plot_correlation
method plot_correlation(columns=None, method="pearson", title=None, legend=None, figsize=(800, 700), filename=None, display=True)[source]
Plot a correlation matrix.
Displays a heatmap showing the correlation between columns in the dataset. The colors red, blue and white stand for positive, negative, and no correlation respectively.
Parameters |
columns: segment, sequence, dataframe or None, default=None
Columns to plot. If None, plot all columns in the dataset.
Selected categorical columns are ignored.
method: str, default="pearson"
Method of correlation. Choose from: pearson, kendall or
spearman.
title: str, dict or None, default=None
Title for the plot.
legend: str, dict or None, default=None
Do nothing. Implemented for continuity of the API.
figsize: tuple, default=(800, 700)
Figure's size in pixels, format as (x, y).
filename: str, Path or None, default=None
Save the plot using this name. Use "auto" for automatic
naming. The type of the file depends on the provided name
(.html, .png, .pdf, etc...). If
display: bool or None, default=Truefilename has no file type,
the plot is saved as html. If None, the plot is not saved.
Whether to render the plot. If None, it returns the figure.
|
Returns | {#plot_correlation-go.Figure or None}
go.Figure or None
Plot object. Only returned if display=None .
|
See Also
Plot column distributions.
Plot a quantile-quantile plot.
Plot pairwise relationships in a dataset.
Example
>>> from atom import ATOMClassifier
>>> from sklearn.datasets import load_breast_cancer
>>> X, y = load_breast_cancer(return_X_y=True, as_frame=True)
>>> atom = ATOMClassifier(X, y, random_state=1)
>>> atom.plot_correlation()