plot_residuals
The plot shows the residuals (difference between the predicted and the true value) on the vertical axis and the independent variable on the horizontal axis. The gray, intersected line shows the identity line. This plot can be useful to analyze the variance of the error of the regressor. If the points are randomly dispersed around the horizontal axis, a linear regression model is appropriate for the data; otherwise, a non-linear model is more appropriate. Only for regression tasks.
Parameters: |
models: str, sequence or None, optional (default=None)
dataset: str, optional (default="test")
title: str or None, optional (default=None)
figsize: tuple, optional (default=(10, 6))
filename: str or None, optional (default=None)
display: bool or None, optional (default=True) |
Returns: |
matplotlib.figure.Figure Plot object. Only returned if display=None .
|
Example
from atom import ATOMRegressor
atom = ATOMRegressor(X, y)
atom.run(["OLS", "LGB"], metric="MAE")
atom.plot_residuals()