Holdout set¶
This example shows when and how to use ATOM's holdout set in an exploration pipeline.
The data used is a variation on the Australian weather dataset from Kaggle. You can download it from here. The goal of this dataset is to predict whether or not it will rain tomorrow training a binary classifier on target RainTomorrow
.
Load the data¶
# Import packages
import pandas as pd
from atom import ATOMClassifier
# Load data
X = pd.read_csv("./datasets/weatherAUS.csv")
# Let's have a look
X.head()
Location | MinTemp | MaxTemp | Rainfall | Evaporation | Sunshine | WindGustDir | WindGustSpeed | WindDir9am | WindDir3pm | ... | Humidity9am | Humidity3pm | Pressure9am | Pressure3pm | Cloud9am | Cloud3pm | Temp9am | Temp3pm | RainToday | RainTomorrow | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | MelbourneAirport | 18.0 | 26.9 | 21.4 | 7.0 | 8.9 | SSE | 41.0 | W | SSE | ... | 95.0 | 54.0 | 1019.5 | 1017.0 | 8.0 | 5.0 | 18.5 | 26.0 | Yes | 0 |
1 | Adelaide | 17.2 | 23.4 | 0.0 | NaN | NaN | S | 41.0 | S | WSW | ... | 59.0 | 36.0 | 1015.7 | 1015.7 | NaN | NaN | 17.7 | 21.9 | No | 0 |
2 | Cairns | 18.6 | 24.6 | 7.4 | 3.0 | 6.1 | SSE | 54.0 | SSE | SE | ... | 78.0 | 57.0 | 1018.7 | 1016.6 | 3.0 | 3.0 | 20.8 | 24.1 | Yes | 0 |
3 | Portland | 13.6 | 16.8 | 4.2 | 1.2 | 0.0 | ESE | 39.0 | ESE | ESE | ... | 76.0 | 74.0 | 1021.4 | 1020.5 | 7.0 | 8.0 | 15.6 | 16.0 | Yes | 1 |
4 | Walpole | 16.4 | 19.9 | 0.0 | NaN | NaN | SE | 44.0 | SE | SE | ... | 78.0 | 70.0 | 1019.4 | 1018.9 | NaN | NaN | 17.4 | 18.1 | No | 0 |
5 rows × 22 columns
Run the pipeline¶
# Initialize atom specifying a fraction of the dataset for holdout
atom = ATOMClassifier(X, n_rows=0.5, holdout_size=0.2, verbose=2, warnings=False)
<< ================== ATOM ================== >> Algorithm task: binary classification. Dataset stats ==================== >> Shape: (56877, 22) Scaled: False Missing values: 126517 (10.1%) Categorical features: 5 (23.8%) Duplicate samples: 19 (0.0%) ------------------------------------- Train set size: 42658 Test set size: 14219 Holdout set size: 14219 ------------------------------------- | | dataset | train | test | | -- | ------------- | ------------- | ------------- | | 0 | 44192 (3.5) | 33244 (3.5) | 10948 (3.3) | | 1 | 12685 (1.0) | 9414 (1.0) | 3271 (1.0) |
# The test and holdout fractions are split after subsampling the dataset
# Also note that the holdout data set is not a part of atom's dataset
print("Length loaded data:", len(X))
print("Length dataset + holdout:", len(atom.dataset) + len(atom.holdout))
Length loaded data: 142193 Length dataset + holdout: 71096
atom.impute()
atom.encode()
Fitting Imputer... Imputing missing values... --> Dropping 272 samples due to missing values in feature MinTemp. --> Dropping 137 samples due to missing values in feature MaxTemp. --> Dropping 590 samples due to missing values in feature Rainfall. --> Dropping 24144 samples due to missing values in feature Evaporation. --> Dropping 26865 samples due to missing values in feature Sunshine. --> Dropping 3800 samples due to missing values in feature WindGustDir. --> Dropping 3772 samples due to missing values in feature WindGustSpeed. --> Dropping 4070 samples due to missing values in feature WindDir9am. --> Dropping 1530 samples due to missing values in feature WindDir3pm. --> Dropping 569 samples due to missing values in feature WindSpeed9am. --> Dropping 1075 samples due to missing values in feature WindSpeed3pm. --> Dropping 722 samples due to missing values in feature Humidity9am. --> Dropping 1483 samples due to missing values in feature Humidity3pm. --> Dropping 5601 samples due to missing values in feature Pressure9am. --> Dropping 5586 samples due to missing values in feature Pressure3pm. --> Dropping 21440 samples due to missing values in feature Cloud9am. --> Dropping 22764 samples due to missing values in feature Cloud3pm. --> Dropping 375 samples due to missing values in feature Temp9am. --> Dropping 1132 samples due to missing values in feature Temp3pm. --> Dropping 590 samples due to missing values in feature RainToday. Fitting Encoder... Encoding categorical columns... --> LeaveOneOut-encoding feature Location. Contains 26 classes. --> LeaveOneOut-encoding feature WindGustDir. Contains 16 classes. --> LeaveOneOut-encoding feature WindDir9am. Contains 16 classes. --> LeaveOneOut-encoding feature WindDir3pm. Contains 16 classes. --> Ordinal-encoding feature RainToday. Contains 2 classes.
# Unlike train and test, the holdout data set is not transformed until used for predictions
atom.holdout
Location | MinTemp | MaxTemp | Rainfall | Evaporation | Sunshine | WindGustDir | WindGustSpeed | WindDir9am | WindDir3pm | ... | Humidity9am | Humidity3pm | Pressure9am | Pressure3pm | Cloud9am | Cloud3pm | Temp9am | Temp3pm | RainToday | RainTomorrow | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Ballarat | 8.3 | 31.5 | 0.0 | NaN | NaN | NW | 43.0 | N | WNW | ... | 39.0 | 20.0 | 1014.9 | 1012.5 | NaN | 1.0 | 22.7 | 31.2 | No | 0 |
1 | WaggaWagga | 9.9 | 25.8 | 0.0 | 2.4 | 7.6 | E | 22.0 | ENE | E | ... | 81.0 | 48.0 | 1016.0 | 1011.5 | 1.0 | 4.0 | 16.7 | 24.0 | No | 0 |
2 | Ballarat | 4.8 | 24.3 | 0.0 | NaN | NaN | ESE | 37.0 | SSE | SSE | ... | 51.0 | 25.0 | 1020.2 | 1018.1 | NaN | NaN | 13.1 | 22.4 | No | 0 |
3 | Williamtown | 12.2 | 26.6 | 0.0 | 2.0 | NaN | NW | 19.0 | NW | E | ... | 91.0 | 51.0 | 1025.6 | 1021.9 | NaN | NaN | 17.0 | 25.8 | No | 0 |
4 | Newcastle | 7.6 | 23.8 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | ... | 92.0 | NaN | NaN | NaN | 0.0 | NaN | 12.0 | NaN | No | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
14214 | Cobar | 15.3 | 28.9 | 0.0 | 7.0 | NaN | NaN | NaN | NE | SSE | ... | 42.0 | 18.0 | 1022.4 | 1019.4 | 1.0 | 2.0 | 21.9 | 27.8 | No | 0 |
14215 | Witchcliffe | 3.3 | 18.3 | 0.2 | NaN | NaN | SSW | 19.0 | NaN | SE | ... | 98.0 | 59.0 | 1029.6 | 1028.0 | NaN | NaN | 9.4 | 17.0 | No | 0 |
14216 | Nuriootpa | 9.4 | 22.9 | 0.0 | 2.8 | 5.3 | NNW | 28.0 | NE | NNW | ... | 44.0 | 23.0 | 1025.8 | 1023.7 | 6.0 | 6.0 | 14.3 | 22.0 | No | 0 |
14217 | Sale | 13.8 | 22.3 | 0.0 | 4.2 | 1.7 | S | 31.0 | ESE | S | ... | 77.0 | 75.0 | 1010.6 | 1008.9 | 8.0 | 8.0 | 19.1 | 20.7 | No | 0 |
14218 | Witchcliffe | 9.7 | 26.9 | 0.0 | NaN | NaN | N | 44.0 | E | SSE | ... | 68.0 | 69.0 | 1014.0 | 1008.5 | NaN | NaN | 15.7 | 20.0 | No | 1 |
14219 rows × 22 columns
atom.run(models=["GNB", "LR", "RF"])
Training ========================= >> Models: GNB, LR, RF Metric: f1 Results for Gaussian Naive Bayes: Fit --------------------------------------------- Train evaluation --> f1: 0.6027 Test evaluation --> f1: 0.6215 Time elapsed: 0.031s ------------------------------------------------- Total time: 0.031s Results for Logistic Regression: Fit --------------------------------------------- Train evaluation --> f1: 0.609 Test evaluation --> f1: 0.6471 Time elapsed: 0.125s ------------------------------------------------- Total time: 0.125s Results for Random Forest: Fit --------------------------------------------- Train evaluation --> f1: 0.9999 Test evaluation --> f1: 0.6465 Time elapsed: 2.969s ------------------------------------------------- Total time: 2.969s Final results ==================== >> Duration: 3.125s ------------------------------------- Gaussian Naive Bayes --> f1: 0.6215 Logistic Regression --> f1: 0.6471 ! Random Forest --> f1: 0.6465 ~
atom.plot_prc()
# Based on the results on the test set, we select the best model for further tuning
atom.run("lr_tuned", n_calls=10, n_initial_points=5)
Training ========================= >> Models: LR_tuned Metric: f1 Running BO for Logistic Regression... | call | penalty | C | solver | max_iter | l1_ratio | f1 | best_f1 | time | total_time | | ---------------- | ------- | ------- | ------- | -------- | -------- | ------- | ------- | ------- | ---------- | | Initial point 1 | l2 | 7.4773 | newto.. | 135 | --- | 0.6182 | 0.6182 | 0.281s | 0.297s | | Initial point 2 | l2 | 0.0056 | sag | 123 | --- | 0.5994 | 0.6182 | 0.250s | 0.734s | | Initial point 3 | l2 | 0.0666 | newto.. | 573 | --- | 0.6103 | 0.6182 | 0.266s | 1.063s | | Initial point 4 | l2 | 13.7037 | libli.. | 705 | --- | 0.5997 | 0.6182 | 0.266s | 1.391s | | Initial point 5 | l2 | 0.0292 | libli.. | 550 | --- | 0.6298 | 0.6298 | 0.250s | 1.703s | | Iteration 6 | none | --- | lbfgs | 144 | --- | 0.6348 | 0.6348 | 0.250s | 2.219s | | Iteration 7 | none | --- | sag | 100 | --- | 0.6209 | 0.6348 | 0.297s | 2.844s | | Iteration 8 | l2 | 0.2678 | newto.. | 703 | --- | 0.6057 | 0.6348 | 0.281s | 3.407s | | Iteration 9 | l2 | 4.2629 | libli.. | 492 | --- | 0.6455 | 0.6455 | 0.234s | 3.938s | | Iteration 10 | l2 | 3.5302 | sag | 542 | --- | 0.6559 | 0.6559 | 0.313s | 4.563s | Bayesian Optimization --------------------------- Best call --> Iteration 10 Best parameters --> {'penalty': 'l2', 'C': 3.5302, 'solver': 'sag', 'max_iter': 542} Best evaluation --> f1: 0.6559 Time elapsed: 4.985s Fit --------------------------------------------- Train evaluation --> f1: 0.6094 Test evaluation --> f1: 0.6471 Time elapsed: 0.203s ------------------------------------------------- Total time: 5.188s Final results ==================== >> Duration: 5.188s ------------------------------------- Logistic Regression --> f1: 0.6471
Analyze the results¶
We already used the test set to choose the best model for futher tuning, so this set is no longer truly independent. Although it may not be directly visible in the results, using the test set now to evaluate the tuned LR model would be a mistake, since it carries a bias. For this reason, we have set apart an extra, indepedent set to validate the final model: the holdout set. If we are not going to use the test set for validation, we might as well use it to train the model and so optimize the use of the available data. Use the full_train method for this.
# Re-train the model on the full dataset (train + test)
atom.lr_tuned.full_train()
Model LR_tuned successfully retrained.
# Evaluate on the holdout set
atom.lr_tuned.evaluate(dataset="holdout")
accuracy 0.854024 average_precision 0.727781 balanced_accuracy 0.742895 f1 0.627017 jaccard 0.456682 matthews_corrcoef 0.550645 precision 0.749724 recall 0.538827 roc_auc 0.878702 Name: LR_tuned, dtype: float64
atom.lr_tuned.plot_prc(dataset="holdout")