plot_pca
Plot the explained variance ratio vs the number of components. If the underlying estimator is PCA (for dense datasets), all possible components are plotted. If the underlying estimator is TruncatedSVD (for sparse datasets), it only shows the selected components. The blue star marks the number of components selected by the user. Only available if PCA was applied on the data.
Parameters: |
title: str or None, optional (default=None)
figsize: tuple, optional (default=(10, 6))
filename: str or None, optional (default=None)
display: bool or None, optional (default=True) |
Returns: |
matplotlib.figure.Figure Plot object. Only returned if display=None .
|
Example
from atom import ATOMClassifier
atom = ATOMClassifier(X, y)
atom.feature_selection(strategy="PCA", n_features=11)
atom.plot_pca()