plot_errors
Plot a model's prediction errors, i.e. the actual targets from a set against the predicted values generated by the regressor. A linear fit is made on the data. The gray, intersected line shows the identity line. This pot can be useful to detect noise or heteroscedasticity along a range of the target domain. Only for regression tasks.
| Parameters: | 
 
models: str, sequence or None, optional (default=None) 
dataset: str, optional (default="test") 
title: str or None, optional (default=None) 
figsize: tuple, optional (default=(10, 6)) 
filename: str or None, optional (default=None) 
display: bool or None, optional (default=True)  | 
| Returns: | 
matplotlib.figure.Figure Plot object. Only returned if display=None.
 | 
Example
from atom import ATOMRegressor
atom = ATOMRegressor(X, y)
atom.run(["OLS", "LGB"], metric="MAE")
atom.plot_errors()