Multiclass classification¶
This example shows how to compare the performance of three models on a multiclass classification task.
Import the wine dataset from sklearn.datasets. This is a small and easy to train dataset whose goal is to predict wines into three groups (which cultivator it's from) using features based on the results of chemical analysis.
Load the data¶
In [1]:
Copied!
# Import packages
from sklearn.datasets import load_wine
from atom import ATOMClassifier
# Import packages
from sklearn.datasets import load_wine
from atom import ATOMClassifier
In [2]:
Copied!
# Load data
X, y = load_wine(return_X_y=True, as_frame=True)
# Let's have a look
X.head()
# Load data
X, y = load_wine(return_X_y=True, as_frame=True)
# Let's have a look
X.head()
Out[2]:
alcohol | malic_acid | ash | alcalinity_of_ash | magnesium | total_phenols | flavanoids | nonflavanoid_phenols | proanthocyanins | color_intensity | hue | od280/od315_of_diluted_wines | proline | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 14.23 | 1.71 | 2.43 | 15.6 | 127.0 | 2.80 | 3.06 | 0.28 | 2.29 | 5.64 | 1.04 | 3.92 | 1065.0 |
1 | 13.20 | 1.78 | 2.14 | 11.2 | 100.0 | 2.65 | 2.76 | 0.26 | 1.28 | 4.38 | 1.05 | 3.40 | 1050.0 |
2 | 13.16 | 2.36 | 2.67 | 18.6 | 101.0 | 2.80 | 3.24 | 0.30 | 2.81 | 5.68 | 1.03 | 3.17 | 1185.0 |
3 | 14.37 | 1.95 | 2.50 | 16.8 | 113.0 | 3.85 | 3.49 | 0.24 | 2.18 | 7.80 | 0.86 | 3.45 | 1480.0 |
4 | 13.24 | 2.59 | 2.87 | 21.0 | 118.0 | 2.80 | 2.69 | 0.39 | 1.82 | 4.32 | 1.04 | 2.93 | 735.0 |
Run the pipeline¶
In [3]:
Copied!
atom = ATOMClassifier(X, y, n_jobs=-1, warnings=False, verbose=2, random_state=1)
# Fit the pipeline with the selected models
atom.run(
models=["LR","LDA", "RF"],
metric="roc_auc_ovr",
n_calls=4,
n_initial_points=3,
bo_params={"base_estimator": "rf", "max_time": 100},
n_bootstrap=5,
)
atom = ATOMClassifier(X, y, n_jobs=-1, warnings=False, verbose=2, random_state=1)
# Fit the pipeline with the selected models
atom.run(
models=["LR","LDA", "RF"],
metric="roc_auc_ovr",
n_calls=4,
n_initial_points=3,
bo_params={"base_estimator": "rf", "max_time": 100},
n_bootstrap=5,
)
<< ================== ATOM ================== >> Algorithm task: multiclass classification. Parallel processing with 16 cores. Dataset stats ====================== >> Shape: (178, 14) Scaled: False Outlier values: 10 (0.5%) --------------------------------------- Train set size: 143 Test set size: 35 --------------------------------------- | | dataset | train | test | |---:|:----------|:---------|:---------| | 0 | 59 (1.2) | 50 (1.4) | 9 (1.0) | | 1 | 71 (1.5) | 58 (1.7) | 13 (1.4) | | 2 | 48 (1.0) | 35 (1.0) | 13 (1.4) | Training ===================================== >> Models: LR, LDA, RF Metric: roc_auc_ovr Running BO for Logistic Regression... Initial point 1 --------------------------------- Parameters --> {'penalty': 'l2', 'C': 46.003, 'solver': 'lbfgs', 'max_iter': 745} Evaluation --> roc_auc_ovr: 1.0000 Best roc_auc_ovr: 1.0000 Time iteration: 6.715s Total time: 6.720s Initial point 2 --------------------------------- Parameters --> {'penalty': 'none', 'solver': 'newton-cg', 'max_iter': 490} Evaluation --> roc_auc_ovr: 1.0000 Best roc_auc_ovr: 1.0000 Time iteration: 6.565s Total time: 13.517s Initial point 3 --------------------------------- Parameters --> {'penalty': 'l2', 'C': 0.037, 'solver': 'liblinear', 'max_iter': 352} Evaluation --> roc_auc_ovr: 0.9993 Best roc_auc_ovr: 1.0000 Time iteration: 6.620s Total time: 20.163s Iteration 4 ------------------------------------- Parameters --> {'penalty': 'none', 'solver': 'newton-cg', 'max_iter': 378} Evaluation --> roc_auc_ovr: 1.0000 Best roc_auc_ovr: 1.0000 Time iteration: 5.306s Total time: 25.703s Results for Logistic Regression: Bayesian Optimization --------------------------- Best parameters --> {'penalty': 'l2', 'C': 46.003, 'solver': 'lbfgs', 'max_iter': 745} Best evaluation --> roc_auc_ovr: 1.0 Time elapsed: 25.962s Fit --------------------------------------------- Train evaluation --> roc_auc_ovr: 1.0 Test evaluation --> roc_auc_ovr: 0.9965 Time elapsed: 0.037s Bootstrap --------------------------------------- Evaluation --> roc_auc_ovr: 0.9942 ± 0.0026 Time elapsed: 0.100s ------------------------------------------------- Total time: 26.099s Running BO for Linear Discriminant Analysis... Initial point 1 --------------------------------- Parameters --> {'solver': 'eigen', 'shrinkage': 1.0} Evaluation --> roc_auc_ovr: 0.8975 Best roc_auc_ovr: 0.8975 Time iteration: 0.016s Total time: 0.031s Initial point 2 --------------------------------- Parameters --> {'solver': 'svd'} Evaluation --> roc_auc_ovr: 1.0000 Best roc_auc_ovr: 1.0000 Time iteration: 0.030s Total time: 0.092s Initial point 3 --------------------------------- Parameters --> {'solver': 'svd'} Evaluation --> roc_auc_ovr: 1.0000 Best roc_auc_ovr: 1.0000 Time iteration: 0.031s Total time: 0.140s Iteration 4 ------------------------------------- Parameters --> {'solver': 'lsqr', 'shrinkage': 0.7} Evaluation --> roc_auc_ovr: 0.8996 Best roc_auc_ovr: 1.0000 Time iteration: 0.034s Total time: 0.383s Results for Linear Discriminant Analysis: Bayesian Optimization --------------------------- Best parameters --> {'solver': 'svd'} Best evaluation --> roc_auc_ovr: 1.0 Time elapsed: 0.604s Fit --------------------------------------------- Train evaluation --> roc_auc_ovr: 1.0 Test evaluation --> roc_auc_ovr: 1.0 Time elapsed: 0.001s Bootstrap --------------------------------------- Evaluation --> roc_auc_ovr: 0.9998 ± 0.0005 Time elapsed: 0.031s ------------------------------------------------- Total time: 0.636s Running BO for Random Forest... Initial point 1 --------------------------------- Parameters --> {'n_estimators': 245, 'criterion': 'entropy', 'max_depth': None, 'min_samples_split': 13, 'min_samples_leaf': 6, 'max_features': None, 'bootstrap': True, 'ccp_alpha': 0.007, 'max_samples': 0.6} Evaluation --> roc_auc_ovr: 0.9921 Best roc_auc_ovr: 0.9921 Time iteration: 0.398s Total time: 0.398s Initial point 2 --------------------------------- Parameters --> {'n_estimators': 400, 'criterion': 'entropy', 'max_depth': 8, 'min_samples_split': 7, 'min_samples_leaf': 19, 'max_features': 0.7, 'bootstrap': True, 'ccp_alpha': 0.008, 'max_samples': 0.7} Evaluation --> roc_auc_ovr: 0.9927 Best roc_auc_ovr: 0.9927 Time iteration: 0.569s Total time: 1.004s Initial point 3 --------------------------------- Parameters --> {'n_estimators': 78, 'criterion': 'gini', 'max_depth': 5, 'min_samples_split': 2, 'min_samples_leaf': 14, 'max_features': 0.8, 'bootstrap': False, 'ccp_alpha': 0.003} Evaluation --> roc_auc_ovr: 0.9851 Best roc_auc_ovr: 0.9927 Time iteration: 0.125s Total time: 1.160s Iteration 4 ------------------------------------- Parameters --> {'n_estimators': 394, 'criterion': 'entropy', 'max_depth': 3, 'min_samples_split': 19, 'min_samples_leaf': 14, 'max_features': 0.8, 'bootstrap': False, 'ccp_alpha': 0.015} Evaluation --> roc_auc_ovr: 0.9897 Best roc_auc_ovr: 0.9927 Time iteration: 0.476s Total time: 1.965s Results for Random Forest: Bayesian Optimization --------------------------- Best parameters --> {'n_estimators': 400, 'criterion': 'entropy', 'max_depth': 8, 'min_samples_split': 7, 'min_samples_leaf': 19, 'max_features': 0.7, 'bootstrap': True, 'ccp_alpha': 0.008, 'max_samples': 0.7} Best evaluation --> roc_auc_ovr: 0.9927 Time elapsed: 2.290s Fit --------------------------------------------- Train evaluation --> roc_auc_ovr: 0.9997 Test evaluation --> roc_auc_ovr: 0.9802 Time elapsed: 0.575s Bootstrap --------------------------------------- Evaluation --> roc_auc_ovr: 0.974 ± 0.0074 Time elapsed: 2.658s ------------------------------------------------- Total time: 5.524s Final results ========================= >> Duration: 32.259s ------------------------------------------ Logistic Regression --> roc_auc_ovr: 0.9942 ± 0.0026 Linear Discriminant Analysis --> roc_auc_ovr: 0.9998 ± 0.0005 ! Random Forest --> roc_auc_ovr: 0.974 ± 0.0074
Analyze the results¶
In [4]:
Copied!
atom.results
atom.results
Out[4]:
metric_bo | time_bo | metric_train | metric_test | time_fit | mean_bootstrap | std_bootstrap | time_bootstrap | time | |
---|---|---|---|---|---|---|---|---|---|
LR | 1.000000 | 25.962s | 1.000000 | 0.996503 | 0.037s | 0.994172 | 0.002553 | 0.100s | 26.099s |
LDA | 1.000000 | 0.604s | 1.000000 | 1.000000 | 0.001s | 0.999767 | 0.000466 | 0.031s | 0.636s |
RF | 0.992716 | 2.290s | 0.999654 | 0.980186 | 0.575s | 0.974022 | 0.007351 | 2.658s | 5.524s |
In [5]:
Copied!
# Show the score for some different metrics
atom.evaluate(["precision_macro", "recall_macro", "jaccard_weighted"])
# Show the score for some different metrics
atom.evaluate(["precision_macro", "recall_macro", "jaccard_weighted"])
Out[5]:
jaccard_weighted | precision_macro | recall_macro | |
---|---|---|---|
LR | 0.893878 | 0.948718 | 0.948718 |
LDA | 1.000000 | 1.000000 | 1.000000 |
RF | 0.842857 | 0.919048 | 0.923077 |
In [6]:
Copied!
# Some plots allow you to choose the target class to look at
atom.rf.plot_probabilities(dataset="train", target=2)
# Some plots allow you to choose the target class to look at
atom.rf.plot_probabilities(dataset="train", target=2)
In [7]:
Copied!
atom.lda.heatmap_plot(target=2, show=8, figsize=(16, 6))
atom.lda.heatmap_plot(target=2, show=8, figsize=(16, 6))