Holdout set¶
This example shows when and how to use ATOM's holdout set in an exploration pipeline.
The data used is a variation on the Australian weather dataset from Kaggle. You can download it from here. The goal of this dataset is to predict whether or not it will rain tomorrow training a binary classifier on target RainTomorrow
.
Load the data¶
# Import packages
import pandas as pd
from atom import ATOMClassifier
# Load data
X = pd.read_csv("./datasets/weatherAUS.csv")
# Let's have a look
X.head()
Location | MinTemp | MaxTemp | Rainfall | Evaporation | Sunshine | WindGustDir | WindGustSpeed | WindDir9am | WindDir3pm | ... | Humidity9am | Humidity3pm | Pressure9am | Pressure3pm | Cloud9am | Cloud3pm | Temp9am | Temp3pm | RainToday | RainTomorrow | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | MelbourneAirport | 18.0 | 26.9 | 21.4 | 7.0 | 8.9 | SSE | 41.0 | W | SSE | ... | 95.0 | 54.0 | 1019.5 | 1017.0 | 8.0 | 5.0 | 18.5 | 26.0 | Yes | 0 |
1 | Adelaide | 17.2 | 23.4 | 0.0 | NaN | NaN | S | 41.0 | S | WSW | ... | 59.0 | 36.0 | 1015.7 | 1015.7 | NaN | NaN | 17.7 | 21.9 | No | 0 |
2 | Cairns | 18.6 | 24.6 | 7.4 | 3.0 | 6.1 | SSE | 54.0 | SSE | SE | ... | 78.0 | 57.0 | 1018.7 | 1016.6 | 3.0 | 3.0 | 20.8 | 24.1 | Yes | 0 |
3 | Portland | 13.6 | 16.8 | 4.2 | 1.2 | 0.0 | ESE | 39.0 | ESE | ESE | ... | 76.0 | 74.0 | 1021.4 | 1020.5 | 7.0 | 8.0 | 15.6 | 16.0 | Yes | 1 |
4 | Walpole | 16.4 | 19.9 | 0.0 | NaN | NaN | SE | 44.0 | SE | SE | ... | 78.0 | 70.0 | 1019.4 | 1018.9 | NaN | NaN | 17.4 | 18.1 | No | 0 |
5 rows × 22 columns
Run the pipeline¶
# Initialize atom specifying a fraction of the dataset for holdout
atom = ATOMClassifier(X, n_rows=0.5, holdout_size=0.2, verbose=2)
<< ================== ATOM ================== >> Algorithm task: binary classification. Dataset stats ==================== >> Shape: (56877, 22) Memory: 24.67 MB Scaled: False Missing values: 127041 (10.2%) Categorical features: 5 (23.8%) Duplicate samples: 20 (0.0%) ------------------------------------- Train set size: 42658 Test set size: 14219 Holdout set size: 14219 ------------------------------------- | | dataset | train | test | | - | ------------- | ------------- | ------------- | | 0 | 44113 (3.5) | 33085 (3.5) | 11028 (3.5) | | 1 | 12764 (1.0) | 9573 (1.0) | 3191 (1.0) |
# The test and holdout fractions are split after subsampling the dataset
# Also note that the holdout data set is not a part of atom's dataset
print("Length loaded data:", len(X))
print("Length dataset + holdout:", len(atom.dataset) + len(atom.holdout))
Length loaded data: 142193 Length dataset + holdout: 71096
atom.impute()
atom.encode()
Fitting Imputer... Imputing missing values... --> Dropping 264 samples due to missing values in feature MinTemp. --> Dropping 133 samples due to missing values in feature MaxTemp. --> Dropping 610 samples due to missing values in feature Rainfall. --> Dropping 24309 samples due to missing values in feature Evaporation. --> Dropping 27066 samples due to missing values in feature Sunshine. --> Dropping 3827 samples due to missing values in feature WindGustDir. --> Dropping 3799 samples due to missing values in feature WindGustSpeed. --> Dropping 4123 samples due to missing values in feature WindDir9am. --> Dropping 1572 samples due to missing values in feature WindDir3pm. --> Dropping 558 samples due to missing values in feature WindSpeed9am. --> Dropping 1085 samples due to missing values in feature WindSpeed3pm. --> Dropping 715 samples due to missing values in feature Humidity9am. --> Dropping 1461 samples due to missing values in feature Humidity3pm. --> Dropping 5563 samples due to missing values in feature Pressure9am. --> Dropping 5557 samples due to missing values in feature Pressure3pm. --> Dropping 21479 samples due to missing values in feature Cloud9am. --> Dropping 22836 samples due to missing values in feature Cloud3pm. --> Dropping 368 samples due to missing values in feature Temp9am. --> Dropping 1106 samples due to missing values in feature Temp3pm. --> Dropping 610 samples due to missing values in feature RainToday. Fitting Encoder... Encoding categorical columns... --> LeaveOneOut-encoding feature Location. Contains 26 classes. --> LeaveOneOut-encoding feature WindGustDir. Contains 16 classes. --> LeaveOneOut-encoding feature WindDir9am. Contains 16 classes. --> LeaveOneOut-encoding feature WindDir3pm. Contains 16 classes. --> Ordinal-encoding feature RainToday. Contains 2 classes.
# Unlike train and test, the holdout data set is not transformed until used for predictions
atom.holdout
Location | MinTemp | MaxTemp | Rainfall | Evaporation | Sunshine | WindGustDir | WindGustSpeed | WindDir9am | WindDir3pm | ... | Humidity9am | Humidity3pm | Pressure9am | Pressure3pm | Cloud9am | Cloud3pm | Temp9am | Temp3pm | RainToday | RainTomorrow | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Launceston | 0.3 | 16.0 | 0.0 | NaN | NaN | NNW | 30.0 | SW | NW | ... | 74.0 | 39.0 | NaN | NaN | 2.0 | NaN | 6.4 | 15.1 | No | 0 |
1 | Mildura | 12.4 | 25.0 | 0.0 | 7.6 | 10.2 | S | 24.0 | SSE | SSE | ... | 60.0 | 37.0 | 1020.2 | 1016.5 | 1.0 | 1.0 | 17.0 | 24.5 | No | 0 |
2 | BadgerysCreek | 16.5 | 27.2 | 2.0 | NaN | NaN | SE | 39.0 | SSW | SE | ... | 91.0 | 63.0 | 1024.4 | 1022.6 | NaN | NaN | 21.6 | 26.3 | Yes | 1 |
3 | Bendigo | 4.4 | 18.9 | 1.4 | NaN | NaN | W | 24.0 | SSW | SSW | ... | 71.0 | 41.0 | 1025.2 | 1022.5 | NaN | NaN | 12.8 | 18.4 | Yes | 0 |
4 | Albany | 15.8 | 23.3 | 0.0 | 3.6 | 5.2 | NaN | NaN | NaN | SSW | ... | 91.0 | 74.0 | 1015.3 | 1016.3 | 7.0 | 5.0 | 21.0 | 22.7 | No | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
14214 | Sydney | 15.7 | 20.4 | 0.0 | 10.6 | 4.6 | NaN | NaN | S | SSE | ... | 57.0 | 69.0 | 1019.2 | 1019.3 | 5.0 | 7.0 | 18.4 | 18.2 | No | 0 |
14215 | Brisbane | 18.3 | 25.5 | 0.4 | 6.6 | 3.1 | ENE | 28.0 | ESE | ENE | ... | 73.0 | 62.0 | 1021.5 | 1020.2 | 7.0 | 6.0 | 24.2 | 25.2 | No | 1 |
14216 | Albany | 12.2 | 19.4 | 0.6 | 1.0 | NaN | NaN | NaN | W | NaN | ... | 92.0 | NaN | 1020.5 | 1017.5 | 8.0 | NaN | 13.6 | NaN | No | 0 |
14217 | Sydney | 13.5 | 25.6 | 0.0 | 5.8 | 10.4 | NaN | NaN | WNW | WNW | ... | 57.0 | 31.0 | 1015.0 | 1012.5 | 4.0 | 1.0 | 16.3 | 24.9 | No | 0 |
14218 | SydneyAirport | 16.0 | 26.0 | 1.6 | 5.4 | 9.9 | NE | 39.0 | NW | ENE | ... | 70.0 | 48.0 | 1025.4 | 1022.2 | 3.0 | 3.0 | 19.5 | 24.9 | Yes | 0 |
14219 rows × 22 columns
atom.run(models=["GNB", "LR", "RF"])
Training ========================= >> Models: GNB, LR, RF Metric: f1 Results for Gaussian Naive Bayes: Fit --------------------------------------------- Train evaluation --> f1: 0.6121 Test evaluation --> f1: 0.5929 Time elapsed: 0.031s ------------------------------------------------- Total time: 0.031s Results for Logistic Regression: Fit --------------------------------------------- Train evaluation --> f1: 0.6272 Test evaluation --> f1: 0.6 Time elapsed: 0.078s ------------------------------------------------- Total time: 0.078s Results for Random Forest: Fit --------------------------------------------- Train evaluation --> f1: 1.0 Test evaluation --> f1: 0.6046 Time elapsed: 2.907s ------------------------------------------------- Total time: 2.907s Final results ==================== >> Duration: 3.016s ------------------------------------- Gaussian Naive Bayes --> f1: 0.5929 Logistic Regression --> f1: 0.6 Random Forest --> f1: 0.6046 ~ !
atom.plot_prc()
# Based on the results on the test set, we select the best model for further tuning
atom.run("lr_tuned", n_calls=10, n_initial_points=5)
Training ========================= >> Models: LR_tuned Metric: f1 Running BO for Logistic Regression... | call | penalty | C | solver | max_iter | l1_ratio | f1 | best_f1 | time | total_time | | ---------------- | ------- | ------- | ------- | -------- | -------- | ------- | ------- | ------- | ---------- | | Initial point 1 | l2 | 0.0961 | sag | 965 | --- | 0.5951 | 0.5951 | 0.531s | 0.547s | | Initial point 2 | l2 | 0.0051 | libli.. | 558 | --- | 0.612 | 0.612 | 0.500s | 1.047s | | Initial point 3 | l2 | 1.2006 | lbfgs | 195 | --- | 0.6261 | 0.6261 | 0.500s | 1.547s | | Initial point 4 | none | --- | sag | 416 | --- | 0.6293 | 0.6293 | 0.625s | 2.172s | | Initial point 5 | l2 | 0.0778 | newto.. | 617 | --- | 0.6323 | 0.6323 | 0.516s | 2.688s | | Iteration 6 | none | --- | newto.. | 631 | --- | 0.6176 | 0.6323 | 0.531s | 3.438s | | Iteration 7 | l2 | 0.0739 | newto.. | 607 | --- | 0.6425 | 0.6425 | 0.516s | 4.188s | | Iteration 8 | l2 | 0.1852 | newto.. | 588 | --- | 0.6242 | 0.6425 | 0.516s | 4.954s | | Iteration 9 | l2 | 1.7612 | lbfgs | 545 | --- | 0.6157 | 0.6425 | 0.484s | 5.797s | | Iteration 10 | l2 | 98.7461 | newto.. | 389 | --- | 0.6211 | 0.6425 | 0.531s | 6.594s | Bayesian Optimization --------------------------- Best call --> Iteration 7 Best parameters --> {'penalty': 'l2', 'C': 0.0739, 'solver': 'newton-cg', 'max_iter': 607} Best evaluation --> f1: 0.6425 Time elapsed: 6.876s Fit --------------------------------------------- Train evaluation --> f1: 0.6271 Test evaluation --> f1: 0.5969 Time elapsed: 0.109s ------------------------------------------------- Total time: 6.985s Final results ==================== >> Duration: 6.985s ------------------------------------- Logistic Regression --> f1: 0.5969
Analyze the results¶
We already used the test set to choose the best model for futher tuning, so this set is no longer truly independent. Although it may not be directly visible in the results, using the test set now to evaluate the tuned LR model would be a mistake, since it carries a bias. For this reason, we have set apart an extra, indepedent set to validate the final model: the holdout set. If we are not going to use the test set for validation, we might as well use it to train the model and so optimize the use of the available data. Use the full_train method for this.
# Re-train the model on the full dataset (train + test)
atom.lr_tuned.full_train()
Model LR_tuned successfully retrained.
# Evaluate on the holdout set
atom.lr_tuned.evaluate(dataset="holdout")
accuracy 0.856179 average_precision 0.725656 balanced_accuracy 0.742188 f1 0.624304 jaccard 0.453810 matthews_corrcoef 0.549459 precision 0.746120 recall 0.536683 roc_auc 0.882404 Name: LR_tuned, dtype: float64
atom.lr_tuned.plot_prc(dataset="holdout")