Scaler
Apply one of sklearn's scalers. Categorical columns are ignored. This class can be accessed from atom through the scale method. Read more in the user guide.
| Parameters: | 
strategy: str, optional (default="standard") Strategy with which to scale the data. Choose from: verbose: int, optional (default=0) Verbosity level of the class. Possible values are: 
 
 
**kwargs  | 
Tip
Use atom's scaled attribute to check if the feature set is scaled.
Attributes
| Attributes: | 
estimator: sklearn transformer Object instance with which the data is scaled.  | 
Methods
| fit | Fit to data. | 
| fit_transform | Fit to data, then transform it. | 
| get_params | Get parameters for this estimator. | 
| log | Write information to the logger and print to stdout. | 
| save | Save the instance to a pickle file. | 
| set_params | Set the parameters of this estimator. | 
| transform | Transform the data. | 
Compute the mean and std to be used for scaling.
| Parameters: | 
 
X: dataframe-like 
y: int, str, sequence or None, optional (default=None)  | 
| Returns: | 
Scaler Fitted instance of self.  | 
Fit to data, then transform it.
| Parameters: | 
 
X: dataframe-like 
y: int, str, sequence or None, optional (default=None)  | 
| Returns: | 
X: pd.DataFrame Scaled feature set.  | 
Get parameters for this estimator.
| Parameters: | 
 
deep: bool, optional (default=True)  | 
| Returns: | 
dict Parameter names mapped to their values.  | 
Write a message to the logger and print it to stdout.
| Parameters: | 
 
msg: str 
level: int, optional (default=0)  | 
Save the instance to a pickle file.
| Parameters: | 
filename: str, optional (default="auto") Name of the file. Use "auto" for automatic naming.  | 
Set the parameters of this estimator.
| Parameters: | 
**params: dict Estimator parameters.  | 
| Returns: | 
Scaler Estimator instance.  | 
Perform standardization by centering and scaling.
| Parameters: | 
 
X: dataframe-like 
y: int, str, sequence or None, optional (default=None)  | 
| Returns: | 
X: pd.DataFrame Scaled feature set.  | 
Example
from atom import ATOMRegressor
atom = ATOMRegressor(X, y)
atom.scale()
from atom.data_cleaning import Scaler
scaler = Scaler()
scaler.fit(X_train)
X = scaler.transform(X)