plot_errors
Plot a model's prediction errors, i.e. the actual targets from a set against the predicted values generated by the regressor. A linear fit is made on the data. The gray, intersected line shows the identity line. This pot can be useful to detect noise or heteroscedasticity along a range of the target domain. Only for regression tasks.
Parameters: |
models: str, sequence or None, optional (default=None)
dataset: str, optional (default="test")
title: str or None, optional (default=None)
figsize: tuple, optional (default=(10, 6))
filename: str or None, optional (default=None)
display: bool or None, optional (default=True) |
Returns: |
fig: matplotlib.figure.Figure Plot object. Only returned if display=None .
|
Example
from atom import ATOMRegressor
atom = ATOMRegressor(X, y)
atom.run(["OLS", "LGB"], metric="MAE")
atom.plot_errors()