plot_errors
method plot_errors(models=None, dataset="test", title=None, legend="lower right", figsize=(900, 600), filename=None, display=True)[source]
Plot a model's prediction errors.
Plot the actual targets from a set against the predicted values generated by the regressor. A linear fit is made on the data. The gray, intersected line shows the identity line. This plot can be useful to detect noise or heteroscedasticity along a range of the target domain. It's only available for regression tasks.
Parameters | models: int, str, Model, slice, sequence or None, default=None
Models to plot. If None, all models are selected.
dataset: str, default="test"
Data set on which to calculate the metric. Choose from:
"train", "test" or "holdout".
title: str, dict or None, default=None
Title for the plot.
legend: str, dict or None, default="lower right"
Legend for the plot. See the user guide for
an extended description of the choices.
figsize: tuple, default=(900, 600)
Figure's size in pixels, format as (x, y).
filename: str or None, default=None
Save the plot using this name. Use "auto" for automatic
naming. The type of the file depends on the provided name
(.html, .png, .pdf, etc...). If display: bool or None, default=Truefilename has no file type,
the plot is saved as html. If None, the plot is not saved.
Whether to render the plot. If None, it returns the figure.
|
Returns | go.Figure or None
Plot object. Only returned if display=None .
|
Example
>>> from atom import ATOMRegressor
>>> from sklearn.datasets import load_diabetes
>>> X, y = load_diabetes(return_X_y=True, as_frame=True)
>>> atom = ATOMRegressor(X, y)
>>> atom.run(["OLS", "LGB"])
>>> atom.plot_errors()