Skip to content

plot_learning_curve


method plot_learning_curve(models=None, metric=0, title=None, figsize=(10, 6), filename=None, display=True) [source]

Plot the model's learning curve: score vs number of training samples. Only available for non-ensemble models that were fitted using train sizing.

Parameters:

models: str, sequence or None, optional (default=None)
Name of the models to plot. If None, all models in the pipeline are selected.

metric: int or str, optional (default=0)
Index or name of the metric to plot. Only for multi-metric runs.

title: str or None, optional (default=None)
Plot's title. If None, the title is left empty.

figsize: tuple, optional (default=(10, 6))
Figure's size, format as (x, y).

filename: str or None, optional (default=None)
Name of the file. Use "auto" for automatic naming. If None, the figure is not saved.

display: bool or None, optional (default=True)
Whether to render the plot. If None, it returns the matplotlib figure.

Returns: fig: matplotlib.figure.Figure
Plot object. Only returned if display=None.


Example

from atom import ATOMClassifier

atom = ATOMClassifier(X, y)
atom.train_sizing(
    models=["LDA", "RF"],
    metric="precision",
    train_sizes=10,
    n_bootstrap=4,
)
atom.plot_learning_curve()
plot_learning_curve
Back to top