plot_permutation_importance
Plot the feature permutation importance of models. Calculating
permutations can be time-consuming, especially if n_repeats
is high. For this reason, the permutations are stored under the
permutations attribute. If the plot is called again for the
same model with the same n_repeats, it will use the stored
values, making the method considerably faster. The trainer's
feature_importance attribute is updated with the extracted
importance ranking.
| Parameters: | 
 
models: str, sequence or None, optional (default=None) 
show: int, optional (default=None) 
n_repeats: int, optional (default=10) 
title: str or None, optional (default=None) 
figsize: tuple or None, optional (default=None) 
filename: str or None, optional (default=None) 
display: bool or None, optional (default=True)  | 
| Returns: | 
matplotlib.figure.Figure Plot object. Only returned if display=None.
 | 
Example
from atom import ATOMClassifier
atom = ATOMClassifier(X, y)
atom.run(["LR", "LDA"], metric="average_precision")
atom.lda.plot_permutation_importance(show=10, n_repeats=7)