzzxyMLl9VievRnLsypjVh5jyQPmhVEJMGyOiosnU8DwAgybDb/EnCAFohZIZNh85vRJNDYcxvmzp1Fdswc7q3dhxcpVUc+BF1CAArETYNgcO8sFW2LYrBI0u4lKYH7JjB3LV+LrD78XlcvKompHjZN9gQA+/upzGHJP4082V2HfshVqdJuUfTBsTsplj2rSoXD5OERZjI7RM9eUxTCbbFiWyXA5KlQNn8ywWcOLw6FRIAECDJsTgM4uKaBxgUSEzRfOn8UT//0fWLW6HFXVu7Bl2w6NK3F4FEgeAYbNKq01w2aVoNlNRAJjLhceP/Ar/HftaxClKYozs/CXD74D79hRHdH1iTjpVy0X8V8XTmFFeia+ddN+uQObR3wEGDbHx1XPrc4Nl9tHTmPM3XvVdES4XJKxDqIkhqi7XJK5FhaTXc9T5tjnCDBs5u1AAQrMFWDYzPuBAhSYL5CIsLmttQUFBYVISU3lglCAAhoTYNis0oIwbFYJmt0sKCBKZvzfhlr83W9+IUtm2C1WfGzvfnzyrvuQYtNuMDTl8+KjLx+Ay+/DF3fchKqCYq50HAUYNscRVydNT3qGZmsud4gH+rn7rhMur5UlMVbkbGW4rJN1XeowGTYvVY7XUcCYAgybjbmunBUFlAgkImxWMl5eSwEKxFeAYXN8fWdbZ9isErQBu3n14nkcvtwUk5kdunAWR9paZFv3VW7FV972OyjLyY1J20tppHd6Eoc62ha99NL4CBr6e7AhKxeP7b590fN5gjIBhs3K/PR6ddNgHS4NNqJt9ATGpq8Ol8WcSjM3YnnWZll3eVnWeu5c1utCL2HcDJuXgMZLKGBgAYbNBl5cTo0CSxSIddjc3taK4pJlsNlsSxwRL6MABRIpwLBZJX2GzSpBG6yboalJ3Pr1L2PU5YrZzMoLCvHY29+N29auj1mbS23o028exOXx0Ygv//qeO1CRmR3x+TxxaQIMm5fmpsereieacbb3FZzuOwi3b/KqKZRmbERZdiWWZ29BKcNlPS5vzMbMsDlmlGyIAoYQYNhsiGXkJCgQU4FYhM3j42NorK9DQ30dHA4HPvEnj8JiscR0nGyMAhRQR4BhszrOYNisErTBuvnzJ/8HP2moxc4Vq7Bv3UbFsyvKzMLv7blVcTuxaOAHZ47huY7LSLfZ8MDy8kWbzHGm4J4yPlV4UagYnMCwOQaIGm5iyjuK070Hcbr3JQxNdcyONMWaiU1F+7A6twrLMtfBanZoeBYcmpoCDJvV1GZfFNC+AMNm7a8RR0gBtQWUhM3Hjjai4XAturs6UVWzG9U1u1FYxLKJaq8h+6NALAUYNsdSc4G2GDarBG2gbhpaLuGh731b1lU+9Om/xMq8fMPM7vWeDnz7RD3EI/6+XH0rNucWGGZuRpgIw2YjrOLVc/AHvbg4UIfTPQfRNnICQQTkCTazA+X5u2XIvDJ7K0wwG2/ynJFiAYbNignZAAUMJcCw2VDLyclQICYC0YbNExPjOPDM03In85at21G9aw/WrVe+uSomk2EjFKCAYgGGzQsQ1h87hw/+2ePyjC0b1+D7j38KOVkZN7zi2//8JP7tx89c93yGzYrv1aRqwB8IYN+3/haX+vvw2XsexCfvut8w8++emsCjbxyEJ+DHeys24XfWJL6ch2FwYzQRhs0xgtRAM51jZ2XAfGHgDXj8oXI8IlBekbMFmwr3oSJ/N2xmpwZGyiFoWYBhs5ZXh2OjgPoCDJvVN2ePFNC6QLRh87mzpzE2Oip3MrNUhtZXl+OjQPQCDJtvYNbc2oW/+Nq/4LEvfATlK5fhqWdeQW3jGXzlM3+AFKf9mqvmvz//c4bN0d+cyXzFP738Ar76m19gRW4eXvnMX8FmkFpVbr8Pn609hI7JcWzLK8RfVd2SzMus2bkzbNbs0kQ0sHH3QLhMxiGMTvfMXlOQtgqbim7HxsJ9SLVlRdQWT6KAEGDYzPuAAhSYK8CwmfcDBSgwXyDasJmCFKCAsQUYNt9gfUVY3NLeg0c/9og8Y374PP8ysatZHDPni13R3/rnJ2d3QzNsNvZvpFjOrmtkGLd9428w7fPiyY/+KW6pWBfL5hPa1reOH8YbvZ3Id6bg2zftR5rt2n+4SegA2bkUYNisvxtB7FoWu5dP97yEzrEzsxNIt+dhQ+GtqCy6E3mpZfqbGEesCQGGzZpYBg6CApoRYNismaXgQCigGYH5YbPb7ZYP+eNBAQokpwDD5hus+/zweHh0HB///Hfw5x97BDXbN1xzlQijP/bZb+GB/btl4CyuX7W8GO98YK88l2Fzcv4GW8qsP/xfP8Czp0/gHdur8Y/v++BSmtDkNS90tOD7Z47CajLj63v2YVUGd1ZqcqEYNmt1Wa4Zl6i73Dp8Amd6X0LT4GH4Am55jt3iREX+Tags3Iey7ErWYdbNimp3oAybtbs2HBkFEiHAsDkR6uyTAtoWEGHzyfNtaGw4LOswf+SP/hj5BYXaHjRHRwEKxE2AYfMCYfPcsHixsNk17cFff/PfMTo+idcOn7ymxrPbG3oYk9YOu9UMkwnw+AIIBrU2uuQbz3OnTuKhf/wHpDscOPfY15CffuMa4XrSaRoZxicOPg9PIIDPVO3Cg6vX6Gn4STdWh80MrX7PWmgx/IEgLGbx2EljHwOTHWhoex7HOl/CuHtQTtZsMqMifyd2lN2JTcV7YDXzpwaMfReoOzubxQR/MIiANv8ooy5GkveWLN9nk3yZF52+xSz+v2OC18+/PCyKxRMoEKWA3r7PBoNBTIyPIS83G82XLiM9IwMZGZmwWm1RzpynU4ACRhKQf38IBBHQ6B8VTEHx3SsBR7Q7m+fvZBZlOJ58+tBsGY3BMU8CZrF4l1lpNlgtJoxMeOWNwCNxAm6fFzWP/TVEGY2vP/xu/OGt+xI3mBj23D/twufeeAl9rincWboCn9q+K4ats6l4CORl2qHV71nxmK8e2vQGpnG652Uc63oe3WMXZ4dckrkWm4tvx6bCvUi186cF9LCWehxjRooVbp8fHi//nKDH9YvlmIMIwgTj/6NeLM2M2Jb4R2m7zYzxKZ8Rp8c5USChAuL/tHr4LtvWehkXzp/F5cuXsHHjJjz0lvv494eE3jnsnALaEshItWLa44fXp82/PyQsbI6mZvPMruZ3vXXfbImN+TWeWUZDWze+Fkfz9QNP4x8OPocNxcvwwqe+AJPYcq7zY9zjwV/Uv4zOyQmsSMvAd265S+czSo7hs2azttb5aNdvUNv6JFy+cTkwUYd5U+E+bC7Zj2xnibYGy9EYUoBlNAy5rJwUBZYswDIaS6bjhRQwhEB7Wyuef+4ZVNXsxrbtO+Wc+IBAQywtJ0GBmAmwjMYNKOeHxSJ8rm08g6985g+Q4rRj/s5lsbO5p2/ohu8zbI7ZPWvIhpr7erH/24/BFwjgmT/5DLYtX6n7eboDfnzp8CtoHhtBps2Ox2/ahyJnmu7nlQwTYNisjVU+2/cy3mj5MUbdfXJAK7O3Ys/Kd6E0s1IbA+QokkaAYXPSLDUnSoGIBBg2R8TEkyhgWIFAIACz2XzV/Bg2G3a5OTEKLEmAYfMCbPXHzuGDf/a4PGPLxjWzJTHE5/PD5pndzb95sfa65zNsXtL9mTQXve3/+xYaWy/jgzfvxWNvf0T38/YGAvhq4+s4PTyAVKsNj+3aixXpmbqfV7JMgGFzYle6ZfgoXr383+ifbJEDKUhbhdtW/z5W5WxP7MDYe9IKMGxO2qXnxClwXQGGzbwxKECB+QIMm3lPUIACcwUYNqt0PzBsVglah938/Mhh/OlPfoic1DTUfv4rSHc6dTiLK0MOBIN4/GgtGgd6YDdb8NWa21CRlaPrOSXb4Bk2J2bFe8ab8Mrl/0TH6Bk5gExnIW5Z+T5sKLyNNVITsyTsNSzAsJm3AgUoMFeAYTPvBwoYU6CrswMNh2tRvnYdKjdvjWqSDJuj4uLJFDC8AMNmlZaYYbNK0DrrZtQ1hVu+/hUMT03iH9/7AbxjR43OZnDtcL97qhGHutpgNZnwpapbsDm3QPdzSrYJMGxWd8WHXZ14teVHaBoI/WSMw5qGPSvehR0l98Ns5pO81V0N9nY9AYbNvC8oQAGGzbwHKGBMganJSTTU16Kxvk6WxqjatQc337L3mjIZi82eYfNiQnyfAsklwLBZpfVm2KwStM66+cJTP8EPa1/DzeVr8dOPfVJno792uD+6eAZPXT4vn6D8+R17UF3Ah5fpcVEZNquzapPeEVmT+XTviwgEA7CY7NhR+gB2r3gXHJYUdQbBXigQgQDD5giQeAoFkkiAO5uTaLE5VcMKnDh2BI0Nh9HaehnVNXvkw/5KSpYteb4Mm5dMxwspYEgBhs0qLSvDZpWgddTN8fZWPPDdb8JqNuOVz/wVVubl62j01w71161N+I/zJ+Ubf1y5E3eU6v8hh7peEAWDZ9isAC+CS91+Fw63/wxHO5+BL+CWJTI2Fe7Drat/F2n23Aha4CkUUFeAYbO63uyNAloXYNis9RXi+ChwYwGXy4W//fIXsXHTZhkwi9dYHAybY6HINihgHAGGzSqtJcNmlaB10k0wGMRd3/kazvV04ZN33ofP3vsWnYz8+sN8tbsd/+/JBvnmh9ZvwVtWVuh6Psk+eIbN8bkD/EEPjnY+i7r2n8Htm5SdrM7Zib1rPoi81LL4dMpWKRADAYbNMUBkExQwkADDZgMtJqeSdAIejwcmkwk2W2xLtTFsTrpbiROmwIICDJtVukEYNqsErZFufvDqQYy7XDccTctgP5462oAVOXl48wtfUWXUdX1daBkbjXlf7oAPv2xpku3+zur1eO/aTTHvgw2qK8CwOfbeZ/tfxauXfogJz6BsvCi9AvvKP4TSzI2x74wtUiDGAgybYwzK5iigcwGGzTpfQA6fAnEQYNgcB1Q2SQEdCzBsVmnxGDarBK2Bbn5S/yb+/Kc/imgkP/rDT2Df+viHs56AHx8+9Cwmfd6IxrWUk+5dvhof3bh9KZfyGo0JMGyO7YIc6Xoah5r/Qzaa6SjCravfhw0Ft8W2E7ZGgTgKMGyOIy6bpoAOBRg263DROOSkELh8qRlerwfr1qu/mYFhc1LcYpwkBSIWYNgcMZWyExk2K/PTy9Udw0PY9/d/C5fXg4/cegcynM4bDj0/PQMfuHmvKlN7urUJ/3n+JErT0nFLUex/XD/NbsNbVrB0hiqLqUInDJtjh3ym9xAOXPgH2eBtq38fNWVvj13jbIkCKgkwbFYJmt1QQCcCDJt1slAcZlIIDA8NorG+Dg31dcjKzsY7fuc9KC5W/yHtDJuT4nbjJCkQsQDD5oiplJ3IsFmZnx6uFnWYH/ret9HYehnvrt6Dbz/ye5oYtj8QwMdefQ7D7mk8unUXbiku1cS4OAjtCjBsjs3aXBpswC/PPI4gAti35g+ws1Tftdljo8JW9CjAsFmPq8YxUyB+Agyb42fLlikQiUAgEAgHzLUYHRmRD/qrrtmNnNy8SC6PyzkMm+PCykYpoFsBhs0qLR3DZpWgE9jND145iK/8+iksy87By5/+S6TaHQkczZWuD3W14runjqDAmYrv3XYPzCaTJsbFQWhXgGGz8rVpHzmFn5/6GwSCPtSUvQO3rX6/8kbZAgUSJMCwOUHw7JYCGhVg2KzRheGwkkLg/z7xQxw90hAOmPdg9ZpyTcybYbMmloGDoIBmBBg2q7QUDJtVgk5QN019PbjrO1+D1+/HLz/xKKpXrUnQSK7uVuy2/pPXX0D31ISspyzqKvOgwGICDJsXE1r4/f6JFvz4+OfhC3iwqfAO3Lf+T5Q1yKspkGABhs0JXgB2TwGNCTBs1tiCcDhJJXDsaCO276jS3JwZNmtuSTggCiRUgGGzSvwMm1WCTkA3Pr8f9/2fr+NsTxc+ctsd+PJbH07AKK7fZUN/N752tBaZNjt+cPv9sJnNmhkbB6JdAYbNS1+b4akuGTRP+yawOrcKb9/0BZhM/H23dFFeqQUBhs1aWAWOgQLaEWDYrJ214EgooBUBhs1aWQmOgwLaEGDYrNI6MGxWCToB3XzjuV/j/7x4AOUFRXjhU1+A3WpNwCiu3+WX6l/FmeEBvLdiI35nzQbNjIsD0bYAw+alrc+4ewBPHPscJj3DKMuqxMOb/woWs21pjfEqCmhIgGGzhhaDQ6GABgQYNmtgETgEQwr09nSjKAEP94sFJsPmWCiyDQoYR4Bhs0prybBZJWiVuznR0YYHvvtNWQf5wCc/h00l2nn4XtPoMD5Xdwh2sxn/cvv9SLfZVdZhd3oVYNgc/cq5vON44thnMTrdi6L0Cjyy9auwWbRRtz362fAKClwtwLCZdwQFKDBXgGEz7wcKxE6gu7sLDYdr0Vhfi/seeBv23Hxr7BpXsSWGzSpisysK6ECAYbNKi8SwWSVoFbuZ9nqx/1uPoXVoAJ+550H82V33q9j74l1941gt6vq68ZaV5fjQ+q2LX8AzKBAWYNgc3a3g8bnwkxNfxMBkK7JTSvC+7d+A05oWXSM8mwIaFmDYrOHF4dAokAABhs0JQGeXhhL4/9m7D/AqqrwN4O9NT0hIQggpJJQAIQmd3BQ6UkQREVGxrIW1sXbFhZW1IDZUFAu6irj2tihYqaJ0TLmhB0IgJKEmhIT0nnu/547CFzHllpm5M3PfPI/Pt98y53/O+f0P7r0vw0xNTY0QLptDZvM7dvSJydAnJMPbx0e1+2TYrNrWceEUkESAYbMkrH8tyrBZJmgZp3n8u+X4aMcWDOgaidUPzIGLgp6HfKamCvdsXS/ccb101CR08vKWUYZTqV2AYbPlHTS/BPDrvfNxuuIQfD2CcNPgl+Dr2cnyArySAioQYNisgiZxiRSQUYBhs4zYnEpTAtmHDuK37VtxNOewEC7HJyYjPFw5fzPWHmyGzfbocSwFtCfAsFmmnjJslglapml25BzGdUvfgKebG3599HH0CAqWaWbLpnnnwC5sOJGH0WGReGiA3rJBvIoCfwgwbLbsKBhNTfh2/3PIL90DLzdf4Y7mAO9QywbzKgqoSIBhs4qaxaVSQAYBhs0yIHMKTQp8t2I5+vSNQb/+2vtbpwybNXlkuSkK2CzAsNlmOusGMmy2zkvJV1fU1mD0omdxpqIcz111Hf4+YoyilltWX4e7N69Bo8mExcPGobufv6LWx8UoX4Bhc/s9Mv+Vx9WHXsOhom1wd/XCDQNfQLBvj/YH8goKqFCAYbMKm8YlU0BCAYbNEuKyNAVUKsCwWaWN47IpIJEAw2aJYC8uy7BZJmgZpnngy4+xclc6hkX1wTf/eEiGGa2b4rPDmfg2NxtDO4fg8aHDrRvMqykAgGFz+8dgw+F3sbdgPVx17rhu4AKEd4xpfxCvoIBKBRg2q7RxXDYFJBJg2CwRLMtSQMUCDJtV3DwunQISCDBslgC1pZIMm2WClniadZl7cfvH78HX0wtb5jyJkI7Kumu4prEBd25ei9qmRixIGIn+gcp6vIfE7WF5kQQYNrcNuSP/K6QcWw4dXHB1/yfQI3CwSPIsQwFlCjBsVmZfuCoKOEqAYbOj5DmvEgXyco8iw5CKqspK3Pr3u5S4RFnWxLBZFmZOQgHVCDBslqlVDJtlgpZwmuLKCoxa9AzKamrw5g234pqhiRLOZlvp7/MO45Ps/ejVMQAvJ19iWxGOcnoBhs2tH4E9p9fhlyNLhQsm930EMV1GOf15IYD2BRg2a7/H3CEFrBFg2GyNFq/VokBp6TlkpKfCkJ4KPz8/xOuTkJA0TFEvjJfbnWGz3OKcjwLKFmDYLFN/GDbLBC3hNDe9/zY2Zx/EpXED8OHMWRLOZFvpJqMRs7auw7m6Wjw6KBHDQ7TxZmPbNDjKHgGGzS3rZZ3ZKjyn2fwzvvcsDAqbZA8zx1JANQIMm1XTKi6UArIIMGyWhZmTKFDAHDCb/zl7tgjxCUnQJyQhqDP/Jqm5VQybFXhguSQKOFCAYbNM+AybZYKWaJrPU7dj7oov0amDL7bOeQoBPj4SzWR72Y0n8/FW5k4Ee/ngP6MuhYtOZ3sxjnRqAYbNf23/0WIDvj/wIkwwIqnbdRjR/UanPiPcvHMJMGx2rn5ztxRoT4Bhc3tC/HUtCvz3vf/8fhdzQhJ69Y7W4hbt2hPDZrv4OJgCmhNg2CxTSxk2ywTdyjQ/H9iHvSeO2byIdzb/gpqGenx2x724pG+czXXEHphaeAp5FWVC2c2nj6Owpgr/iBuCiRE9xJ6K9ZxIINCvCesOfofGpgYn2nXrWzUam5B2YoVwwcDQSzGhzz/oQgGnEmDY7FTt5mYp0K4Aw+Z2iXgBBZxOgGGz07WcG6ZAmwIMm2U6IAybZYJuZZpLXnkW2WcK7VrETYnDsejam+yqIeZgc7B879b1fyrp7+6BDy65QsxpWMvJBI6X7cf6w2+irOask+28/e327TwSV8TObv9CXkEBjQkwbNZYQ7kdCtgpwLDZTkAOp4AGBRg2a7Cp3BIF7BBg2GwHnjVDGTZboyXutcdKzmLYqzA0MwAAIABJREFUi08Lj764ffgYm4vfM3YCfDw8bR4v9sAFhm3YW1KEgZ2CERMQJJTv5R8IfXCo2FOxnhMINJnqsSXnE+w6vVrYbbeAAQjvGOsEO7dsi+6uXkiImGbZxbyKAhoTYNissYZyOxSwU4Bhs52AHK4ogexDB5F9KAtTpl6tqHWpbTEMm9XWMa6XAtIKMGyW1vdCdYbNMkG3MM3Szb/gmVXf4rr4JLx+/S2OW4iIM+8oOIlX96bBx80d7466FB3cPUSszlLOJnCm8ih+OvgqSmtPw83FE1MH3IkeHcc7GwP3SwEKtCLAsJlHgwIUaC7AsJnnQe0ChQWnkWFIgyEtBeFdIzBy9FjExPZT+7Ycun6GzQ7l5+QUUJwAw2aZWsKwWSboFqaZ/s5rSM3NwbJb7sTkAYMdtxCRZq5pbMD9235GaX0d7u03BOO78vnMItE6XRmjqQmpx1cg9dhyGE1GhPj2xuSYhxHXNQqnS2qdzoMbpgAFWhZg2MyTQQEKMGzmGVC7QF1dHTIMqchIT0V9fT3i9YnQJybD19dP7VtTxPoZNiuiDVwEBRQjwLBZplYwbJYJ+qJpKmprEPPUHLi7uuLggkXw9lD/HcD/zdqL1cdy0Ne/E15Isv2xII7pCGdVisC5mlPC3cxFVblw0bkgqdsMJEVeK/znsE5eDJuV0iiugwIKEGDYrIAmcAkUUJAA72xWUDO4FIsEUn/bjp9+WIl4fRLiE5IQ2a27ReN4keUCDJstt+KVFHAGAYbNMnWZYbNM0BdN87UhBQ8v/wzjY/rhk9vvccwiRJw1v6IMs3/7FS4AXh8xAV078E/iReR1ilImmLD71CpsOfoZzM9pDvAKw5TYR9HFN+rC/hk2O8VR4CYpYLEAw2aLqXghBZxCgGGzU7RZU5s8dfKE8LgM/kgnwLBZOltWpoAaBRg2y9Q1hs0yQV80zV2fLMPq/Xvw0vQbcHPySMcsQqRZTSYT/pW6CTnlpbiqRx/cGt1fpMos4ywCFXXFWJ31Gk6WHxC2PCjsMoztNROuuj/f8c+w2VlOBPdJAcsEGDZb5sSrKOAsAgybnaXT3CcFLBdg2Gy5Fa+kgDMIMGyWqcsMm2WCbjZNfWMjYufPQW1DA/bPfwmBHTrIvwgRZ1x3PBfvHdyNIE9vLBk5EZ6uriJWZymtCxwo3IRfc5ahvqkGPu4BwrOZuwUMbHHbDJu1fhq4PwpYJ8Cw2TovXk0BrQswbNZ6h9W1v8x9e9BvwCB1LVqDq2XYrMGmcksUsEOAYbMdeNYMZdhsjZY41/5ycD9u/fBdDInsjp8emCNOUQdVKa+vwz1b16O2qRFzBycjqUuYg1bCadUmUNNQgXXZS3C0xCAsvXdQEi6Nvh9ebq3/4QvDZrV1meulgLQCDJul9WV1CqhNgGGz2jqmvfUey8/DTkMaDOkpiOs3ADfd8nftbVJlO2LYrLKGcbkUkFiAYbPEwOfLM2yWCbrZNP/65gt8lrYDcydNwUPjL5N/ASLOeP6lgEM6h+CJocNFrMxSWhbIKU7H+sNvo6ahHB5uPhjfexZig0e1u2WGze0S8QIKOJUAw2anajc3S4F2BRg2t0vECyQQKC8vgyEtBRmGNHh7e2OoPhH6hGR4aOAF8BJwyV6SYbPs5JyQAooWYNgsU3sYNssE3Wyafk/PRWl1NX6Z/W/EhIbLvwCRZqxsqMddm9eg3mjES0lj0ds/UKTKLKNVAfOjMjblfID9hb8IW+zaMQ6TYx6Bn2eQRVtm2GwREy+igNMIMGx2mlZzoxSwSIBhs0VMvEgkgcKC0/jhuxUw/199YjLi9YkI7hIiUnWWEUuAYbNYkqxDAW0IMGyWqY8Mm2WC/mOaXcfzMWXJIkQEdkLqvGfknVzk2b7OycJXOQcRExiE5xNGi1yd5bQmcKo8C6uyXkNFXRFcde4YHXULBodfAR10Fm+VYbPFVLyQAk4hwLDZKdrMTVLAYgGGzRZT8UIRBA4e2A83Nzf0iY4RoRpLSCXAsFkqWdalgDoFGDbL1DeGzTJB/zHNS2t/xJu/rsOdI8diwdRr5Z1cxNkajEbcsWk1qhobMG9wMvR8VrOIutoqZTQ2YGve59h58keYYEJwh56YEvsoAr2tv6ufYbO2zgZ3QwF7BRg22yvI8RTQlgDDZm31k7uhgBgCDJvFUGQNCmhHgGGzTL1k2CwT9B/TjF/8ArIKTmH5rAcxole0vJOLONu647l47+BuhPn4YsmICdDpLL87VcRlsJTCBYqq8rHq4CsoqTkJHVyQGDkdw7pfDxedq00rZ9hsExsHUUCzAgybNdtabowCNgkwbLaJjYNaEDCZTGhsbIS7uzt9VC7AsFnlDeTyKSCyAMNmkUFbK8ewWSZoAMdLipH84nz4enrhwIKX4eriIt/kIs5kNJlw79b1KKqtxgP9h2JseHcRq7OUFgSMJiPST6zEjvz/wWRqgr9XCK6ImY1Qvz52bY9hs118HEwBzQkwbNZcS7khCtglwLDZLj4OBnA4O0t42d+eXRl4+vlF8PLyoovKBRg2q7yBXD4FRBZg2CwyKMNmmUDbmGbZ1o14+scVmD4kAUtuvM3xC7JxBTsKTuLVvWkI9PTC0lGTVBua27h9DmtHoLSmAKuyFqOw8ohw5YDQSzG219/h7uJptx3DZrsJWYACmhJg2KypdnIzFLBbgGGz3YROWeBs0RkY0lOFkDkkNEx42d+QoXqntNDiphk2a7Gr3BMFbBdg2Gy7nVUjeWezVVx2XTxj6ZvYnpONd/92O64cNNSuWo4c/MiOX3Csshwzowfgyh69HbkUzq0wgT2n12Lz0Y/RaKyDt3tHXBb9EHp2GiLaKhk2i0bJQhTQhADDZk20kZuggGgCDJtFo9R8IfNjMlJ/2w5Degqqq6uhT0gSQuaOHf01v3dn2yDDZmfrOPdLgbYFGDbLdEIYNssDXVFbg7j5c4XJsp99Fd4eHvJMLPIse0uKsMCwDV6ubvhg7GR4utr27F2Rl8VyDhbIKUnH7pOrkF+6V1hJ76AkTOxzL7zd/URdGcNmUTlZjAKqF2DYrPoWcgMUEFWAYbOonJoutm/PLhw+fAj6hGR0695D03t19s0xbHb2E8D9U+DPAgybZToRDJvlgX557Y9449d1GBsdi8/vvE+eSSWY5ZmM7dhTfAbX9OyLm/rESTADS6pJ4EDhJqSf+A7F1ceEZXu4emFcr7sRFzJWkm0wbJaElUUpoFoBhs2qbR0XTgFJBBg2S8LKohRQtQDDZlW3j4ungOgCDJtFJ225IMNm6aG3Hs7CDcveEp5t/MN9j2JwpDpfqJdfUYbZv/0KN50O7425HP4e9j+DV3p9ziC2gPkRGfsKNyDt2Leoqi+5UD6683Dh2cy+HkFiT3mhHsNmyWhZmAKqFGDYrMq2cdEUkEyAYbNktKorbH5Mhk6nU926uWDxBRg2i2/KihRQswDDZpm6x7BZWui84iJc9sZLqKitxfwp03H36HHSTihh9df3pmNrwQlcGtEDs+LEew6vhEtmaREF6hqrsOvUKuw6uQo1jRVCZVedB/qFXoKEiKvg7xUq4mwtl2LYLDkxJ6CAqgQYNquqXVwsBSQXYNgsObHiJ8jctwcZhjSMmzAJEZHdFL9eLlB6AYbN0htzBgqoSYBhs0zdYtgsHXRNfT0mvfEScooKcWncAHw4c5Z0k0lcuaS2BndvWSvM8p9Rl6KLdweJZ2R5pQiY715OO/4t9hdsQIOxTliWl7svBodejiFdp4j+XOa29s2wWSmnguuggDIEGDYrow9cBQWUIsCwWSmdkHcdJ08chyEtBRmGVPTu0xfx+kT0GzBI3kVwNsUKMGxWbGu4MAo4RIBhs0zsDJulg77zk2VYs38PIgI74ZdH/g1fLy/pJpO48n+z9mL1sRwMCwnHPwclSTwbyytBoKTmFFKPLcehom0wmozCkvw9u2BoxFQMCB0PNxf5H6PCsFkJJ4NroIByBBg2K6cXXAkFlCDAsFkJXZBnDZWVFchIT4UhPRVubm7QJyYjXp8ELxV/35JHzvlmYdjsfD3njinQlgDDZpnOB8NmaaD/u20TnvrhG7i5uGD1g3PRLzxCmolkqFrZUI+7Nq9BvdGIl5LGord/oAyzcgpHCZwoP4D0YyuRe27nhSWE+EZBHzkN5ucy6+DiqKWBYbPD6DkxBRQpwLBZkW3hoijgMAGGzQ6jl3Xis0Vn8J8lryE+IQn6hCSEhIbJOj8nU5cAw2Z19YurpYDUAgybpRb+oz7DZvGhM/JzMe0/i2E0mbDw6utx67BR4k8iY8XlOQfxv5ws9A8MxoKEkTLOzKnkEjDBhKMlBqQdW4nTFYcuTNs9YDASI69GZMAAuZbS5jwMmxXRBi6CAooRYNismFZwIRRQhADDZkW0QfJF1NbW8g5myZW1MwHDZu30kjuhgBgCDJvFULSgBsNmC5CsuORsZQXGvfo8iqsqMWXgECy9+Q4rRivv0gajEXdsWo2qxgY8PnQ4hnYOUd4iuSKbBYymJhws2iLcyVxSc1Koo9O5IiZ4BBIjr0WQj7LuyGfYbHOrOZACmhRg2KzJtnJTFLBZgGGzzXQcSAHNCjBs1mxruTEK2CTAsNkmNusHMWy23qy1EU1Go3BH885jeegR1BkbHvk3vD08xJtApErbC0/gREWFRdVOVVdiW8EJRPj64Y3hEywaw4vkE9hzei2q6kttmrDJ2IDMwo2obvh9vLuLJwaGTYI+Yio6eHSyqabUgxg2Sy3M+hRQlwDDZnX1i6ulgNQCDJulFpa+foYhDf7+/sKL/vhDATEEGDaLocgaFNCOAMNmmXrJsFk86NTcI5j+zuvwcnPHmgfnIlqhzw+bm7IROeXWBZQPDUzA6FBl3eUqXufUV6m4+jjWHlqCwsojdi/ex90f8RFXCUGzp6u33fWkLMCwWUpd1qaA+gQYNquvZ1wxBaQUYNgspa50tY8eOQxDeorwwr+h+kRcMfVq+Pr6STchKzuVAMNmp2o3N0uBdgUYNrdLJM4FDJvFcTRX+Tx1O+au+BLXDE3AmzfcJl5hkSvdtOEH1BmbML1HtPACw/Z+dC46zIiKae8y/rpMAinHlmNH/lfCbObHXPTpPNzmmf29Q9CvyyU2j5d7IMNmucU5HwWULcCwWdn94eooILcAw2a5xW2fr6T4LMx3MRvSUtCpUxD0icnCC//4QwGxBRg2iy3KehRQtwDDZpn6x7BZPOinf1yBZVs34p8TJ+ORiZPFKyxipeK6Wty9eQ28XF3x+fipIlZmKakFiirzsCb7DZytyoeLzgUJEdMxrPsMuOjcpJ5aMfUZNiumFVwIBRQhwLBZEW3gIiigGAGGzYppRasLaWxsxLJ3l6C8rAzx+kTEJyYjMFCZj29TviZXaIkAw2ZLlHgNBZxHgGGzTL1m2Cwe9C0fvINfszLxzk1/x9TB8eIVFrHSvpIiPG3Yhr4BnfBC4hgRK7OUVAJGYwN25C+H4eS3MJqMCPKJxOS+jyDYt4dUUyq2LsNmxbaGC6OAQwQYNjuEnZNSQLECDJsV25oLC6urq8OpkyfQM6qX8hfLFWpCgGGzJtrITVBANAGGzaJRtl2IYbN40MNfnI/8kmKsf/gx9AtX5vON153Iw3sHdmFc1+64r99Q8TbPSpIIFFbkYPWh13Cu5pRwN7O+69UY3uN6p7qbuTksw2ZJjhmLUkC1AgybVds6LpwCkggwbJaElUUpoGoBhs2qbh8XTwHRBRg2i07ackGGzeJA1zU2IOrfjwjFjr7wGjzd3MUpLHKVDw/tw0/5R3BLdD9M6xEtcnWWE0ugyVSPbblfYOfJn2CCc9/NzLBZrFPFOhTQngDDZu31lDuigD0CDJvt0bN/bH19PYrOFKJrRKT9xViBAiIJMGwWCZJlKKARAYbNMjWSYbM40FkFpzB+8QuICOyE1HnPiFNUgirP7/oNO4sK8NiQZCQEh0kwA0vaK3Cy7CDWZS9BaW3BH3czT8PwHjc47d3MDJvtPVEcTwHtCjBs1m5vuTMK2CLAsNkWNfvHHMjcJ7zs79DBTNwy8070jYmzvygrUEAkAYbNIkGyDAU0IsCwWaZGMmwWB3rVvt24+9P3MSY6Fl/ceZ84RSWoct+29SiorsKbIyagawc/CWZgSVsFGo112Hr0U+w6vVooEegdjikx/3TKZzO3ZsjHaNh6ujiOAtoUYNiszb5yVxSwVYBhs61y1o87deokMtJSkGFIRY+evYSX/Q0YNMT6QhxBAYkFGDZLDMzyFFCZAMNmmRrGsFkc6Dd+WYuX1/2EO0aMwTNXXSdOUZGrNJlMuOHn74SqX02cBledTuQZWM5WgaKqPPyQ+SLK6s4IJRIir8aoHrfYWk6z4xg2a7a13BgFbBJg2GwTGwdRQLMCDJulb+32bZuR9tt26HQ66BOTEa9PgrePj/QTcwYK2CjAsNlGOA6jgEYFGDbL1FiGzeJAP/TVJ/hmZxoWXn09bh02SpyiIlc5UHoWT6ZtRUQHX7wxYqLI1VnOFoEzVbnYnvcFcksyhOEB3uGYHPMwQn1721JO82MYNmu+xdwgBawSYNhsFRcvpoDmBRg2S9/itat/xKAh8QgLC5d+Ms5AAREEGDaLgMgSFNCQAMNmmZrJsFkc6CvefBm7TxzD/+5+ACN79xWnqMhVvjhyECuOZmFytyjcETNI5OosZ42AOWTekfcVjpakC8PcXDyhj7gKw7vfYE0Zp7uWYbPTtZwbpkCbAgybeUAoQIHmAgybeR4oQIGLBRg280xQgALNBRg2y3QeGDaLA93nidmorq9HxhPPI7SjvzhFRa4y+7dfkV9RhvnxIzAwqIvI1VnOEoGCyiPYnvsF8kt3C5d7uHphcNgVSIicBk+3DpaUcOprGDY7dfu5eQr8RYBhMw8FBSjAsFm8M1BTUwNvb2/xCrISBRQgwLBZAU3gEiigIAGGzTI1g2Gz/dCFZaUY+vwT8PHwwOHnFttfUIIKJbU1uGvLWni7uuHjcVP4vGYJjNsqaQ6Zd+R+gbwLIbM3BodNZshsZR8YNlsJxsspoHEBhs0abzC3RwErBXhns5Vgf1y+a6cBhrQUhIV3xZSpV9tWhKMooFABhs0KbQyXRQEHCTBslgmeYbP90DtysnHd0jcxKKIbVj841/6CElT4KT8HHx7ai5GhEXhkYIIEM7BkSwLCncx5nyP/3B7hlz1cvTEk/ArhkRm8k9n6M8Ow2XozjqCAlgUYNmu5u9wbBawXYNhsuVnu0RwY0lOQkZ6KQYOHCi/76xMdY3kBXkkBlQgwbFZJo7hMCsgkwLBZJmiGzfZDf5KyDfNWfoXpQxKw5Mbb7C8oQYX5hm3YX1KE2QMTMCI0QoIZWLK5wO+Py/gM+aV7/xQyJ0RMg4cb39ht62lh2GyrHMdRQJsCDJu12VfuigK2CjBsbluuvLwMab9tR4YhDR39/aFPSEZ8QhJcXFxsJec4CihegGGz4lvEBVJAVgGGzTJxM2y2H/rpH1dg2daNmHvpFXhowuX2FxS5QnVjA2779SehqvkRGj5u7iLPwHLnBU6XZ2N7/uc4VrqPIbMEx4JhswSoLEkBFQswbFZx87h0CkggwLC5bdT3l76N7j16Il6fiE5BnSXoAEtSQHkCDJuV1xOuiAKOFGDYLJM+w2b7oW/54B38mpWJd/92O64cNNT+giJX2HL6ON7YZxBeCmh+OSB/xBcwh8zb8j/HcYbM4uM2q8iwWVJeFqeA6gQYNquuZVwwBSQVYNgsKS+LU0CVAgybVdk2LpoCkgkwbJaM9s+FGTbbDz3sxfk4VlKMDY/MQ2xYV/sLWljhSPk5ZJwpaPfqjLMFyCkvxV2xg3BZZFS71/MCywUKK45gc+7HOFGWKQxyd/HCoPDLkBR5DZ/JbDmjxVcybLaYihdSwCkEGDY7RZu5SQpYLMCw2WIqXkgBpxFg2Ow0reZGKWCRAMNmi5jsv4hhs32GtQ31GL94IfKKi3Dy5bfsK2blaPPdyua7li39WTbmcnTy9LL0cl7XjsCBwk1Ym/3mhZB5aNcp4DOZpT02DJul9WV1CqhNgGGz2jrG9VJAWgFnDJsbGxuFl/ydKSzAldOukRaY1SmgQgGGzSpsGpdMAQkFGDZLiNu8NMNm+6ANeUdx1X8Wo0+XUGz65xP2FbNy9M2//oiaxkZc3TMa7rq2X+zRwcMdU7r1tnIGXt6awLbcz5B2YqXwywkRVyMxcjrvZJbhuDBslgGZU1BARQIMm1XULC6VAjIIOFPYnHUwE4a0FBzI3Ce85G/kqLEICQ2TQZlTUEBdAgyb1dUvrpYCUgswbJZa+I/6DJvtg35/60bM/3EFrh2aiDduuNW+YlaM3ltShAWGbeju54/Fw8ZZMZKX2iPQZGzAqqzFOFKcChedG6bGzkVUkN6ekhxrhQDDZiuweCkFnECAYbMTNJlbpIAVAloPm0+fPiXcxZxhSEVkZHfoE5IwcLDy3hdjRct4KQUkF2DYLDkxJ6CAqgQYNsvULobN9kE/+OXHWLErHc9edR1uHzHGvmJWjP7g0F6sys/BNVExuKl3rBUjeamtArUNlViZ+SwKKg4LdzFP7/ckwjpG21qO42wQYNhsAxqHUEDDAgybNdxcbo0CNghoOWz+4dtvkHMkW7iLOV6fhA6+vjYIcQgFnE+AYbPz9Zw7pkBbAgybZTofDJvtgx6z6FkcKSrED/c9ivjuPe0rZsXof2xZh6LaaryYPBZ9OgZaMZKX2iJQWlOAFfsXoKy2EP5eIbim/3wEeIfaUopj7BBg2GwHHodSQIMCDJs12FRuiQJ2CGg5bD5XUozATkF26HAoBZxTgGGzc/adu6ZAawIMm2U6GwybbYeuaahH78dnQ6fTIfeF1+Hu6mp7MStG5leUYfZvvyLQ0wvvj7ncipG81BaB0+XZwh3NdY1VCPXrI9zR7OXOu0lssbR3DMNmewU5ngLaEmDYrK1+cjcUsFdAy2GzvTYcTwFnFWDY7Kyd574p0LIAw2aZTgbDZtuhd+Rk47qlbyIuPAI/P/yY7YWsHPnN0Sx8eeQgLo3ogVlxQ6wczcutETh8NkV4RrPR1IjeQUm4ImY2XF3crSnBa0UUYNgsIiZLUUADAgybNdBEboECIgqoMWyuqqxE5v69SEweLqIES1GAAucFGDbzLFCAAs0FGDbLdB4YNtsO/c7mDXhu1Xe4MXE4Xrn2JtsLWTnysZRNOFx+Dv8eMgzxwXyUg5V8Fl+ednwltuV9Jlyvj5iG0T3lewGkxYt0sgsZNjtZw7ldCrQjwLCZR4QCFGguoKawee/unTCkp+L48XyMGn0Jxk2YxGZSgAISCDBslgCVJSmgYgGGzTI1j2Gz9dA/5B9GTUMjftq3C9mFBRgf0w+DIrpZX8iGEU0mE1bkHoKniyu+mDDVhgoc0p6A0dSEddlv4eCZzQB0uCz6AcSFjG1vGH9dBgGGzTIgcwoKqEiAYbOKmsWlUkAGAaWHzcfy82BIT4EhLQVx/QZAn5iMmNh+MshwCgo4rwDDZuftPXdOgZYEGDbLdC4YNlsHnVVWgsdTzSGkY3+Su4RjzuAkxy5Cg7PXN9Xgu8yFOFG2H24uHpga9y/0COSjSpTSaobNSukE10EBZQgwbFZGH7gKCihFQKlh8+HsLHy7Yjl8fHygT0gWQmY3NzelsHEdFNC0AMNmTbeXm6OA1QIMm60ms20Aw2br3Bbu+g2GogL0D+yMtRnpcNHp8MC4SXDV6awrZOfVgzuHoG9AJzurcHhzgYq6YqzYvwAl1Sfg4+6PawbMR3CHHkRSkADDZgU1g0uhgAIEGDYroAlcAgUUJKDUsPnggf0IDu6CzsFdFKTFpVDAOQQYNjtHn7lLClgqwLDZUik7r2PYbDngqaoKPLB9gxAwz+wahbs/eg+DI7ph1YNzLS/CKxUpUFiRg28zn0N1Qxk6+UTgmv7z4ecZpMi1OvOiGDY7c/e5dwr8VYBhM08FBSjQXECpYTO7RAEKOE6AYbPj7DkzBZQowLBZpq4wbLYc+q3Mndh4Mh9jw7vBWFiEl9f9hFuTR2Lh9BssL8IrFSdwtNiAHw8uQpOpARH+/TGt3zx4uHorbp1cEMCwmaeAAhRoLsCwmeeBAhRwdNh8rqQYgZ14gwJPIgWUKsCwWamd4boo4BgBhs0yuTNstgy6rL4Od25eA6PJhCUjJuDJb77E2sy9WHzd33B9wjDLivAqxQnsPPUjNud8BBNMiO0yBpOi74eLzlVx6+SCfhdg2MyTQAEKMGzmGaAABVoTkOvOZqPRiIz0VGQYUlF67hwee2IBm0IBCihUgGGzQhvDZVHAQQIMm2WCZ9hsGfQn2fvxfd5hDA0OxeNDhkH/3OM4XV6GDY/MQ2xYV8uK8CrFCJhMRvx85F3sL9ggrGlEj5uQFHmtYtbHhbQswLCZJ4MCFGDYzDNAAQo4KmzOPnRQCJn37N6J+IQkxOuTENWrNxtCAQooWIBhs4Kbw6VRwAECDJtlQmfY3D50TWMD7ty8FrVNjXhGPwqhHp4Y+Mw8eLm54/Bzr8LFxaX9IrxCMQINTXX44cBLyC/dLdzFfFnfhxATPFIx6+NCWhdg2MzTQQEKMGzmGaAABeQMm2uqq7Hx15+FkDksvKsQMg8ZqmcTKEABlQgwbFZJo7hMCsgkwLBZJmiGze1Df5ubjc8OZ6JXxwC8nHwJfj6wDzM/WoqEHlH47t7Z7RfgFYoRqKovxYp9C3C2Oh8erj64ut/j6Oofq5j1cSFtCzBs5gmhAAUYNvMMUIACcobNGYY0VJSXCSGzn19H4lOAAioTYNissoZxuRSQWIBhs8TA58szbG4busFoxN2b16C8oR7/HJSEYSHheGX9Kry2YQ3uHDkWC6by0QsyHVW7pymuPiEEzZX1xejoGYzpA+ajk3e43XVZQD4Bhs3yWXMmCqhBgC/g2AMPAAAgAElEQVQIVEOXuEYKyCcg1zOb5dsRZ6IABewVYNhsryDHU0BbAgybZeonw+a2oTPPncVT6VsR6uOLt0dOFC6+5YN38GtWJpbceBumD0mQqVOcxh6B6oZSfLZrDirrihHi2wvTBzwJbzfenWKPqSPGMmx2hDrnpIByBRg2K7c3XBkFHCFgS9jc1NQEV1e+HNoR/eKcFJBDgGGzHMqcgwLqEWDY3Eav0ndnYebDLwpXDIiNwjsvPoJAf79WR9TU1mP+og+w6pcU4Zpn596O6ZNHC/+ZYXPbvyl2Fxfi2YwdGBjUBfPjRwgXxzz1T1TU1mLLnCfRKzhEPb+rnHSljcY6/G/PEyiszEGAVxhuHvoKPFy9nVRD3dtm2Kzu/nH1FBBbgGGz2KKsRwF1C1gaNpufw2xITxGew3z73feiY0d/dW+cq6cABVoVYNjMw0EBCjQXYNjcynnIyT+Fxxcuw/Pz7kKv7uFYuXoLUjIOYMGc2+Ht5fGXUeeD5uT4uAsBc/OLGDZbFzafPFeCxIVPCS8HzHnhNf6uVbiAyWTCdwdeQG5JBjzdOuDmIa/C36uLwlfN5bUmwLCZZ4MCFGguwLCZ54ECFGgu0F7YvG/PLpifwZyXm4P4hGThOczh4V2JSAEKaFiAYbOGm8utUcAGAYbNraCZw+W84wWYPWuGcMXF4fPFwy6+/uJfZ9hsXdi8at9u3P3p+xjRKxrLZz1ow9HmEDkFtuV9hrTjK+Gic8WMgc8hvGNfOafnXCILMGwWGZTlKKByAYbNKm8gl08BkQVaCpuPH8sX7mDOMKQiOiYO8fpExPUbIPLMLEcBCihVgGGzUjvDdVHAMQIMm1txX7x0ufAr58Pmc2UVuOex1/DorBlIGBzzl1Hm6//75eoL/31YSBCWvvyocFe0+Ydhs3Vh88I1P+Ctjetxz5gJeOKKaY753cFZLRI4eGYL1hx6Xbj28r4PI7bL74+O4Y96BRg2q7d3XDkFpBBg2CyFKmtSQL0CF4fNOUeysfqn74U7mOP1SfD09FTv5rhyClDAJgGGzTaxcRAFNCvAsLmV1prD4x6RoRceidFW2Hz+ERrXXTn2QhBtvtN5+Y+bLjznuaq2UZGHyNvTFS46HWrqGmE0OW6JhjMFeGz7FgztEoKXR4zBlDdfw6ZDWfjk9rswPV7vuIVx5jYFjp/Lwgdpj8FoasLIntdgYt+ZFNOAgI+nK6rrmlS3E/O/wnSqWzUXTAHlC3i6u6CxyYQmR35QUD6TU6zQZAJ0/BetU/S6rU26uejg6qpDXYNRuIwv/3P6I0EAEQXU+nm2g5cblJp5iNgelqIABSwUUPr3B53J/DBYB/xYc2dzS2HzxeF0WVWDA3bR/pS+3m5wddGhsqbRoV8iM4oK8PhvWzEkOAQLh41Gt7kPo7y2FnvmP4fuQZ3b3wivkF2gtKYQy1IeRm1jFfp01uP6wU9Cx2+gsvdBign9O7hDqf/Oamu/DEGkOA2sSQHAx9MNDU1NaGh0yEcytkBBAuY/b3Bh2KygjjhmKe5uLjD/U63Qm2kco8JZKSCOgFo/z6r1+4M4XWMVClDgYgHzH0DVNTQJN6wo8cdhYbO1z2xu6U7oeS8sw5x7bxAepcHHaLR9vHYXF+LZjB0YGNQFt3Trg1GLnoGflxeynnlFiefS6ddU11iNz3fNQWntaXT26Y4bB78Id1f+lUmtHAw+RkMrneQ+KCCOAB+jIY4jq1BAbQLnzpVgpyEN0X1jEdmt+4Xlt/eCQLXtk+ulAAXsF+BjNOw3ZAUKaEmAj9FopZsXvxDQHD6nZBzAgjm3w9vLAxc/JiN9dxbmLVx24TnNF1/PsNnysHmQiyfu+/IjjI2Oxed33qel32+a2Iv5kRnf7JuPE2UH4OMegFuGvooOHoGa2Bs38bsAw2aeBApQoLkAw2aeBwo4l4D5RX+GtBSUlBRjqD4R4yZMgru7O8Nm5zoG3C0FrBJg2GwVFy+mgOYFGDa30WJzgDzz4ReFKwbERl14/rL5/784bD7/3z358gctXs+wue3fS6lnTuHl3akY0jkEh3fvwYasTDw8/jLMmTRF878J1bbBddlLkFm4EW4uHsIdzcEdeqhtC1xvOwIMm3lEKEABhs08AxRwLoEjhw/BHDKb72Q2v+hPn5CMqN59WkTgnc3OdTa4WwpYIsCw2RIlXkMB5xFg2CxTrxk2tw39n8xd+OVkHvp7++H9H7+Dt7sHtsx5EuEBvGNWpiNq0TSGE99hS+4nwmvYpsXNQ1QQX95oEZzKLmLYrLKGcbkUkFiAdzZLDMzyFHCgQHl5Gd5c/DK6hIQKIXO8PrHd1TBsbpeIF1DA6QQYNjtdy7lhCrQpwLBZpgPCsLl1aPM7IGduWo3KhnocSs/AubJSLL7ub7g+YZhM3eE0lggcLTbguwMvCJeO6TkT8RFTLRnGa1QowLBZhU3jkikgoQDDZglxWZoCDhaorKyA0WhEx47+Fq+EYbPFVLyQAk4jwLDZaVrNjVLAIgGGzRYx2X8Rw+bWDQ+VluDfaZthamhA6uYtmBDbHx///R/2o7OCaAJFVXn4cvdjaDTWo1/IJZgU/YBotVlIeQIMm5XXE66IAo4UYNjsSH3OTQHlCTBsVl5PuCIKOFqAYbOjO8D5KaAsAYbNMvWDYXPr0J9mZ+K7vGycys9H5akCbJ3zFAJ8fGTqDKdpT6Cq/hw+3fkoqhtKEeEfh2sHLICLzrW9Yfx1FQswbFZx87h0CkggwLBZAlSWpIAMAoUFp1FfX4/Ibt1FnY1hs6icLEYBTQgwbNZEG7kJCogmwLBZNMq2CzFsbt3nni1rcaa2BpnpBiy97maMiY6VqSucpj2BhqY64Y7ms9X5CPAKw9+GLIKnG/8goD03tf86w2a1d5Drp4C4AgybxfVkNQpIKVBXVwdDeorwsr+GhgbcdMvfERYWLuqUDJtF5WQxCmhCgGGzJtrITVBANAGGzaJRMmy2hfJkRTke/O0XNNQ3ILbeiJem32BLGY6RQMD8LG3zM5pzSzLg6dYBNw95Ff5eXSSYiSWVJsCwWWkd4Xoo4FgBhs2O9efsFLBEIHP/XmQY0nD40EHoE5KFl/1FRHazZKjV1zBstpqMAyigeQGGzZpvMTdIAasEGDZbxWX7xbyzuWW7B9Z8i1OuQNXZYnx33W3wcne3HZkjRRXYkvsJDCe+Ex6ZMWPgcwjv2FfU+iymXAGGzcrtDVdGAUcIMGx2hDrnpED7AuYbA376fqVwJ3NUrz6I1yei/8DB7Q+08wqGzXYCcjgFNCjAsFmDTeWWKGCHAMNmO/CsGcqw+a9ahryjmJe6CR0DA3FTtz64Jqa/NaS8VkKBI2dT8MPBl4UZJvd9GDFdRks4G0srTYBhs9I6wvVQwLECDJsd68/ZKdCagPkxGam/bUN8QjK8vb1lg2LYLBs1J6KAagQYNqumVVwoBWQRYNgsCzPAsPnP0NX1dZjw9qsI6xcLVxOwfNLVMnWC07QncKBwE9ZmvylclhR5LUb0uKm9Ifx1jQkwbNZYQ7kdCtgpwLDZTkAOp4DGBBg2a6yh3A4FRBBg2CwCIktQQEMCDJtlaibD5j9Dz17+GQzV5QgOD8PkblG4I2aQTJ3gNG0JbM/7AqnHvxEuGRR2Gcb3vptgTijAsNkJm84tU6ANAYbNPB4UcIxAWVkp/P0DHDN5G7MybFZcS7ggCjhcgGGzw1vABVBAUQIMm2VqB8Pm/4del7kXs778CENHjYSLToeloy9DkJd8f/VPpparapomYyPWHnoDh85uhw46jImaiaFdr1TVHrhY8QQYNotnyUoU0IIAw2YtdJF7UItAeXkZMtJThZf9jRw1FsnDRypu6QybFdcSLogCDhdg2OzwFnABFFCUAMNmmdrBsPl36OLKCoxa9AwCIiIQ1r0bRoZG4JGBCTJ1gdO0JFDXWIVvM5/HqfIsuOrccWXsHEQF6YnlxAIMm524+dw6BVoQYNjMY0EB6QV2ZqQLIXNhwWnEJyQJL/vrEhIq/cQ2zMCw2QY0DqGAxgUYNmu8wdweBawUYNhsJZitlzNs/l3upvffxrajh5EwejTgosOrw8ahh5+/rawcZ6dARV0xvt73FEprTsPLzQ/X9H8KIX697KzK4WoXYNis9g5y/RQQV4Bhs7ierEaB8wJ5uUeRnrpDCJkHD9ULIXOf6BjFAzFsVnyLuEAKyC7AsFl2ck5IAUULMGyWqT0Mm4EvUrdjzoovEdWnN7p0744BnYLxtF55fzVQpiPh8GmKqvKwYt8CVDeUIcA7DNf2fxodvYIdvi4uwPECDJsd3wOugAJKEmDYrKRucC1aEvj4g/fQr/9AIWTW6XSq2RrDZtW0igulgGwCDJtlo+ZEFFCFAMNmmdrk7GHzyXMlGPPKc6htbMCYiRNQazTiiaHDMaRziEwd4DTNBfLO7cIPB15Co7Ee4R1jcHW/x+Hp1oFIFBAEGDbzIFCAAs0FGDbzPFCAAs0FGDbzPFCAAhcLMGzmmaAABZoLMGyW6Tw4c9hsNBox7Z3XkJGfi8uHj8I5Hw+E+/hiyciJMulzmuYC+07/jJ+PvAvAhL6dR+Cyvg/B1cWNSBS4IMCwmYeBAhRg2MwzQAEKtCbAsJlngwIUYNjMM0ABCrQlwLBZpvPhzGHzkl/X4a2UrYgIC0fvqCicravBg/31GBMeKZM+pzELmGDC5qMfYefJHwWQ4T1uRHLkdcShwF8EGDbzUFCAAgybeQYoYJtA0ZlCGNJTUV9Xh6uma/NzFsNm284GR1FAywK8s1nL3eXeKGC9AMNm681sGuGsYXNJdRX0zz6OsN5RCI38PVzu5OmFZWMut8mRg2wTMD8u48eDi5BbkgEXnatwN3NMMJ+XbZum9kcxbNZ+j7lDClgjwMdoWKPFa51RoL6+XnjJX4YhFTU1NdAnJCF5+Ch4e3trkoNhsybbyk1RwC4Bhs128XEwBTQnwLBZppY6a9i8aP0qvL5hDZJHjAC8vTA6LBKjw7thSFAXmeQ5TW1DJb7Z/zTOVB4Vnss8Le7f6OofSxgKtCrAsJmHgwIUaC7AsJnngQItCxw8sF8ImbMOZgov+YvXJ6Fb9x6a52LYrPkWc4MUsFqAYbPVZBxAAU0LMGyWqb3OGDbXNNQj/rnHUVZTgwmXXYbKxga8OWICunbwk0md05TWFGDF/gUoqy2Ev1cIruk/HwHeoYShQJsCDJt5QChAAYbNPAMUaFvgvXeWwN3dHfH6RAwcPNSpuBg2O1W7uVkKWCTAsNkiJl5EAacRYNgsU6udMWxetnUjnv5xBfqGhiOwfyxcAHw1cRpcdTqZ1J17mtPl2ViZ+SzqGqsQ6tcH0/s9CS93X+dG4e4tEmDYbBETL6KA0wjwzmanaTU3aoWA+XEZWn1MRnsMDJvbE+KvU8D5BBg2O1/PuWMKtCXAsFmm8+FsYXNjUxMSFz6FwvIyPDfjb/ippADhPr5YMnKiTOLOPc3hsylYlbUYRlMjegcl4YqY2XB1cXduFO7eYgGGzRZT8UIKOIUAw2anaDM3SQGLBRg2W0zFCyngNAIMm52m1dwoBSwSYNhsEZP9Fzlb2Py1IQUPL/8MEYGdsOi2u/DGfgP0waGYN2SY/Zis0KZA+vFvsTXvU+EafcQ0jO55K8UoYJUAw2aruHgxBTQvwLBZ8y3mBpsJnDxxHLlHj2Dk6Evo0ooAw2YeDQpQ4GIBhs08ExSgQHMBhs0ynQdnCptNJhNGLXoGuWeLsPDq6+HZJRjLcw5iWo8+uCW6v0zizjeN0dSEddlv4eCZzdDBBZOi70dcyFjng+CO7RZg2Gw3IQtQQFMCDJs11U5upgWBysoKGNJSkGFIg5ubG8aNvxQDBg2hFcNmngEKUMBCAYbNFkLxMgo4iQDDZpka7Uxh888H9mHmR0vRqYMvMh5/Dm8d2IXtBSdwb78hGN9V+2/olulI/WmahqY6fJv5PE6U7Ye7ixem9ZuHyIABjlgK59SAAMNmDTSRW6CAiAIMm0XEZClFCezelSGEzKdOnoA+MVl42V9IaJii1qjExfDOZiV2hWuigGMFGDY71p+zU0BpAgybZeqI1sLm/2z8GTUN9S3qrdq/G4cKTmPupCl4aPxlePS3jcirKMXziWMQE9BJJnHnmabJVI/Pds5BcfVx+HoE4ZoBTyHIJ9J5ALhT0QUYNotOyoIUULUAw2ZVt4+Lb0EgZcc2fLdyOQYOGiKEzNF9Y+lkhQDDZiuweCkFnESAYbOTNJrbpICFAgybLYSy9zKthc1d597fJomnqxt2PfkC/H18cP3P36PRZMRn466Et5ubvZQc30xg7+l12Jb/OWobKhHcoYcQNPu4B9CIAnYJMGy2i4+DKaA5AYbNmmup028o50g2ekb1houLi9Nb2ALAsNkWNY6hgLYFGDZru7/cHQWsFWDYbK2YjddrKWwuq65G3NNz4ePugX+MGd+iSHRoGK4cOBRFtdX4x5Z18PPwxEdjJ9uox2EXC5wuP4QNR95DUVWu8EtDwqdgZM+bhEdo8IcC9gowbLZXkOMpoC0Bhs3a6id3QwF7BRg22yvI8RTQngDDZu31lDuigD0CDJvt0bNirJbC5qNFZ4QXAEZ17oKtc59qU2FP8Rk8k7EdMYFBeD5htBVivLQlgeqGMmw++pHwEkDzT3jHGFza51508okgGAVEE2DYLBolC1FAEwIMmzXRRqfZRF7uUfToGeU0+3XERhk2O0Kdc1JA2QIMm5XdH66OAnILaDps3pKyBwNioxDo7ye361/m01LYnJGfi6lvvwp99574/r5H27RdfSwH/83aK7wY0PyCQP7YJmA0NWHnyZ+Qcux/qG+qha9nEMZGzUR05xG2FeQoCrQhwLCZx4MCFGguwLCZ50HpAsVni2BITxVe9mcOmv926+1KX7Kq18ewWdXt4+IpIIkAw2ZJWFmUAqoV0GzYvHjpcqTtzsI7Lz7CsLmN4xns7wl3NxcUldaioclk0UHecGAfbvtoKS6NG4APZ85qc8yyg3uw9vhR3BrdH1f16GNRfV70Z4FjpXux4fBSlNaehovOHfquU5HU/Vq4u3iSigKSCDBsloSVRSmgWgGGzaptnaYX3tTUhAxzwJyegoqKCugTkoSX/fn7890VUjeeYbPUwqxPAfUJMGxWX8+4YgpIKaDKsHnl6i148uUPBJewkCAsfflR9OoefsHJHDT/98vVeHbu7Zg+WRmPbtDSnc3LDSl4ZPlnuF6fjMUzbm7zfC4wbMfekjOYN2QY9MGhUp5lzdUury3Cxpz3kVOSLuwtqpMe43rdhY5ewZrbKzekLAGGzcrqB1dDAUcLMGx2dAc4f3OBs0VnsH7tKuzbuxvx5oA5IZmPzZD5iDBslhmc01FABQIMm1XQJC6RAjIKqC5sTt+dhXkLl10ImHPyT+Hxhcvw/Ly7EB7SGfMXfYBVv6QoKmg291NLYfO7mzfg2VXf4Z4xE/DEFdPaPK53bV6DkrpaLBkxEeEdfGU82uqdqslUj5T8b2A48T2aTA3w9wrBxD73oFvAQPVuiitXlQDDZlW1i4ulgOQCDJslJ+YEVgikp/4Gdw8PDB4Sb8UoXiqmAMNmMTVZiwLaEGDYrI0+chcUEEtAVWFzTW29ECaHdumE2bNmXDAw3+m8/1AeKiurhaD5o9cfQ8LgGLGMRKmjpbB54Zof8NbG9Xh88lW4d+zEVn0ajE24YcMPcAHw1cRpcNXpRLHUcpHss9ux6ehHqKwrhruLF5K7z0B81ylw0blpedvcm8IEGDYrrCFcDgUcLMCw2cEN4PQUUJgAw2aFNYTLoYACBBg2K6AJXAIFFCSgqrD5XFkF7nnsNcy4cuyfHo9hvrt51txXBdaLH6mhFGsthc1zvvkCX6TtwKvX3oQbEoe3Sny0/BzmpGxCRAc/vDFiglJaoch1nKs5ifXZ7+JkeaawPvOL/8b1vgM+7nzuoCIbpvFFMWzWeIO5PQpYKcCw2UowXm6XgMlkgo43KNhlKPVghs1SC7M+BdQnwLBZfT3jiikgpYAqw+ZHZ834053L58PmhfPuUtwdzeebp6Ww+c6P38OazL3CywHNLwls7ef7vCP4JHsfhnXpin8OTpTyHKu6dkFFNr7ZtwD1TTUI8onAhOh70NUvVtV74uLVLcCwWd394+opILYAw2axRVnvYoFTp04KL/vLSE/BkwsWwtXVlUgKFmDYrODmcGkUcJAAw2YHwXNaCihUgGGzTI3RUtg8/Z3XkJqbg+/ueQQJPXu1KNhkNOLOzWtQ3lDPlwO2ccbyzu3GDwdeQqOxDrFdRuPyvg/LdCI5DQVaF2DYzNNBAQo0F2DYzPMghUB1VRUyDKkwpKUIdzKff9mft4+PFNOxpogCDJtFxGQpCmhEgGGzRhrJbVBAJAGGzSJBtldGS2HzJa88h+wzBdgy50n0Cg5pceu/nszH25k7Ee7jizdHTOBfh2xB6fDZFKzKehVGUxP6h07AxN730Km930j8dVkEGDbLwsxJKKAaAYbNqmmVKha6d/dOZBjSkJ+fi3h9EvSJyQgLC1fF2rnI3wUYNvMkUIACFwswbOaZoAAFmguoMmzed/CoRV0cEBuFd158BIH+fhZdL+VFWgqbBz0zD2crK7B//osI7OD7Fzbzs/Ye2L4Bp6srcU/cEEyI6CElrSpr7zv9M34+8o6w9mHdb8Cwbv//wktVboiL1pQAw2ZNtZOboYDdAgyb7SZkgT8E0lJ2IPvQQeEu5ti4/nRRqQDDZpU2jsumgIQCDJslxGVpCqhQQFVhswp9LyxZS2Fz17n3C/s68dKSFu/ENZw5jYW7U9DRwwPvjb4c7i4uam6d6GtPOf41duR9KdQ13808IGyi6HOwIAXsEWDYbI8ex1JAewIMm7XXU0ftiC//c5S8uPMybBbXk9UooAUBhs1a6CL3QAHxBBg2i2fZZiWthM1lNdWImz8XgT4dsP/pl1rc85PpW3Hg3Fnc2DsO10b1lUlY+dOYv2BtzHkfu0+vgQ4umBL7T/TpnKz8hXOFTifAsNnpWs4NU6BNAYbNPCAUoEBzAYbNPA8UoMDFAgybeSYoQIHmAqoMm9N3Z2Hmwy9e2Mezc2/H9MmjFd1ZrYTNuWeLMPLlBcKzms3PbL7450jZOfwrdRM8XFywbMzl8HX3UHRf5Fqc+bnMa7Jex6Gz2+Hm4oGpcY+hR+BguabnPBSwSoBhs1VcvJgCmhdg2Kz5Ftu9waM5R4SX/Y29ZAKCu7T8Pg+7J2EBxQgwbFZMK7gQCihGgGGzYlrBhVBAEQKqC5vPB80fvf4YEgbH4FxZBe557DXMuHKsogNnrYTNO4/l4cq3XkFCjyh8d+/svxziRbtTkXLmFK7o3gu39x2oiEPu6EU0GhvwfeYLyC/dA09XH0wfMB9hfn0cvSzOT4FWBRg283BQgALNBRg28zy0JHCupBgZ6akwpKciIDBQeNlfQtIwYjmBAMNmJ2gyt0gBKwUYNlsJxsspoHEB1YXNi5cuF1oye9b/v1DNHEC/unS5Yl4G2NKZ0UrYvOHgftz24buYFDcAH8yc9aetnqmpwr1b1wv/3dLRlyHIy1vjv33a315x1TGsPvQ6iqry4OMegOsGLkCQT2T7A3kFBRwowA+LDsTn1BRQoECgnwdqahtR22BU4Oq4JDkFzI8E+z1gTkHpuXPCi/70CUkI7BQk5zI4l4MFGDY7uAGcngIKFOD3BwU2hUuigAMFVBU2t3YX8/n//tFZM4S7nZX4o5WweeXOdDzw1ce4Lj4Rr19/65+ov8s7gk+z92FUaFc8PDBRiW2QbU1VDaXYlvsZMgt/Feb09wrFtQOfhr9nF9nWwIkoYKuA+X8YSirqbR3OcRSggMYEOvq4o66+CXWNDJs11lqrtnP69Cm88cpCIWCOT0hGVK/eVo3nxdoR8HR3gae7K8qrG7SzKe6EAhSwSyCooweKy/n9wS5EDqaAhgT8fdxRU9+EeoV+f9CZzLdQ/PHTWqhcU1uP+Ys+QHJ8nGIfpaGVsPlrQwoeXv4Zro1PwhvX3/Kn3worcg/hi8MHcHXPaNzcp5+GfptYvpUGYy1S879Bxskf0WT6/QN4XMglGBN1G7zdOlpeiFdSwIECvDPBgficmgIKFOCdzQpsigOWVF5eho4d/R0wM6dUmgDvbFZaR7geCjhegN8fHN8DroACShJQ5Z3NF9/BzLDZ9iMV7O8JdzcXFJXWoqHpQq7fakGGzS3TmF8AuK/gZ/yW9xWqG8uFiyL84zCu193o3KGb7Q3iSAo4QIAfFh2AzikpoGABhs0Kbg6XRgEHCDBsdgA6p6SAwgX4/UHhDeLyKCCzAMNmmcB5Z7NM0A6Y5khxKrbmfopzNaeE2Tv5RGBs1Ez0CBzqgNVwSgrYL8APi/YbsgIFtCTAsFlL3Wx5L1kHM9HRPwDh4V21v1nu0G4Bhs12E7IABTQnwO8PmmspN0QBuwRUGTbvO3jUok0PiI1SzEsDGTZb1DJVXVRQcQS/5ixDQcVhYd3mFwCO6HEj+oeOhw4uqtoLF0uB5gL8sMjzQAEKNBdg2KzN82B+BrP5ZX8ZhlRERnbHdTf8DX5+fOSXNrst7q4YNovryWoU0IIAvz9ooYvcAwXEE1BV2CzetuWvxLBZfnOpZiyrO4OtRz9B9tkdwhRuLp7Qd52KhG5Xw93FS6ppWZcCsgnww6Js1JyIAqoQYNisijZZtMia6mohXDaHzEaj8feX/emT0MHX16LxvIgCZgGGzTwHFKDAxQL8/sAzQQEKNBdg2CzTeWDYLBO0hNPUNVZhR/7/sOf0WhhNjdBBJ7z8b2TPm9HBPUDCmVmaAvIK8MOivN6cjQJKF2DYrPQOtb++uro6fPnZR8jLzRHCZXPIHN41ov2BvIICLQgwbOaxoAAFGDbzDFCAAm0JqCpsPldWgXseew0XvyBQDS1m2KyGLjTPpHQAACAASURBVLW8RqOxARmnViH1+Deob6wWLuoWMBCX9LoTQT78oqbeznLlrQkwbObZoAAFmgswbFb/eSgvL8OJ48cQ12+A+jfDHThcgGGzw1vABVBAcQL8/qC4lnBBFHCoAMNmmfi1HjavPp6DtMJT2FdyFlf3jMbNffrJJCvtNOaX//2a8z4q64qFiYJ8umFsr9vRPWCgtBOzOgUcKMAPiw7E59QUUKAAw2YFNoVLooADBRg2OxCfU1NAoQL8/qDQxnBZFHCQAMNmmeC1Hjbft+1nFFRXCppaCZuLq0/g44wHhT35uHXEiJ5/w4DQiTKdGE5DAccJ8MOi4+w5MwWUKMCwWYld+fOais8WIahzsPIXyhVqQoBhsybayE1QQFQBfn8QlZPFKKB6AYbNMrXQWcLmyyOjkBgSjoGd1P+F58vd83C64hBiu4zBxD7/EF4EyB8KOIMAPyw6Q5e5RwpYLsCw2XIrOa/Myz0KQ3qK8LK/O+6+F7379JVzes7lxAIMm524+dw6BVoR4PcHHg0KUKC5gCrD5n0Hj1rUxQGxUXjnxUcQ6O9n0fVSXqT5sHn7zyioqsSSERMR3kH9bzQ/ULgRa7OXwMc9ALfr34aHm7eUx4O1KaAoAX5YVFQ7uBgKOFyAYbPDW3BhAaWl54Rw2ZCeCj8/P+gTkoWX/bm6uipnkVyJ5gUYNmu+xdwgBawW4PcHq8k4gAKaFlBl2MwXBIp3JoP9PeHu5oKi0lo0NJnaLfy1IQUPL/8M18Yn4Y3rb7lw/X0aCptrG6vwQfq9qG2swBUx/0Tf4OHtuvACCmhJgB8WtdRN7oUC9gswbLbf0N4KGYY0ZKSl4OzZIiFc1ick8bEZ9qJyvM0CDJttpuNACmhWgN8fNNtabowCNgkwbLaJzfpBvLPZejNHjdhw+F3sLViPCP/+mDHwGUctg/NSwGEC/LDoMHpOTAFFCjBsdmxbGhsbsWL5F9AnJqNX72jHLoazUwAAw2YeAwpQ4GIBfn/gmaAABZoLMGyW6TwwbJYJ2s5pCiqO4Ivdc+Gqc8Nt8W8iwDvUzoocTgH1CfDDovp6xhVTQEoBhs1S6rI2BdQnwLBZfT3jiikgtQC/P0gtzPoUUJcAw2aZ+sWwWSZoO6YxmUz4dOcjOFt9DMO734DkbjPsqMahFFCvAD8sqrd3XDkFpBBg2CyFKmtSQL0CDJvV2zuunAJSCfD7g1SyrEsBdQqoKmxWJ/Hvq2bYrPzu7Tq1Chtz/gt/rxDMjF8CVxc35S+aK6SABAL8sCgBKktSQMUCDJulad7h7CwY0lLgHxCIyVOukmYSVqWABAIMmyVAZUkKqFyA3x9U3kAunwIiCzBsFhm0tXJaCJs3HTqAT1O2YW3mXlwXn4jXr7/1wnbV/oLAqvpz+MBwHxqaanHdgAWIDBgg08ngNBRQngA/LCqvJ1wRBRwpwLBZPP0zhQUwpKciIz0VoWHhwnOYhwzVizcBK1FABgGGzTIgcwoKqEyA3x9U1jAulwISCzBslhj4fHkthM2T33wZe04cE7aktbB5ddZiZBVtQ0zwKEyOeUSmU8FpKKBMAX5YVGZfuCoKOEqAYbN98vX19TCkpwgBc11dHfQJSYhPSIKfX0f7CnM0BRwkwLDZQfCclgIKFuD3BwU3h0ujgAMEGDbLhK72sLmgrBTxzz8BX09P3D1qHPp1jcRl/QZe0FPznc3HS/fh633z4e7qhTsT3oW3O7/8yfTbgtMoVIAfFhXaGC6LAg4SYNhsH/wrLz2H3r2jhYA5slt3+4pxNAUUIMCwWQFN4BIooDABfn9QWEO4HAo4WIBhs0wNUHvY/OH2zXji+68xZeAQLL35jr+oqTVsbjI24qOMB1BWW4hxve7C4PDLZToRnIYCyhXgh0Xl9oYro4AjBBg2O0Kdc1JAuQIMm5XbG66MAo4S4PcHR8lzXgooU4Bhs0x9UXvYfP17S7DtyCEsufE2TB+SoJmwOeXY19iR/yVCfHvhpsEvQ6fTyXQiOA0FlCvAD4vK7Q1XRgFHCDBsdoQ656SAcgUYNiu3N1wZBRwlwO8PjpLnvBRQpgDDZpn6ouawuaK2BnHz5wpSBxa8DD8vb02EzRV1Z/FB+r1oMjXilqGvIbgD/2qrTL8dOI3CBfhhUeEN4vIoILMAw+aWwfft2YWzZ4twyfhLZe4Ip6OAYwUYNjvWn7NTQIkC/P6gxK5wTRRwnADDZpns1Rw2r9yVjge+/BgjekVj+awHWxRT42M0Vu5/FnnndgmPzjA/QoM/FKDA7wL8sMiTQAEKNBdg2Pz/GseP5Qsv+jO/8K9vbD+MG38pukZE8sBQwKkEGDY7Vbu5WQpYJMDvDxYx8SIKOI0Aw2aZWq3msHnWp+/jp327seDKa3DnqEs0ETYfKU7FDwdego97AG7Xvw0Pt7/erS3T0eA0FFCcAD8sKq4lXBAFHCrg7GFzRUX5HwFzKjw9PYUX/ekTkuHh4eHQvnByCjhKgGGzo+Q5LwWUK8DvD8rtDVdGAUcIMGyWSV2tYXN9YyNin5qD2sYGpDy2AJGdglQfNjc01eFDw/2orC/G5L6zEdNlpEyngNNQQB0C/LCojj5xlRSQS8CZw+Yfv1+J3TsNfwTMSegSEioXO+ehgGIFGDYrtjVcGAUcJsDvDw6j58QUUKQAw2aZ2qLWsPmXg/tx64fvIjY0HBtm/xsnqiqx/fTxv6itPp6DyoYGLBk5EeE+vjKp2jbN1txPkX7iW0T498eMgc/YVoSjKKBhAX5Y1HBzuTUK2CDgzGGz+bEZkd34Tgcbjg2HaFiAYbOGm8utUcBGAX5/sBGOwyigUQGGzTI1Vq1h8+INa/Dq+lW4d+wEPD55GjadOoYl+zNaVVND2Lx463Rh/Xck/Af+XrxDSabfApxGRQL8sKiiZnGpFJBBwJnDZhl4OQUFVCfAsFl1LeOCKSC5AL8/SE7MCSigKgGGzTK1S61h88vrfsIbv6zFnEuvwMMTLscP+Yfx8aH9iAkIwsBOwX/Rm9ytF/wU/AzDoqo8fLpzNjp5d8VM/RKZus9pKKAuAX5YVFe/uFoKSC2g1bD54IH9iI3rLzUf61NAcwIMmzXXUm6IAnYL8PuD3YQsQAFNCTBslqmdWgmbPz98ACtzD+FvfeIwvWdfmfTEmya7aDt+ynoVvYMSMTXuMfEKsxIFNCTAD4saaia3QgERBLQUNh85fEh42d9OQxomTpqMCZMmiyDEEhRwLgGGzc7Vb+6WApYI8PuDJUq8hgLOI8CwWaZeayVsfufALmw4kYd/xA3GxIieMumJN03KseXYkf8VEiKuxqiet4hXmJUooCEBfljUUDO5FQqIIKD2sPls0RkY0lOFkDm4S4jwsr94faIIMixBAecUYNjsnH3nrinQlgC/P/B8UIACzQUYNst0HrQSNi/anYqUM6cwZ3ASkruEy6Qn3jSrs15DVtFWTIq+H/1CxolXmJUooCEBfljUUDO5FQqIIKDWsNl8F/Pa1T+iuroaenPAnJAEf/8AEURYggLOLcCw2bn7z91ToCUBfn/guaAABRg2O+AMaCVsfjJ9Kw6cO4tn9KPQr1NnB0jaN+Xnu/6JwsqjuHHQQoR1VN9jQOzbPUdTwDIBfli0zIlXUcBZBNQaNp+/k7lb9x7O0irukwKyCDBsloWZk1BAVQL8/qCqdnGxFJBcgHc2S078+wRaCZsf2r4BJ6oq8Prw8Yj07SiTnnjTvLFtBppMjbh/+OfwcPUWrzArUUBDAvywqKFmcisUEEFArWGzCFtnCQpQoAUBhs08FhSgwMUC/P7AM0EBCjQXYNgs03nQSth8++Y1KKurxQdjLoe/p5dMeuJMU1FfjGWpd8Hb3R/3JH8oTlFWoYAGBfhhUYNN5ZYoYIeAEsPmuro6eHp62rErDqUABWwVYNhsqxzHUUC7Avz+oN3ecmcUsEWAYbMtajaM0UrYfM36b4XdfzNxGnQ6nQ0SjhtyrHQvvtn3NLr6x+L6gc87biGcmQIKF+CHRYU3iMujgMwCSgqbM/ftEV72V3D6FP71+NMyS3A6ClDALMCwmeeAAhS4WIDfH3gmKECB5gIMm2U6D1oIm+8aOwG3/voTOri545NxU2SSE2+aPafX4pcj72FA6ARM7HOveIVZiQIaE+CHRY01lNuhgJ0Cjg6bT544DkNaCjIMqejdp6/wor9+/QfauSsOpwAFbBVg2GyrHMdRQLsC/P6g3d5yZxSwRYBhsy1qNozRQth8/fDRuH/beoT6dMDbIy+1QcGxQzbmvI9dp1ZjTM/bEB9xlWMXw9kpoGABflhUcHO4NAo4QMARYXN9fT1+275FuIvZzc0N+sRkxOuT4OWlrkd4OaBdnJICkgswbJacmBNQQHUC/P6gupZxwRSQVIBhs6S8/19cC2HzFQnJeCx1E/r4B+LFpLEyyYk3zYr9zyD/3G5Mi5uHqKAE8QqzEgU0JsAPixprKLdDATsFHBE2b/xlPaqrq6FPSEJIaJidO+BwClBATAGGzWJqshYFtCHA7w/a6CN3QQGxBBg2iyXZTh0thM2jBg3BC7t+w9DgUDw+ZJhMcuJNsyztblTUncXf9W8j0JtfXMWTZSWtCfDDotY6yv1QwD4BR4TN9q2YoylAASkFGDZLqcvaFFCnAL8/qLNvXDUFpBJg2CyV7EV1tRA2D4rrh7f2Z2BMeDc82D9eJjlxpmk0NuDN7ddDBxc8NPJ/cNG5ilOYVSigQQF+WNRgU7klCtghwLDZDjwOpYAGBRg2a7Cp3BIF7BTg9wc7ATmcAhoTYNgsU0O1EDZH9e6Dj7P34coevTEzeoBMcuJMU1R5FJ/u+ieCfCJxW/wb4hRlFQpoVIAfFjXaWG6LAjYKiBk279ppEF72d8vMO/n8ZRv7wWEUcLQAw2ZHd4DzU0B5Avz+oLyecEUUcKQAw2aZ9LUQNnfp3h0rcg/hxt5xuDaqr0xy4kyTdWYbVh9ajN5BSZga9y9xirIKBTQqwA+LGm0st0UBGwXsDZuPHjmMDEMqMtJTMWhIvPCyvz7RMTauhsMoQAFHCzBsdnQHOD8FlCfA7w/K6wlXRAFHCjBslklfC2Gzd3go1p/Iw6zYwbg0sqdMcuJM81v+//Dbsf8hMXI6Rva4WZyirEIBjQrww6JGG8ttUcBGAVvC5pLis8gwpAl3MXfqFIT4hCThH51OZ+MqOIwCFFCKAMNmpXSC66CAcgT4/UE5veBKKKAEAYbNbXQhfXcWZj78onDFgNgovPPiIwj092u3b+fHffT6Y0gY/PudO2oOm9/avAHXjB0Pk683jldWYM6gJCSHhLfroKQLVmUtxqGibbgs+gHEhVyipKVxLRRQnAA/LCquJVwQBRwqYG3YnHUwE9+v/Brx+kTEJyYjMLCTQ9fPySlAAXEFGDaL68lqFNCCAL8/aKGL3AMFxBNg2NyKZU7+KTy+cBmen3cXenUPx8rVW5CScQAL5twOby+PVjvQPKDWQtg8/4cV+DQjBUNGDL+w52cTRiEusLN4p1CGSubnNZuf23zDoBcR3jFahhk5BQXUK8APi+rtHVdOASkErA2bKysr4Ovb/h/OS7FW1qQABaQXYNgsvTFnoIDaBPj9QW0d43opIK0Aw+ZWfM3hct7xAsyeNUO44uLwuaVh5msW/ecrzL3vRvx74TI8OmuG6u9sTlr4FIpqa4Sw2cfNDVO69cakblEI8PCU9mSKXP2NbTPQZGrE/cM/h4ert8jVWY4C2hLgh0Vt9ZO7oYC9AtaGzfbOx/EUoICyBRg2K7s/XB0FHCHA7w+OUOecFFCuAMPmVnqzeOly4VfOh83nyipwz2Ov/SlAbj60eRjdKcDvL9eq8TEa2YWnccmrzyPQ3x99E/To4u2Dd0ZNUu5pbmVlFXVnsSztbvi4++MfyR+qbv1cMAXkFuCHRbnFOR8FlC1wPmwur6qFIT0F0dEx6BzcRdmL5uooQAHJBBg2S0bLwhRQrQC/P6i2dVw4BSQRYNjcRtjcIzIU0yePFq5oK2w2/9q8F5Zhzr03CI/caOnasqoGSRpob1Ffbze4uuhQWdOIJqPpT+UWr1+DZ376HtckJuNkxw4I8emAjydMtndK2ccfLd6Fz3fOR/fAfrhVv1D2+YUJ+T4kx7grZFa1tb+jjzvKq5X576y2WmoyAXz3mEIOPZehKQFXUyNycnORmZmJyG49ENdvANzcXDW1R27GMgGTEdC5WHYtr9KugLurC9zcXFBT16jdTXJnFHCQgFr/PavW7w8OajOnpUCLAn9O5NSN1MHTDfUNTWi4KGdUyq50JpM5PpD/x5o7m813Nc+a+ypOFxb/ZaHnn9tcVavMD2Penq5w0emED4sXn4GxixbCkJeHt2+7HZ+ezEeoTwd8NukK+Zth54yp+T9i9cH3EB8xCVP7329nNRuHO+QU27hWDhNdQG3tN/8hlPkPoPhDAQo4r0BVVSXOFBYI/wwdMhgNTUb4dOjovCDcuSBg/t8ztf0BKlsnvoCbqw7mf2rrjeIXZ0UKOLmAWv89y+8PTn5wuX1RBLT0GcvTwwUNTSYYm5SZhjgsbLblmc3nT1dLdzar7TEaheVlGPrc43B3dcWmxxbg0dSNqn2Mxi9H3sOe02sxpudMxEdMFeVfAixCAS0L8K/Babm73BsF2hYoKyvFh8vegfnP+vWJydAnJCM8JAA1tY2obWCwxPNDAQoAfIwGTwEFKHCxAL8//F979wGfVXX/cfyXBEgChEDYexOGzMwqonXXVUfdrSj83WIVx19rUdRaqVZUXH/LX9Tyd+BqFYujVamiZrKnCAhImGEFDQkZ/9e97ZMmMeO5z3PHOfd+eL36aoV7z/md9+9An+fL9Vz2BAII1BbgGI1G9kP9FwIa4XNO4Wq57/ZJkpjQSox/fn3+Qnl2xi3SIbnuG9f9EDbPzVkkd779mpw47Ch5+KJfyQ2LPtI2bH5jxXTZun+5nDP8NzKgYzp/AiCAQDMCfFhkiyAQXIHiPbulrLxcevToWYPACwKDux9YOQINCRA2sy8QQICwmT2AAAJNCRA2N6GTv3StXHHzDPOKkcMG1AmW/R42//L5Z+TTdavl4fMvkRNHjtE6bP5T7lVyqLxYJqU/I+0Tu/EnAgIIEDazBxBAwIIAYbMFLC5FIAAChM0BaDJLRMCiAA+rWATjcgR8LkDY7FKDdTpGo7S8XIbde7scqayUlff+QcpiRPmwedWuT+VA6c4Gu5mz5XXz56ce+7ZL3WYaBPQW4MOi3v2jegQaEzh0qETKDh+Wjp06W0IibLbExcUI+F6AsNn3LWaBCFgW4PuDZTJuQMDXAoTNLrVXp7B5/rLFcu3LcyStb39594ZbZcuhg3LLlx9Lt9Zt5enxJ7skFv407697XNbs+qzJGzq27i0T054If1CuRCDAAnxYDHDzWbovBZYuKZSCvBwp2vadXHP9TdK1W3dL6yRstsTFxQj4XoCw2fctZoEIWBbg+4NlMm5AwNcChM0utVensPnGV16UvywtkN/87Gy54aenyFub1skr61fLcd37yE0j01wSa36aH44ckL+selB2lnwjLWPjZWyPMyU2Nq7BGzu07inDOh/b/KBcgQACwodFNgEC+gts2rhBCgtypTA/V0aOGmO+7G9I6rCIFkbYHBEbNyHgWwHCZt+2loUhELEA3x8ipuNGBHwpQNjsUlt1CZsrq6pk+L13yKGyw/LP234rg7p0kztzF8r6A/vk9tFZkt21h0tiTU+zo2S9vLN6hnxfvk/axXeW846aJimteylRG0UgoLsAHxZ17yD1B1WgqqpKPvn7B1KQnyvJ7dtLWnqWpGVkSVxcw38RG64TYXO4UlyHQDAECJuD0WdWiYAVAb4/WNHiWgT8L0DY7FKPdQmbF32zTi7605PSq0OK5N51v+wrOyz/9c/3pUVMjPz5hLMkPsovrHZwG0dmfPj1U1JVXSF92o+SM4feJgkt29oxNGMggIAITzazCxDQVODAgf2Sl/OlpGdkSYeUjratgrDZNkoGQsAXAoTNvmgji0DAVgHCZls5GQwB7QUIm11qoS5h82//+rq88OVncv1xJ8ndZ5wjH3y3SWavXirpnbvJXWN/4pJWw9NUS5V8tvHPUrjtXfOCcT3OkuMGTpQYifW0LiZHwG8CfFj0W0dZDwLRCRA2R+fH3Qj4TYCw2W8dZT0IRC/A94foDRkBAT8JEDa71E1dwuaxD/xGdpUclHeunyrp/QbI7xZ/KUv27JTrR4yVE3v2c0nrx9OUVfwg89c8LFv2L5fYmBZy6pAbZViXCZ7Vw8QI+FmAD4t+7i5r01mgtLRUEhMTXV8CYbPr5EyIgNIChM1Kt4fiEPBEgO8PnrAzKQLKChA2u9QaHcLmJVu2yKlP/EHat24tK+/9g5RXVcnln8yXiupqefH40yWpVbxLWnWn2Ve6Xf6y8gHZf3iHJLZsJ+eOuFu6JQ32pBYmRSAIAnxYDEKXWaMuAhUVFVKQl2O+7C/7J+PNM5jd/kHY7LY48yGgtgBhs9r9oToEvBDg+4MX6syJgLoChM0u9UaHsPmh99+Tx/7xvlyaebQ88otL5csd2+TR5XkyrENH+V2GN08Rb9pbKH9bO1PKK0ulc5v+ZtDcNj7Fpa4xDQLBFODDYjD7zqrVEli7ZpUU5ufKqpXLJT0z23zZX99+/T0pkrDZE3YmRUBZAcJmZVtDYQh4JsD3B8/omRgBJQUIm11qiw5h8/GPPiSri76Tl664Rk4aPlIeW54vi3Z8J1cMGSln9RsUldS2g2tk875llsY4XFEiS4veN+8Z2vlYOTX1BomLaWVpDC5GAAHrAnxYtG7GHQjYIbBzx3YpyM+Vgvwc6d27r/kU8+gx4+wYOqoxCJuj4uNmBHwnQNjsu5ayIASiFuD7Q9SEDICArwQIm11qpw5hc5dbbzA1tj38lPnfkxYukAPlZfLU+JOle+u2UUl9uuF5WVL0t4jGmNB/oqT3+nlE93ITAghYF+DDonUz7kDADoFHH35Q0jOyJD0jW9q0je7/d+2oJzQGYbOdmoyFgP4ChM3695AVIGC3AN8f7BZlPAT0FiBsdql/qofN3+48IP1/M1USW7WSb343U0orjsgvP3lPWsTEyryTow9631n9B9lQnGs+odw+sXvY6r2SR0if9iPDvp4LEUAgegE+LEZvyAgI+EmAsNlP3WQtCEQvQNgcvSEjIOA3Ab4/+K2jrAeB6AQIm6PzC/tu3cLmdfv3ym/y/il9k5Jl5k9OCHudjV348pLbZOehjXLZmIela1J0R3JEXQwDIIBAkwJ8WGSDIIBAbQHCZvYDAgjUFiBsZj8ggEB9Ab4/sCcQQKC2AGGzS/tBt7B5YdFmeXLlYjm6W0+5dVRm1ErP5lwppUcOyLXZL0jrlslRj8cACCDgnAAfFp2zZeTgCXx/6JAUFuRKVVWVHH/CyVoCEDZr2TaKRsAxAcJmx2gZGAFtBfj+oG3rKBwBRwQImx1h/fGguoXNL69fLW9vWicXDBwqFw8cFpVSVXWlPL7oAomRWLnl2DejGoubEUDAeQE+LDpvzAz+F1i+dLH5sr+tWzdLWnqWTDj+BGnXTs+/bCVs9v9+ZYUIWBEgbLaixbUIBEOA7w/B6DOrRCBcAcLmcKWivE63sPmRpbmSs6tIfj0qXSZ06x3V6vf9UCQvFN5ontU8Kf3pqMbiZgQQcF6AD4vOGzODPwU2f7vJfIq5IC9Hho8YKemZ2TJ02AjtF0vYrH0LWQACtgoQNtvKyWAI+EKA7w++aCOLQMA2AcJm2yibHki3sPnmLz+WrYcOyiPZx8uAdh2iUtqyf7m8uWK69E4eKReMui+qsbgZAQScF+DDovPGzOA/gdn/85SUl5eZTzEbIXOLFi18s0jCZt+0koUgYIsAYbMtjAyCgK8E+P7gq3ayGASiFiBsjpowvAF0C5sv+vs7UlFdJa+ddLa0jI0Lb5GNXLVq5yfy4ddPyfCuJ8hpQ26MaixuRgAB5wX4sOi8MTP4T2Dfvr3SoUOK/xYmIoTNvmwri0IgYgHC5ojpuBEB3wrw/cG3rWVhCEQkQNgcEZv1m1QOm9ds3yYvfP6VPP7xh9K6ZSv5/O4H5IZFH0lKfILMPu5n1hdb746czfPkyy3zJKvPBXJM30uiHo8BEEDAWQE+LDrry+gI6CZA2Kxbx6gXAWcFCJud9WV0BHQU4PuDjl2jZgScEyBsds62zsgqh81/+myh3Pjyy2a9Rtj81q13yX0Fi+SolE5yX/qxUQt9tP4ZWbnjH3LSoGtlVPdToh6PARBAwFkBPiw668voegns21ss3367ScaOS9ercBurJWy2EZOhEPCBAGGzD5rIEhCwWYDvDzaDMhwCmgsQNrvUQJXD5t8veE+mv/OOHDNwsBw7ZJgcM3K0PLj4SxnTsatMSzs6aqG3Vt4vm/ctlfOOmib9OoyNejwGQAABZwX4sOisL6OrL1BdXW2+5K8gP0cO7N8vp51xtowZm6Z+4Q5VSNjsECzDIqCpAGGzpo2jbAQcFOD7g4O4DI2AhgKEzS41TeWweeq8V+WpTz6RB8+5UK44eoIs3rPT1rD5xYIpsrd0m0xMe0I6tu7tkjjTIIBApAJ8WIxUjvt0F1j/9VozZF62pFDSMrMlPSNb+g8YqPuyoq6fsDlqQgZAwFcChM2+aieLQcAWAb4/2MLIIAj4RoCw2aVWqhw2X/78bHktL0+evfRKOXtMmu1h86wvLpaKqnKZcvSr0jIu3iVxpkEAgUgF+LAYqRz36SqQn/uVfPj+e9K1W3dJz8wO9JEZDfWQsFnXnU3dCDgjQNjsjCujIqCzAN8fdO4etSNgvwBhs/2mDY6octh8xhOPyd9Xr5Z5V0+R8YNSbQ2bS4+UyLM5EyW+RRu54SdzXdJmGgQQiEaAD4vR6HGvjgJLlxTKgIGDpF27ZB3Ld7xmujma6QAAIABJREFUwmbHiZkAAa0ECJu1ahfFIuCKAN8fXGFmEgS0ESBsdqlVKofNWQ8+IEu2bJGPfv3fMqJnb1vD5t2HNsrcJbdJ5zb95FfjZrqkzTQIIBCNAB8Wo9HjXgT8J0DY7L+esiIEohEgbI5Gj3sR8KcA3x/82VdWhUCkAoTNkcpZvE/lsHngnXfI1n37JP/u30mP5Pa2hs0b9+bLX1c9JP1T0uTcEXdbVONyBBDwQoAPi16oM6dTAsV7dkvHTp2dGj4Q4xI2B6LNLBKBsAUIm8Om4kIEAiPA94fAtJqFIhCWAGFzWEzRX6Ry2Nx+yg3yQ3m5bPr949KqRQtbw+alRe/LJxtmy6jup8pJg66JHpIREEDAcQE+LDpOzAQOC5SWlkphfo4U5udKh5SOcvmVVzk8o7+HJ2z2d39ZHQJWBQibrYpxPQL+F+D7g/97zAoRsCJA2GxFK4prVQ2bk9vESdsbrpPWrVrJ767415fx7T8cks93fCdjUrrItPRjoli1yOeb5kr+d3+RY/pdJlm9z49qLG5GAAF3BPiw6I4zs9gvsHL5UiksyJONG9ZLeka2pGVkSY+eveyfKGAjEjYHrOEsF4FmBAib2SIIIFBfgO8P7AkEohdISmwR/SCKjJAYHyflFVVSWVntaEUlpRURjR9TXV3tbGURlWX9JlXD5rKqH2TAnXdIn06dpMeY0XUWZkfYvGDtTFm7e5GclvprGd7lOOtw3IEAAq4L8GHRdXImjEJg395i+eenH0thQa4MTh0maemZMuKoUVGMyK31BQib2RMIIFBbgLCZ/YAAAoTN7AEE7BcgbLZuSthcXGpdzYU7ig7slIwHH5BRvftK69RB5owXDhhq/nf3Nm1lQvfeUVXx2rLfSNHBtXLhqAekV/KIqMbiZgQQcEeAsNkdZ2axR+CTf3woCYmJkpaeJfHx8fYMyih1BAib2RAIIEDYzB5AAIGmBPj+wP5AIHoBwmbrhoTNiobNK7ZvlNMemynHDR0uZb26S6u4OHn1xLOtd7iRO2bnXS0lZXtkcsazkpzQ1bZxGQgBBJwT4MOic7aMjICOAoTNOnaNmhFwToAnm52zZWQEdBXg+4OunaNulQQIm613g7BZ0bB54dfL5bL//ZOcOzZdtndMtjVsNk5AeWzRv85pvnn8GxIbE2d953AHAgi4LsCHRdfJmRABpQUIm5VuD8Uh4LoAYbPr5EyIgPICfH9QvkUUqIEAYbP1JhE2Kxo2v7nkS/n1q6/IpPHHy+qEOFvD5pKyYpmdd5W0adlersmeY33XcAcCCHgiwIdFT9iZtJbAvn17pTA/V1YsWyK33P4bbDwWIGz2uAFMj4BiAoTNijWEchBQQIDvDwo0gRK0FyBstt5CwmZFw+bnPv9I7p//rkw95XT5sqrM1rDZOKvZOLO5e9JguWTMH6zvGu5AAAFPBLqnJMj2vYc9mZtJgy1gBMzGf4qL90haRpZkZGZLh5SOwUZRYPUd2raS0vIKOVxepUA1lIAAAl4LEDZ73QHmR0A9AcJm9XpCRfoJEDZb7xlhs6Jh8+/ff1ue/vQTefDcC2R+yV5bw+a1uxbJgnUzZUinn8iZw263vmu4AwEEPBEgbPaEPbCTbvjmaynIy5HCgjxJz8gyQ+aBg4YE1kPFhRM2q9gVakLAOwHCZu/smRkBVQUIm1XtDHXpJEDYbL1bhM2Khs23vvlneS0vT5657Er5884ttobNBd/9VT7b9GcZ1+ssOb7/ldZ3DXcggIAnAoTNnrAHctIvFv1TVi1fJmmZ2ZKWnhlIAx0WTdisQ5eoEQH3BAib3bNmJgR0ESBs1qVT1KmyAGGz9e4QNisaNl/x4rPy99Wr5NWrb5QnNq6xNWz+ZMNsWVr0vhw34EpJ63mW9V3DHQgg4IkAYbMn7IGc9PDhw5KQkBDIteu0aMJmnbpFrQg4L0DY7LwxMyCgmwBhs24do14VBQibrXeFsFnRsPnnTz8iBZs3y/ybbpcHVy+W1i1ayNwT7AmG31n1kGzYm28eoWEcpcEPBBDQQ4CwWY8+USUCbgkQNrslzTwI6CFA2KxHn6gSATcFCJvd1GYuvwoQNlvvLGGzomHzmU89LEu2bJE5V18vf9q4Tga0ay+PZP/UeocbuGPukttk96GNcumYh6Vb0iBbxmQQBBBwXoCw2Xljv8+wc8d28wzmn55wsiS2bu335fp+fYTNvm8xC0TAkgBhsyUuLkYgEAKEzYFoM4t0WKCxsHnTliK55Z5ZsmNXcZ0Khqf2l5nTp0j75KSan2/s2tAFz8y4TcaNSnV4JSKJ8XFSXlEllZXVjs5F2Kx42PzwxMny9rZv5dhuveTmURm2bIZncibK4SMlck3W89KmVQdbxmQQBBBwXoCw2XljP85QVlYmBfk5UpifK0eOHDHPYD7+hJP9uNTArYmwOXAtZ8EINClA2MwGQQCB+gKEzewJBKIXaC5snnzpmXLWKePNiUoPl8uMWS/JstUb5LH7b5L+fXqYPx8Km2tfG31l1kcgbLZuFtEdRYqHzXdcfJl8tmeHXDRwqFw4cFhEa6x905HKMnnyy0skRmLl5vFvSExMTNRjMgACCLgjQNjsjrNfZlm1Ypn5FPP6r9dKeka2pGVkSa/effyyPNYhIoTNbAMEEKgtQNjMfkAAAcJm9gAC9gtYCZsbC5YJm8PrS0x1dbWzz1yHV0fUV6keNk8+73xZdXC/3DoqU47u1jPq9e4t3SYvFkyR5ISuMjnj2ajHYwAEEHBPgLDZPWudZ/pu6xb507OzZNDgVPMp5hEjR+u8HGpvQoCwme2BAAKEzewBBBBoSoAnm9kfCEQvQNhs3ZBjNBR/svnnZ5whO8sOyx9/8lPpn9Teeofr3bF5/zJ5a8V90jv5KLlg1P1Rj8cACCDgngBhs3vWOs+0e9dOSWqXLAkJCTovg9rDECBsDgOJSxAIkABPNgeo2SwVgTAFCJvDhOIyBJoQsBo2L16+Tq6/849S+xxmnmwOb4vxZHN4ThFfFXpB4DEnnySV1dXy2klnS8vYuIjHC924csc/5KP1z8jwLsfJaam/jno8BkAAAfcECJvds2YmBHQQIGzWoUvUiIB7AoTN7lkzEwK6CBA269Ip6lRZwErYvP9AiUyd/qSkjUyVGyadX7Ospl4QePfNE2vOfHbagTObnRb+9/gqH6OxetcuGTv+GOmc0Fr+Z8Kptoh8uWWe5GyeJ5m9fyHj+11qy5gMggAC7ggQNrvjrPIsWzZ/K0lJSdIhpaPKZVKbSwKEzS5BMw0CmggQNmvSKMpEwEUBwmYXsZnKtwLNhc07dhXXWXvtJ5pDv8CTzeFtD55sDs8p4quMJ5s3Hjokw8aNlTEdu8q0tKMjHqv2jR+uf1pW7fhYThx8rYzudootYzIIAgi4I0DY7I6zarMcPHhACvNzpSA/VxITE+WKyddI27ZJqpVJPR4IEDZ7gM6UCCgsQNiscHMoDQGPBAibPYJnWl8JNBc2T770TPPJ5NBTzcbiZ06fIu2T//OdjbA5vC1B2ByeU8RXGWHztqoqGTA0VU7p1U+uGT424rHqhM1fPyWrdn4i5x01Tfp1sGdMWwpjEAQQaFaAsLlZIl9dsGRxgRTk5cjOHdslLSNL0jOypHOXrr5aI4uJToCwOTo/7kbAbwKEzX7rKOtBIHoBwuboDRkBgXDDZkMqFCqfPCGjwWM0QsG0V6oco+GSvMrHaBRVVUn/oalyWu8BctWw0baI/CnvKjlUViyT0p+R9ondbBmTQRBAwB0BwmZ3nL2cpaysTN7965vmk8yjx4yT9MxsGTxkqJclMbfCAoTNCjeH0hDwQICw2QN0pkRAcQHCZsUbRHlaCFgJm40FhV4QWPssZp5sDq/VPNkcnlPEVxlPNtsdNldUHZFZX1wkMRIrtxz7ZsS1cSMCCHgjQNjsjbubsxpPMRvnMhtPMsfGxro5NXNpKEDYrGHTKBkBBwUImx3EZWgENBUgbNa0cZStlIDVsNko/uk5b8ncNz+Q0PnNhM3htZSwOTyniK9yImzefWijzF1ym3Rs3Vsmpj0RcW3ciAAC3ggQNnvjzqwIqCpA2KxqZ6gLAW8ECJu9cWdWBFQWIGxWuTvUpotAJGFz6eFymTHrJflwYZ4ZOHdonyS33DNLOEaj6a4TNjv8u8KJsHntrkWyYN1MGdwxS84a/t8Or4DhEUDAbgHCZrtF3R/v0KESXu7nPrtvZyRs9m1rWRgCEQkQNkfExk0I+FqAsNnX7WVxLgk0Fja7NL2t03Bms62cjQ8WpDObv9o8T77aMk8ye58n4/v90iVhpkEAAbsECJvtknR3nD27d0lBfq55DvMll02UAYMGu1sAs/lWgLDZt61lYQhEJEDYHBEbNyHgawHCZl+3l8W5JEDYbB26pLTC+k0iwpPNEbGFf5MTTzb/be1MWbd7kZw2ZIoM7/rT8IvhSgQQUEKAsFmJNoRVxJEjR8xwuSA/R3744QdJz8gyz2FOTm4f1v1chEA4AoTN4ShxDQLBESBsDk6vWSkC4QoQNocrxXUINC5A2Gx9dxA2F5daV3PhDifCZuO8ZuPc5kvGzJDuSUNcWAVTIICAnQKEzXZqOjPWmtUrzaeY165eaYbL6RnZ0qdvP2cmY9TACxA2B34LAIBAHQHCZjYEAgjUFyBsZk8gEL0AYbN1Q8JmRcPms+c+J9/HxUr7Tp3ktN4D5Kpho613t94dTyy6UCqrK+TGn7wsrVokRj0eAyCAgLsChM3ueludzTiP+Y3XXjafYh45eqzV27keAcsChM2WybgBAV8LEDb7ur0sDoGIBAibI2LjJgTqCBA2W98QhM2Khs3nvvuaxCbEmx21I2wuKdsjs/OultYtk+Xa7Bes7xTuQAABzwUImz1vAQUgoJQAYbNS7aAYBDwXIGz2vAUUgIByAoTNyrWEgjQUIGy23jTCZsXD5vQOneTU/kNkXKeu1rtb647N+5fJWyvuk57Jw+SiUQ9GNRY3I4CANwKEzd64MysCqgoQNqvaGepCwBsBwmZv3JkVAZUFCJtV7g616SJA2Gy9U4TNyobNr0psQoJcO3ConDxwmPXO1rtjadH78smG2TKy20ly8uDrox6PARBAwH0Bwmb3zY0Zv9u6xXzZX0rHjnLscSd4UwSzItCAAGEz2wIBBGoLEDazHxBAoL4AYTN7AoHoBQibrRsSNgckbDaCZiNwntD/cknvdY71ncIdCCDguQBhs3stMM5fNgJm42V/LVu2NF/2l/2T8RIXF+deEcyEQDMChM1sEQQQIGxmDyCAQFMChM3sDwSiFyBstm5I2ByQsNk4QsM4SuOc4XfJgI4Z1ncKdyCAgOcChM3Ot2DZ0sVSkJcj277bagbMxsv+unbr7vzEzIBABAKEzRGgcQsCPhbgyWYfN5elIRChAGFzhHDchkAtAcJm69uBsDkgYfOf8q6SQ2XFcmXaU9KhdQ/rO4U7EEDAcwHCZmdbcO/dt8uQ1GGSnpktqUOHOzsZoyNggwBhsw2IDIGAjwQIm33UTJaCgE0ChM02QTJMoAUIm623n7A5AGFzRdURmfXFRRIjsfLr8fMkNoZ/Ddz6bxXuQMB7AcJmZ3tQWVnJMRnOEjO6zQKEzTaDMhwCmgsQNmveQMpHwAEBwmYHUBkycAKEzdZbTtgcgLB596GNMnfJbZKS2FOuSH/S+i7hDgQQUEKAsFmJNlAEAsoIEDYr0woKQUAJAcJmJdpAEQgoJUDYrFQ7KEZTAR3C5k1biuSWe2bJPVOvlHGjUhuVToyPk/KKKqmsrLbUjXDHDw1K2ByAsHntrkWyYN1MGZiSIT8fcZelDcXFCCCgjgBhc2S92PjNetm3f5+kpWdGNgB3IaCoAGGzoo2hLAQ8EiBs9gieaRFQWICwWeHmUJo2AoTNIoTNFrdrUQDC5q82z5OvtsyT9F7nyIT+l1sU4nIEEFBFgLA5/E4U79kthQV5UpifKykpHeW0M86Wvv36hz8AVyKggQBhswZNokQEXBQgbHYRm6kQ0ESAsFmTRlGm0gKEzYTNljdoEMLmBWtnytrdi+TUwTfIiG4nWjbiBgQQUEOAsLnpPlRUVJjhcmFBrpSUlJhPMqdlZEmHDilqNJAqELBZgLDZZlCGQ0BzAcJmzRtI+Qg4IEDY7AAqQwZOQPWwOfTU8Y5dxXV688yM22qO1Jj/0SJ58PGXan79V784TW6YdH7NP5ceLpcZs16SDxfm1fxcty4d5bH7bzL/2Tiio6nx628KjtEIwJPNxnnNxrnNF4/+vfRoNzRwfzCwYAT8IkDY3Hgn57/ztnz1xWdmuJyWniX9+g/wS9tZBwKNChA2szkQQKC2AGEz+wEBBOoLEDazJxCIXqChsPm5zxZK8aGS6Ae3OMK1x/1UUtq0/dFdTR1z8fSct6RwxTqZOX2KdO/SXnYWH5Cbp82StJGpZuAcCpqNQe+8aaIkJrQyxzcC6p7dOpuBNcdoWGxUEJ5sfmLRhVJZXSHXZb8oiS3bWRTicgQQUEWAsLnxTqxds0qGDhuhSquoAwFXBAibXWFmEgS0ESBs1qZVFIqAawKEza5RM5GPBRoKm8c9cK98s2un66te/NvpMqhrt7DD5sXL18n9M18wn1Du36eHhF4QmL9krTz1wltmAL3vQEmzLxckbLbYar+HzSVle2R23tXSMi5Bphz9ikUdLkcAAZUECJtV6ga1IOC9AGGz9z2gAgRUEiBsVqkb1IKAGgKEzWr0gSr0FtD5yWbjqeZde/bWPLEcCpu/2bRNHpj5gkybeqV0SE6SqdOflL37DtaE0vU7RthscQ/7PWzevH+ZvLXiPuneLlUuGf2QRR0uRwABlQSCGjZv2fyt9OnbT6VWUAsCSggQNivRBopAQBkBwmZlWkEhCCgjQNisTCsoRGMB1c9sNmgbC4ONsHnumx80qh8617mhc59rn+tM2GxxA/s9bF5a9L58smG2jOh6gpw65EaLOlyOAAIqCQQpbC4q2iaFeTnmy/6OHn+cnHLaGSq1gloQUEKAsFmJNlAEAsoIEDYr0woKQUAZAcJmZVpBIRoL6B42N/Rkc2VldZMdCb1Q8O6bJ8pZp4znzGar+9fvYbMRNBuB87H9fyUZvc61ysP1CCCgkIDfw+bSH36QgvwcKczPNdXTM7PNl/0ltm6tUBcoBQF1BAib1ekFlSCgggBhswpdoAYE1BIgbFarH1Sjp4DOYXNjZzY3FzaHXhrYpVOK+RJBnmy2uHf9HjYbR2gYR2mcPfxOGdQx06IOlyOAgEoCfg2bv920URZ+8nf5dtMGScvIlrSMLOnRo6dK9NSCgJIChM1KtoWiEPBMgLDZM3omRkBZAcJmZVtDYRoJ6BA27z9QYp67nDYy1QyHQz9CofHW7bvNlwF279Jeyiuq5ND3ZTLnlfly2fmnmC8IfGP+pzJl8gWSmNDKvLV+uNzY+I21saS0IqIOx1RXVzf9zHVEw7p/k9/DZuPlgMZLAq9InyUpib3cB2ZGBBCwTcCvYfOnH38kXbt1l+EjRtpmxUAIBEGAsDkIXWaNCIQvQNgcvhVXIhAUAcLmoHSadTopoEPYXDsg3rGr2OQIncds/O/QsRi1nUJnMocC6Q8X5tVhrH1/c+PX9ydsLi51ck9GPPa5774qsQkJcu3AoXLywGERjVNRdURmfXGRxEis/Hr8PImNiYtoHG5CAAE1BPwaNquhSxUI6CdA2Kxfz6gYAScFCJud1GVsBPQUIGzWs29UrZaALmFzOGqJ8XHmk83NHaMRzlhNXUPY7OOwefehjTJ3yW3SPrG7TEp/Otq9wv0IIOCxAGGzxw1gegQUEyBsVqwhlIOAxwKEzR43gOkRUFCAsFnBplCSdgKEzdZbRtjs47B57a5FsmDdTOmfkibnjrjb+u7gDgQQUEpAp7B508YNUliQK5u/3SS33sGfP0ptJIrxjQBhs29ayUIQsEWAsNkWRgZBwFcChM2+aieL8UiAsNk6PGGzj8PmrzbPk6+2zJO0nmfLcQOusL47uAMBBJQSUD1s3rdvrxTm5UhhQZ60S06WtPQs82V/cXEc4aPURqIY3wgQNvumlSwEAVsECJttYWQQBHwlQNjsq3ayGI8ECJutwxM2+zhsXrB2pqzdvUhOHnydjOx2svXdwR0IIKCUgKphc37uV+ZTzPv27pX0zGxJS8+UlI6dlLKjGAT8KEDY7MeusiYEIhcgbI7cjjsR8KsAYbNfO8u63BQgbLauTdjs47DZOK/ZOLf5wlG/k17Jw63vDu5AAAGlBFQMm9/9y5tSVl5mPsU8YOAgpbwoBgG/CxA2+73DrA8BawKEzda8uBqBIAgQNgehy6zRaQHCZuvChM0+DpufWHShVFZXyLVZc6R1q/bWdwd3IICAUgIqhs1KAVEMAgETIGwOWMNZLgLNCBA2s0UQQKC+AGEzewKB6AUIm60bEjb7NGwuKSuW2XlXScu4BJly9CvWdwZ3IICAcgKEzcq1hIIQ8FSAsNlTfiZHQDkBwmblWkJBCHguQNjseQsowAcChM3Wm0jY7NOwefP+ZfLWivuke9JguWTMH6zvDO5AAAHlBNwMm9euWSWLC/Lk0l9dqZwDBSGAwL8ECJvZCQggUFuAsJn9gAAC9QUIm9kTCEQvQNhs3ZCw2adh89Ki9+WTDbNlWJfj5WepN1nfGdyBAALKCTgdNu/YsV0K83OlID9HevfuKxmZ2TJy9FjlHCgIAQQIm9kDCCDwYwHCZnYFAggQNrMHELBfgLDZuilhs0/DZiNoNgLnY/pdJlm9z7e+M7gDAQSUE3AibD58+LAZLhshc2VFhaRlZEl6Rra0adtWufVTEAII1BXgyWZ2BAII1BYgbGY/IIAAYTN7AAH7BQibrZsSNvs0bDaO0DCO0jhr2B0yuFO29Z3BHQggoJyA3WHzqpXLZd4rfzbDZSNk7tmrt3JrpiAEEGhcgLCZ3YEAAoTN7AEEEGhKgGM02B8IRC9A2GzdkLDZp2Hz7LyrpaRsj1ye9rh0at3H+s7gDgQQUE7A7rC5eM9u6dips3LrpCAEEAhPgLA5PCeuQiAoAjzZHJROs04EwhcgbA7fiisRaEyAsNn63iBs9mHYXFF1RGZ9cZG5G246Zp60iG1pfWdwBwIIKCdgd9is3AIpCAEELAkQNlvi4mIEfC9A2Oz7FrNABCwLEDZbJuMGBH4kQNhsfVNoGTbnL10rV9w8w1ztyGED5NkZt0iH5KQGV1/7WuOCM07MlvtunySJCa3M64t8GDbvPrRR5i65TZITusrkjGet7wruQAABJQWshM3Lly6WQYNTpXWbNkquhaIQQCB6AcLm6A0ZAQE/CRA2+6mbrAUBewQIm+1xZJRgCxA2W++/dmHzhs1FcvdDs+XBu66SgX17yNsLPpOcwtV1AuTaDMav9+7RRTLGDJXSw+Vy7yNzpFuXFJl6zYW+DZvX7V4kf1s7U/qnjJNzR/zW+q7gDgQQUFKgubB587ebpLAgVwrycmT4iJFy8WUTpUWLFkquhaIQQCB6AcLm6A0ZAQE/CRA2+6mbrAUBewQIm+1xZJRgCxA2W++/dmGzER5/u3VHTVhcP3xujqB+OO3HJ5u/2jxPvtoyT8b1PEuOH3BlcyT8OgIIaCLQUNi8f/8+KczPlcKCPGnTpo2kpWdJemY2IbMmPaVMBKIRIGyORo97EfCfAGGz/3rKihCIVoCwOVpB7kdAhLDZ+i7QLmye+dzr5ipDTybvO1Ai1935mNx6zYXm08vN/ah/vx/D5s82vSQF370jJw++TkZ2O7k5En4dAQQ0EagdNu/bt1feePX/ZM+e3ZKWkSVp6ZnSqXMXTVZCmQggYIcAYbMdioyBgH8ECJv900tWgoBdAoTNdkkyTpAFCJutd1/LsLlf725y3ukTzNVaCZuN85sffe71Omc8Fx8ss67mwh2nv/WyxCYkyA2Dh8vPhgyzNOMzX10tB0p3yRXpj0r3dgMt3cvFCCCgrkBKUivZW1JuFrh71y4pP1IuPXv2UrfgUGXVMSIx1erXSYUIaCbQNrGllB+plPKKKs0qp1y7BaqrRWJi7B6V8XQTaNUiTlq1ipVDPxzRrXTqRUB5AeOTrI5/zHZsFy+qZh7KN50CEfi3QGJ8nG8s4lvGSUVllVRWOfv9vLSsMiKzmOpq42Ot+z8ifbLZCJrvemi2PPfwreZZz6EfZUfU/II24f9eNMPmqcOPkrOHHxU29MHDxfKHjy+XFrEt5d7T3pbYmNiw7+VCBBBQWyC+Zayo+mdWU3LG/5HFxer48Vzt/UB1CLSMi5HK6mqpUvOjDA1yUcDYB3GkzS6KqzlVXKxIbEyMHKn05GuamihUhYBNArp+ntX1+4NNbWMYBGwR8NN3WeOzgpEzO53oRhpmexY2R3Jmc2NBs7Hr/HaMxte7v5D31j4qvduPkgtGTrflNxaDIICAuwKVlZVSWvqDtG2bVGfi5l4Q6G6VzIYAAl4LcIyG1x1gfgTUEuAYDbX6QTUIqCDAMRoqdIEadBfgGA3rHdTuGI36LwSs/8I/459fn7+w5qiMho7OqM3kt7D50w3Py5Kiv0l2nwvl6L4XW98R3IEAAp4JfL1ujRTk5ciK5Uvltv/+rXTs1Jmw2bNuMDEC6gsQNqvfIypEwE0BwmY3tZkLAT0ECJv16BNVqi1A2Gy9P9qFzcYSjQD5iptnmKsdOWxAnTOY64fNxrEbz7+6oG5g07VjzXEafgubX15ym+w8tFHOO2qa9Osw1vqO4A4EEHBVYNfOHVKQnyuF+bnSvUdPSc/MljFj0xqsgSebXW0NkyGgvABhs/ItokAEXBUgbHaVm8kQ0EKAsFmLNlGk4gKNhc2bthTJLffMkh27iuusYHhqf5k5fYq0T/7Pv6nc2LWhG5+ZcZuMG5XquIRx/rTxvpdKh4/c0jJstlPfT2FzRVW5zPriEpOF85psAAAgAElEQVTnxp/8n7RqkWgnFWMhgICNAl998bkU5OdIWVmZpGdkSVpGliQltWtyBsJmGxvAUAj4QICw2QdNZAkI2ChA2GwjJkMh4BMBwmafNJJleCrQXNg8+dIz5axTxps1lh4ulxmzXpJlqzfIY/ffJP37/OudcaGwufa1XiyKsNkldT+FzVv2L5c3V0yXTm36yeXjZrokyDQIIGBVYPv2Isn58nNJz8iW3n36hn07YXPYVFyIQCAECJsD0WYWiUDYAoTNYVNxIQKBESBsDkyrWaiDAlbC5saCZcLm8Brk2QsCwysv/Kv8FDbnbHldvtz8mozufpqcOOjq8BG4EgEEtBAgbNaiTRSJgGsChM2uUTMRAloIEDZr0SaKRMBVAcJmV7mZzKcCqobNi5evk+vv/GON+qnHZ8qdN02UxIRWNT83/6NF8uDjL9XpzLSpE+WMk/71JLZTPzhGo7jUKduoxj333VclNiFBrh04VE4eOCyssd5e+YB8u2+JnJ56iwztcmxY93ARAgjYL1BZWSlxcXG2D0zYbDspAyKgtQBhs9bto3gEbBcgbLadlAER0F6AsFn7FrIABQSshs2hELj2Ocx2P9lshMjPv/JezVEdoeM7DK5Q4Fz/GuPXinbslH98ViiXX3i6o7KEzT4Jm6urq+Spr34pRyoPy39lPift4js7unEYHAEEfiywcvlSKSzIk1FjxsnYcem2ExE2207KgAhoLUDYrHX7KB4B2wUIm20nZUAEtBcgbNa+hSxAAQErYfP+AyUydfqTkjYyVW6YdH5N9U29IPDumyfWnPkcznJDc5z7swl17qv98ydNyDTPju7SKaVOHZzZHI6wDdf45RiN3d9/K3MXT5U2rTrINVnP2yDDEAggEI7A1i2bpTA/VwoLcmVw6jBJS8+UEUeNCudWy9cQNlsm4wYEfC1A2Ozr9rI4BCwLEDZbJuMGBHwvQNjs+xazQBcEmgubd+wqrlNF7SeaQ79g55PNxpPT9898oc4LCI15Qk83hwLmp+e8JXPf/EBqh9mEzS5sGGMKv4TNy7Z/IB9/8ycZ0vkYOXPorS7pMQ0CwRQ4ePDAvwPmPImPj5e0jCxJS88y/7eTPwibndRlbAT0EyBs1q9nVIyAkwKEzU7qMjYCegoQNuvZN6pWS6C5sHnypWeaTxiHniw2qp85fYq0T06qWYgbYbMxmREw79qz1zxKw/hhPN384cK8mjqOGjZAZt43Rdq1besoMsdo+OQYjQVrH5O1uz+Xnw6cLGN7nOHopmFwBIIsUF5eLg///r5/B8yZ0qVrN9c4CJtdo2YiBLQQIGzWok0UiYBrAoTNrlEzEQLaCBA2a9MqClVYINyw2VhCKFQ+eUJGg8dohILpaJYb7pPN9ecwapt67ywZPXyQ/PeUy+u8SDCaehq6l7DZJ2Hz/+ZdIwfLdstlYx6RrkkD7d4njIcAAv8WqKqqktjYWE88CJs9YWdSBJQVIGxWtjUUhoAnAoTNnrAzKQJKCxA2K90eitNEwErYbCwp9ILA2sdX2PlkczhnNhtPWjf044NPvpQ33lsoj95b98lru1tB2OyDsPlQ2V75U95/SVxMS7npmFclJsabIMzuzcl4CCBQV4CwmR2BAAK1BQib2Q8IIFBbgLCZ/YAAAvUFCJvZEwhEL2A1bDZmDJ2XHDq/2c6w2Rh//keL5PlX3qs5tzl0XrPxa6EjNJ58/g254KyfSv8+PUwE45pHnvqzdOrUQa6/4j8vL4xe6McjEDb7IGz+evcX8t7aR6V3+1FywcjpTuwTxkQgEALGi/6MH8YZzCr+IGxWsSvUhIB3AoTN3tkzMwIqChA2q9gVakLAWwHCZm/9md0fApGEzaHw1zgv2QicO7RPklvumSV2HKMRUg09QR3651OPzzSD5sSEVuZPGYH0g4+/VKcJV178M7n+yvOlsrLa0eYQNvsgbP50w/OypOhvkt33Ijm6z0WObhgGR8BvAhu++VoK8nJkcUGeGTKffOrp0iGlo5LLJGxWsi0UhYBnAoTNntEzMQJKChA2K9kWikLAUwHCZk/5mdwnAo2FzTouLzE+TsorqgibnW5ekQ/C5teW/kaKStbKL0beJ33aj3SajPER0F6geM9uKcjPNUPmzp27SFpmtqSlZyq/LsJm5VtEgQi4KkDY7Co3kyGgvABhs/ItokAEXBcgbHadnAl9KOBG2NzQU8gNUdZ/etkqN2GzVbEIr/dD2Pzkl5fKkcrDcm3WHGndqn2EEtyGQDAE/ve5p6W4eI+kZ2RJema2JCfr83uGsDkYe5RVIhCuAGFzuFJch0AwBAibg9FnVomAFQHCZitaXItAwwJuhM1u2RM2uySte9hceuSAPJtzpbSMS5ApR7/ikhrTIKCvwNYtm6V3n75aLoCwWcu2UTQCjgkQNjtGy8AIaClA2Kxl2ygaAUcFCJsd5WXwgAgQNltvNGc2a36MxraDa2Tesrule9JguWTMH6zvAO5AAAFtBAibtWkVhSLgigBhsyvMTIKANgKEzdq0ikIRcE2AsNk1aibysQBhs/XmEjZrHjav2PEP+fv6Z2RYl+PlZ6k3Wd8B3IGATwTKyspk65ZvZdDgVJ+s6MfLIGz2bWtZGAIRCRA2R8TGTQj4VoCw2betZWEIRCxA2BwxHTciUCNA2Gx9MxA2ax42f7bpz1Lw3V/lmH6XSlbvX1jfAdyBgOYCq1Yul8L8XFn/9Vo574JLZOy4dM1X1Hj5hM2+bS0LQyAiAcLmiNi4CQHfChA2+7a1LAyBiAUImyOm40YECJuj2AOEzZqHzX9d9ZBs3JsvZw67XYZ0+kkUW4FbEdBHYNt3W6UgL0cWF+bJgIGDzZf9jRg5Wp8FRFgpYXOEcNyGgE8FCJt92liWhUCEAoTNEcJxGwI+FiBs9nFzWZprAjzZbJ2asFnzsHlOwY2yv7RILh/3mHRqo+dLz6xvW+4IqoDxBPPCT/8hLVq0kPTMbBmXlimJiYmB4SBsDkyrWSgCYQkQNofFxEUIBEaAsDkwrWahCIQtQNgcNhUXItCoAGGz9c1B2Kxx2FxVXSlPLLpIqqVKbjpmnrSIbWl9B3AHAhoJLPrsUxk8ZKh07dZdo6rtK5Ww2T5LRkLADwKEzX7oImtAwD4Bwmb7LBkJAb8IEDb7pZOsw0sBwmbr+oTNGofNe0u3yYsFUyQ5oYtMzvgf693nDgQQ0EqAsFmrdlEsAo4LEDY7TswECGglQNisVbsoFgFXBAibXWFmEp8LEDZbbzBhs8Zh8zfFefLu6hnSr8NYOe+oada7zx0IKCTw/aFD0qZtW4UqUq8Uwmb1ekJFCHgpQNjspT5zI6CeAGGzej2hIgS8FiBs9roDzO8HAR3C5k1biuSWe2bJPVOvlHGjUhtlT4yPk/KKKqmsrLbUmnDHDw1K2Kxx2Jz/3V/k801zZVzPM+T4AZMtbRQuRkAVgcKCPDHOYm7durX8ciL7uKm+EDarsmupAwE1BAib1egDVSCgigBhsyqdoA4E1BEgbFanF1SirwBhswhhs8X9W6Rx2Pzh+qdl1Y6P5cRBV8vo7qdZXDmXI+CdwMZv1ktBfo4ZMo9Lz5S0jCwZNLjxv33zrlK1ZiZsVqsfVIOA1wKEzV53gPkRUEuAsFmtflANAioIEDar0AVq0F2AsJmw2fIe1jlsfnXZXbL94Dr5xcjp0qf9KMtr5wYE3BQ4dKhEvvricynIy5GUlI6Snplthsz8CF+AsDl8K65EIAgChM1B6DJrRCB8AcLm8K24EoGgCBA2B6XTrNNJAdXD5tBTxzt2FddheGbGbTVHasz/aJE8+PhLNb/+q1+cJjdMOr/mn0sPl8uMWS/Jhwvzan6uW5eO8tj9N5n/bBzR0dT49f05RkPjJ5uf/PJSOVJ5WK7Kmi1JrTo6+XuLsRGIWuDtN1+TdkntJC0zWzp0SIl6vCAOQNgcxK6zZgQaFyBsZncggEBtAcJm9gMCCNQXIGxmTyAQvYDqYbOxwqaOuXh6zltSuGKdzJw+Rbp3aS87iw/IzdNmSdrIVDNwDgXNxjh33jRREhNamWhGQN2zW2czsOYYDYv7SNcnm0uPHJRnc66QuJgW8uvxr1tcNZcjgICOAoTNOnaNmhFwToCw2TlbRkZARwHCZh27Rs0IOCtA2OysL6MHQ6ChsHlGYa4Ul5a6DvDfaVnSKTHxR/M2FgYvXr5O7p/5gvmEcv8+PST0gsD8JWvlqRfeMgPofQdKmn25IGGzxVbrGjZvO7hG5i27W7q0HSC/HPtHi6vmcgQQ0FGAsFnHrlEzAs4JEDY7Z8vICOgoQNisY9eoGQFnBQibnfVl9GAINBQ2X/nxB7LtUInrAHNOPE16tU0KO2w2nmretWdvzRPLobD5m03b5IGZL8i0qVdKh+QkmTr9Sdm772BNKF1/AsJmi63WKWwuryyVgu/eMVe454ct8s2eHBnaebycPnSqxVVzOQL2CBw5csR8yd+6tatl4qSr7RmUURoVIGxmcyCAQG0Bwmb2AwII1BYgbGY/IIBAfQHCZvYEAtELNBQ2r9u3V8qqKqMf3OIIqe1TJD4uzlLYPPfNDxqdJXSuc0PnPtc+15mw2WKjdAqbjXD53TUP11nh0X0vluw+F1pcNZcjEJ3AmtUrzZDZ+G/jJX9Z2cdIz169oxuUu5sVIGxulogLEAiUAGFzoNrNYhFoVoCwuVkiLkAgcAKEzYFrOQt2QEDnM5sbe7K5srK6SanQCwXvvnminHXKeM5strqvdAqb31/3hKzZ9U8Z1DFTOrXpZy51UKcs6dKmv9Vlcz0ClgWKiraZAXNhQa707dtf0tIzZdSYcZbH4YbIBQibI7fjTgT8KEDY7MeusiYEIhcgbI7cjjsR8KsAYbNfO8u63BTQOWxu7Mzm5sLm0EsDu3RKMV8iyJPNFnecLmFzdXW1PP3VL8U4SmNyxv9IckIXiyvlcgQiF/j8n5+YQbPxFHNaepa0btMm8sG4M2IBwuaI6bgRAV8KEDb7sq0sCoGIBQibI6bjRgR8K0DY7NvWsjAXBXQIm/cfKDHPXU4bmWqGw6EfodB46/bd5ssAu3dpL+UVVXLo+zKZ88p8uez8U8wXBL4x/1OZMvkCSUxoZd5aP1xubPzG2lBSWhFRh2KqjfTTBz90CZu/O7BKXl8+TTq27i0T057wgTxL0Eng4MED0q5dsk4l+7JWwmZftpVFIRCxAGFzxHTciIAvBQibfdlWFoVAVAKEzVHxcTMCpoAOYXPtgHjHrmKz7tB5zMb/Dh2LUbuloTOZQ4H0hwvz6nS89v3NjV9/qxA2F5cq+dvn3HdfldiEBLl24FA5eeAw+efGF6Vw27uS2es8Gd//l0rWTFEIIOCsAGGzs76MjoBuAoTNunWMehFwVoCw2VlfRkdARwHCZh27Rs2qCegSNofjlhgfZz7Z3NwxGuGM1dQ1hM2ahM3/m3eNHCzbLRePniE92g2Jtu/cj4ApcOhQiRTk5chxPz1JYmJiUFFcgLBZ8QZRHgIuCxA2uwzOdAgoLkDYrHiDKA8BDwQImz1AZ0rfCRA2W28pYbMGYfO47m3lpcJfS0KLtnJd9kuEgtb3OXfUE1i6pNAMmYu2fSfpmdly+pk/x0gDAcJmDZpEiQi4KEDY7CI2UyGggQBhswZNokQEXBYgbHYZnOl8KUDYbL2thM0ahM3J8Wtk0ab/k6O6nSSnDL7eepe5AwER+XbTRinIzzFf9Ddy1BgzZB6SOgwbjQQImzVqFqUi4IIAYbMLyEyBgEYChM0aNYtSEXBJgLDZJWim8bUAYbP19hI2Kxo2X/fh7yS+ZYWkpXSSIxVrZX9pkZwz4i4ZkJJhvcvcEWiB77ZukZfnviBJSUmSnpEtaRlZEhcXF2gTXRdP2Kxr56gbAWcECJudcWVUBHQVIGzWtXPUjYBzAoTNztkycnAECJut95qwWdGw+f5PJ0nbFvtrOtoiNl5uOPoliYtpZb3L3BFogS2bv5U2bdpIx06dA+3gh8UTNvuhi6wBAfsECJvts2QkBPwgQNjshy6yBgTsFSBstteT0YIpQNhsve+EzYqHzSmtM2RIp/7SLqGzHNX1ROsd5g4EEPCNAGGzb1rJQhCwRYCw2RZGBkHANwKEzb5pJQtBwDYBwmbbKBkowAKEzdabT9isaNh836eTJKnFfhnU6Xo5e9hJ1jvLHYEQKN6zW1q3biOJrVsHYr1BXyRhc9B3AOtHoK4AYTM7AgEEagsQNrMfEECgvgBhM3sCgegFCJutGxI2EzZb3zXc4alAZWWl+ZI/42V/JSUlctPNtxM2e9oR9yYnbHbPmpkQ0EGAsFmHLlEjAu4JEDa7Z81MCOgiQNisS6eoU2UBwmbr3SFsJmy2vmu4wxOBtWtWyeKCPFmxfKn5kj/jZX/9+g/wpBYm9UaAsNkbd2ZFQFUBwmZVO0NdCHgjQNjsjTuzIqCyAGGzyt2hNl0ECJutd4qwmbDZ+q7hDtcEysrK5B8fvW8+xdy7d18Zl54pY8amuTY/E6klQNisVj+oBgGvBQibve4A8yOglgBhs1r9oBoEVBAgbFahC9SguwBhs/UOEjYTNlvfNdzhmsDGDd/I1i3fmk8xt2nb1rV5mUhNAcJmNftCVQh4JUDY7JU88yKgpgBhs5p9oSoEvBQgbPZSn7n9IkDYbL2ThM2EzdZ3DXcggIAnAoTNnrAzKQLKChA2K9saCkPAEwHCZk/YmRQBpQUIm5VuD8VpIkDYbL1RhM2EzdZ3DXfYJmAckxEfH2/beAzkbwHCZn/3l9UhYFWAsNmqGNcj4G8BwmZ/95fVIRCJAGFzJGrcg0BdAcJm6zuCsJmw2fqu4Y6oBL4/dEgKC3KlIC9HLrj4l9K7T9+oxuPm4AgQNgen16wUgXAECJvDUeIaBIIjQNgcnF6zUgTCFSBsDleK6xBoXICw2fruIGwmbLa+a7gjIoHlSxdLQX6ubN26WdLSsyQ9M1u6dese0VjcFEwBwuZg9p1VI9CYAGEzewMBBGoLEDazHxBAoL4AYTN7AoHoBQibrRsSNhM2W9813BG2wJbN30pBfo4U5ufKsOFHmQHz0GEjwr6fCxGoLUDYzH5AAIHaAoTN7AcEECBsZg8ggEBTAoTN7A8EohcgbLZuSNhM2Gx913BHWAJ7du+S1175s6RnZEtaRpa0bNkyrPu4CIHGBAib2RsIIEDYzB5AAIHGBHiymb2BAAL1BQib2RMIRC9A2GzdkLCZsNn6ruGOsAQqKyslLi4urGu5CIFwBAibw1HiGgSCI8CTzcHpNStFIBwBwuZwlLgGgWAJEDYHq9+s1hkBwmbrroTNhM3Wdw13IICAJwKEzZ6wMykCygoQNivbGgpDwBMBwmZP2JkUAaUFCJuVbg/FaSJA2Gy9UYTNhM3Wd03A79i3b68U5uVIpy5dZczYtIBrsHw3BQib3dRmLgTUFyBsVr9HVIiAmwKEzW5qMxcCeggQNuvRJ6pUW4Cw2Xp/CJsJm63vmgDeUV1dbb7kz/jP3r3F5ov+jj3uBElISAigBkv2SoCw2St55kVATQHCZjX7QlUIeCVA2OyVPPMioK4AYbO6vaEyfQQIm633irCZsNn6rgnQHeu/XmsGzEsXF5gv+UtLz5IBgwYHSIClqiRA2KxSN6gFAe8FCJu97wEVIKCSAGGzSt2gFgTUECBsVqMPVKG3QGNh86YtRXLLPbNkx67iOgscntpfZk6fIu2Tk2p+vrFrQxc8M+M2GTcq1XGoxPg4Ka+oksrKakfnImwmbHZ0g+k6eFVVlfz+/mnStVt3M2Qel5ah61Ko20cChM0+aiZLQcAGAcJmGxAZAgEfCRA2+6iZLAUBmwQIm22CZJhACzQXNk++9Ew565TxplHp4XKZMeslWbZ6gzx2/03Sv08P8+dDYXPta71AJWx2Sb2IsNklab2mMY7NKCk5KO3aJetVONX6WoCw2dftZXEIWBYgbLZMxg0I+FqAsNnX7WVxCEQkQNgcERs3IVBHwErY3FiwTNgc3qaKqTbSOB/8IGz2QRNZAgIBESBsDkijWSYCYQoQNocJxWUIBESAsDkgjWaZCFgQIGy2gMWlCDQioFrYHHp6ukunFLlh0vk1Ve8/UCJTpz8p5/5sQs2T1qGfW71uU811I4b2l0fvrXvMh93N5xgNnmy2e08pP9727UVyYP8+GTpshPK1UiACtQUIm9kPCCBQW4Cwmf2AAAK1BQib2Q8IIFBfgLCZPYFA9AJWw+bFy9fJ9Xf+UWqfw2znk83hhs2hoDltZGpNKG0co/Hc3PlybPaYmiM+ohf68QiEzYTNTuwr5cYsLS2Vwvwc82V/xnnM55x/kfQfMFC5OikIgaYECJvZHwggQNjMHkAAgcYECJvZGwggQNjMHkDAfgErYXNDAa9RUVMvCLz75ok1TyKHU324YbMRet8/84U6Z0dzZnM4wjZcwzEaNiAqPMSqFcukID9XNm5YL+kZ2ebL/nr07KVwxZSGQOMChM3sDgQQIGxmDyCAAGEzewABBMIV4MnmcKW4DoHGBZoLm3fsKq5zc+0nmkO/4MWTzaE5Uzq0k5nT/3VsBmGzSzudsNklaJen+fD99+SLzxfKoMGpZsA84qhRLlfAdAjYL0DYbL8pIyKgswDHaOjcPWpHwH4Bnmy235QREdBdgLBZ9w5SvwoCzYXNky8903wyOfRUs1FzKNz1Mmw25g4d6VHbcdrUiXLGSeMdpeUYDY7RcHSDeTV4fu5XMnL0WElISPCqBOZFwHYBwmbbSRkQAa0FCJu1bh/FI2C7AGGz7aQMiID2AoTN2reQBSggEG7YbJQaepr45AkZdV7e58WTzQ3RPffnt+WF196vc560E8SEzYTNTuwrxkQAAQcECJsdQGVIBDQWIGzWuHmUjoADAoTNDqAyJAKaCxA2a95AyldCwErYbBQcepq49lnMdobNxhxPz3lLdu3ZK3feNFESE1qZTqEnq8/92YRGz4A+fPgHueE3j8s5pzV+jR3ohM2EzXbsI1fH2LN7l3Tq3MXVOZkMARUECJtV6AI1IKCOAGGzOr2gEgRUECBsVqEL1ICAWgKEzWr1g2r0FLAaNofC4LlvflDzBLHdYfP8jxbJ86+8V/Pyv1DQvHrdJgmF3Ebo/VXByjpPWK9as17ufvh5eey+m6R/nx6ONYSwmbDZsc1l58AHDuyXgrwcKSzIk7Hj0uXkU0+3c3jGQkALAcJmLdpEkQi4JkDY7Bo1EyGghQBhsxZtokgEXBUgbHaVm8l8KhBJ2Fx6uFxmzHpJPlyYZwbOHdonyS33zJLQ+c52UBlPNxuBtvFjeGp/uWfqlXL/zBck9GRz7QA6NF/3rh3l8d/9Wvr27G5HCY2OQdhM2OzoBot28ML8XDH+s3v3LknPzJa09Eyeao4Wlfu1FSBs1rZ1FI6AIwKEzY6wMigC2goQNmvbOgpHwDEBwmbHaBk4QAKNhc06EiTGx0l5RZVUVlY7Wj5hM2GzoxssksG3fbdVFn32qfkUc3pGlqRlZMnAQUMiGYp7EPCVAGGzr9rJYhCIWoCwOWpCBkDAVwKEzb5qJ4tBwBYBwmZbGBkk4AJuhM3GsRgPPv5Ss9KnHp9Z55zmZm+odwFhs1WxCK8vImyOUM652955+w3p1aev+RQzPxBA4D8ChM3sBgQQqC1A2Mx+QACB2gKEzewHBBCoL0DYzJ5AIHoBN8Lm6KsMbwTC5vCcor6KsDlqQgZAAAGXBAibXYJmGgQ0ESBs1qRRlImASwKEzS5BMw0CGgkQNmvULEpVVoCw2XprOEaDJ5ut7xruQAABTwQImz1hZ1IElBUgbFa2NRSGgCcChM2esDMpAkoLEDYr3R6K00SAsNl6owibCZut75oI7ti5Y7t5BvOO7UUy6arrIhiBWxBAgLCZPYAAArUFCJvZDwggUFuAsJn9gAAC9QUIm9kTCEQvQNhs3ZCwmbDZ+q4J846ysjIpyM+RwvxcOXLkiHkGc1b2MZLYunWYI3AZAgjUFiBsZj8ggABhM3sAAQQaEyBsZm8ggABhM3sAAfsFCJutmxI2EzZb3zXN3LFq5XLzKeb169ZIeka2pGVkSa/efWyfhwERCJoAYXPQOs56EWhagCeb2SEIIFBbgLCZ/YAAAoTN7AEE7BcgbLZuSthM2Gx91zRxxxvzXpYfvv/efIr5qFFjbB2bwRAIugBhc9B3AOtHoK4AYTM7AgEECJvZAwgg0JQAx2iwPxCIXoCw2bohYTNhs/Vd08Qd5eXl0qpVK1vHZDAEEPiXAGEzOwEBBGoLEDazHxBAgLCZPYAAAoTN7AEEnBUgbLbuS9hM2Gx913AHAgh4IkDY7Ak7kyKgrABhs7KtoTAEPBHgGA1P2JkUAaUFeLJZ6fZQnCYChM3WG0XYTNgc1q7ZumWzrFyxTH52xtlhXc9FCCBgvwBhs/2mjIiAzgKEzTp3j9oRsF+AsNl+U0ZEQHcBwmbdO0j9KggQNlvvAmEzYXOju+bgwQNSmJ9rvuwvPj5ejj5mgvmyP34ggIA3AoTN3rgzKwKqChA2q9oZ6kLAGwHCZm/cmRUBlQUIm1XuDrXpIqBD2LxpS5Hccs8suWfqlTJuVGqjtInxcVJeUSWVldWW+MMdPzQoYTNh84822JLFBVKQlyM7d2w3w2XjZX9dunaztBG5GAEE7BcgbLbflBER0FmAsFnn7lE7AvYLEDbbb8qICOguQNisewepXwUBwmYRwmaLO7GIsLlGbNWKZTL3xf+V0WPTJD0zWwYPGWpRk8sRQMBJAcJmJ3UZGwH9BAib9esZFSPgpABhs5O6jI2AngKEzXr2jarVEiBsJmy2vCMJm/9Dtu27rdKjZy+JiYmx7MgNCCDgvABhs/PGzICATgKEzTp1i1oRcF6AsNl5Y2ZAQDcBwmbdOka9KgqoHjaHnjresau4Dt8zM26rOVJj/keL5M7+qOgAABSASURBVMHHX6r59V/94jS5YdL5Nf9cerhcZsx6ST5cmFfzc926dJTH7r/J/GfjiI6mxq/fN47R4MlmFX8vUxMCCDQgQNjMtkAAgdoChM3sBwQQqC1A2Mx+QACB+gKEzewJBKIXaChs3nbga6moKo9+cIsj9Gg3WFrGxf/orqaOuXh6zltSuGKdzJw+Rbp3aS87iw/IzdNmSdrIVDNwDgXNxqB33jRREhNameMbAXXPbp3NwJpjNCw2KihPNn+zfp306z9QWrRoYVGIyxFAQBUBwmZVOkEdCKghQNisRh+oAgFVBAibVekEdSCgjgBhszq9oBJ9BRoKm5/84jrZ+/021xd14zHPSMc2vcIOmxcvXyf3z3zBfEK5f58eEnpBYP6StfLUC2+ZAfS+AyXNvlyQsNliq/0cNu/ZvUsK8nOlMD9XOnfpKv91zQ0SGxtrUYjLEUBAFQHCZlU6QR0IqCFA2KxGH6gCAVUECJtV6QR1IKCOAGGzOr2gEn0FGgqb314xU0oO1z22wo0VnjdyqiQldAw7bDaeat61Z2/NE8uhsPmbTdvkgZkvyLSpV0qH5CSZOv1J2bvvYE0oXX8CwmaL3fVb2FxRUSEFeTlSWJAr33//vaRnZElaRpYkJ7e3KMPlCCCgmgBhs2odoR4EvBUgbPbWn9kRUE2AsFm1jlAPAt4LEDZ73wMq0F9A9TObDeHGwmAjbJ775geNNiF0rnND5z7XPteZsNniPvZL2HzgwH557523ZdXK5ZKemS1p6VnSt19/ixpcjgACKgsQNqvcHWpDwH0Bwmb3zZkRAZUFCJtV7g61IeCNAGGzN+7M6i8B3cPmhp5srqysbrJJoRcK3n3zRDnrlPGc2dyQ1tsLPpNpD88xf+mME7Plvtsn1Rx47Zew+et1a6S0tFRGjxnnr9/VrAYBBGoECJvZDAggUFuAsJn9gAACtQUIm9kPCCBQX4CwmT2BQPQCOofNjZ3Z3FzYHHppYJdOKeZLBHmyud4+yl+6Vh597nV5dsYt5jkkM5973bxi6jUXmv/tl7A5+t8+jIAAAqoLEDar3iHqQ8BdAcJmd72ZDQHVBQibVe8Q9SHgvgBhs/vmzOg/AR3C5v0HSsxzl9NGpprhcOhHKDTeun23+TLA7l3aS3lFlRz6vkzmvDJfLjv/FPMFgW/M/1SmTL6g5sHc+uFyY+M31u2S0oqINkJMdXV1089cRzSs/TcZ4XK/3t3kvNMnmIPXD591CZvLysokPj7efiBGRAABbQQIm7VpFYUi4IoAYbMrzEyCgDYChM3atIpCEXBNgLDZNWom8rGADmGzwV//3OXQeczGr4WOxajdptCZzKFA+sOFeXW6WPv+5sav335fh80G2L2PzJHstOE1YfOGzUVy90Oz5cG7rpKBfXtIyQ9HlPwtcduCyyWpxX7pnnCpDKnoKFlHj5fEhEQla6UoBBBwR6BtYgs5FOHfELpTIbMggICbAgmt4qSiskoqmjlzzc2amAsBBLwTaBEXKy1axMjhskrvimBmBBBQSiCpdUtlMw+loCgGgSYEWrWM9Y1Py7hYqayqliqHnx8uP1IVkZkWTzaHwuYLzjpeMsYMNRdaP2yOaPUu3HTbew9LSdk+uSrzCknvnerCjEyBAAIIIIAAAggggAACCCCAAAIIIIAAAgi4L6BV2KzDk807dmyXom3fSUnJQeneo6eMOmqYtGzRQr4/XCFVVVqcWOL+LmRGBAImwJPNAWs4y0WgGQGebGaLIIBAbQGebGY/IIBAfQGebGZPIBC9AE82Wzf09ZPNBocOZzZv+OZryf3qC0nLyJLUocPNLnZOjpeWLWJl9/7DcoR/Pdb6zuYOBHwowJnNPmwqS0IgCgHObI4Cj1sR8KEAZzb7sKksCYEoBTizOUpAbkdARHQ5szmcZiXGx5kvCKx0OGf09ZnNBnT9FwIa4bPxY+o1F5r/reoLAgmbw/ltwjUIBEuAsDlY/Wa1CDQnQNjcnBC/jkCwBAibg9VvVotAOAKEzeEocQ0CTQsQNlvfIb4Pmw2Stxd8JtMenmPqnHFittx3+yRJTGhF2Gx9v3AHAgh4KEDY7CE+UyOgoABhs4JNoSQEPBQgbPYQn6kRUFSAsFnRxlCWVgKEzdbbFYiwuSkWJ59s3vjNeinIz5GRo8fKsOFHWeoOTzZb4uJiBAIhQNgciDazSATCFiBsDpuKCxEIhABhcyDazCIRsCRA2GyJi4sRaFCAsNn6xiBsLi61rtbEHXuL90hBfq4U5udKSkpHSc/MNs9itvqDsNmqGNcj4H8Bwmb/95gVImBFgLDZihbXIuB/AcJm//eYFSJgVYCw2aoY1yPwYwHCZuu7grDZhrC5srLSDJcLC3Ll4IEDZrhs/KdDhxTrHfn3HYTNEdNxIwK+FSBs9m1rWRgCEQkQNkfExk0I+FaAsNm3rWVhCEQsQNgcMR03IlAjQNhsfTMQNkcZNh86VCIP3vfbfwXM6VnSf8BA611o4A7CZlsYGQQBXwkQNvuqnSwGgagFCJujJmQABHwlQNjsq3ayGARsESBstoWRQQIuQNhsfQMQNkcZNpeVlUl8fLx1+WbuIGy2nZQBEdBegLBZ+xayAARsFSBstpWTwRDQXoCwWfsWsgAEbBcgbLadlAEDKEDYbL3phM1Rhs3WycO7g7A5PCeuQiBIAoTNQeo2a0WgeQHC5uaNuAKBIAkQNgep26wVgfAECJvDc+IqBIIikJLUSr4/XCFlR6qUXHJMdXV1tZKVWSyqqImwec3qlRIbGyupQ4dbHDX6ywmbozdkBAT8JkDY7LeOsh4EohMgbI7Oj7sR8JsAYbPfOsp6EIhegLA5ekNGQMBPAoTNLnWzfti8fXuRFOTlmC/769u3v5x9zvnSsVNnl6r5zzSEza6TMyECygsQNivfIgpEwFUBwmZXuZkMAeUFCJuVbxEFIuC6AGGz6+RMiIDSAoTNLrXHCJtLS0vNcLkwL0eqqqokPTPbfNlf6zZtXKrix9MQNntGz8QIKCtA2KxsaygMAU8ECJs9YWdSBJQVIGxWtjUUhoBnAoTNntEzMQJKChA2u9SWGX+cJRu++doMl42QuUfPXi7N3PQ0hM1KtIEiEFBKgLBZqXZQDAKeCxA2e94CCkBAKQHCZqXaQTEIKCFA2KxEGygCAWUECJtdasXSpUtlzJgxLs3GNAgggAACCCCAAAIIIIAAAggggAACCCCAAAK1BXzzgkDaigACCCCAAAIIIIAAAggggAACCCCAAAIIIOCdAGGzd/bMjAACCCCAAAIIIIAAAggggAACCCCAAAII+EaAsNk3rWQhCCCAAAIIIIAAAggggAACCCCAAAIIIICAdwKEzQ7a5y9dK1fcPMOcYeSwAfLsjFukQ3KSgzMyNAIIqCCw70CJXHfnY7JizUaznBcfv1MyxgxtsLTSw+Vy7yNz5G8f59T8elPXq7A+akAAAWsC9X+fP3DHJDnv9AlhDTLzudclb+laPkOEpcVFCOgj8PaCz2Taw3PMgs84MVvuu32SJCa0anQB0fw5oo8KlSIQXAEr3x8MpQ2bi+SaOx6V7TuLTTQrny2Cq8zKEfCPgPE54tutO2TqNRcquSjCZofaYvzhf/dDs+XBu66SgX17iLERcgpXN/tB0qFyGBYBBFwSCH0ZzE4bboZJ9f8sqF+G8cHyhdfel+smnmN+yTT+kuquh2bLcw/fav7ZwQ8EENBfwAiMjR/Gh8HQl8lbr7mw0b+ECq3YuO/5VxfwF9b6bwFWgEAdAeP/6x997vWav0Sq/WdEQ1T1P1vAiQAC/hKI5PuD8WBL6LOElc8W/pJjNQgET6D2Q62TLzmdsDloW6D+3zI0FzgFzYf1IuBXAeP3+iPPvCYP/eYq899ksPoFkQ+Lft0ZrCuoAsbv6bt+P1tuv/7imr9Aai5YMqxCnyOOzRpVJ5QKqiPrRsBPAsafAf16d6v5Nxzqh8/116r600t+6g1rQcALAavfH+pnC1a/b3ixRuZEAAF7BVT/bMCTzfb2u2a0+l8kCZAcgmZYBBQTaOgLYzjBUmgZ/MWUYg2lHASiFGjo93Rz/7ZT7V9fuXYjYXOUPeB2BFQSaCgUau7/+0P/lkNoHd27duTfgFKpqdSCQJQCkXx/MP5cWPBJrvlngfGj9sMuUZbD7QggoIEAYbMGTXKixPpPLBA2O6HMmAioJ2B8WHxj/sI6R+aEGzbzVIJ6/aQiBKIVqP+0kjFeU2Fz/T9DmnviMdr6uB8BBNwVCP1//QVnHV9zlE5TYXND1xt/hrw+fyFnubvbOmZDwDGBSL4/mJ8P/mee7Nl30Dy3mTObHWsPAyOgpABhs5Jtcb4onmx23pgZEFBRIJInE4x1hL5MduuSouy5Syp6UxMCqgtYfbK59kvDaq+NFw2r3mnqQyA8AatPNjcUNvMQS3jWXIWALgJWvz/U/4vs0J8JF551fNgvINbFhjoRQKBhAcLmgO4MzmwOaONZduAFrJ65RtAc+C0DgM8FIj2zOcTCk80+3yAsL5ACVs9sbujfmKx/FnwgIVk0Aj4RsPr9IZInoX1CxTIQQODfAoTNAd0K9Z9kau58xoAysWwEfCfQ3NukjT8brrnjUXnorqvMf32WozN8twVYEAI/Eqj9bzs19ESi8es7du2tc/wOYTMbCQH/CtT/S6T6/0Zk/WMyjOvvemh2zTnNfK/w795gZcEUsPr9of73CZ5sDua+YdXBFiBsDnD/jQ+GV9w8wxTgX38N8EZg6YETCH3gW7Fmo7n2Fx+/s865jLXD5tCHReOstdo/Jl9yOsdpBG7nsGC/CoS+RP7t4xxzifXPVSRs9mvnWRcCjQvUPjLnjBOz6/xlU0NnMte+nu8V7CwE/Cdg5fuDsfraWUNDny38J8SKEECgod/79fMGVZRiqqurq1UphjoQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE9BQgbNazb1SNAAIIIIAAAggggAACCCCAAAIIIIAAAggoJUDYrFQ7KAYBBBBAAAEEEEAAAQQQQAABBBBAAAEEENBTgLBZz75RNQIIIIAAAggggAACCCCAAAIIIIAAAgggoJQAYbNS7aAYBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBATwHCZj37RtUIIIAAAggggAACCCCAAAIIIIAAAggggIBSAoTNSrWDYhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAT0FCJv17BtVI4AAAggggAACCCCAAAIIIIAAAggggAACSgkQNivVDopBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT0FCBs1rNvVI0AAggggAACCCCAAAIIIIAAAggggAACCCglQNisVDsoBgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ0FOAsFnPvlE1AggggAACCCCAAAIIIIAAAggggAACCCCglABhs1LtoBgEEEAAAQQQQAABBBBAAAEEEEAAAQQQQEBPAcJmPftG1QgggAACCCCAAAIIIIAAAggggAACCCCAgFIChM1KtYNiEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABPQUIm/XsG1UjgAACCCCAAAIIIIAAAggggAACCCCAAAJKCRA2K9UOikEAAQQQQAABBBBAAAEEEEAAAQQQQAABBPQUIGzWs29UjQACCCCAAAIIIKCowL4DJXLdnY/JijUbG6zwgTsmyXmnT5CZz70uz7+6oM413bt2lOcevlUG9u1h/vyGzUVyzR2PyvadxXWuGzlsgDw74xbpkJykqAJlIYAAAggggAACCARRgLA5iF1nzQgggAACCCCAAAKOCYTC5swxQ2XqNRc2Oo8RNuctXVsnNH57wWcy7eE58uLjd0rGmKE1YfP1E39uBtTGj9LD5XLvI3Nk8cr1dYJpxxbEwAgggAACCCCAAAIIhClA2BwmFJchgAACCCCAAAIIIBCOQDRhcyhINua57/ZJUrRzj/lkc+2w2fi10BPP9X8+nPq4BgEEEEAAAQQQQAABpwQIm52SZVwEEEAAAQQQQACBQApEEzYbYLWfeN67v4SwOZC7iEUjgAACCCCAAAJ6ChA269k3qkYAAQQQQAABBBBQVMCNsDl/6Vq54uYZNcdtKEpBWQgggAACCCCAAAIBEyBsDljDWS4CCCCAAAIIIICAswJNvSBw8iWn15zj3NCZzaFjNLp1STGva+i4jHDDbGdXyegIIIAAAggggAACCPxYgLCZXYEAAggggAACCCCAgI0C4YbBDYXNxs8t+CS35sV/obB5+87iOhWGXiBoY9kMhQACCCCAAAIIIIBA1AKEzVETMgACCCCAAAIIIIAAAv8RsBI2P//qgjp0I4cNkGdn3CIdkpPMn6//ZHNobOPXal+HPwIIIIAAAggggAACKggQNqvQBWpAAAEEEEAAAQQQ8I2AlbA5b+naJkPjho7RCP3c6Sdk1RzJ4Rs8FoIAAggggAACCCCgtQBhs9bto3gEEEAAAQQQQAAB1QScDpuN9YZeEPjAHZPkvNMnqEZAPQgggAACCCCAAAIBFSBsDmjjWTYCCCCAAAIIIICAMwJuhM1G5cb5zsYxHJzf7EwfGRUBBBBAAAEEEEDAugBhs3Uz7kAAAQQQQAABBBBAoFEBt8Lm0sPlcu8jc+RvH+cQOLMfEUAAAQQQQAABBJQQIGxWog0UgQACCCCAAAIIIIAAAggggAACCCCAAAII6C1A2Kx3/6geAQQQQAABBBBAAAEEEEAAAQQQQAABBBBQQoCwWYk2UAQCCCCAAAIIIIAAAggggAACCCCAAAIIIKC3AGGz3v2jegQQQAABBBBAAAEEEEAAAQQQQAABBBBAQAkBwmYl2kARCCCAAAIIIIAAAggggAACCCCAAAIIIICA3gKEzXr3j+oRQAABBBBAAAEEEEAAAQQQQAABBBBAAAElBAiblWgDRSCAAAIIIIAAAggggAACCCCAAAIIIIAAAnoLEDbr3T+qRwABBBBAAAEEEEAAAQQQQAABBBBAAAEElBD4fzKy+iPcQJOwAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "atom.plot_roc()\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.2" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }