plot_relationships
method plot_relationships(columns=(0, 1, 2), title=None, legend=None, figsize=(900, 900), filename=None, display=True)[source]
Plot pairwise relationships in a dataset.
Creates a grid of axes such that each numerical column appears once on the x-axes and once on the y-axes. The bottom triangle contains scatter plots (max 250 random samples), the diagonal plots contain column distributions, and the upper triangle contains contour histograms for all samples in the columns.
Parameters |
columns: segment, sequence or dataframe, default=(0, 1, 2)
Columns to plot. Selected categorical columns are ignored.
title: str, dict or None, default=None
Title for the plot.
legend: str, dict or None, default=None
Do nothing. Implemented for continuity of the API.
figsize: tuple, default=(900, 900)
Figure's size in pixels, format as (x, y).
filename: str, Path or None, default=None
Save the plot using this name. Use "auto" for automatic
naming. The type of the file depends on the provided name
(.html, .png, .pdf, etc...). If
display: bool or None, default=Truefilename has no file type,
the plot is saved as html. If None, the plot is not saved.
Whether to render the plot. If None, it returns the figure.
|
Returns | {#plot_relationships-go.Figure or None}
go.Figure or None
Plot object. Only returned if display=None .
|
See Also
Plot a correlation matrix.
Plot column distributions.
Plot a quantile-quantile plot.
Example
>>> from atom import ATOMClassifier
>>> from sklearn.datasets import load_breast_cancer
>>> X, y = load_breast_cancer(return_X_y=True, as_frame=True)
>>> atom = ATOMClassifier(X, y, random_state=1)
>>> atom.plot_relationships(columns=[0, 4, 5])