plot_partial_dependence
Plot the partial dependence of features. The partial dependence of a feature (or a set of features) corresponds to the response of the model for each possible value of the feature. Two-way partial dependence plots are plotted as contour plots (only allowed for single model plots). The deciles of the feature values will be shown with tick marks on the x-axes for one-way plots, and on both axes for two-way plots. Read more about partial dependence on sklearn's documentation.
| Parameters: | 
 
models: str, sequence or None, optional (default=None) 
columns: int, str, sequence or None, optional (default=None) 
 This parameter is ignored when plotting feature pairs. 
target: int or str, optional (default=1) 
title: str or None, optional (default=None) 
figsize: tuple, optional (default=(10, 6)) 
filename: str or None, optional (default=None) 
display: bool or None, optional (default=True)  | 
| Returns: | 
matplotlib.figure.Figure Plot object. Only returned if display=None.
 | 
Example
from atom import ATOMClassifier
atom = ATOMClassifier(X, y)
atom.feature_selection(strategy="PCA", n_features=6)
atom.run(["Tree", "Bag"], metric="precision")
atom.plot_partial_dependence()
atom.tree.plot_partial_dependence(features=(4, (3, 4)))