Example: Binary classification¶
This example shows how to use ATOM to solve a binary classification problem. Additonnaly, we'll perform a variety of data cleaning steps to prepare the data for modelling.
The data used is a variation on the Australian weather dataset from Kaggle. You can download it from here. The goal of this dataset is to predict whether or not it will rain tomorrow training a binary classifier on target RainTomorrow
.
Load the data¶
In [1]:
Copied!
# Import packages
import pandas as pd
from atom import ATOMClassifier
# Import packages
import pandas as pd
from atom import ATOMClassifier
In [2]:
Copied!
# Load data
X = pd.read_csv("./datasets/weatherAUS.csv")
# Let's have a look
X.head()
# Load data
X = pd.read_csv("./datasets/weatherAUS.csv")
# Let's have a look
X.head()
Out[2]:
Location | MinTemp | MaxTemp | Rainfall | Evaporation | Sunshine | WindGustDir | WindGustSpeed | WindDir9am | WindDir3pm | ... | Humidity9am | Humidity3pm | Pressure9am | Pressure3pm | Cloud9am | Cloud3pm | Temp9am | Temp3pm | RainToday | RainTomorrow | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | MelbourneAirport | 18.0 | 26.9 | 21.4 | 7.0 | 8.9 | SSE | 41.0 | W | SSE | ... | 95.0 | 54.0 | 1019.5 | 1017.0 | 8.0 | 5.0 | 18.5 | 26.0 | Yes | 0 |
1 | Adelaide | 17.2 | 23.4 | 0.0 | NaN | NaN | S | 41.0 | S | WSW | ... | 59.0 | 36.0 | 1015.7 | 1015.7 | NaN | NaN | 17.7 | 21.9 | No | 0 |
2 | Cairns | 18.6 | 24.6 | 7.4 | 3.0 | 6.1 | SSE | 54.0 | SSE | SE | ... | 78.0 | 57.0 | 1018.7 | 1016.6 | 3.0 | 3.0 | 20.8 | 24.1 | Yes | 0 |
3 | Portland | 13.6 | 16.8 | 4.2 | 1.2 | 0.0 | ESE | 39.0 | ESE | ESE | ... | 76.0 | 74.0 | 1021.4 | 1020.5 | 7.0 | 8.0 | 15.6 | 16.0 | Yes | 1 |
4 | Walpole | 16.4 | 19.9 | 0.0 | NaN | NaN | SE | 44.0 | SE | SE | ... | 78.0 | 70.0 | 1019.4 | 1018.9 | NaN | NaN | 17.4 | 18.1 | No | 0 |
5 rows × 22 columns
Run the pipeline¶
In [3]:
Copied!
# Call atom using only 5% of the complete dataset (for explanatory purposes)
atom = ATOMClassifier(X, "RainTomorrow", n_rows=0.05, n_jobs=8, verbose=2)
# Call atom using only 5% of the complete dataset (for explanatory purposes)
atom = ATOMClassifier(X, "RainTomorrow", n_rows=0.05, n_jobs=8, verbose=2)
<< ================== ATOM ================== >> Algorithm task: binary classification. Parallel processing with 8 cores. Dataset stats ==================== >> Shape: (7109, 22) Memory: 3.08 MB Scaled: False Missing values: 15933 (10.2%) Categorical features: 5 (23.8%) ------------------------------------- Train set size: 5688 Test set size: 1421 ------------------------------------- | | dataset | train | test | | - | ------------ | ------------ | ------------ | | 0 | 5592 (3.7) | 4474 (3.7) | 1118 (3.7) | | 1 | 1517 (1.0) | 1214 (1.0) | 303 (1.0) |
In [4]:
Copied!
# Impute missing values
atom.impute(strat_num="median", strat_cat="drop", max_nan_rows=0.8)
# Impute missing values
atom.impute(strat_num="median", strat_cat="drop", max_nan_rows=0.8)
Fitting Imputer... Imputing missing values... --> Dropping 5 samples for containing more than 16 missing values. --> Imputing 17 missing values with median (12.0) in feature MinTemp. --> Imputing 13 missing values with median (22.6) in feature MaxTemp. --> Imputing 73 missing values with median (0.0) in feature Rainfall. --> Imputing 3068 missing values with median (4.8) in feature Evaporation. --> Imputing 3413 missing values with median (8.6) in feature Sunshine. --> Dropping 462 samples due to missing values in feature WindGustDir. --> Imputing 461 missing values with median (37.0) in feature WindGustSpeed. --> Dropping 469 samples due to missing values in feature WindDir9am. --> Dropping 185 samples due to missing values in feature WindDir3pm. --> Imputing 53 missing values with median (13.0) in feature WindSpeed9am. --> Imputing 128 missing values with median (17.0) in feature WindSpeed3pm. --> Imputing 89 missing values with median (70.0) in feature Humidity9am. --> Imputing 175 missing values with median (52.0) in feature Humidity3pm. --> Imputing 707 missing values with median (1017.8) in feature Pressure9am. --> Imputing 704 missing values with median (1015.3) in feature Pressure3pm. --> Imputing 2699 missing values with median (5.0) in feature Cloud9am. --> Imputing 2882 missing values with median (5.0) in feature Cloud3pm. --> Imputing 41 missing values with median (16.6) in feature Temp9am. --> Imputing 132 missing values with median (21.2) in feature Temp3pm. --> Dropping 73 samples due to missing values in feature RainToday.
In [5]:
Copied!
# Encode the categorical features
atom.encode(strategy="Target", max_onehot=10, rare_to_value=0.04)
# Encode the categorical features
atom.encode(strategy="Target", max_onehot=10, rare_to_value=0.04)
Fitting Encoder... Encoding categorical columns... --> Target-encoding feature Location. Contains 47 classes. --> Target-encoding feature WindGustDir. Contains 16 classes. --> Target-encoding feature WindDir9am. Contains 16 classes. --> Target-encoding feature WindDir3pm. Contains 16 classes. --> Ordinal-encoding feature RainToday. Contains 2 classes.
In [6]:
Copied!
# Train an Extra-Trees and a Random Forest model
atom.run(models=["ET", "RF"], metric="f1", n_bootstrap=5)
# Train an Extra-Trees and a Random Forest model
atom.run(models=["ET", "RF"], metric="f1", n_bootstrap=5)
Training ========================= >> Models: ET, RF Metric: f1 Results for ExtraTrees: Fit --------------------------------------------- Train evaluation --> f1: 1.0 Test evaluation --> f1: 0.532 Time elapsed: 0.215s Bootstrap --------------------------------------- Evaluation --> f1: 0.4959 ± 0.0125 Time elapsed: 1.003s ------------------------------------------------- Total time: 1.218s Results for RandomForest: Fit --------------------------------------------- Train evaluation --> f1: 0.9995 Test evaluation --> f1: 0.5235 Time elapsed: 0.283s Bootstrap --------------------------------------- Evaluation --> f1: 0.5302 ± 0.0048 Time elapsed: 1.285s ------------------------------------------------- Total time: 1.567s Final results ==================== >> Total time: 2.787s ------------------------------------- ExtraTrees --> f1: 0.4959 ± 0.0125 ~ RandomForest --> f1: 0.5302 ± 0.0048 ~ !
Analyze the results¶
In [7]:
Copied!
# Let's have a look at the final results
atom.results
# Let's have a look at the final results
atom.results
Out[7]:
score_train | score_test | time_fit | score_bootstrap | time_bootstrap | time | |
---|---|---|---|---|---|---|
ET | 1.0000 | 0.5320 | 0.215197 | 0.495895 | 1.002652 | 1.217849 |
RF | 0.9995 | 0.5235 | 0.282572 | 0.530242 | 1.284799 | 1.567371 |
In [8]:
Copied!
# Visualize the bootstrap results
atom.plot_results(title="RF vs ET performance")
# Visualize the bootstrap results
atom.plot_results(title="RF vs ET performance")
In [9]:
Copied!
# Print the results of some common metrics
atom.evaluate()
# Print the results of some common metrics
atom.evaluate()
Out[9]:
accuracy | average_precision | balanced_accuracy | f1 | jaccard | matthews_corrcoef | precision | recall | roc_auc | |
---|---|---|---|---|---|---|---|---|---|
ET | 0.8476 | 0.6559 | 0.6878 | 0.5320 | 0.3624 | 0.4789 | 0.7500 | 0.4122 | 0.8499 |
RF | 0.8452 | 0.6729 | 0.6835 | 0.5235 | 0.3545 | 0.4692 | 0.7413 | 0.4046 | 0.8583 |
In [10]:
Copied!
# The winner attribute calls the best model (atom.winner == atom.rf)
print(f"The winner is the {atom.winner.name} model!!")
# The winner attribute calls the best model (atom.winner == atom.rf)
print(f"The winner is the {atom.winner.name} model!!")
The winner is the RF model!!
In [11]:
Copied!
# Visualize the distribution of predicted probabilities
atom.winner.plot_probabilities()
# Visualize the distribution of predicted probabilities
atom.winner.plot_probabilities()
In [12]:
Copied!
# Compare how different metrics perform for different thresholds
atom.winner.plot_threshold(metric=["f1", "accuracy", "ap"], steps=50)
# Compare how different metrics perform for different thresholds
atom.winner.plot_threshold(metric=["f1", "accuracy", "ap"], steps=50)