Multiclass classification¶
This example shows how to compare the performance of three models on a multiclass classification task.
Import the wine dataset from sklearn.datasets. This is a small and easy to train dataset whose goal is to predict wines into three groups (which cultivator it's from) using features based on the results of chemical analysis.
Load the data¶
In [1]:
Copied!
# Import packages
from sklearn.datasets import load_wine
from atom import ATOMClassifier
# Import packages
from sklearn.datasets import load_wine
from atom import ATOMClassifier
In [2]:
Copied!
# Load data
X, y = load_wine(return_X_y=True, as_frame=True)
# Let's have a look
X.head()
# Load data
X, y = load_wine(return_X_y=True, as_frame=True)
# Let's have a look
X.head()
Out[2]:
alcohol | malic_acid | ash | alcalinity_of_ash | magnesium | total_phenols | flavanoids | nonflavanoid_phenols | proanthocyanins | color_intensity | hue | od280/od315_of_diluted_wines | proline | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 14.23 | 1.71 | 2.43 | 15.6 | 127.0 | 2.80 | 3.06 | 0.28 | 2.29 | 5.64 | 1.04 | 3.92 | 1065.0 |
1 | 13.20 | 1.78 | 2.14 | 11.2 | 100.0 | 2.65 | 2.76 | 0.26 | 1.28 | 4.38 | 1.05 | 3.40 | 1050.0 |
2 | 13.16 | 2.36 | 2.67 | 18.6 | 101.0 | 2.80 | 3.24 | 0.30 | 2.81 | 5.68 | 1.03 | 3.17 | 1185.0 |
3 | 14.37 | 1.95 | 2.50 | 16.8 | 113.0 | 3.85 | 3.49 | 0.24 | 2.18 | 7.80 | 0.86 | 3.45 | 1480.0 |
4 | 13.24 | 2.59 | 2.87 | 21.0 | 118.0 | 2.80 | 2.69 | 0.39 | 1.82 | 4.32 | 1.04 | 2.93 | 735.0 |
Run the pipeline¶
In [3]:
Copied!
atom = ATOMClassifier(X, y, n_jobs=-1, verbose=2, random_state=1)
# Fit the pipeline with the selected models
atom.run(
models=["LR","LDA", "RF"],
metric="roc_auc_ovr",
n_calls=4,
n_initial_points=3,
bo_params={"base_estimator": "rf", "max_time": 100},
n_bootstrap=5,
)
atom = ATOMClassifier(X, y, n_jobs=-1, verbose=2, random_state=1)
# Fit the pipeline with the selected models
atom.run(
models=["LR","LDA", "RF"],
metric="roc_auc_ovr",
n_calls=4,
n_initial_points=3,
bo_params={"base_estimator": "rf", "max_time": 100},
n_bootstrap=5,
)
<< ================== ATOM ================== >> Algorithm task: multiclass classification. Parallel processing with 16 cores. Dataset stats ==================== >> Shape: (178, 14) Memory: 19.35 kB Scaled: False Outlier values: 9 (0.4%) ------------------------------------- Train set size: 143 Test set size: 35 ------------------------------------- | | dataset | train | test | | - | ---------- | ---------- | ---------- | | 0 | 59 (1.2) | 47 (1.2) | 12 (1.3) | | 1 | 71 (1.5) | 57 (1.5) | 14 (1.6) | | 2 | 48 (1.0) | 39 (1.0) | 9 (1.0) | Training ========================= >> Models: LR, LDA, RF Metric: roc_auc_ovr Running BO for Logistic Regression... | call | penalty | C | solver | max_iter | l1_ratio | roc_auc_ovr | best_roc_auc_ovr | time | total_time | | ---------------- | ------- | ------- | ------- | -------- | -------- | ----------- | ---------------- | ------- | ---------- | | Initial point 1 | none | --- | lbfgs | 745 | --- | 0.9769 | 0.9769 | 1.723s | 1.723s | | Initial point 2 | l2 | 0.0085 | newto.. | 490 | --- | 0.9963 | 0.9963 | 0.359s | 2.083s | | Initial point 3 | l2 | 0.0368 | libli.. | 352 | --- | 0.9814 | 0.9963 | 0.000s | 2.083s | | Iteration 4 | l2 | 5.6426 | newto.. | 378 | --- | 1.0 | 1.0 | 0.375s | 2.677s | Bayesian Optimization --------------------------- Best call --> Iteration 4 Best parameters --> {'penalty': 'l2', 'C': 5.6426, 'solver': 'newton-cg', 'max_iter': 378} Best evaluation --> roc_auc_ovr: 1.0 Time elapsed: 2.880s Fit --------------------------------------------- Train evaluation --> roc_auc_ovr: 1.0 Test evaluation --> roc_auc_ovr: 1.0 Time elapsed: 0.328s Bootstrap --------------------------------------- Evaluation --> roc_auc_ovr: 0.9998 ± 0.0005 Time elapsed: 1.781s ------------------------------------------------- Total time: 4.989s Running BO for Linear Discriminant Analysis... | call | solver | shrinkage | roc_auc_ovr | best_roc_auc_ovr | time | total_time | | ---------------- | ------- | --------- | ----------- | ---------------- | ------- | ---------- | | Initial point 1 | eigen | 1.0 | 0.9112 | 0.9112 | 0.016s | 0.016s | | Initial point 2 | svd | --- | 1.0 | 1.0 | 0.000s | 0.016s | | Initial point 3 | svd | --- | 1.0 | 1.0 | 0.000s | 0.016s | | Iteration 4 | lsqr | 0.8 | 0.9442 | 1.0 | 0.000s | 0.219s | Bayesian Optimization --------------------------- Best call --> Initial point 2 Best parameters --> {'solver': 'svd'} Best evaluation --> roc_auc_ovr: 1.0 Time elapsed: 0.531s Fit --------------------------------------------- Train evaluation --> roc_auc_ovr: 1.0 Test evaluation --> roc_auc_ovr: 1.0 Time elapsed: 0.016s Bootstrap --------------------------------------- Evaluation --> roc_auc_ovr: 1.0 ± 0.0 Time elapsed: 0.031s ------------------------------------------------- Total time: 0.578s Running BO for Random Forest... | call | n_estimators | criterion | max_depth | min_samples_split | min_samples_leaf | max_features | bootstrap | max_samples | ccp_alpha | roc_auc_ovr | best_roc_auc_ovr | time | total_time | | ---------------- | ------------ | --------- | --------- | ----------------- | ---------------- | ------------ | --------- | ----------- | --------- | ----------- | ---------------- | ------- | ---------- | | Initial point 1 | 245 | entropy | None | 13 | 6 | log2 | True | 0.5 | 0.0121 | 1.0 | 1.0 | 0.328s | 0.328s | | Initial point 2 | 400 | entropy | 14 | 7 | 19 | 0.7 | True | 0.5 | 0.0187 | 0.9898 | 1.0 | 0.531s | 0.859s | | Initial point 3 | 78 | gini | 9 | 2 | 14 | 0.8 | False | --- | 0.0181 | 0.9623 | 1.0 | 0.094s | 0.953s | | Iteration 4 | 394 | entropy | 6 | 19 | 14 | 0.8 | False | --- | 0.0252 | 0.9981 | 1.0 | 0.391s | 1.719s | Bayesian Optimization --------------------------- Best call --> Initial point 1 Best parameters --> {'n_estimators': 245, 'criterion': 'entropy', 'max_depth': None, 'min_samples_split': 13, 'min_samples_leaf': 6, 'max_features': 'log2', 'bootstrap': True, 'max_samples': 0.5, 'ccp_alpha': 0.0121} Best evaluation --> roc_auc_ovr: 1.0 Time elapsed: 2.110s Fit --------------------------------------------- Train evaluation --> roc_auc_ovr: 1.0 Test evaluation --> roc_auc_ovr: 0.9988 Time elapsed: 0.359s Bootstrap --------------------------------------- Evaluation --> roc_auc_ovr: 0.9988 ± 0.0007 Time elapsed: 1.563s ------------------------------------------------- Total time: 4.032s Final results ==================== >> Duration: 9.599s ------------------------------------- Logistic Regression --> roc_auc_ovr: 0.9998 ± 0.0005 Linear Discriminant Analysis --> roc_auc_ovr: 1.0 ± 0.0 ! Random Forest --> roc_auc_ovr: 0.9988 ± 0.0007
Analyze the results¶
In [4]:
Copied!
atom.results
atom.results
Out[4]:
metric_bo | time_bo | metric_train | metric_test | time_fit | mean_bootstrap | std_bootstrap | time_bootstrap | time | |
---|---|---|---|---|---|---|---|---|---|
LR | 1.0 | 2.880s | 1.0 | 1.000000 | 0.328s | 0.999773 | 0.000454 | 1.781s | 4.989s |
LDA | 1.0 | 0.531s | 1.0 | 1.000000 | 0.016s | 1.000000 | 0.000000 | 0.031s | 0.578s |
RF | 1.0 | 2.110s | 1.0 | 0.998792 | 0.359s | 0.998822 | 0.000741 | 1.563s | 4.032s |
In [5]:
Copied!
# Show the score for some different metrics
atom.evaluate(["precision_macro", "recall_macro", "jaccard_weighted"])
# Show the score for some different metrics
atom.evaluate(["precision_macro", "recall_macro", "jaccard_weighted"])
Out[5]:
precision_macro | recall_macro | jaccard_weighted | |
---|---|---|---|
LR | 0.966667 | 0.97619 | 0.945714 |
LDA | 1.000000 | 1.00000 | 1.000000 |
RF | 0.974359 | 0.97619 | 0.945055 |
In [6]:
Copied!
# Some plots allow you to choose the target class to look at
atom.rf.plot_probabilities(dataset="train", target=2)
# Some plots allow you to choose the target class to look at
atom.rf.plot_probabilities(dataset="train", target=2)
In [7]:
Copied!
atom.lda.heatmap_plot(target=2, show=10, figsize=(8, 5))
atom.lda.heatmap_plot(target=2, show=10, figsize=(8, 5))