Multiclass classification¶
This example shows how to compare the performance of three models on a multiclass classification task.
Import the wine dataset from sklearn.datasets. This is a small and easy to train dataset whose goal is to predict wines into three groups (which cultivator it's from) using features based on the results of chemical analysis.
Load the data¶
In [1]:
Copied!
# Import packages
from sklearn.datasets import load_wine
from atom import ATOMClassifier
# Import packages
from sklearn.datasets import load_wine
from atom import ATOMClassifier
In [2]:
Copied!
# Load data
X, y = load_wine(return_X_y=True, as_frame=True)
# Let's have a look
X.head()
# Load data
X, y = load_wine(return_X_y=True, as_frame=True)
# Let's have a look
X.head()
Out[2]:
alcohol | malic_acid | ash | alcalinity_of_ash | magnesium | total_phenols | flavanoids | nonflavanoid_phenols | proanthocyanins | color_intensity | hue | od280/od315_of_diluted_wines | proline | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 14.23 | 1.71 | 2.43 | 15.6 | 127.0 | 2.80 | 3.06 | 0.28 | 2.29 | 5.64 | 1.04 | 3.92 | 1065.0 |
1 | 13.20 | 1.78 | 2.14 | 11.2 | 100.0 | 2.65 | 2.76 | 0.26 | 1.28 | 4.38 | 1.05 | 3.40 | 1050.0 |
2 | 13.16 | 2.36 | 2.67 | 18.6 | 101.0 | 2.80 | 3.24 | 0.30 | 2.81 | 5.68 | 1.03 | 3.17 | 1185.0 |
3 | 14.37 | 1.95 | 2.50 | 16.8 | 113.0 | 3.85 | 3.49 | 0.24 | 2.18 | 7.80 | 0.86 | 3.45 | 1480.0 |
4 | 13.24 | 2.59 | 2.87 | 21.0 | 118.0 | 2.80 | 2.69 | 0.39 | 1.82 | 4.32 | 1.04 | 2.93 | 735.0 |
Run the pipeline¶
In [3]:
Copied!
atom = ATOMClassifier(X, y, n_jobs=-1, warnings=False, verbose=2, random_state=1)
# Fit the pipeline with the selected models
atom.run(
models=["LR","LDA", "RF"],
metric="roc_auc_ovr",
n_calls=4,
n_initial_points=3,
bo_params={"base_estimator": "rf", "max_time": 100},
n_bootstrap=5,
)
atom = ATOMClassifier(X, y, n_jobs=-1, warnings=False, verbose=2, random_state=1)
# Fit the pipeline with the selected models
atom.run(
models=["LR","LDA", "RF"],
metric="roc_auc_ovr",
n_calls=4,
n_initial_points=3,
bo_params={"base_estimator": "rf", "max_time": 100},
n_bootstrap=5,
)
<< ================== ATOM ================== >> Algorithm task: multiclass classification. Parallel processing with 16 cores. Dataset stats ==================== >> Shape: (178, 14) Scaled: False Outlier values: 10 (0.5%) ------------------------------------- Train set size: 143 Test set size: 35 ------------------------------------- | | dataset | train | test | | -- | ---------- | ---------- | ---------- | | 0 | 59 (1.2) | 50 (1.4) | 9 (1.0) | | 1 | 71 (1.5) | 58 (1.7) | 13 (1.4) | | 2 | 48 (1.0) | 35 (1.0) | 13 (1.4) | Training ========================= >> Models: LR, LDA, RF Metric: roc_auc_ovr Running BO for Logistic Regression... | call | penalty | C | solver | max_iter | l1_ratio | roc_auc_ovr | best_roc_auc_ovr | time | total_time | | ---------------- | ------- | ------- | ------- | -------- | -------- | ----------- | ---------------- | ------- | ---------- | | Initial point 1 | l2 | 46.003 | lbfgs | 745 | --- | 1.0 | 1.0 | 1.085s | 1.092s | | Initial point 2 | none | --- | newto.. | 490 | --- | 1.0 | 1.0 | 0.496s | 1.777s | | Initial point 3 | l2 | 0.037 | libli.. | 352 | --- | 1.0 | 1.0 | 0.017s | 1.858s | | Iteration 4 | none | --- | newto.. | 378 | --- | 1.0 | 1.0 | 0.486s | 2.688s | Results for Logistic Regression: Bayesian Optimization --------------------------- Best call --> Initial point 1 Best parameters --> {'penalty': 'l2', 'C': 46.003, 'solver': 'lbfgs', 'max_iter': 745} Best evaluation --> roc_auc_ovr: 1.0 Time elapsed: 3.021s Fit --------------------------------------------- Train evaluation --> roc_auc_ovr: 1.0 Test evaluation --> roc_auc_ovr: 0.9965 Time elapsed: 0.418s Bootstrap --------------------------------------- Evaluation --> roc_auc_ovr: 0.9953 ± 0.0007 Time elapsed: 2.324s ------------------------------------------------- Total time: 5.765s Running BO for Linear Discriminant Analysis... | call | solver | shrinkage | roc_auc_ovr | best_roc_auc_ovr | time | total_time | | ---------------- | ------- | --------- | ----------- | ---------------- | ------- | ---------- | | Initial point 1 | eigen | 1.0 | 0.9125 | 0.9125 | 0.010s | 0.013s | | Initial point 2 | svd | --- | 1.0 | 1.0 | 0.009s | 0.085s | | Initial point 3 | svd | --- | 1.0 | 1.0 | 0.000s | 0.151s | | Iteration 4 | lsqr | 0.7 | 0.8761 | 1.0 | 0.009s | 0.457s | Results for Linear Discriminant Analysis: Bayesian Optimization --------------------------- Best call --> Initial point 2 Best parameters --> {'solver': 'svd'} Best evaluation --> roc_auc_ovr: 1.0 Time elapsed: 0.737s Fit --------------------------------------------- Train evaluation --> roc_auc_ovr: 1.0 Test evaluation --> roc_auc_ovr: 1.0 Time elapsed: 0.009s Bootstrap --------------------------------------- Evaluation --> roc_auc_ovr: 0.9966 ± 0.0024 Time elapsed: 0.028s ------------------------------------------------- Total time: 0.775s Running BO for Random Forest... | call | n_estimators | criterion | max_depth | min_samples_split | min_samples_leaf | max_features | bootstrap | ccp_alpha | max_samples | roc_auc_ovr | best_roc_auc_ovr | time | total_time | | ---------------- | ------------ | --------- | --------- | ----------------- | ---------------- | ------------ | --------- | --------- | ----------- | ----------- | ---------------- | ------- | ---------- | | Initial point 1 | 245 | entropy | None | 13 | 6 | None | True | 0.007 | 0.6 | 0.9928 | 0.9928 | 0.332s | 0.339s | | Initial point 2 | 400 | entropy | 8 | 7 | 19 | 0.7 | True | 0.008 | 0.7 | 0.9886 | 0.9928 | 0.536s | 0.943s | | Initial point 3 | 78 | gini | 5 | 2 | 14 | 0.8 | False | 0.003 | --- | 0.9916 | 0.9928 | 0.105s | 1.118s | | Iteration 4 | 394 | entropy | 3 | 19 | 14 | 0.8 | False | 0.015 | --- | 0.9841 | 0.9928 | 0.446s | 2.039s | Results for Random Forest: Bayesian Optimization --------------------------- Best call --> Initial point 1 Best parameters --> {'n_estimators': 245, 'criterion': 'entropy', 'max_depth': None, 'min_samples_split': 13, 'min_samples_leaf': 6, 'max_features': None, 'bootstrap': True, 'ccp_alpha': 0.007, 'max_samples': 0.6} Best evaluation --> roc_auc_ovr: 0.9928 Time elapsed: 2.452s Fit --------------------------------------------- Train evaluation --> roc_auc_ovr: 0.9997 Test evaluation --> roc_auc_ovr: 0.9709 Time elapsed: 0.369s Bootstrap --------------------------------------- Evaluation --> roc_auc_ovr: 0.9462 ± 0.025 Time elapsed: 1.778s ------------------------------------------------- Total time: 4.601s Final results ==================== >> Duration: 11.141s ------------------------------------- Logistic Regression --> roc_auc_ovr: 0.9953 ± 0.0007 Linear Discriminant Analysis --> roc_auc_ovr: 0.9966 ± 0.0024 ! Random Forest --> roc_auc_ovr: 0.9462 ± 0.025
Analyze the results¶
In [4]:
Copied!
atom.results
atom.results
Out[4]:
metric_bo | time_bo | metric_train | metric_test | time_fit | mean_bootstrap | std_bootstrap | time_bootstrap | time | |
---|---|---|---|---|---|---|---|---|---|
LR | 1.000000 | 3.021s | 1.000000 | 0.996503 | 0.418s | 0.995338 | 0.000737 | 2.324s | 5.765s |
LDA | 1.000000 | 0.737s | 1.000000 | 1.000000 | 0.009s | 0.996633 | 0.002441 | 0.028s | 0.775s |
RF | 0.992813 | 2.452s | 0.999658 | 0.970862 | 0.369s | 0.946180 | 0.024957 | 1.778s | 4.601s |
In [5]:
Copied!
# Show the score for some different metrics
atom.evaluate(["precision_macro", "recall_macro", "jaccard_weighted"])
# Show the score for some different metrics
atom.evaluate(["precision_macro", "recall_macro", "jaccard_weighted"])
Out[5]:
precision_macro | recall_macro | jaccard_weighted | |
---|---|---|---|
LR | 0.948718 | 0.948718 | 0.893878 |
LDA | 1.000000 | 1.000000 | 1.000000 |
RF | 0.834188 | 0.846154 | 0.711190 |
In [6]:
Copied!
# Some plots allow you to choose the target class to look at
atom.rf.plot_probabilities(dataset="train", target=2)
# Some plots allow you to choose the target class to look at
atom.rf.plot_probabilities(dataset="train", target=2)
In [7]:
Copied!
atom.lda.heatmap_plot(target=2, show=8, figsize=(16, 6))
atom.lda.heatmap_plot(target=2, show=8, figsize=(16, 6))