Multiclass classification¶
This example shows how to compare the performance of three models on a multiclass classification task.
Import the wine dataset from sklearn.datasets. This is a small and easy to train dataset whose goal is to predict wines into three groups (which cultivator it's from) using features based on the results of chemical analysis.
Load the data¶
In [8]:
Copied!
# Import packages
from sklearn.datasets import load_wine
from atom import ATOMClassifier
# Import packages
from sklearn.datasets import load_wine
from atom import ATOMClassifier
In [9]:
Copied!
# Load data
X, y = load_wine(return_X_y=True, as_frame=True)
# Let's have a look
X.head()
# Load data
X, y = load_wine(return_X_y=True, as_frame=True)
# Let's have a look
X.head()
Out[9]:
| alcohol | malic_acid | ash | alcalinity_of_ash | magnesium | total_phenols | flavanoids | nonflavanoid_phenols | proanthocyanins | color_intensity | hue | od280/od315_of_diluted_wines | proline | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 14.23 | 1.71 | 2.43 | 15.6 | 127.0 | 2.80 | 3.06 | 0.28 | 2.29 | 5.64 | 1.04 | 3.92 | 1065.0 |
| 1 | 13.20 | 1.78 | 2.14 | 11.2 | 100.0 | 2.65 | 2.76 | 0.26 | 1.28 | 4.38 | 1.05 | 3.40 | 1050.0 |
| 2 | 13.16 | 2.36 | 2.67 | 18.6 | 101.0 | 2.80 | 3.24 | 0.30 | 2.81 | 5.68 | 1.03 | 3.17 | 1185.0 |
| 3 | 14.37 | 1.95 | 2.50 | 16.8 | 113.0 | 3.85 | 3.49 | 0.24 | 2.18 | 7.80 | 0.86 | 3.45 | 1480.0 |
| 4 | 13.24 | 2.59 | 2.87 | 21.0 | 118.0 | 2.80 | 2.69 | 0.39 | 1.82 | 4.32 | 1.04 | 2.93 | 735.0 |
Run the pipeline¶
In [10]:
Copied!
atom = ATOMClassifier(X, y, n_jobs=-1, warnings=False, verbose=2, random_state=1)
# Fit the pipeline with the selected models
atom.run(
models=["LR","LDA", "RF"],
metric="roc_auc_ovr",
n_calls=4,
n_initial_points=3,
bo_params={"base_estimator": "rf", "max_time": 100},
n_bootstrap=5,
)
atom = ATOMClassifier(X, y, n_jobs=-1, warnings=False, verbose=2, random_state=1)
# Fit the pipeline with the selected models
atom.run(
models=["LR","LDA", "RF"],
metric="roc_auc_ovr",
n_calls=4,
n_initial_points=3,
bo_params={"base_estimator": "rf", "max_time": 100},
n_bootstrap=5,
)
<< ================== ATOM ================== >>
Algorithm task: multiclass classification.
Parallel processing with 16 cores.
Dataset stats ==================== >>
Shape: (178, 14)
Scaled: False
Outlier values: 10 (0.5%)
-------------------------------------
Train set size: 143
Test set size: 35
-------------------------------------
| | dataset | train | test |
| -- | ---------- | ---------- | ---------- |
| 0 | 59 (1.2) | 50 (1.4) | 9 (1.0) |
| 1 | 71 (1.5) | 58 (1.7) | 13 (1.4) |
| 2 | 48 (1.0) | 35 (1.0) | 13 (1.4) |
Training ========================= >>
Models: LR, LDA, RF
Metric: roc_auc_ovr
Running BO for Logistic Regression...
| call | penalty | C | solver | max_iter | l1_ratio | roc_auc_ovr | best_roc_auc_ovr | time | total_time |
| ---------------- | ------- | ------- | ------- | -------- | -------- | ----------- | ---------------- | ------- | ---------- |
| Initial point 1 | none | --- | lbfgs | 745 | --- | 0.9242 | 0.9242 | 0.766s | 0.777s |
| Initial point 2 | l2 | 0.0085 | newto.. | 490 | --- | 0.9897 | 0.9897 | 0.344s | 1.262s |
| Initial point 3 | l2 | 0.0368 | libli.. | 352 | --- | 1.0 | 1.0 | 0.016s | 1.341s |
| Iteration 4 | l2 | 5.6426 | newto.. | 378 | --- | 1.0 | 1.0 | 0.422s | 2.060s |
Bayesian Optimization ---------------------------
Best call --> Iteration 4
Best parameters --> {'penalty': 'l2', 'C': 5.6426, 'solver': 'newton-cg', 'max_iter': 378}
Best evaluation --> roc_auc_ovr: 1.0
Time elapsed: 2.325s
Fit ---------------------------------------------
Train evaluation --> roc_auc_ovr: 1.0
Test evaluation --> roc_auc_ovr: 0.9965
Time elapsed: 0.297s
Bootstrap ---------------------------------------
Evaluation --> roc_auc_ovr: 0.996 ± 0.0009
Time elapsed: 1.531s
-------------------------------------------------
Total time: 4.154s
Running BO for Linear Discriminant Analysis...
| call | solver | shrinkage | roc_auc_ovr | best_roc_auc_ovr | time | total_time |
| ---------------- | ------- | --------- | ----------- | ---------------- | ------- | ---------- |
| Initial point 1 | eigen | 1.0 | 0.9125 | 0.9125 | 0.016s | 0.016s |
| Initial point 2 | svd | --- | 1.0 | 1.0 | 0.000s | 0.094s |
| Initial point 3 | svd | --- | 1.0 | 1.0 | 0.000s | 0.172s |
| Iteration 4 | lsqr | 0.8 | 0.8783 | 1.0 | 0.016s | 0.422s |
Bayesian Optimization ---------------------------
Best call --> Initial point 2
Best parameters --> {'solver': 'svd'}
Best evaluation --> roc_auc_ovr: 1.0
Time elapsed: 0.656s
Fit ---------------------------------------------
Train evaluation --> roc_auc_ovr: 1.0
Test evaluation --> roc_auc_ovr: 1.0
Time elapsed: 0.000s
Bootstrap ---------------------------------------
Evaluation --> roc_auc_ovr: 0.9966 ± 0.0024
Time elapsed: 0.031s
-------------------------------------------------
Total time: 0.688s
Running BO for Random Forest...
| call | n_estimators | criterion | max_depth | min_samples_split | min_samples_leaf | max_features | bootstrap | ccp_alpha | max_samples | roc_auc_ovr | best_roc_auc_ovr | time | total_time |
| ---------------- | ------------ | --------- | --------- | ----------------- | ---------------- | ------------ | --------- | --------- | ----------- | ----------- | ---------------- | ------- | ---------- |
| Initial point 1 | 245 | entropy | None | 13 | 6 | sqrt | True | 0.0065 | 0.6 | 0.9966 | 0.9966 | 0.266s | 0.281s |
| Initial point 2 | 400 | entropy | 8 | 7 | 19 | 0.6 | True | 0.008 | 0.7 | 0.9886 | 0.9966 | 0.422s | 0.781s |
| Initial point 3 | 78 | gini | 5 | 2 | 14 | 0.8 | False | 0.0032 | --- | 0.9916 | 0.9966 | 0.078s | 0.938s |
| Iteration 4 | 394 | entropy | 3 | 19 | 14 | 0.8 | False | 0.0148 | --- | 0.9841 | 0.9966 | 0.344s | 1.672s |
Bayesian Optimization ---------------------------
Best call --> Initial point 1
Best parameters --> {'n_estimators': 245, 'criterion': 'entropy', 'max_depth': None, 'min_samples_split': 13, 'min_samples_leaf': 6, 'max_features': 'sqrt', 'bootstrap': True, 'ccp_alpha': 0.0065, 'max_samples': 0.6}
Best evaluation --> roc_auc_ovr: 0.9966
Time elapsed: 2.235s
Fit ---------------------------------------------
Train evaluation --> roc_auc_ovr: 1.0
Test evaluation --> roc_auc_ovr: 0.9883
Time elapsed: 0.319s
Bootstrap ---------------------------------------
Evaluation --> roc_auc_ovr: 0.98 ± 0.0095
Time elapsed: 1.379s
-------------------------------------------------
Total time: 3.933s
Final results ==================== >>
Duration: 8.774s
-------------------------------------
Logistic Regression --> roc_auc_ovr: 0.996 ± 0.0009
Linear Discriminant Analysis --> roc_auc_ovr: 0.9966 ± 0.0024 !
Random Forest --> roc_auc_ovr: 0.98 ± 0.0095
Analyze the results¶
In [11]:
Copied!
atom.results
atom.results
Out[11]:
| metric_bo | time_bo | metric_train | metric_test | time_fit | mean_bootstrap | std_bootstrap | time_bootstrap | time | |
|---|---|---|---|---|---|---|---|---|---|
| LR | 1.000000 | 2.325s | 1.0 | 0.996503 | 0.297s | 0.996037 | 0.000932 | 1.531s | 4.154s |
| LDA | 1.000000 | 0.656s | 1.0 | 1.000000 | 0.000s | 0.996633 | 0.002441 | 0.031s | 0.688s |
| RF | 0.996612 | 2.235s | 1.0 | 0.988345 | 0.319s | 0.979953 | 0.009537 | 1.379s | 3.933s |
In [12]:
Copied!
# Show the score for some different metrics
atom.evaluate(["precision_macro", "recall_macro", "jaccard_weighted"])
# Show the score for some different metrics
atom.evaluate(["precision_macro", "recall_macro", "jaccard_weighted"])
Out[12]:
| precision_macro | recall_macro | jaccard_weighted | |
|---|---|---|---|
| LR | 0.976190 | 0.974359 | 0.944898 |
| LDA | 1.000000 | 1.000000 | 1.000000 |
| RF | 0.955556 | 0.948718 | 0.893333 |
In [13]:
Copied!
# Some plots allow you to choose the target class to look at
atom.rf.plot_probabilities(dataset="train", target=2)
# Some plots allow you to choose the target class to look at
atom.rf.plot_probabilities(dataset="train", target=2)
In [14]:
Copied!
atom.lda.heatmap_plot(target=2, show=10, figsize=(8, 5))
atom.lda.heatmap_plot(target=2, show=10, figsize=(8, 5))