Early stopping¶
This example shows how to use early stopping to reduce the time it takes to run a pipeline. This option is only available for models that allow in-training evaluation (XGBoost, LightGBM and CatBoost).
Import the breast cancer dataset from sklearn.datasets. This is a small and easy to train dataset whose goal is to predict whether a patient has breast cancer or not.
Load the data¶
In [1]:
Copied!
# Import packages
from sklearn.datasets import load_breast_cancer
from atom import ATOMClassifier
# Import packages
from sklearn.datasets import load_breast_cancer
from atom import ATOMClassifier
In [2]:
Copied!
# Load the data
X, y = load_breast_cancer(return_X_y=True)
# Load the data
X, y = load_breast_cancer(return_X_y=True)
Run the pipeline¶
In [3]:
Copied!
# Initialize atom
atom = ATOMClassifier(X, y, n_jobs=2, verbose=2, random_state=1)
# Initialize atom
atom = ATOMClassifier(X, y, n_jobs=2, verbose=2, random_state=1)
<< ================== ATOM ================== >> Algorithm task: binary classification. Parallel processing with 2 cores. Dataset stats ==================== >> Shape: (569, 31) Memory: 138.96 kB Scaled: False Outlier values: 169 (1.2%) ------------------------------------- Train set size: 456 Test set size: 113 ------------------------------------- | | dataset | train | test | | - | ----------- | ----------- | ----------- | | 0 | 212 (1.0) | 170 (1.0) | 42 (1.0) | | 1 | 357 (1.7) | 286 (1.7) | 71 (1.7) |
In [4]:
Copied!
# Train the models using early stopping. An early stopping value of 0.1 means
# that the model will stop if it didn't improve in the last 10% of it's iterations
atom.run(
models="LGB",
metric="ap",
n_calls=7,
n_initial_points=3,
bo_params={"early_stopping": 0.1},
)
# Train the models using early stopping. An early stopping value of 0.1 means
# that the model will stop if it didn't improve in the last 10% of it's iterations
atom.run(
models="LGB",
metric="ap",
n_calls=7,
n_initial_points=3,
bo_params={"early_stopping": 0.1},
)
Training ========================= >> Models: LGB Metric: average_precision Running BO for LightGBM... | call | n_estimators | learning_rate | max_depth | num_leaves | min_child_weight | min_child_samples | subsample | colsample_bytree | reg_alpha | reg_lambda | average_precision | best_average_precision | early_stopping | time | total_time | | ---------------- | ------------ | ------------- | --------- | ---------- | ---------------- | ----------------- | --------- | ---------------- | --------- | ---------- | ----------------- | ---------------------- | -------------- | ------- | ---------- | | Initial point 1 | 499 | 0.733 | 2 | 40 | 0.001 | 13 | 0.7 | 0.8 | 100 | 10 | 0.6264 | 0.6264 | 50/499 | 0.266s | 0.297s | | Initial point 2 | 170 | 0.112 | 7 | 25 | 0.1 | 28 | 0.7 | 0.7 | 100 | 10 | 0.6264 | 0.6264 | 18/170 | 0.016s | 0.313s | | Initial point 3 | 364 | 0.4032 | 1 | 30 | 10 | 25 | 0.9 | 0.6 | 0 | 1 | 0.9923 | 0.9923 | 49/364 | 0.031s | 0.344s | | Iteration 4 | 280 | 0.4959 | 3 | 30 | 0.1 | 14 | 0.9 | 0.5 | 0 | 0.1 | 0.9991 | 0.9991 | 45/280 | 0.031s | 2.920s | | Iteration 5 | 72 | 0.8273 | 8 | 30 | 0.0001 | 1 | 0.9 | 0.4 | 0 | 0 | 0.9923 | 0.9991 | 13/72 | 0.031s | 3.467s | | Iteration 6 | 500 | 0.0483 | -1 | 30 | 100 | 16 | 0.9 | 0.6 | 0.01 | 100 | 0.6264 | 0.9991 | 51/500 | 0.031s | 4.077s | | Iteration 7 | 500 | 0.01 | -1 | 37 | 100 | 30 | 0.8 | 0.4 | 0 | 100 | 0.6264 | 0.9991 | 51/500 | 0.031s | 4.905s | Bayesian Optimization --------------------------- Best call --> Iteration 4 Best parameters --> {'n_estimators': 280, 'learning_rate': 0.4959, 'max_depth': 3, 'num_leaves': 30, 'min_child_weight': 0.1, 'min_child_samples': 14, 'subsample': 0.9, 'colsample_bytree': 0.5, 'reg_alpha': 0, 'reg_lambda': 0.1} Best evaluation --> average_precision: 0.9991 Time elapsed: 5.375s Fit --------------------------------------------- Early stop at iteration 106 of 280. Train evaluation --> average_precision: 1.0 Test evaluation --> average_precision: 0.9976 Time elapsed: 0.031s ------------------------------------------------- Total time: 5.406s Final results ==================== >> Duration: 5.406s ------------------------------------- LightGBM --> average_precision: 0.9976
Analyze the results¶
In [5]:
Copied!
# Plot the evaluation on the train and test set during training
# Note that the metric is provided by the estimator's package, not ATOM!
atom.lgb.plot_evals(title="LightGBM's evaluation curve", figsize=(11, 9))
# Plot the evaluation on the train and test set during training
# Note that the metric is provided by the estimator's package, not ATOM!
atom.lgb.plot_evals(title="LightGBM's evaluation curve", figsize=(11, 9))